
 

 

Abstract 
 

This paper describes the construction and use of a novel 
representation for the recognition of objects and their 
parts, the semantic hierarchy. Its advantages include 
improved classification performance, accurate detection 
and localization of object parts and sub-parts, and 
explicitly identifying the different appearances of each 
object part. The semantic hierarchy algorithm starts by 
constructing a minimal feature hierarchy and proceeds by 
adding semantically equivalent representatives to each 
node, using the entire hierarchy as a context for 
determining the identity and locations of added features. 
Part detection is obtained by a bottom-up top-down cycle. 
Unlike previous approaches, the semantic hierarchy 
learns to represent the set of possible appearances of 
object parts at all levels, and their statistical 
dependencies. The algorithm is fully automatic and is 
shown experimentally to substantially improve the 
recognition of objects and their parts. 
 

1. Introduction 
A number of recent studies have shown the benefits of 

using a hierarchical feature representation for recognition 
[1-5]. In this approach, top-level features are represented 
by collections of selected sub-features. For example, an 
eye can be represented as a set of smaller features, 
depicting a left eye corner, an eye pupil and a right eye 
corner. This feature organization provides better tolerance 
to learned geometric distortions and illumination changes 
compared with a non-hierarchical representation. It also 
makes it possible to recognize not only the top-level 
objects, but also all their parts and sub-parts at different 
levels. 

A second extension which proved useful for 
recognizing object parts is the use of so-called semantic 
features [6], which are used to represent semantically 
equivalent object parts. The same part in an object class, 
and even a single object, can have multiple different 
appearances, such as different shapes of a car window, an 

open vs. closed mouth, etc. To obtain good recognition of 
objects and parts, the different possible appearances need 
to be learned and represented. For example, a semantic 
feature “eye” can be comprised of object fragments 
depicting closed eye, open eye, etc. The semantic features 
are used for representing different appearances of the same 
object part.  

   
Figure 1. Schematic illustration of a semantic hierarchy. A face 
is represented as a combination of parts and sub-parts. Each part 
is represented as a semantic equivalence set of different possible 
appearances. The proposed scheme is the first to extract and 
use semantic parts in feature hierarchies. 
 

In this paper, we develop a novel representation, called 
semantic hierarchy, which combines and extends the use 
of features hierarchy with the representation of semantic 
features at each hierarchy node. We describe an algorithm 
for the construction of complete semantic hierarchies from 
examples, and demonstrate its use for detecting objects as 
well as their parts. The proposed method overcomes 
limitations of previous algorithms, and efficiently learns 
useful semantic hierarchies from examples. A schematic 
illustration of a semantic hierarchy is shown in Figure 1. 

 As in previous approaches, an object and its parts are 
represented by a probabilistic model, which uses a learned 
probability distribution p(C, X, F) to infer the class C, and 
the parts X from the observed features F. In the semantic 
hierarchy described below, we treat different appearances 
of the same part as different values of a given variable in 
the model. For example, a mouth and a nose are two parts, 
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represented by two variables Xi, Xj in the representation. In 
contrast, open and closed mouths are represented by two 
possible values of the mouth variable.  

We represent an object class (such as a car, or horse) by 
a probabilistic graphical model which has a tree structure, 
describing the class in terms of parts and sub-parts. A 
variable Xi in the model corresponds to an object part, and 
the possible values of Xi correspond to different 
appearances of the part at different locations. As we will 
see, this captures the statistical dependencies between 
parts and their different appearances. 

The model construction algorithm proceeds along the 
following main stages. First, a minimal hierarchy of non-
semantic features is constructed. Next, for each training 
image the optimal location of each feature is determined. 
For each missing feature, its optimal position is predicted, 
using the position of the parent feature and the learned 
parent-child geometric relationship. From the set of 
missing and nearly missing features, the best 
representatives are determined and added to the set of 
semantic appearances of each hierarchy node. Finally, a 
round of hierarchical decomposition is applied to the 
newly added appearances, to extract sub-parts that are 
specific for them. During recognition, the object together 
with its parts and sub-parts are detected by a bottom-up, 
top-down computation applied to the hierarchy. 

The rest of the paper is organized as follows. The next 
section reviews related previous approaches to feature 
hierarchies and semantically equivalent features. In 
Section 3 we describe the proposed algorithms for feature 
selection and classification. In Section 4 we show 
experimental results, comparing the proposed approach 
with previous hierarchical schemes. We conclude with 
general discussion of the results in Section 5. 

2. Prior works 
The hierarchical organization of features was studied 

recently in several schemes [1-5]. In all these algorithms, 
complex features are detected by combining the responses 
of simpler features. The hierarchies can be constructed in a 
bottom-up or top-down manner. The bottom-up approach 
[1,2,4,5] starts with low-level features and then groups 
them together into more complex entities. The top-down 
approach [3] starts with extracting top-level features, 
informative for the classification task, and successively 
breaks them down into smaller sub-parts. In all these 
schemes, the features are represented by single 
appearances. We demonstrate experimentally that our 
approach produces better recognition and part detection 
results. 

Semantic features were used recently for representing 
different appearances of a given part [6]. The algorithm 
proposed in this work for discovering semantically 
equivalent features is inapplicable to our task for several 

reasons. First, extracting a separate context set for every 
part and sub-part in a hierarchy is computationally 
inefficient. Second, the method is not applicable to the 
lower level of the hierarchy, since for simple features the 
method will fail to find context fragments with stable 
geometric relationships. Our semantic hierarchy method 
uses the rest of the hierarchy as a context for a part being 
considered; consequently, the algorithm successfully finds 
the semantic appearances of visually ambiguous parts. 

3. The semantic hierarchy 
In this section, we first describe the probabilistic 

graphical model of the semantic hierarchy (3.1), and how 
it is used for classification and parts detection (3.2). We 
then describe how the semantic hierarchy is constructed 
(3.3), and how the model is trained by examples (3.4).  

3.1. The probabilistic graphical model 
The graphical model of the semantic hierarchy is a 

class-conditional mixture model: the distributions 
p(Evidence|Class) and p(Evidence|Nonclass) are modeled 
separately. The conditional distribution p(Evidence|Class) 
is modeled as a hierarchy of features and sub-features 
(Fig. 2a), and the conditional distribution 
p(Evidence|Nonclass) is modeled as a Naive Bayes model 
(Fig. 2b). 

                 
                         a                                            b     
Figure 2. (a) Class model   (b) Non-class model. Fi are the 
observable features, X is the entire object, Xi are object parts, and 
C is the class node. During recognition, the features Fi are 
observed in the images, and the computation infers the most 
likely values of X, Xi. 
 

The hidden nodes Xi correspond to object parts and each 
node contains two discrete variables, A(Xi) and L(Xi). A(Xi) 
is the number of a specific appearance of the object part. 
For example, if Xi corresponds to a mouth, A(Xi)=1 could 
signal the presence of a closed mouth in the image, 
A(Xi)=2 an open mouth. The variable L(Xi) corresponds to 
the location of the part in the image, and can assume 
values in the range [0...N], where N is the number of the 
image sites. The value L(Xi)=0 indicates that the part is 
not present in the image; values between 1 and N indicate 
that the part is located at the corresponding image site. 
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The hidden node X corresponds to the entire object and 
also contains a pair of variables, A(X) and L(X). The only 
difference compared with nodes Xi is that L(X) assumes 
values in the range [1..N], since for the class model the 
object is assumed to be present in the image. 

The bottom-level observed nodes Fi correspond to the 
features observed in the image. Each such node contains 
N*K values S1

1,...,S1
N ,…,SK

1,...,SK
N , where N is again the 

number of image sites and K is the number of semantic 
appearances of the node Xi – the parent of Fi. Each value 
Sk

t represents image similarity between the feature 
represented by the k-th semantic appearance of Xi and the 
image patch centered at position t. The model used 
normalized cross-correlations, but other similarity 
measures (such as SIFT, or affine invariant features) can 
also be used. Note that only the "atomic" nodes Xi 
(corresponding to parts that are not broken further into 
sub-parts) have the observed feature nodes Fi attached to 
them. The full task we wish to accomplish (called 
“interpretation”) is inferring the most likely values of X 
and all the parts Xi from the set of all observed features F. 
This can be expressed as finding values for X (all the 
hidden variables) to maximize the probability p(X|F)).  

According to the class model, the probability p(X, F) 
factorizes into local terms: 

)|()|()(),( kkii XFpXXpXpFXp ∏ −=                    (1) 

This decomposition assumes that each part Xi is 
conditionally independent of its non-descendants, given its 
parent Xi

-. Intuitively, this is a ‘local context’ assumption, 
namely, that the probability of a part Xi is given by its sub-
parts and by its parent part in the hierarchy. This ‘local 
context’ property often holds for object images; for 
example, the detection of an eyebrow within a local eye 
region is relatively independent of more remote parts such 
as ears or chin. The model can also be extended to deal 
with additional interactions between parts when this 
assumption does not hold, but such extensions will not be 
discussed here further. 

The parameters needed for the model are the probability 
of each node given its parent, as well as the prior on the 
uppermost node X. The model parameters can be divided 
into three types, as explained below. 

p(A(X)=a, L(X)=l) 

This is the probability of the object to be found in the 
class image in a location l and with the appearance a. In 
this work, this probability is assumed to be uniform. 

p(Fi |A(Xi)=a, L(Xi)=l ) 

This is the probability of the feature Fi being observed, 
given that its parent node Xi has the appearance a and 
location l. Since Fi is a matrix of values S1

1,...,SK
N, 

corresponding to image similarities to different 

appearances of Xi in different locations, we can write, 
assuming conditional independence: 
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This probability can be further simplified as follows. 
We assume that given that the node Xi has the appearance 
a and location l, the similarity value Sa

l is distributed 
according to the “hit” distribution ph(Sa) (that is, depends 
only on the appearance a and is independent of the 
specific location l), and  all other image similarities Sa

t for 
t≠l are distributed according to the “miss” distribution 
pm(Sa), representing the probability of observing similarity 
value Sa in an image site where the corresponding object 
part is missing. We found empirically that for image sites 
placed on a 4x4 pixel grid this approximation was 
sufficient, more accurate modeling of position effects did 
not produce better results. For the similarities between the 
image and all other appearances of Xi except a, we assume 
that all of them come from their respective “miss” 
distributions. This assumption holds in practice since the 
different semantic appearances of a node are selected to be 
substantially different visually. For each part Xi, the two 
distributions ph(Sk) and pm(Sk) are estimated separately for 
each appearance k at the training stage as described in 
Section 3.4. Combining this with (2), we get the 
decomposition: 
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for the case L(Xi) ≠ 0. Similarly, 
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for the case L(Xi)=0 (in this case, all the similarities are 
distributed according to their “miss” distributions).  
Finally, we divide all the probabilities p(Fi|Xi) by the 
constant given by (4) to obtain an unnormalized score, 
proportional to the probability:   
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Division by a constant does not change any decision 
regarding classification or maximally probable state, but is 
convenient in the computation. In practice, this score is 
fitted by a piecewise linear function, using several 
histogram bins for which both numerator and denominator 
in (5) are non-zero. 



 

 

p(A(Xi),L(Xi)|A( Xi
-),L(Xi

-)) 

This is the probability of an object part Xi given its 
parent, Xi

-. Since each hidden node contains two variables, 
appearance type and location, we make the following 
independence assumption: 
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Here we assume that all the semantically equivalent parts 
share the same geometric relation with their parent. This 
assumption can be relaxed, but it often holds in practice. 
The second assumption is that the conditional probability 
can be factorized into the terms for appearance and 
location. The first term in (6) is the probability of a 
specific appearance of the child Xi given the appearance of 
its father, Xi

-. It is estimated at the training stage (Section 
3.4). When a large number of appearances is used, there 
might be not enough training samples to estimate this 
probability robustly; in this case, we use Bayesian 
parameter estimation with a Dirichlet smoothing prior 
[12]. 

The second term in (6) is geometric probability. If Xi
- is 

not present (L(Xi
-)=0), the probability of observing a node 

Xi is assumed to be uniform, set to δ0 /(N*K) for each 
position and appearance; consequently, the probability of 
Xi=0 is 1-δ0. When Xi

- is present, the probability of 
L(Xi)=0 is set to 1-δ1. The probability of Xi being present 
at some position in this case should sum up to δ1. The 
parameters δ0 ,δ1 as all other parameters are learned from 
examples as described in Section 3.4. We make in this 
case the natural assumption that p(L(Xi)|L(Xi

-)) depends 
only on the coordinate differences between Xi and Xi

- 

rather than their absolute positions. We assumed that 
p(L(Xi)|L(Xi

-)) has a Gaussian distribution, with 
parameters estimated during learning. Alternatively, the 
distribution can be learned using the so-called 2D Parzen 
window estimation.  

3.2. Classification and parts interpretation 
Classification and interpretation are obtained by a 

bottom-up followed by a top-down stage. The first part is 
a bottom-up pass from the low-level features to the top-
level node representing the class C. Formally, this pass 
computes the probability p(F|C=1). Since the non-class 
model is a Naïve Bayes model, the probability p(F|C=0) 
is given by multiplying the expressions (4) for all the leaf 
parts Xi. When these two values are known, the optimal 
classification decision is obtained by the likelihood ratio 
test:  
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In order to compute p(F|C=1) we proceed along the 
hierarchy tree in a bottom-up fashion, at each node Xi 
computing the set of probabilities of the evidence in the 
subtree under this node given the value of the node: 
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here F(Xi) is the evidence in the subtree under node X, and 
Xij is the j-th child of the node Xi. The summation here is 
over all the locations and all the appearances of Xij.The 
multiplication is over all the children of Xi (termed here 
Xi

+).  
The most probable assignment for the variables: 

)1|,(maxarg)( == CFXpXD
X

                                     (9) 

is computed by a top-down pass, using the standard max-
product message passing algorithm for computing the 
MAP configuration [7]. A similar approach for computing 
the parts assignments is Hierarchical Maximal Marginal 
Probability (HMMP). First, the value of the object node X 
that maximizes p(X|F(X)) is determined and the 
assignment of X is fixed. The computation then proceeds 
down the tree, and the assingment for each node Xi  that 
maximizes p(F(Xi)|Xi)p(Xi|Xi

-) is computed. We used 
HMMP since it does not require running max-product 
computations, and uses only the results computed by the 
sum-product algorithm at the bottom-up step, thus 
increasing computational efficiency. Experimentally, the 
HMMP and MAP computations produced similar part 
assignments (HMMP result slightly superior, as verified 
by human observers). 

3.3. The hierarchy construction 
The first stage of constructing a semantic hierarchy is 

the construction of a simple hierarchy; that is, without the 
use of semantic features. This can be obtained using 
previous methods; we used the hierarchy of fragments and 
sub-fragments as in [3]. Briefly, the method selects a set of 
first-level informative fragments from a set of class and 
non-class training images. Each first-level fragment is then 
subdivided recursively into sets of informative sub-
fragments, until the subdivision brings no gain in 
delivered information. 

When the simple hierarchy is constructed, the main next 
stage is to identify and add semantically equivalent 
appearances to each hierarchy node. We use a set T of 
training images. For each training image Tn we compute 
the assignment for all the hidden variables, H(X), using the 
HMMP procedure, as described in Section 3.2. A part Xi is 
considered missing in image Tn if L(Xi)=0 in H(X). A part 
Xi is considered nearly missing, if it is detected with low 
confidence, that is:  



 

 

θ<
=

=
)0)(|)((
))(|)((

ii

iii

XLXFp
XHXXFp                                            (10) 

here H(Xi) is the assignment of Xi in H(X), and the 
threshold θ is set automatically to the value producing the 
equal error rate in the recognition of the part Xi. 

If a feature Xi is missing or nearly missing in Tn, but its 
parent Xi

- is present, the optimal location of Xi is 
determined using the location of the parent feature and the 
learned parent-child geometric relationship. The location 
of Xi is set to: 

))(|)((maxarg)( −= iii XLXLpXL                                   (11) 

The image patch representing the appearance of Xi in Tn 
is extracted at the predicted location with size equal to the 
size of the fragment originally encoded by Xi.  

The above procedure is repeated for all training images; 
thereby, for each feature Xi, a set M(Xi) of its missing and 
nearly missing appearances is collected. Next, for each 
feature, the set M(Xi) is filtered: fragments that have less 
than k visually similar fragments in T are removed from 
the set. In the experiments, the value of k was set to 5. 
Next, the best representative appearances that maximize 
the classification performance on the training set are 
determined by a simple greedy algorithm as in [6] and 
these appearances are added to the set of semantic 
appearances of each hierarchy node. This procedure can 
identify semantically equivalent object parts regardless of 
their visual similarity (as measured by correlation, SIFT, 
etc.). 

Finally, the newly added appearances at each node are 
also decomposed hierarchically. Since some sub-features 
can be shared between different appearances of the same 
part, we add sub-fragments that bring maximal increase of 
the mutual information to the already selected set of sub-
fragments. Examples of feature hierarchies can be seen in 
Figures 6, 7. 

3.4. Training the model 
During training, example images are used to determine 

the parameters of the hierarchical network which 
represents the class model. The parameters of the model 
are p(X), and the pair-wise probabilities p(Xi|Xi

-), p(Fk|Xk). 
The goal of the training stage is to derive these parameters 
from the training examples.  

The model was trained using a variant of the EM 
algorithm [8], called Hard-EM [9].  The computation 
proceeds in an iterative manner, starting from an initial 
setting, and adjusting the parameters at the following 
stages, running over the set of training images.   

The initial setting of the model parameters were as 
follows: the mean coordinate differences between a 
fragment and its parent fragment was set to their 
coordinate difference in the image from which they were 
extracted; the covariances were set to half the size of the 

parent fragment; and the probabilities of not detecting a 
child given that the parent is present, as well as the 
probability of detecting a child when the parent is not 
present were set to a fixed small value (0.001). The 
probabilities of semantic appearances p(A(Xi)|A(Xi

-)) were 
set by counting the percentages of detecting the 
corresponding fragments in the training data. Following 
the initial setting, at each iteration of Hard-EM the optimal 
configuration of parts was found by the HMMP procedure 
in Section 3.2. For each part Xi, at each training image the 
coordinate difference between its detected location H(Xi) 
and the location of its parent feature H(Xi

-) was computed 
(when both were detected in the image). A 2D Gaussian 
distribution was then fitted to match the empirical statistic. 
The percentage of cases when a part or its parent were not 
detected was counted, to estimate the parameters δ0, δ1. 
The probabilities p(A(Xi)|A(Xi

-)) of semantic compatibility 
between a part and its parent were also computed from the 
empirical counts. 

4. Experimental results 
This section describes the results of the empirical 

comparison of the semantic hierarchy with previous 
methods. As shown experimentally, the semantic 
hierarchy improves top-level classification as well as the 
detection and localization of object parts, especially parts 
with highly varying appearance. Section 4.1 shows 
comparison results for the task of object recognition. 
Section 4.2 shows comparison results for the task of parts 
detection, between simple and semantic hierarchies 
(comparisons between bottom-up and top-down detection 
will be described elsewhere). It shows improved parts 
detection and demonstrates the ability of the scheme to 
discover the different appearances of object parts. 

4.1. Object recognition 
The algorithm was applied to three object class datasets. 

The first was the Motorbikes set from the Caltech dataset 
[10], (400  motorbike, 269 background images in the 
training set, 400 motorbike, 227 background images in the 
test set, all images were grayscale, 224x148 pixels in size). 
The second dataset was a highly variable set of side 
images of horses, collected over the Web (222 horse 
images and 600 background images in the training set, 100 
horse images and 1400 background images in the test set, 
all images were grayscale, 100x86 pixels in size). The 
third dataset contained 175 images of cars and 500 
background images in the training set, and 175 car and 
1500 background images in the test set, 200x150 pixels in 
size, collected over the Web. Examples of the object 
images are shown in Figure 3. 

Semantic hierarchies were constructed for each object 
class and trained as described in Section 3. For 



 

 

comparisons, a simple hierarchy (without semantically 
equivalent sets in each node) was built, using the same 
algorithm, except that the stage of extracting semantically 
equivalent features was not applied. The complete ROC 
curves were obtained by varying the threshold in the 
likelihood ratio test (7). For all classes, the semantic 
hierarchy produced significantly better results on all points 
of the ROC curve up to 99% of Hits (p < 0.001, t-test, 15 
runs), as shown in Figure 4. To the best of our knowledge, 
the performance of semantic hierarchy on the Motorbikes 
dataset is comparable to the state of the art. 

4.2. Parts detection 
For this test, we compared the performance of the 

semantic hierarchy with previous methods on the difficult 
task of detecting and localizing object parts at multiple 
levels. The detection error rates were computed for several 
object parts by comparing the detected locations with 
locations selected by humans. The parts and detection 
error rates by the simple hierarchy and by the semantic 
hierarchy are shown in Table 1. For this test, we 
additionally used female images from the JAFFE dataset 
[11]. For this dataset, the classifier based on both simple 
and semantic hierarchies reached zero class recognition 
error, but the part detection error rates for the simple 
hierarchy were significantly higher, demonstrating the 
difficulty of part detection and the advantage of the 
semantic hierarchy in part detection.  

Part Simple 
hierarchy 

Semantic 
hierarchy 

 39.1% 25.7% 

 41.9% 36.0% 

 

51.8% 19.2% 

 
4.87% 4.3% 

 

18% 3.4% 

 
28.85% 5.14% 

 0.93% 0% 

 22.5% 4.2% 

 3.2% 0% 
Table 1. Percentage of incorrectly detected or missed parts. 

In addition to these specific parts, we also compared the 
average detection rates of parts at different hierarchical 
levels for the simple and semantic hierarchies. For first-
level parts, average False Alarms rate decrease from 
16.93% for simple hierarchy to 6.45% for semantic 
hierarchy, the corresponding hit rate increased from 83.0% 
to 93.25%. For second-level parts, False Alarms rate 

decreased from 37.42% for simple hierarchy to 17.74% for 
semantic hierarchy, the corresponding hit rates increased   
from 62.6% to 82.2%.  The large improvement in the 
detection of parts and sub-parts arises from the capacity of 
the scheme to discover during learning the range of 
different appearances associated with different object 
parts.  

Finally, we compared the performance of the semantic 
hierarchy on the horses dataset, with the performance of a 
hierarchy with the same features, but where all the features 
were treated as conditionally independent given their 
parent features. The performance of the semantic 
hierarchy was considerably higher, equal error rate (EER) 
dropped from 16% to 13%. 

5. Discussion 
In this paper, a novel representation for object 

classification and part interpretation, called semantic 
hierarchy, was presented. It is the first scheme to extract 
and use semantic parts in feature hierarchies. Unlike 
previous models, the current scheme automatically detects 
and represents multiple appearances of the same object 
part, at all levels in the hierarchy, together with their 
statistical dependencies. In previous hierarchical schemes, 
features representing different appearances of the same 
object part were either not used, or treated as conditionally 
independent. This independence assumption clearly does 
not hold in this case, since different appearances of the 
same part are mutually exclusive, and therefore not 
independent, even when conditioned on the parent feature. 
The current scheme avoids this limitation by representing 
different appearances of the same part by different values 
of the corresponding variable, thereby ensuring mutual 
exclusivity. The advantages of the semantic hierarchy over 
previous hierarchical models include better recognition 
rate and a large improvement in the detection and 
localization of ambiguous object parts at lower levels of 
feature hierarchy.   

A novel method was introduced for the difficult task of 
identifying semantically equivalent object parts. Unlike 
previous methods, the proposed scheme uses the entire 
hierarchy as a context to identify semantically equivalent 
object parts. As a result, the algorithm can find semantic 
equivalents of features at all levels in the hierarchy 
simultaneously, using a unified and computationally 
efficient process.   

Object recognition involves more than naming and 
localizing objects in the scene. As we learn to recognize 
objects, we also learn to recognize many of their parts and 
sub-parts, and we can identify the different appearances of 
parts, such as different hairlines, smiling, neutral or open 
mouth, different shapes of car headlights etc. The semantic 
hierarchy described in this paper automatically constructs 
a representation, which was shown to be useful for 



 

 

achieving such capabilities as a part of the recognition 
scheme.   
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Figure 3. Examples of class images. Rows, from top to bottom: 
Horses, motorbikes, cars, JAFFE dataset. 
 
 

 
                        a                                                b      

 
                        c                                               d 
Figure 4. ROC curves for (a) motorbike, (b) horses and (c) cars 
recognition. Red: Classifier performance based on semantic 
hierarchy. Blue: Classifier performance based on simple 
hierarchy. (d): Difference in ROC curve (added hits as a function 
of false alarms, (mean and sd, 15 runs) between the classifier 
based on semantic hierarchy and classifier based on simple 
hierarchy) on motorbikes dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 
Figure 5. Variability of the object parts detected by the semantic 
hierarchy. 

 
Figure 6.  An example of simple hierarchy (top) and examples of 
additional semantic features at different levels of the semantic 
hierarchy. 

 

 
Figure 7. Additional examples of the semantic hierarchies. 
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