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Abstract

In this paper we introduce the concept and method for
adaptively tuning the model complexity in an online manner
as more examples become available. Challenging classifi-
cation problems in the visual domain (such as recognizing
handwriting, faces and human-body images) often require
a large number of training examples, which may become
available over a long training period. This motivates the
development of scalable and adaptive systems which are
able to continue learning at any stage and which can effi-
ciently learn from large amounts of data, in an on-line man-
ner. Previous approaches to on-line learning in visual clas-
sification have used a fixed parametric model, and focused
on continuously improving the model parameters as more
data becomes available. Here we propose a new framework
which enables online learning algorithms to adjust the com-
plexity of the learned model to the amount of the training
data as more examples become available. Since in online
learning the training set expands over time, it is natural to
allow the learned model to become more complex during the
course of learning instead of confining the model to a fixed
family of a bounded complexity. Formally, we use a set of
parametric classifiers y = hα

θ (x) where y is the class and x
the observed data. The parameter α controls the complex-
ity of the model family. For a fixed α, the training examples
are used for the optimal setting of θ. When the amount of
data becomes sufficiently large, the value of α is increased,
and a more complex model family is used. For evaluation
of the proposed approach, we implement an online Support
Vector Machine with increasing complexity, and evaluate in
a task of handwritten character recognition on the MNIST
database.

1. Introduction

The current performance of object classifiers is contin-
uously improving, but is still far from human performance.

Typical state-of-the art natural-object classifiers [e.g. horses
vs. background] achieve an equal error rate of 1-3% under
controlled settings [9], and an average precision of 30%-
80% in uncontrolled settings [8] in which the object size
and its viewpoint significantly vary. This performance is
still far from human performance which is usually perfect in
such tasks. These state-of-the-art results are obtained with
datasets containing less than 1,000 positive class examples.
In contrast, handwritten character recognition systems [7]
successfully approach human performance by using much
larger training sets. In addition, new approaches for multi-
class object recognition report improved performance using
millions of examples [14]. Human performance in classifi-
cation also relies on extensive training. Even though a new
category can sometimes be learned from only a few exam-
ples, the entire visual experience including objects with a
similar appearance can be used in forming the new repre-
sentation [1]. These studies suggest that improved classi-
fication can be obtained by training on larger datasets en-
abled in an online environment in which the training set is
unbounded and in which large amounts of data can be effi-
ciently processed. A larger dataset does not only lead to a
more accurate model parameter estimation but also enables
learning a more complex model which may lead to a more
substantial performance improvement. While current on-
line learning algorithms focus on learning the parameters of
fixed complexity models we propose an online framework
in which the model complexity is learned as more examples
become available.

In the online setting the learning system receives one
example at each time step and outputs a model based on
all the examples received so far. Scalability and efficiency
considerations usually do not allow the learning scheme to
store the entire set or to go over it at each example presen-
tation. Among online learning algorithms neural networks
such as the Perceptron [12] are the most well-known. In
a recent line of work a number of useful machine learning
algorithms were adapted to online requirements: feature se-
lection [5], similarity map learning [10], and SVM [2]. We



follow this line of work, by proposing an online solution for
model complexity learning. A main reason for the grow-
ing interest in online learning algorithms is their advantage
in terms of memory and time complexity, often required to
handle the large amounts of data which have become avail-
able mainly from the internet. From this point of view the
online schemes are viewed as providing fast approximations
to results obtained by batch methods. It is important to
note, however, that online learning has two additional ad-
vantages: scalability - the system continues to learn in its
working environment, and adaptability - the system adapts
to changes in its environment. To meet these two require-
ments, it may not be enough to train the model in an online
manner, but it is may also be required to update the model
itself: either to choose an entirely new model family for
adaptation to be optimal, or to increase the model complex-
ity for improved scalability.

Figure 1. A hierarchy of complexity classes. The
family of models H includes a series of
nested complexity classes (H1 ⊂ H2 ⊂ H3 ⊂
. . . ⊂ H ), with each complexity class provid-
ing additional optional models with respect
to its predecessor. Given a machine learn-
ing algorithm which finds in each Hα the best
model hα describing the training data, the
complexity selection task is to determine the
α for which hα best fits the unseen data.

The goal of learning a classifier is to minimize its ex-
pected error on general examples (generalization error).
This is usually achieved in two stages: in the first stage,
a family H of possible classifiers is chosen and in the learn-
ing stage a specific classifier h ∈ H is selected. In the
learning stage a natural goal is to minimize the empirical
error on the training examples. If the set H of allowed mod-
els is too broad, it may result in over-fitting the classifier
to the training data, and therefore fail to minimize the ex-
pected error of the classifier [3]. A method for avoiding
over-fitting is to limit the complexity of the model used for
classification. For example, fitting a high-degree polyno-
mial to a small set of points is prone to over-fitting; the
degree should determined by the number of data points,

and can increase as more data becomes available. To deal
with this issue in the general case, consider the case in
which H includes a series of nested complexity classes Hα

(H1 ⊂ H2 ⊂ H3 ⊂ . . . ⊂ H ), with each complexity
class providing additional optional models with respect to
its predecessor, as illustrated in figure 1. The learning prob-
lem is then to first find the appropriate family Hα , and then
learn the optimal model within this class by optimizing θ,
which denotes the parameters defining the classifier within
its complexity class. For example, the first stage can deter-
mine the degree of a polynomial used to approximate the
data, and the second stage determines the optimal coeffi-
cients of the approximating polynomial. The model com-
plexity selection is to determine the optimal value of α. A
common practice for selecting α is cross-validation [4]. The
goal is to obtain an estimate of the generalization error by
learning the model parameters on a training set, while vali-
dating the learned classifier on a separate validation set. Ro-
bust estimates are obtained by averaging the results of sev-
eral such iterations with different training/validation sets.
An average generalization error is obtained for each value
of α, and the most successful α is chosen. There also exist
other approaches relying on methods for approximating the
generalization error of a given classifier such as the Min-
imum Description Length (MDL)[11] and the Structural
Risk Minimization (SRM) [15]). It is important to note
that trying to learn α as an additional parameter together
with the set θ does not produce the same results as treat-
ing them separately. Consider again the example of fitting a
target real valued function given by N noisy sample points
with H being the class of polynomials and α the polyno-
mial degree. If both α (the degree) and θ (the coefficients)
are used together to minimize the error on the training ex-
ample, it will always be possible to achieve a perfect fit to
the data with a polynomial of degree α = N − 1, which
will fail in approximating new sample points. In the current
approach, the optimal value for α is determined on-line, and
changes adaptively as more data becomes available. In the
online learning setting standard cross-validation cannot be
used, since it requires saving all past examples and since it
is computationally expensive. We next present a framework
allowing the selection of model complexity within the on-
line learning setting. Our solution can be also applicable in
cases in which the data set is fixed but too large for perform-
ing cross-validation on the entire dataset. In the next section
we define the algorithmic framework of our method. In sec-
tion 3 we present an actual implementation which uses an
online SVM solver as the learning system and in the section
4 we present experimental results of this implementation on
the MNIST handwritten digit recognition database.



2. Algorithmic Framework

We define the problem of online model complexity selec-
tion as follows. The online learning system M is presented
with sequential example pairs:

〈xn, yn〉 : xn ∈ X, yn ∈ Y, n ≥ 1

where xn is the n’th received pattern, and yn its target
value (either discrete or continuous), each pair drawn inde-
pendently at random according to an unknown distribution
µ(X,Y ). At each presentation the learner performs a com-
putation resulting in an output classifier:

hα
θ : X 7→ Y, hα

θ ∈ Hα ⊂ H

where the positive integer α ∈ N represents the complexity
of its class Hα and the parameters θ represent the classifier
parameter of the model in Hα. The goal of online learning,
is after each example presentation and based on all seen ex-
amples, to produce the classifier hα

θ with the minimal gen-
eralization error:

Err(α, θ) = EX,Y `(Y, hα
θ (Y )), (X, Y ) ∼ µ

where `(Y, Ŷ ) is a loss function associated with the clas-
sifier making decision Ŷ when the true target is Y .
The goal of the online model complexity selection is to se-
lect the complexity α for which the minimal error classifier
is obtained. Notice that we do not explicitly require the
nested structure of complexity classes (Hα ⊂ Hα+1) as
long as the classes are of increasing complexity.

The online model selection (OMS) algorithm which we
next present is a general framework for the online model
complexity selection problem defined above. The OMS al-
gorithm can be intuitively described as following. We train
two online learning systems each with a fixed complexity.
The learning systems receive the examples and produce af-
ter each example a learned classifier, based on the history of
seen examples, with one learning system producing a clas-
sifier of complexity α, hα

θ̂
, and the second a classifier with

complexity α+1, hα+1

θ̂
. θ̂ marks the parameters learned by

each learning system within its fixed complexity class. The
classifier hα

θ̂
represents the current classifier learned by our

algorithm. When a new example is presented, both classi-
fiers are validated on it. Based on the history of validation
errors made by each of the classifiers their generalization er-
rors are estimated. When the estimate for the generalization
error of hα+1

θ̂
is significantly lower than that of hα

θ̂
there is a

complexity increase operation, after which the complexity
levels of the classifiers which both learning systems used is
increased. We next give a formal description of the algo-
rithm.

The algorithm maintains two fixed complexity
online learning systems M1,M2. The procedure

M ← System Init(β, M ′) creates a new online learning
system M which operates within the fixed complexity
class Hβ , and which can take advantage of the experience
accumulated by the input system M ′. At each point α is the
complexity of M1 and α + 1 that of M2. The output of the
algorithm after each example presentation is represented
by the latest classifier produced by M1, hα

θ̂
. The algorithm

also maintains estimates of the error of each classifier.
Êrr1,2 represents the average validation error of classifier
produced by learning systems M1 and M2 respectively,
and V̂ ar1,2 the variance of the validation errors. Finally,
N counts the number of examples received since the
last complexity increase operation. The OMS algorithm
receives the sequence of examples 〈xn, yn〉 and operates as
following:

1: α ← 1
2: M1 ← System Init(1, φ)
3: M2 ← System Init(2, φ)
4: T ← 0, Êrr1 ← 0, Êrr2 ← 0, V̂ ar1 ← 0, V̂ ar2 ← 0
5: hα

θ̂
← M1(x1, y1)

6: hα+1

θ̂
← M2(x1, y1)

7: for n ≥ 2 do
8: T ← T + 1
9: Loss1 = `(yn, hα

θ̂
(xn)), Loss2 = `(yn, hα+1

θ̂
(xn))

10: Êrr1,2 = 1
N · (Êrr1,2 · (N − 1) + Loss1,2)

11: V̂ ar1,2 = 1
N · (V̂ ar1,2 · (N − 1)+

(Loss1,2 − Err1,2)2)
12: if (Êrr2 ≤ Êrr1)∧

t-test2 (Êrr1, Êrr2, V̂ ar1, V̂ ar2, N) then
13: α ← α + 1
14: M1 ← M2

15: M2 ← System Init(α + 1,M1)
16: T ← 0, Êrr1,2 ← 0, V̂ ar1,2 ← 0
17: end if
18: hα

θ̂
← M1(x1, y1)

19: hα+1

θ̂
← M2(x1, y1)

20: end for

In lines 1,2 the algorithm variables including the two
learning systems are initialized. In lines 3,4 the initial clas-
sifiers are learned from the first example. The loop 5-15 is
performed for each new provided example. Validation on
the new example of both classifiers is performed in line 7
computing the loss of the classifiers (Loss1,2) on this exam-
ple. In line 8 the error of each learning system is estimated
by the average loss of the classifier over all examples re-
ceived by its corresponding learning system. The variance
of the loss is estimated in line 9 by a similar average, this
time over the square distances from the error estimates. No-
tice that Êrr is not the average loss of the current classifier



over all seen examples, since it is computed along the on-
line process in which the classifier keeps on changing. A
key point is that the average is over validation loss, that is,
over examples that were not included in the training of the
classifier, since the training is performed later in lines 16,17.
In line 10 we check weather hα+1

θ̂
outperforms hα

θ̂
signifi-

cantly. The significance is tested by running a two sample
”Students t-test” with unequal variance given by:

t =
Êrr1 − Êrr2√
(V̂ ar1)2+(V̂ ar2)2

N

If the distributions are different with a significance of
p = 0.1 we perform the complexity increase operation
(lines 11-14). The use of statistical significance provides
stability to the algorithm, preventing unwanted complexity
changes, in particular when the number of samples is rela-
tively small and therefore the estimation is noisy. The com-
plexity is increased in line 11, the more complex learning
system becomes the current one (line 12) and a new learn-
ing system of a higher complexity is initialized utilizing the
state of the already trained learning system (line 13). Fi-
nally, in lines 16,17 the learning systems are trained on the
last received example.

The computational complexity of the algorithm is of the
same order as that of the used learning system, since the
training and testing of the models (lines 7,16,17) are the
most computationally expensive operations. The perfor-
mance of the algorithm also depends on that of the learning
system. The output classifier is the output of some learning
system M1, therefore the best generalization error obtain-
able by the learning systems with all possible complexities
is a lower bound on the error of our output classifier. There
is another crucial requirement for success within the pro-
posed framework, and that is the quality of initialization of
higher complexity models from lower complexity ones in
line 13. In this initialization the information from the ex-
amples already seen by M1 must be incorporated by the
new learning system in order to take full advantage of the
entire set of examples presented to the algorithm. We next
present an implementation of our algorithm with an online
SVM learning system.

3. Kernel Support Vector Machine Implemen-
tation

We implemented our algorithm using a kernel-based
support vector machine (K-SVM) [13], with two different
types of kernels: a Radial Basis Function (RBF) kernel and
a Polynomial kernel. The reason for this choice is that these
are powerful classifiers with an existing online implemen-
tation, the LASVM [2]. The training examples x are real-
valued vectors binary labeled with y ∈ {−1, 1}. Theoret-

ically, the K-SVM classifier performs linear classification
in a higher-dimensional space onto which the original vec-
tors are projected. The classification result is obtained by
computing:

hα
θ (x) = sign(

m∑

i=1

wi ·K(vi, x) + b)

where the model parameters θ are: {vi|i = 1 . . . r} the
support vectors which consist of a subset of examples se-
lected from the training examples, wi, a weight associated
with each support vector and b, a bias term. For the RBF
model the kernel function K is:

K(x, z) = exp(−γ· ‖ x− z ‖)
The Polynomial kernel is defined by:

K(x, z) = (x · z + 1)d

where x · z is the dot product of the two vectors.
We represent complexity of the RBF kernel by the band

width parameter γ. The decision surface of the RBF clas-
sifier is obtained by summing gaussian weighted windows
around each of the support vectors. For a large band width
(small values of γ) the classifier is almost linear, while for a
small enough bandwidth (large γ) a dataset can practically
be memorized by the classifier, by placing peaked gaussian
distributions around each example. Similarly, the degree
of the Polynomial kernel d controls the complexity of the
decision boundary obtained by the classifier . For a more
detailed discussion on the complexity of these kernel clas-
sifiers we refer the reader to [13] pp. 216-218.

In the RBF kernel we use cross-validation on a small ini-
tial set to determine the initial complexity level γINIT . We
then use a factor of 2 when raising the complexity level:

γ(α) = γINIT · 2α−1

In the Polynomial kernel we simply set d = α. The loss
function we use is:

`(y, hα
θ (x)) =

1
2
| y − hα

θ (x) |

The time and space complexity of the LASVM solver for
each new example is linear in the number of support vectors
m and in the feature space dimensionality [2]. In practice it
can be made very efficient and was successfully trained on
8 million high dimensional examples [6]. We next present
result obtained using this implementation of our algorithm
on the MNIST handwritten character recognition set.

4. Experimental Results

The handwritten character MNIST database consists of
60,000 examples of 10 digits and 10,000 test examples,



each example represented by a 28x28 gray level image. We
used the raw representation with a 784 dimension vector
representing each example. We tested our algorithm on the
binary task of separating the digit “3” from the rest of the
digits. As a preliminary test we ran the LASVM with sev-
eral training sets of sizes varying between 1,000 and 60,000
and with different kernel parameter settings. The training
examples and their presentation order were chosen at ran-
dom. The performance of each classifier is represented by
its error rate on the test set, shown in figure 4. We can see
that for each fixed training set size there is an optimal value
of the complexity parameter (marked by the black surround-
ing circle), for which test performance is better compared
with a less complex model, as well as a more complex one
(overfitting). We also see that for larger datasets the op-
timal complexity is higher and the optimal error is lower
(marked by black arrows). For the RBF kernel with train-
ing set sizes 1000, 4000 and 60000, the optimal γ values
are 0.01, 0.02 and 0.03 respectively while for polynomial
kernel with training set sizes 1000 and 60000, the optimal
d values are 2 and 3 respectively. We will use these values
in order to asses our algorithm: assuming that the test set
is representative, in the optimal case, our algorithm should
choose these values for training sets of similar sizes.

We next present the result obtained with the LASVM im-
plementation of our algorithm (OMS-LASVM). The 60,000
training examples were presented in a random order. We
applied cross-validation on the first 100 examples in order
to determine the RBF kernel initial bandwidth γ = 0.04.
Figure 4 shows the error percent obtained on the 10,000
test examples at selected points during the online training.
The vertical dotted lines represent the point at which com-
plexity increase was performed by the algorithm. Each line
is marked by the complexity values before and after the
switch. For clarity of the presentation, the example axis is
plotted in log scale. We compare the complexities discov-
ered by our algorithm with the optimal ones for the test set.
In the RBF case (right plot) for 1,000 examples the optimal
γ is 0.01 while our algorithm reaches 0.008 after 1293 ex-
amples, for 4,000 examples the optimal γ is 0.02 and our
algorithm outputs 0.016, and for the entire dataset the op-
timal γ is 0.03 and our algorithm outputs 0.032. For the
Polynomial kernel the two optimal complexities for 1,000
and 60,000 examples are discovered correctly.

The main contribution of our scheme compared with
the existing LASVM algorithm was its ability to adjust the
complexity to the number of examples. We compared our
algorithm against the LASVM with two fixed complexities.
The low complexity is determined as the optimal one with
regard to the test set when training on the first 200 examples,
and is equal to γ = 0.005 and d = 1. The high complex-
ity is determined as the optimal one with regard to the test
set when training on all the 60,000 examples and is equal

to γ = 0.03 and d = 3. Figure 4 shows the comparison
between the two LASVM models and our model at selected
training points by measuring as before their error on the test
set. The low complexity LASVM model outperforms the
high complexity one when the number of available exam-
ples is small, while the opposite holds when more examples
become available. We show that our model is able to main-
tain a comparable performance on both ends of the scale
and at intermediate points. Notice that for particular sizes
of the training set our method outperforms both fixed mod-
els (RBF, second marker representing 2,000 examples). The
reason is that the optimal complexity for this dataset size is,
discovered by our algorithm, is intermediate, and therefore
outperforms both the high and the low complexity models.
We also show that for the entire training set our algorithm
in this current implementation performs almost as well as
the optimal LASVM for that size (RBF: 0.49% instead of
0.42%, Polynomial 0.59% instead of 0.58%), despite the
fact that the final classifier has not been directly trained on
the entire dataset.

5. Summary

In this paper we presented a new online learning con-
cept in which the model complexity is increasing as more
examples become available. The experiments show that al-
though several approximations are made in order to meet
online requirements, the performance remains close to that
of an optimal classifier with optimal complexity fit to the
test data. The future plans are to use the scheme for ob-
ject classification tasks. Current object classifier rely on a
limited training set and learn a fixed classifier. A classifier
can be trained incrementally using a much larger training
set and using the suggested scheme adapt its complexity to
the training set to learn a more accurate object class repre-
sentation and improve its performance.
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Figure 2. Optimal complexity for different training set sizes. Classification error rate on the 10,000 MNIST
test digits of the online SVM solver LASVM for different model complexities and training set sizes.
Left: Polynomial kernel, the complexity parameter is the degree (d). Right: RBF Kernel, the com-
plexity parameter is bandwidth parameter (γ). Training sizes: 1,000 examples (black curve), 60,000
examples (green curve) and 4,000 examples (red curve - RBF only) The optimal complexity (Marked
by black circle) increases for larger datasets as the classification error decreases (black arrows).
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