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Abstract

& Object-related areas in the ventral visual system in humans
are known from imaging studies to be preferentially activated
by object images compared with noise or texture patterns. It is
unknown, however, which features of the object images are ex-
tracted and represented in these areas. Here we tested the extent
to which the representation of visual classes used object frag-
ments selected by maximizing the information delivered about
the class. We tested functional magnetic resonance imaging
blood oxygenation level-dependent activation of highly informa-

tive object features in low- and high-level visual areas, compared
with noninformative object features matched for low-level image
properties. Activation in V1 was similar, but in the lateral occipital
area and in the posterior fusiform gyrus, activation by informa-
tive fragments was significantly higher for three object classes.
Behavioral studies also revealed high correlation between per-
formance and fragments information. The results show that an
objective class-information measure can predict classification per-
formance and activation in human object-related areas. &

INTRODUCTION

The ability of the human visual system to recognize and
classify objects is one of the most impressive capacities
and widely investigated topics in cognitive science. Such
tasks are performed by the human brain with remark-
able efficiency that exceeds that of any known artificial
machinery. For humans, complex scenes are organized
perceptually as a collection of separate objects. How-
ever, via what mechanisms are these individual objects
classified and identified? Past approaches to this ques-
tion include both holistic (Riesenhuber & Poggio, 1999;
Marr & Nishihara, 1978) and part-based mechanisms
(Martelli, Majaj, & Pelli, 2005; Palmeri & Gauthier, 2004;
Biederman, 1987). A holistic model for recognition, as
advocated by Gestalt psychologists (Wertheimer, 1938),
suggests that object identification takes on a global form,
that is, objects are perceived as whole shapes rather than
as a summation of their parts. Parts- and feature-based
models for recognition suggest that identification be-
gins with the detection of many independent features
(or subparts) of the object, which is then followed by
an integration process (Robson & Graham, 1981). These
approaches are not mutually exclusive, and the approach
discussed further below combines aspects of both. It
has also been suggested that visual object recognition
involves a hierarchical process (Riesenhuber & Poggio,

1999; Marr & Nishihara, 1978). According to this view,
recognition involves a multistage detection and integra-
tion process, by which information about subparts of in-
creasing complexity is collected, eventually leading to the
identification of the full object.

Contemporary research relating to these problems pro-
vides a natural common ground for the convergence of
two fields of study: computational modeling and func-
tional brain imaging. These two disciplines are highly com-
plementary, suggesting that the advancement of either
can benefit from close interaction with the other. This
interdependent relationship between computational mod-
eling and human vision provides a basis for the current
study, and is further elaborated by the parallels drawn be-
tween our computational and experimental results.

Computational studies over the past decade have shown
the usefulness of selected object fragments as useful vi-
sual features for classification and recognition (Fergus,
Perona, & Zisserman, 2003; Agarwal & Roth, 2002;
Ullman & Sali, 2000). In these classification models, dis-
tinctive regions selected from object images during a
learning stage are extracted, and an object class is rep-
resented as a configuration of such regions, or object
fragments. According to a recent computational study
of object recognition, the accuracy with which particular
fragments of an object allow its correct identification
depends on the amount of visual information contained
within those fragments (Ullman, Vidal-Naquet, & Sali,
2002). The most informative features for visual classi-
fication were shown to be fragments of intermediate
complexity (in terms of size of resolution), which show
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similarity to visual features described in the posterior
inferotemporal cortex of the monkey (Fujita, Tanaka, Ito,
& Cheng, 1992). These features are maximally informa-
tive for classification when they are constructed hierar-
chically rather than used as integral features (Epshtein &
Ullman, 2005).

Taken together, these computational models reveal
a natural hierarchy of category-related fragments that
corresponds to a plausible functional architecture of ob-
ject recognition. However, the question remains: how
is this functional hierarchy for recognition organized in
the brain, if at all?

It is well established that significant regions within
both the ventral and dorsal visual pathways respond se-
lectively to objects. Specifically, a focal point of object-
related activation was found within the lateral occipital
complex (LOC) (Grill-Spector, Kourtzi, & Kanwisher,
2001; Kanwisher, Chun, McDermott, & Ledden, 1996;
Malach et al., 1995). For instance, event-related potential
and functional magnetic resonance imaging (fMRI) stud-
ies in humans have shown that the LOC responds more
strongly to images of specific objects as opposed to vi-
sual noise, texture patterns, or scrambled object-parts
(Grill-Spector et al., 1998; Malach et al., 1995). Identifi-
cation of object-selective regions is a prerequisite for
investigating more specific questions about the func-
tional organization of visual system. As the previously
discussed computational models suggest, it is possible
that recognition and classification are processed in the
brain by a hierarchy of features, selected to be informa-
tive for the recognition of different object classes. Ac-
cording to this view, the local low-level functionality of
early visual areas is gradually transformed into increas-
ingly complex visual representations along the posterior–
anterior processing axis. Indeed, evidence from primate
studies strongly supporting this idea has shown func-
tional transition in brain activation from V1 cells, which
responded to local orientations (Hubel & Wiesel, 1968),
to V4 cells, which responded to more complicated visual
cues such as specific colors and patterns (Gallant, Braun,
& Van Essen, 1993; Schein & Desimone, 1990). More-
over, fMRI studies in humans suggest a corresponding
hierarchy, advancing from low-level processing in the V1
to the more holistic object representation in the LOC
(Lerner, Hendler, Ben-Bashat, Harel, & Malach, 2001;
Grill-Spector et al., 1998). Specifically, scrambling experi-
ments, in which images of objects were broken up into
an increasingly larger number of fragments, revealed a
corresponding increase in sensitivity to image scrambling
along the hierarchical axis. In another set of experiments,
a hierarchy of shape-selective regions was found within
the LOC itself: whereas posterior regions were activated
by object fragments, anterior regions responded selec-
tively to either whole or half-object images (Grill-Spector
et al., 2001).

Based on these and related studies, it appears that
computational modeling and imaging studies converge

to a similar view of classification by the visual cortex.
Computational models that rely on visually informative
fragments predict a class-specific hierarchy for the rec-
ognition and classification of objects. Similarly, imaging
points to a corresponding functional hierarchy in the
organization of the human brain. However, in order to
draw a direct link between computational and physio-
logical models of recognition, and to better understand
the nature of the features used by the visual system, it
is necessary to determine how computationally identi-
fied fragments affect activation of object-related brain
regions. In the present study, we explored this issue by
searching to what extent optimal fragments defined by
an objective computational criterion produce preferen-
tial activation in object-related areas of the human brain.
Specifically, we examined information-specific sensitivity
by comparing cortical activation in response to optimal
versus matching random fragments. As detailed below,
the amount of information delivered by an image feature
was based on a simple measure of its frequency within
and outside the class of interest. Computational mod-
eling has shown that features selected by this informa-
tion criterion are useful for reliable recognition, but it
is unclear whether they elicit preferential activation in
high-order visual areas. Our results show a significant cor-
respondence between information content and activity in
higher order object-related areas. That is, object-selective
regions showed preferential activation for computation-
ally acquired informative fragments as compared to less
informative ones.

METHODS

Subjects

Thirteen subjects with normal or corrected-to-normal
vision ranging in age from 26 to 37 years participated
in one or more of the following experiments: 13 in the
conventional border mapping and in the fMRI Experi-
ments 1 and 2, 6 in the control, and 12 in the behavioral
tests. Prior to initiating the experiments, subjects pro-
vided written informed consent agreeing to participate
in the study. Tel-Aviv Sourasky Medical Center approved
the experimental protocol.

MRI Setup

Subjects were examined in a 1.5-T Signa Horizon LX 8.25
GE scanner. A custom quadrature surface coil was used for
the meridian mapping experiment (Nova Medical, Wake-
field, MA), and a standard head coil was used for the frag-
ment experiments. Blood oxygenation level-dependent
(BOLD) contrast was obtained with gradient-echo echo-
planar imaging (EPI) sequence (TR = 3000 msec, TE =
55 msec, flip angle = 908, field of view 24 � 24 cm2, ma-
trix size 80 � 80). The scanned volume included 25 to
26 nearly axial slices of 4 mm thickness and 1 mm gap
covering the entire cortex.
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A whole-brain spoiled gradient (SPGR) sequence was
acquired for each subject to allow exact cortical seg-
mentation, reconstruction, and volume-based statistical
analysis of signal changes during the experiments. T1-
weighted high-resolution (1.1 � 1.1 mm2) anatomic im-
ages (124 images, 1.2 thickness) of the same orientation
as the EPI slices were obtained to assist the incorpora-
tion of the functional data into the 3-D Talairach space
(Talairach & Tournoux, 1988).

Extracting Informative Features

Informative classification features were extracted automat-
ically for three object classes (faces, cars, horses) using an
information maximization algorithm (Ullman et al., 2002).
Briefly, the method examines a large number of candidate
object fragments extracted from a set of training images,
and selects from them an optimal subset of informative
features.

Candidate fragments are first extracted from the train-
ing images at multiple locations, sizes, and resolutions.
These fragments are searched for in all the database im-
ages. Normalized cross-correlation was used as similarity
measure, although other methods, such as gradient-based
measures, are also possible (Lowe, 2004). A fragment is
considered to be present in an image if the similarity mea-
sure exceeds a predefined detection threshold. An optimal
threshold is determined automatically for each fragment
at a level that maximizes the delivered mutual information
(MI), as explained below. The MI delivered by each frag-
ment fi, about the class C is computed using the formula
(Cover & Thomas, 1991):

MIð fiðuiÞ;CÞ �
X

fiðuiÞ ¼ f0; 1g
C ¼ f0; 1g

pð fiðuiÞ;CÞ log
pð fiðuiÞ;CÞ

pð fiðuiÞÞ pðCÞ

� �

Here ui is the detection threshold associated with frag-
ment fi. A binary variable C represents the class, namely,
C = 1 if the image belongs to the class, and 0 otherwise.
fi(ui) is a binary variable: 0 means that fragment number
i was not detected in the image (maximal correlation
was smaller than ui), and 1 otherwise.

The delivered information depends on the detection
threshold u: if the threshold is too low, the fragment will
be detected with high frequency in both class and non-
class images, and with high threshold the fragment will
be missed in both class and nonclass images. The value
ui of threshold yielding maximal information for the frag-
ment fi is computed for each fragment. The most infor-
mative fragments were then selected successively. After
finding the fragment with the highest MI score, the
search identified the next fragment that delivered the
maximal amount of additional information. Additional frag-
ments are added in a similar manner using a max–min

procedure (Fleuret, 2004; Ullman et al., 2002). Informative
fragments selected by the algorithm for three classes of
objects are shown in Figure 1A. In the selection process,
a large object fragment may have low information con-
tent because the probability of finding this particular frag-
ment in a novel image becomes low. Such a fragment may
contain, however, subfragments with higher information
content than the full fragment. This is undesirable for our
testing, and therefore, in selecting low-information fea-
tures, the fragments we used were maximal in the sense
that they did not contain smaller subregions with higher
MI than the full fragment.

The nonclass images were collected from the various
Web databases. To validate that the results do not de-
pend on the choice of nonclass, we divided an original
nonclass into two subclasses. Then MIs of the selected
fragments were measured using each of the subclasses
separately. The difference in the values of MI was small
[(mean(abs(MI1 � MI2)/max(MI1,MI2) = 4.7%], indicating
that computation was not sensitive to the actual choice of
nonclass images.

Stimuli

Visual stimuli were generated on a PC and presented via
an LCD projector (Epson MP 7200) onto a translucent
screen. Subjects viewed the stimuli through a tilted (	458)
mirror positioned above the subject’s forehead.

In a single trial, subjects were presented with an im-
age composed of a configuration of seven different frag-
ments, which were assigned randomly to the aperture
locations, and belong to one of three object categories:
faces, cars, and horses (Figure 1A). The fragments were
initially selected as rectangular patches and then the cir-
cular apertures were placed. The comparison showed no
significant change in MI between the original rectangular
fragments and the same fragments with circular mask—
the absolute difference between MIs was 0.06 ± 0.05. All
fragments had the same size because we preferred to
avoid a mixture of the size effect with effect of informa-
tion. Fragments were categorized as either ‘‘informative’’
or ‘‘random,’’ with informative fragments computed to be
maximally informative as described above. A set of ran-
dom fragments (controlled for size) was collected for the
purpose of comparison. In Experiment 1, random frag-
ments were chosen from within a single image only.
In Experiment 2, random fragments were chosen from
across a range of images within a given category. Impor-
tantly, random fragments were chosen exactly of the
same size and contrast properties as ‘‘informative’’ ones
(see Analysis of Low-level Image Properties section). The
external boundaries of the fragments were smoothed
using a Gaussian Blur filter with radius 1.2 pixels. Frag-
ment similarity in terms of image properties was later also
verified by their identical V1 activation (see Results). Note
that the way of selecting random fragments did not ex-
clude the possibility that some of the random fragments
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happen to be informative but, on average, this is not
likely. The two sets were compared in terms of the in-
formation delivered, and they were significantly different
(see Results).

EXPERIMENTS

Fragments Experiment 1

Experiment 1 was conducted on images of faces and
horses, and included four experimental conditions: face-
‘‘informative,’’ face-‘‘random,’’ horse-‘‘informative,’’ and
horse-‘‘random.’’ A single session lasted 522 sec and was
composed of 33 blocks, each 9 sec long (Figure 1C). Each
block consisted of 1-sec presentations of eight unique
stimuli taken from the same condition: seven of the stim-
uli were presented once and the eighth was presented
twice. Configurations differed between blocks (Figure 1B).
Also, for every block consisting of a particular configu-
ration of ‘‘informative’’ fragments, an equivalent block
was constructed consisting of the same configuration but
with ‘‘random’’ fragments selected from a single image
(Figure 1A and B).

Each experimental session began with the presentation
of a 21-sec-long blank screen followed by a 9-sec-long
patterned stimuli block (excluded from all analyses), and
ended with the presentation of a 12-sec-long blank
screen. Subjects (n = 13) were asked to fixate on a small
central dot and to perform a 1-back memory task in-
tended to control subjects’ alertness.

Fragments Experiment 2

To check if the way in which ‘‘random’’ fragments were
selected affects the outcomes, and to extend this work to
additional fragment category, this experiment was con-
ducted. It was almost a replica of Experiment 1, but this
time ‘‘random’’ fragments were selected from a range of
pictures within a category. Cars and horses object cate-
gories were tested.

Fragments Experiment 3

Experiment 3 pursued two goals: (i) to check to what
extent the level of activity is related to informative con-
tent per se, and (ii) to evaluate the involvement of con-

Figure 1. Stimuli and

experimental design. (A)

Examples of two types of

the visual stimuli used in
Experiments 1 and 2: top—

random fragments, bottom—

informative fragments.
Stimuli were presented as

a configuration of seven

different fragments in three

object categories: faces, cars,
and horses. A white fixation

point was presented in the

center of all images. In

Experiment 1, ‘‘random’’
fragments were selected

from a single image, and in

Experiment 2, from a range
of pictures within a category.

(B) Examples of configurations

in which the fragments were

arranged. The configuration
differed between blocks.

(C) A part from the time axis

of Experiments 1 and 2. An

interleaved short epoch design
was used. The experiments

lasted 522 sec and consisted

of 33 visual blocks of 9 sec
each. Each condition was

repeated eight times and

consisted of eight different

and one repeated images.
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figurational ‘‘holistic’’ effects in the observed level of
activity. This experiment was conducted on face frag-
ments and included three informativeness levels: high,
mid, and low. A single session lasted 582 sec and was
composed of 37 blocks, each 9 sec long. Eight unique
stimuli and one repeated were presented in each block.
Fragments were arranged either in a normal face con-
figuration or in a ‘‘jumbled’’ configuration. Normal and
jumbled configurations were presented for all tested lev-
els of information (Figure 7A). A central small fixation
point was added to the images.

Each experimental session began with the presenta-
tion of a 21-sec-long blank screen followed by a 9-sec-
long patterned stimuli block (excluded from all analyses),
and ended with the presentation of a 12-sec-long blank
screen. Subjects (n = 8) were asked to perform a 1-back
memory task and to record their responses via button
presses indicating same/different decision. Eye move-
ments were recorded during the experiment (see below).

Control Experiment 1

Low-level image features may still affect the preferential
activation of the informative fragments. To search this
possibility, the control experiment was conducted. The
experiment had a similar block design to the Fragments
Experiment 3. Again, only the face category was tested.
There were six types of visual stimuli in the experiment:
‘‘Informative’’ and ‘‘random’’ fragments were presented
in a normal view, in an inverted view or were broken
into nine parts and then randomly scrambled (see Fig-
ure 8). Each stimulus consisted of a single fragment.
High-frequency edges in the scrambled stimuli were
smoothed using a 2-D Gaussian function (s = 0.05). A
fixation point was presented in all stimuli. Subjects (n =
8) were asked to perform a 1-back memory task and
push the buttons on the response box in order to indi-
cate the same/different stimulus.

Control Experiment 2

The Control Experiment 2 was conducted for further
investigation of configurational effects. It had the same
block design as the previously described Fragments Ex-
periment 1. Only the face category was tested. A total of
four experimental conditions were tested. The first con-
dition consisted of three fragments of a single face
arranged in their normal facial configuration. The sec-
ond condition consisted of three fragments arranged
in the same configuration as in the first condition, but
taken from three different face images. In this condition,
the fragments were both ‘‘informative’’ and were ar-
ranged in a normal face configuration (e.g., eyes on top
and mouth on the bottom), yet the final image was not
of a specific single face, but features were selected from
different faces. The last two conditions were equivalent to

those used in the first two experiments. Namely, compo-
sitions of seven ‘‘random’’ fragments were chosen either
from within a single face image or from across a range of
face images. A fixation point was presented in all stimuli
(see Figure 9, top panel for example stimuli).

Retinotopy Mapping Experiment

To define the borders of early retinotopic visual areas,
the representation of vertical and horizontal visual field
meridians was mapped for each subject (Sereno et al.,
1995). Specific details about the procedure were de-
scribed by Levy, Hasson, Harel, and Malach (2004).
Briefly, triangular wedges of object images were pre-
sented either vertically (upper or lower) or horizontally
(left or right) at 4 Hz in 18-sec blocks alternated with
6-sec blanks. Subjects were required to fixate on a small
dot located at the center of the screen. Additionally,
a ‘‘house–face localizer’’ experiment (Levy, Hasson,
Avidan, Hendler, & Malach, 2001) was used to delin-
eate the anatomical location of the posterior fusiform
gyrus (pFs).

Eye Movements Control

The eye movement data were collected using MR-
compatible eye tracker (ASL Eye Tracker, Model R-LRO6)
in the magnet for seven subjects that participated in
the Fragments Experiment 3 during the MR scans. Data
points obtained during the blank epochs, and when the
eye tracker was failed to indicate accurate eye position
(for example, due to blinking), were excluded. The data
for high and low informative fragments were analyzed
separately, and horizontal and vertical projections of the
clusters were shown. Additionally, separately for each ob-
server, and each condition, the density of the fixation
points was estimated using Gaussian kernels with a band-
width equal to pupil size.

Behavioral Measurements

Human Performance in the Original Experiment

Behavioral measurements were taken outside the mag-
net. Subjects (n = 12) were presented with the same
stimuli composed of seven fragments that were shown
in the original fMRI experiments. Sixty-three additional
images not belonging to three original object classes and
including body parts, planes, and animals, with randomly
selected features, were added to increase the difficulty
of the task. Subjects were asked to identify the objects by
saying face/car/horse/other. Thirty-two (16 ‘‘informative’’
and 16 random) different images for each category—faces,
cars, and horses—were used. In each trial, a single image
was presented for 200 msec, followed by a 1250-msec-
long blank screen, allowing subjects sufficient time to
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respond. Percentage of incorrect response was calculated
(Figure 6A). Prior to participating in the behavioral ex-
periment, all subjects underwent a short training session
(1.5 min) on a different set of stimuli.

Performance in a Single-fragment Experiment

To allow a direct comparison with computational mea-
sures, a single-fragment experiment was conducted. Sub-
jects (n = 11) were presented with stimuli consisting of
a single fragment each, in the analogy with computer
simulations which were based on single fragments (see
below). Eighty fragments (40 ‘‘informative’’ and 40 ran-
dom) with the highest MI were selected in each of three
categories—faces, cars, and horses. Subjects were in-
structed about four categories while the fourth category
(other) did not correspond to any stimulus. Each sin-
gle image was presented for 200 msec, followed by a
1250-msec-long blank screen. Percentage of errors (misses
and false alarms) was calculated (Figure 6B). Prior to
participating in this experiment, all subjects underwent a
short training session (60 sec).

Computational Simulations

Classification errors (sum of misses and false alarms)
were also computed using simulations for each fragment
in the experiment. Each fragment was searched in all the
database images, and the number of correct detections
and classification errors was recorded. Each detection in
the incorrect class (e.g., a horse fragment detected in a
car image) was considered an error. This procedure was
performed for all three categories (Figure 6C).

DATA ANALYSIS

fMRI data were analyzed with the ‘‘BrainVoyager’’ soft-
ware package (Brain Innovation, Maastricht, The Nether-
lands) and complementary in-house software. The first
three images from each functional scan were discarded.
The functional images were superimposed onto 2-D
anatomic images and incorporated into the 3-D datasets
through trilinear interpolation. The complete dataset
was then transformed into Talairach and Tournoux
(1988) space. Preprocessing of functional scans included
3-D motion correction, slice scan time correction, linear
trend removal, and filtering out of low frequencies (up
to 5 cycles/experiment). The cortical surface of each sub-
ject was reconstructed from the 3-D SPGR scan. Re-
construction included segmentation of the white matter
using a grow-region function, smooth covering of a
sphere around the segmented region, and expansion
of the reconstructed white matter into the gray matter.
The surface of each hemisphere was then unfolded, cut
along the calcarine sulcus, and flattened.

Statistical Analysis

Single-subject Analysis

A General Linear Model (Friston et al., 1994) statistical
analysis was used. A hemodynamic lag of 3 or 6 sec long
was fitted to the model for each subject by maximizing
the extent of the overall visual activations. A box-car pre-
dictor was constructed for each experimental condition
except fixation, and the model was independently fitted
to the signal of each voxel. A least-squares algorithm was
used to calculate a coefficient for each predictor.

Multisubject Analysis

In addition to the single-subject analysis, data were ana-
lyzed across all subjects. Thus, the time series from im-
ages of all subjects were converted into Talairach space
and normalized using the z-value. For each subject, the
relative contribution of the predictors for each contrast
was estimated separately. These values were then used
to obtain significance at the multisubject level. Calcula-
tions of significance values from the activation maps
were based on the individual voxel significance and on
the minimum cluster size of 10 voxels (Forman et al.,
1995). Multisubject maps were obtained using a ran-
dom effect procedure (Friston, Holmes, Price, Buchel,
& Worsley, 1999) and projected on a single, flattened,
Talairach normalized brain. Statistical level ranged from
p < .05 (darker colors) up to at least p < .001 (brighter
colors) and was indicated by color scales.

Analysis of Low-level Image Properties

Using the two-dimensional Fourier transforms (FT)
analysis for the stimuli (whole images), we compared
the spectral power of the ‘‘informative’’ and ‘‘random’’
fragments in the low- and high-frequency range. The low-
frequency range consisted of all frequencies where hor-
izontal and vertical frequency components were smaller
than half of the maximum frequency (12.5 cycles/deg),
similarly for the high range. The overall power (total en-
ergy was computed for each image separately as sum of
all squared amplitudes in FT, and then mean across image
values was calculated) in the entire frequency domain, as
well as power in the lower range (0–6.25 cycles/deg) and
higher range (6.25–12.5 cycles/deg). Additionally, a similar
analysis was done on an individual fragment basis.

Internal Localizer Approach

Details of the approach were previously published (Lerner,
Hendler, & Malach, 2002). Briefly, one subset of the rep-
etitions of a condition was used to localize the region of
interest (ROI; biased statistically as a part of the test),
whereas a signal in the complementary subset of the rep-
etitions (unbiased statistically) was used to evaluate the
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activation level. Specifically, for the each localizer test (e.g.,
‘‘high informative’’ vs. ‘‘low informative’’), two statistical
tests were conducted. In the first test, half of the epochs in
a condition were used to define the ROI, and their activity
was therefore statistically biased, whereas the other half
of the epochs were used to obtain an independent mea-
sure of a statistically unbiased BOLD activation, and these
halves were reversed for the second statistical tests. The
average activation obtained from the unbiased epochs is
presented in the figures (e.g., Figures 7 and 8).

RESULTS

Preferential Activation to Informative Fragments
in the Human Visual Cortex

To what extent are object-selective brain regions sensi-
tive to object fragments obtained either by maximizing
information for classification, or selected randomly, from
the same objects and with similar image properties? To
address this question, we examined the activation level
to visual stimuli composed of two types of fragments
(‘‘informative’’ vs. ‘‘random’’) from three different ob-
ject categories—faces, cars, and horses. Figure 1 illus-
trates the basic design of the experiments. An example
of ‘‘informative’’ fragments for each object category and
a comparable example of ‘‘random’’ fragments are pre-
sented in Figure 1A. The fragments were selected sep-
arately for each condition and presented in 9-sec blocks
(Figure 1C) in the different configurations. Examples of
such configurations are shown in Figure 1B. The two
approaches in the way in which ‘‘random’’ fragments
were selected (see Methods for details) did not yield
significantly different results, and thus, data from the
two experiments were combined in all further analyses.

To characterize the overall activation patterns ob-
served during ‘‘informative’’ versus ‘‘random’’ fragment
blocks, cortical maps were constructed representing ac-
tivation as averaged across all subjects (Figure 2, top;
n = 13, random effect, p < .05). The data reveal sig-
nificantly higher activity in response to ‘‘informative’’ as
opposed to ‘‘random’’ fragments in several areas of the
visual cortex. Specifically, activation was found in both
the ventral and dorsal streams, extending bilaterally to
premotor areas. Ventrally, activation was found in two
subdivision of the LOC: in the pFs situated lateral and
anterior to areas V4/V8, and in the lateral–occipital re-
gion (LO) located in the vicinity of the inferior occipital
sulcus (IOS) or gyrus (IOG). Dorsally, preferential ac-
tivity to informative fragments (vs. random ones) was
found in the intraparietal sulcus (IPS). Additionally, an
anterior activation focus was observed in the posterior
part of the superior frontal sulcus (near the precen-
tral sulcus, and slightly more rostral in the right hemi-
sphere compared to the left). Condition-related activity
was highly consistent across all subjects (see Figure 3 for
comparable single-subject activation levels).

Additionally, we analyzed the fMRI response to ‘‘infor-
mative’’ versus ‘‘random’’ stimuli within ventral subre-
gions of object-selective voxels for each of the object
categories separately. The patterns of activation revealed
by such ‘‘single-category’’ tests are shown on Figure 2
(bottom). Note that the single-category maps were con-
sistent with behavioral performance in the categoriza-
tion task—as the number of miss-classifications increases
from category to category (see Figure 6), the preferential
activation to ‘‘informative’’ fragments was reduced.

ROIs were sampled for each subject, and a corre-
sponding quantitative analysis of the activation levels
was done for the object-related areas. Results are de-
picted in Figure 4. As can be seen in both the LO and
pFs subdivisions, the activation was significantly higher
for informative fragments compared with randomly se-
lected fragments ( p < .005). Importantly, preferential
activation to more informative fragments was found
across all object categories. Although a higher selectivity
for faces was globally observed in the face-related pFs
( p < .0005), the bias for ‘‘informative’’ fragments in this
area was evident for the nonpreferred horse and car
stimuli as well. Also, activity in the IPS showed a sig-
nificantly stronger preferential effect for ‘‘informative’’
fragments in the face and horse images ( p < .01), al-
though the overall signal in this area was generally low.
These findings suggest that the same area can con-
tribute differentially to different object categories. In
contrast, no substantial differences were found in the
higher order collateral sulcus as well as in the early
retinotopic visual areas. An intriguing question is how
the selectivity to informative fragments develops along
the hierarchy of visual areas. This is shown in Figure 5.
Interestingly, a tendency (albeit not significant) for pref-
erential activation for ‘‘informative’’ fragments can be
detected as early as area V4 ventrally and V3A dorsally
(Figure 5).

The random fragments used for stimulation were
selected from the image so that their edges and contrast
properties were similar to the corresponding informa-
tive fragments (see Analysis of Low-level Image Proper-
ties section). A Fourier power-spectral analysis did not
reveal any significant difference between the informative
and random fragments (for details, see Table 1). More-
over, other possible differences not having directly to do
with class-specific fragments, such as a number of image
‘‘interest points,’’ were analyzed. The number of ‘‘inter-
est points ’’ calculated using a Harris corner detector
(Harris & Stephens, 1988) was similar in the informative
and random fragments (mean number per fragment:
informative—24.5; random—25.7). The similarity in low-
level properties was also evident in the similar activation
level we found in V1 activity for the informative and ran-
dom fragments. The information supplied by the ran-
domly selected fragments was less than the information
supplied by the informative features (average MI for ran-
dom fragments: 0.2 ± 0.007; average MI for informative

Lerner et al. 7



Figure 2. Multisubject fMRI activation (n = 13). (Top) Inf lated and f lattened cortical maps showing all the regions which demonstrated

preferential activation to highly informative object fragments (test ‘‘informative’’ vs. ‘‘random,’’ random effect, p < .05). The activated voxels were
localized in two major foci: LOC ventrally and IPS dorsally. (Bottom) Preferential activation to ‘‘informative’’ versus ‘‘random’’ stimuli is shown

within each category. Single-category activation is shown only for the ventral object-related areas (zoom-in from the region marked by the orange

box on the f lattened brain). The color scale indicates significance levels. Dotted lines denote anterior borders of retinotopic areas. pFs = posterior

fusiform gyrus; LO = lateral occipital; IPS = intraparietal sulcus; LH = left hemisphere; RH = right hemisphere; A = anterior; P = posterior.

FPO

Figure 3. Single-subject

activation pattern. Note again
remarkable preferential

activation to ‘‘informative’’

fragments compared to

‘‘random’’ presented on
f lattened brain. The meridian

borders are indicated by white

dotted lines and denote

the retinotopic visual areas.
Abbreviations as in Figure 2.
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8 Journal of Cognitive Neuroscience Volume 20, Number 7



fragments 0.7 ± 0.05, p < 2.6e�15). Consistent with this
measure, our findings indicate that the randomly selected
fragments could be used for recognition, but perfor-
mance is significantly reduced compared with the infor-
mative fragments.

Relationship between Brain Activity,
Behavioral Performance, and Computational
Information Measurements

The first experiments established that computationally
determined informative fragments produced increased
sensitivity in high-order visual areas. We next examined
two additional relationships within our data: (1) phys-
iological versus behavioral, and (2) behavioral versus
computational.

To what extent do the fMRI data correlate with the
behavioral measurements collected in our study? To an-
swer this question, the percent of incorrect detection
was calculated based on experiments performed outside
of the magnet by 12 subjects that participated in the
fMRI studies (Figure 6A; see Methods for details). Sub-
jects observed the same multiple-fragments stimuli that
were shown in the Fragments Experiments 1 and 2. For
all three categories, classification performance was sig-
nificantly higher for ‘‘informative’’ compared with ‘‘ran-
dom’’ fragments ( p < .05). Interestingly, the tendency
for somewhat higher activation during the presentation
of face stimuli (as observed in fMRI results) correlated
with behavioral performance. Namely, the number of the

miss-classifications for both ‘‘informative’’ and ‘‘random’’
nonface fragments was higher than those found for the
faces fragments.

In the final analysis, we quantitatively compared human
behavioral performance in the single-fragment experi-
ment (see Methods) to the performance of our compu-
tational learning algorithm. To do this, an error (sum of
the misses and false alarms) analysis of both behavioral
and computational data was derived for 40 ‘‘informative’’
and 40 ‘‘random’’ fragments with the highest MI. The
reason for this selection was that the ‘‘informative’’ frag-
ments we used started with high MI, but as their number
increased, we started to get fragments with MI that was
not much higher than the ‘‘random’’ ones. For human
performance, false alarms were calculated as the number
of events in which fragments belonging to one class were
identified as belonging to another class (e.g., false alarms
for faces is the number of times that car and horse frag-
ments were identified as face fragments). In the case of
the computational data analysis, false alarms were simi-
larly calculated by treating fragments from the class of
interest as the ‘‘target class’’ and all other fragments
as ‘‘nonclass.’’ Results of such error analysis reveal an
intriguing correlation between human behavioral perfor-
mance and the performance of our learning algorithm
(Figure 6B and C). Particularly notable is the close sim-
ilarity of results for ‘‘informative’’ fragments. Interestingly,
humans’ evolution-related bias for the face category ap-
peared only in a smaller number of errors for this cate-
gory but not in an overall trend for the ‘‘informative’’

Figure 4. Sensitivity to informative fragments as ref lected in activation profiles. Average activation levels obtained in the high-order visual

areas. Object categories (x-axis) are indicated in the apertures above the graphs. The y-axis denotes an fMRI percent signal change relative
to blanks. Asterisks denote a significant difference between image types (‘‘informative’’/‘‘random’’) within a category calculated by a t test:

*p < .05, 8p < .005, 88p < .0005. No differences were found in the object-related collateral sulcus. Error bars indicate SEM. inf = ‘‘informative’’.
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fragments favor (our subjects were not the car or horse
experts).

Potential Low-level Effects

Was the observed level of differential activity determined
by the fragment’s informative content, or by some addi-
tional image property that may have been inadvertently
correlated with the difference between informative and
random fragments? Thus, it could be that other dif-
ferences between ‘‘informative’’ and ‘‘random’’ stimuli,
which were not directly related to the informativeness
per se, may have accounted for the observed activity.
One approach to examine this possibility is through
a parametric manipulation of the information level. To
this end, we conducted an experiment using three dif-
ferent informativeness levels—high, mid, and low for the
face fragments (Fragments Experiment 3). Results were
obtained in eight subjects and are depicted in Figure 7.

Figure 5. Sensitivity to informative fragments in retinotopic visual areas. Average activation levels obtained in the early visual areas. Object
categories (x-axis) are indicated in the apertures above the graphs. The y-axis denotes an fMRI percent signal change relative to blanks. No

favor for informative fragments was found. Note a trend for preferential activation to informative fragments in V4 and V3A. Error bars indicate

SEM. inf = ‘‘informative’’.

Table 1. Spectral Power Analysis (Arbitrary Units)

Informative Random

Image-based Analysis

Faces 2.87e4 ± 0.07 2.92e4 ± 0.12

Cars 3.36e4 ± 0.04 3.26e4 ± 0.09

Horses 2.83e4 ± 0.04 2.85e4 ± 0.08

Fragment-based Analysis

Faces 1.8e4 ± 0.6 1.4e4 ± 0.6

Cars 1.3e4 ± 0.5 1.5e4 ± 0.8

Horses 1.6e4 ± 0.7 1.5e4 ± 1.1

A Fourier power-spectral analysis was done on the whole images
and on the fragments. First, the overall power in the image/fragment
was computed for each image/fragment separately as sum of squared
amplitudes in Fast Fourier Transform in the entire frequency domain.
Then, a mean across images or fragments was computes. Note no
significant differences between the informative and random fragments.
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As can be seen, a monotonic decrease in activity in the
LOC could be determined as a function of fragment in-
formativeness. A significant systematic reduction in the
activity level was found with decrease of informativeness
(Figure 7B). Note that this reduction was stronger in the
pFs compared to LO (activation patches are shown in
Figure 7C).

To further examine the possibility that low-level image
features such as edges or power spectrum did not con-
tribute to the preferential activation of the informative
fragments, we conducted a control experiment (Con-
trol Experiment 1). Here we used an image scrambling
approach (Lerner et al., 2001; Grill-Spector et al., 1998).
Each fragment was broken into nine randomly scrambled
parts. Activation profiles, achieved using the internal-

localizer method (see Methods) and averaged across
eight subjects are shown in Figure 8. As before, in the
unscrambled condition, the informative fragments pro-
duced a significantly higher activation ( p < .05) com-
pared to the random ones. Scrambling of the informative
fragments produced a significant ( p < .005) reduction
in activation, and, importantly, the preferential activation
of the informative fragments compared to the random
fragments disappeared upon scrambling. Note that in-
verting the fragments did not abolish the preferential ac-
tivation to informative fragments, which is in line with the
rather weak inversion effects found in high-order visual
areas (Yovel & Kanwisher, 2005). In agreement with our
previous research (Lerner et al., 2001), early retinotopic
visual areas (V1, for example) demonstrated preferential

Figure 6. Recognition

performance during different

conditions. (A) Incorrect

classification response. Twelve
subjects which participated

in the imaging studies were

presented with the same
multiple-fragments stimuli that

were shown in the Fragments

Experiments 1 and 2. Number

of the miss-classifications
increases for ‘‘random’’

fragments in each category.

(B) Human performance

(n = 11) in the single-fragment
experiment for ‘‘informative’’

and ‘‘random’’ fragments.

(C) Computer performance
showing the errors for

‘‘informative’’ and ‘‘random’’

fragments. Note the intriguing

similarity between human and
computer performance for

‘‘informative’’ fragments.

The categories are shown

in the apertures above
the graphs. Error bars

indicate SEM. *p < .05,

**p < .005, 8p < .0005.
inf = ‘‘informative’’.
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activation to the scrambled condition. However, no differ-
ences between informative and random conditions were
observed in this area.

Configurational Effects

An important issue with regard to the differential acti-
vation in high-order object areas is the involvement of
configurational ‘‘holistic’’ effects that may go beyond
the local information content of individual fragments.
Holistic effects, which depend on the presence of sev-
eral parts in the correct configuration, may arise in the
fragment-based scheme in two ways. First, informative
fragments are found at different scales and resolutions
including large, low-resolution ones (Harris & Stephens,

1988), and the presence of such fragments is sensitive
to the overall object configuration. Second, individual
fragments can be combined in a hierarchical scheme
in a manner that preserves their qualitative spatial rela-
tion, resulting in stronger activation for correct config-
urations (Harris & Stephens, 1988). To examine the
effect of configurations, we presented equally informa-
tive fragments arranged either in a face-like configura-
tion or in a ‘‘jumbled’’ one (see Figure 7, Fragments
Experiment 3). Using an internal localizer approach (see
Methods), for each subject, we sampled ROIs that
demonstrated a preferential activation to high informa-
tive fragments. No significant interaction effect between
information level and the type of fragment was found in
any of the ROI. Our results showed a significant increase

Figure 7. Fragments Experiment 3. (A) Examples of stimuli used in the experiment. ‘‘Informative’’ and ‘‘random’’ face fragments were presented

in the normal (norm) and jumbled (jumb) configuration in three informative levels: high, mid, and low. (B) Activation profiles revealed in the

high informative versus low informative contrast in the high-order visual areas. Asterisks denote a significant difference between conditions

calculated by a t test: *p < .05, **p < .005. Error bars indicate SEM. (C) Multisubject activation (n = 8) shown on the inf lated brain. The activated
voxels in two major foci in the ventral stream LO and pFs demonstrate the preferential activation to highly informative object fragments (test

‘‘high’’ vs. ‘‘low’’). The color scale indicates significance levels. pFs = posterior fusiform gyrus; LO = lateral occipital; LH = left hemisphere;

RH = right hemisphere; A = anterior; P = posterior.
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in activation for the normal, compared to the jumbled,
configurations for the high informative fragments in the
LO ( p < .05) and the pFs ( p < .005), as well as for the
mid-informative level in the pFs ( p < .05) (Figure 7B).

We used another control experiment (Control Exper-
iment 2) to determine if recognition performance de-
pends on whether the fragments came from the same
source or multiple face images. The comparison was
made using two different fragment configurations. In the
first configuration, we evaluated performance on typical
face templates consisting of either three random frag-
ments selected from a single face or three ‘‘informative’’
fragments selected from different faces and placed in
a normal face configuration. The combined configura-
tion appeared slightly distorted as the eye regions were

taken from different faces. The second configuration com-
pared performance on seven randomly arranged ‘‘infor-
mative’’ fragments selected from either a single face or
different faces. Activity levels measured in six subjects
and their corresponding stimuli examples are illustrated
in Figure 9 (bottom and top panels, respectively). A com-
parison of Fragments Experiments 1 and 2 suggests that
performance in these experiments did not depend on
whether the object fragments were selected from a single
image or multiple images. Our results revealed a greater
activation to the few (3) aligned face windows than to
many (7), mostly misaligned windows. However, no sig-
nificant difference was found between images of seven
fragments belonging to a single face and those belonging
to a range of different faces (pFs; % signal change: 0.82 ±

Figure 8. Control Experiment 1: stimuli and average activation level (n = 8). (A) Examples of visual stimuli used in the experiments. Two

types of face fragments—‘‘informative’’ and ‘‘random’’—were presented in the normal view or scrambled into nine parts. Additionally,

‘‘informative’’ and ‘‘random’’ fragments were shown in the inverted mode. (B) Average activation levels obtained in the high-order visual
areas LO and pFs and retinotopic area V1 during comparing the normal and scrambled conditions. Only statistically unbiased epochs are

shown (see Internal Localizer Approach section). Note the absence of preferential sensitivity to informative conditions compared to random in

V1. The y-axis denotes an fMRI percent signal change relative to blanks. Asterisks denote a significant difference between conditions calculated

by a t test: *p < .05, **p < .005. Error bars indicate SEM. inf = ‘‘informative’’.
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0.11 vs. 0.91 ± 0.16; p = .1), although activation was
slightly higher in the condition with different faces frag-
ments. Also, no effect related to three fragments selected
from either a single face or different faces was found (pFs;
% signal change: 1.25 ± 0.12 vs. 1.16 ± 0.15; p = .2). Thus,
visually perceived face distortions were not reflected by
the activation level in this area. Additional effects of frag-
ments configuration were further tested below.

Potential Nonvisual Effects

Is it possible that the parietal activation reflects differ-
ences in the attention of the subjects across conditions?
One outcome of heightened attention to the informative
fragments may be a better performance on the 1-back
memory tasks the subjects were required to perform.
Note that this task is not an object categorization task and
was aimed solely to assess attentional effects. To examine
this possibility, we collected the subjects’ responses while
they indicated the stimulus identity during the scan.
Analysis of these data revealed that average errors for
the ‘‘informative’’ and ‘‘random’’ conditions were very
close (1.0 ± 0.8% and 0.9 ± 0.8%, correspondingly) as
well as average reaction time in these conditions (481 ±
58 and 499 ± 53 msec). Moreover, no correlation was dis-
cerned between the normalized BOLD signal and aver-
age errors number (r2 = .001). Thus, it is reasonable to
assume that attentional differences to the different types
of fragments were not dominant.

It could be argued that the informative fragments,
which carry the most interesting information about the
objects, may have been associated with more intensive
eye movements. This could potentially produce a stron-
ger cortical activation compared to random selected frag-
ments. To check this possibility, we recorded, in the MRI

scanner, subjects’ eye movements while they observed
fragments with high and low information content and
compared their associated eye movements. Figure 10
shows two-dimensional clusters of fixation points in red
and blue (corresponding to high and low informative-
ness, respectively). The results of these measurements
show similar patterns of eye movements during epochs
with different information levels. Formally, kernel den-
sity estimation, using Gaussian kernel with a bandwidth
equal to pupil size, showed no difference for fixation
densities between conditions for the same subject—at
each location the difference was smaller than precision
of double variables (<10�15). Therefore, the difference
in cortical activation is unlikely to be solely explained by
eye movements.

DISCUSSION

The present study tested the relations between predic-
tions raised by computational considerations and human
vision, regarding features used for object classification.
In particular, the goal was to test whether features (com-
posed of object fragments) selected, through an objec-
tive computational measure, to maximize the information
they deliver for classification also play a preferred role in
human vision.

The main outcome of this study is the intriguing dem-
onstration that a completely objective criterion for ob-
ject fragment selection results in a higher activation of
human object areas. Specifically, by comparing the ac-
tivation to highly informative fragments with activation
to similar but less informative ones (see Figure 1), we
have discovered that informative fragments produced
a preferential activation in human object-related areas.

Figure 9. Control

Experiment 2: stimuli and

average activation level

(n = 6). Activation profiles
measured in pFs to the

different conditions shown

on the bottom panel. The
y-axis indicates an fMRI

percent signal change relative

to blanks. No significant

difference was found between
the condition composed of

single-face fragments and

the condition consisted of

different faces fragments.
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Our control experiments argue against the possibility
that the preferential activation was due to nonvisual ef-
fects such as attention effects or eye movements. Thus,
it should be emphasized that the task (1-back) was of
a similar attentional demand for both the informative
and less informative fragments. Although we cannot fully
rule out the possibility that the informative fragments
led to a reflexive enhancement of attention, the fact that
the preferential activation was most evident in specific
regions (the pFs; see Figure 4) argues for a selective,

recognition-related effect, rather than a more global atten-
tional enhancement.

The highly informative fragments in our study were
usually also more recognizable, and a possible question
to consider is therefore the relation between these factors
and their contribution to the increased fMRI activation.
The empirical findings show that recognizability and
informativeness are, in fact, highly correlated (although
it remains possible that recognizability may be affected by
additional parameters). This correlation is expected from

Figure 10. Eye-movements

data analysis. Two-dimensional

distribution of fixation points is

presented for seven different
subjects. The data for high

and low informative conditions

are shown in red and blue,
respectively. The horizontal

and vertical projections are

shown along axes.

FPO

Lerner et al. 15



the working hypothesis of the study, regarding the causal
relationship between informativeness and recognizability.
The findings that psychophysical recognizability and fMRI
activation in high-order visual areas are closely related
to our simple and objective information measure suggest
that the algorithm is successful in capturing essential pa-
rameters of the recognition processes. To our knowledge,
this study is the first to demonstrate such effects follow-
ing fragment selection, which is based on a general,
strictly objective, criterion that does not depend on prior
assumptions concerning the shape or low-level features
of the stimulus categories.

These results are consistent with general expectations
because an image region which is objectively informative
can also be expected to be useful in human vision. It is
not clear, however, that the simple information measure
used in the computations would be sufficient for pre-
dicting human performance. Information can be mea-
sured mathematically between any different variables,
and the theory needs to specify which variables to ex-
tract and use. The computation we used was based on
a simple measure of using the fragment directly as a
feature, based on its frequency within and outside the
class of interest (‘‘patch information’’). A tight correla-
tion between recognition and this patch information is
not expected a priori, and was not proposed and tested
prior to the current study. In different theories of rec-
ognition, such as geon-based (Biederman, 1987), which
uses 3-D shape primitives, or eigen-faces (Turk & Pentland,
1991), which uses global object templates, such informa-
tion measure will not be predictive of performance. The
patch-information measure used here allows us for the
first time to directly compare, for example, a part of a
horse’s torso with a piece of a leg, and predict their use-
fulness for recognition; the empirical results are consistent
with these predictions.

In the present study, highly significant preferential ac-
tivation for informative fragments was found in both LO
and pFs subregions of the LOC, the typical object-related
areas. These results were consistent for different object cat-
egories, such as faces, horses, and cars. Interestingly, sen-
sitivity in the fusiform gyrus also for the nonface objects
points to preference for faces (Kanwisher, McDermott, &
Chun, 1997) as well as to aspects of distributed represen-
tation (Haxby et al., 2001).

The behavioral tests also showed an advantage of the
informative fragments in recognition performance. Inter-
estingly, a comparison of human recognition measure-
ments to the performance of the computational learning
algorithm revealed a strong correlation for all informative
fragments, and especially for the face fragments. These
results demonstrate that processes which have been
shown to be highly effective in computational simulations
can be used to predict effective stimulus parameters
applicable to human vision.

Although our results demonstrate the importance of
individual informative class-specific features to human

recognition, it is important to note also the role of con-
figuration effects that were observed. The results of both
control experiments and, particularly, Fragments Exper-
iment 3 have shown that configurational effects, that is,
the arrangement of the fragments relative to each other,
contributed to the activation level. Thus, ‘‘jumbling’’ the
location of the informative fragments relative to each
other, without changing the contents of each fragment,
resulted in a significant reduction in activation (see Fig-
ure 7). This suggests that, in addition to the local in-
formation content of the fragments, a more ‘‘holistic’’
component played a role. However, it should be em-
phasized that such holistic configurational effects may
also be the result of using larger, and perhaps, low-
resolution informative fragments which encompass large
parts of the object image, with reduced information
about image detail (Ullman et al., 2002). Additional pos-
sibilities are that the ‘‘informative’’ fragments may be
better inducers of completion (Lerner, Harel, & Malach,
2004), or high-order grouping (Hasson, Hendler, Ben
Bashat, & Malach, 2001) effects. Given the rich and com-
plex nature of human object recognition, it is likely that
high-order object areas use both the individual features
as well as a more holistic aspect that depends on their
relative position. Such a representation is, in fact, com-
patible with fragment-based models (Epshtein & Ullman,
2005) and with the partial completion effects observed
in the past (Lerner et al., 2004), as well as with the fMRI
reports of holistic processing (Imber, Shapley, & Rubin,
2005; Altmann, Bulthoff, & Kourtzi, 2003; Kourtzi, Erb,
Grodd, & Bulthoff, 2003; Stanley & Rubin, 2003).

Previous studies showed that high-level object-related
areas are activated by whole objects as well as by their
large parts (Lerner et al., 2001; Grill-Spector et al., 1998).
The gradual decline in activation to fragmented objects
may be related to receptive field size as well as to stimu-
lus selectivity. Namely, the object fragments falling in the
receptive fields within this region need to contain a large
portion of the object to produce the activation compa-
rable to activation elicited by whole objects.

Different object classes differ in the resolution and size
distributions of the optimal object fragments (Ullman
et al., 2002). For face images, optimal fragments for rec-
ognition are usually of intermediate size at high reso-
lution, whereas car images have typically a higher
proportion of larger optimal fragments, sometimes at in-
termediate resolution. Interestingly, it has been recently
proposed that a global organizing principle of human
object recognition areas may be associated with focal
versus global vision. More specifically, cortical areas which
have been associated with face processing, such as the
fusiform face area (FFA), appear to deal with detailed,
high-resolution processing, and consequently, receive a
more extensive input from foveal representation, whereas
areas associated with building and scenes are associated
with processes of large-scale integration and, as such, are
more related to global, peripheral visual field representa-
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tions (Hasson, Harel, Levy, & Malach, 2003; Malach, Levy,
& Hasson, 2002; Levy et al., 2001). It is interesting to
note that from an objective set of principles, it naturally
emerges that, although both classes include a range of
different features, faces are associated with a higher pro-
portion of fragments requiring higher resolution vision,
compared with cars which are associated with a larger
proportion of more global fragments.

In addition to the ventral stream activation in the
occipito-temporal cortex, our results also show consis-
tent activations in parietal and prefrontal cortices. It is
interesting to note in this respect that selective object
activation has been consistently reported in dorsal
stream parietal areas occupying similar anatomical loca-
tions to the ones we found (Shmuelof & Zohary, 2005).
A likely interpretation of the parietal activation might be
the involvement of these regions with action planning
(Culham & Valyear, 2006). It could be that the enhanced
activation to informative fragments in the parietal cor-
tex is related to mechanisms of target detection and ob-
ject manipulations associated with such action planning
roles. Prefrontal object activation has been extensively
studied in the context of categorization (Freedman,
Riesenhuber, Poggio, & Miller, 2003) as well as image
understanding (Palmeri & Gauthier, 2004) and that the
preferential activation found in the present study may be
related to such high-level cortical functions which go
beyond the merely perceptual stages.
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