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Oa b s t r a c t

We consider the problem of extracting features for multi-class recognition problems. The features are
required to make fine distinctions between similar classes, combined with tolerance for distortions
and missing information. We define and compare two general approaches, both based on maximizing
the delivered information for recognition: one divides the problem into multiple binary classification
tasks, while the other uses a single multi-class scheme. The two strategies result in markedly different
sets of features, which we apply to face identification and detection. We show that the first produces a
sparse set of distinctive features that are specific to an individual face, and are highly tolerant to distor-
tions and missing input. The second produces compact features, each shared by about half of the faces,
which perform better in general face detection. The results show the advantage of distinctive features
for making fine distinctions in a robust manner. They also show that different features are optimal for
recognition tasks at different levels of specificity.

� 2008 Published by Elsevier B.V.
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1. Introduction

In performing recognition, the visual system, either human or
artificial, must cope with the problem of image variability, that
is, that an object’s appearance is highly variable due to changes
in shape, viewing direction, illumination, and occlusion. At the
same time, the task often requires making fine distinctions
between objects, such as between similar faces. It is particularly
surprising given these difficulties that reliable recognition can be
obtained on the basis of reduced and distorted representations,
such as caricatures and drawings produced by artists, e.g. [1], see
examples in Fig. 1. In such images, the faces consist only of a few
informative features that are distorted, often represented schemat-
ically, and placed in an inaccurate spatial arrangement. This illus-
trates a fundamental general question: how is it possible to
reliably distinguish between multiple similar classes, and yet be
tolerant to reduced and distorted information?

To approach this problem, we define and compare two natural
strategies for extracting classification features in problems involv-
ing multiple similar classes, and apply them to face examples. Both
are based on maximizing information for classification, but they
produce notable different features. One method divides the prob-
lem into multiple binary classification tasks, while the other uses
a single multi-class scheme. We show that the first leads to a
sparse representation based on distinctive features, which is toler-
ant to large distortions and missing input, and better for robust
face identification, requiring only a few distinctive features for reli-
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87
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able identification. The second leads to compact coding where
each features is shared by about half of the faces, and which per-
forms better in general face detection. The distinctive features
are also shown to be similar to the ones selected by an artist spe-
cializing in producing reduced face representations [1], and the
algorithm is the first to automatically produce such distinctive fea-
tures. The focus of the study is on feature selection for multi-class
recognition, rather than face recognition. Face images are used as a
testing domain, for which there are example of distinctive features
selected by human experts.

The rest of the paper is organized as follows: Section 2 reviews
past relevant approaches to face recognition and detection, with
emphasis on the type of features used by these approaches. Section
3 describes the two selection strategies, and automatic extraction
of sparse and compact features. Section 4 presents experimental
results, comparing sparse and compact features in face recognition
and detection. We also compare between the distinctive fragments
obtained by the current method and the representations produced
by an artist. Section 5 includes a discussion of the results and
conclusions.

2. Previous work

The current study considers the problem of extracting features
for multi-class recognition problems, and compares two alterna-
tive feature selection strategies. Since we evaluate the two
schemes in the domain of faces, we briefly review relevant aspects
of past approaches for feature extraction and use it in this domain.

A large number of face recognition schemes have been devel-
oped in the past, using different families of features and different
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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Fig. 1. Sparse fragments extracted for several individuals. The black rectangles d-
isplayed on the images illustrate the set of informative extracted fragments (in
decreasing order). The corresponding artist’s images (by H. Piven) for these indiv-
iduals is shown on the right column in each panel. (a) Allen. (b) Deri. (c) Peres. (d)
Sadam. (e) Monroe. (f) Lennon. (g) Madonna. (h) Elton.
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classification methods (for recent reviews, see [2–5]). Often, the
same type of classifier, for instance, support vector machines
(SVM, [6,7]), can be used with different feature types, leading to
different classification performance. We focus below on the main
approaches and the type of features they selected and used, since
this is the most relevant aspect to the current work.

A wide range of features have been used for both face recogni-
tion and face detection. Appearances based methods use image
examples of face regions for learning models, and typically apply
statistical analysis and machine learning techniques for recogni-
tion. The image appearance is used directly for recognition, using
either global descriptions (e.g. PCA [8], ICA [9]), or the appearance
of local face regions such as [10] for face detection. Decision can
then be reached using for instance projection distance, [8] or linear
discriminant analysis (LDA/FLD) [11].

Structural matching methods based on geometrical constraints
use as features measured distances and angles between key points
of the face [12,13]. A recent example within this category is the ac-
tive shape model (ASM) [14], which is a statistical shape model,
representing faces with shape and intensity information.

Deformable templates methods use a geometric model of the
face, but allow it to deform in a controlled manner during the
matching process. For example, in [15], facial features are de-
scribed by parameterized templates, which are matched to an im-
age by minimizing an energy function.

Several recognition systems use constellations of simple local
features, including wavelets, Gabor patches, edges, lines and curves,
for representing and recognizing faces. In such approaches the face
is described by the constellation, sometimes modeled as joint dis-
tribution, of the features. The face detection algorithm developed
in [16] uses a multi layer network to directly learn input image
intensities. The algorithm presented in [17] classifies objects based
on a set of rectangular features, where each feature computes the
sum and difference of pixel intensities within a number of sub-rect-
angles. In the Elastic Bunch Graph Matching system of [18], faces
are represented as graphs, with nodes positioned at key points on
the face (eyes, tip of nose, mouth, etc.), and the features used are
based on wavelet responses. Wavelet transforms were used also
by Schneiderman and Kanade [19] and applied to the detection of
faces and cars. In general, previous methods used the same set of
features, often extracted in an ad hoc manner, for all recognition
tasks, and did not compare features optimized for a single individ-
ual, multi-class recognition, and general face detection.

Psychological studies support the claim that in human vision
some type of distinctive features are used for face recognition
[20,21]. A recent study [22] showed that in performing recognition,
humans focus on restricted regions in the face, and that the se-
lected regions are task-dependent. The study supports the notion
that the visual system does not rely on a fixed set of features,
but learns for each task to use a small subset of critical features
that are the most informative for the task.

The methods described above rely on an accurate geometrical
agreement between the face model and the input image. They
therefore have severe limitations in their ability to deal with re-
duced and distorted images. These limitations can be illustrated
by comparing real images with artists drawings (as in Fig. 1), which
are recognizable by human observers despite the large distortions
and features omission in the input images.

In the present work, we compare two alternative strategies to
the selection of useful features in multi-class problems in general,
and face recognition in particular. We show that one of these strat-
egies produces a representation that relies on the presence of a
small number of distinctive features, and can use them for recogni-
tion without relying on exact geometric agreement between the
model and the input image. These features and their extraction
are described in the following section.
Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
j.imavis.2008.03.005
3. Feature extraction

3.1. Sparse and compact features

We contrast below two alternative approaches to extracting
useful visual features for classifying a novel image, into one of n
known classes. For example, the training may consist of face
images taken from n different individuals under different viewing
conditions (see Fig. 3), and the task is to then classify a novel image
of one of the known individuals. One strategy results in sparse, the
other in compact representation. Compact coding uses features
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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Fig. 2. Compact fragments extracted in decreasing order of mutual information from left to right.

Fig. 3. Examples of face images used for training and testing in the multi-class recognition tasks. (a) Allen. (b) Monroe. (b) Peres.

Fig. 4. Examples of occluded face images for task 5.

A. Akselrod-Ballin, S. Ullman / Image and Vision Computing xxx (2008) xxx–xxx 3

IMAVIS 2692 No. of Pages 8, Model 5G

11 April 2008 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

that are common to many faces, where, for binary features, each
face is represented on average by about half of the features being
active. The entire set of faces can then be represented with a rela-
tively small number of features. In contrast, in the sparse coding
each feature is present only in a small subset of the faces [23]
(Fig. 4).

In terms of the features used in this work, we follow a number
of recent recognition schemes that have successfully used as basic
classification features a set of selected image regions, called frag-
ments, or patches [10,24–26]. We describe briefly below the gen-
eral scheme used in the current work, and then show how the
feature extraction process can be used to extract either sparse or
compact features. For more details on the general scheme see
[24,25].

The features extracted during training are image patches, se-
lected by maximizing the information they deliver about the ob-
jects to be recognized. The use of mutual information for feature
selection is motivated by both theoretical and experimental re-
sults, and was shown to produce highly effective features [27,28].
During a training phase, informative features are extracted auto-
matically from a set of labeled training images. First, a large num-
ber of candidate fragments are extracted from the training images,
at different positions and scales. They provide an initial pool of
possible classification features, from which a subset of non-redun-
dant features is selected (see Sections 3.1.1 and 3.1.2). Second, for
each fragment, the amount of information it supplies for classifica-
tion is evaluated, based on the frequency of detecting the fragment
within and outside the class.

In the simplest case, features are extracted to make a binary dis-
tinction between class and non-class images. To classify a novel
image into one of n different classes (i.e. different individuals),
two extensions of the simpler binary classification are possible,
leading to two families of visual features. One is to treat the ex-
tended classification as n different classification problems, be-
Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
j.imavis.2008.03.005
E
D

Ptween a single class and all remaining images (multiple
classification approach). The other is to consider all the classes
jointly in a single classification task (joint classification ap-
proach). Both approaches use information maximization, but fea-
ture information is evaluated in a different manner, as discussed
below. Table 1 summarizes the fragment based classification
algorithm.

3.1.1. Extraction of candidate fragments
In both strategies, the first stage of candidate feature extraction

generates a set of candidate fragments, computes their similarity
to all images in the database, and selects the best fragments in
the sense of mutual information between class C and fragment F.
Potential fragments, up to several tens of thousands, are generated
by extracting rectangular sub-images of different sizes and loca-
tions from class images. The fragment extraction of sub-images is
proportional to the number of training images and the size of the
images. Each potential fragment is compared to all training images,
by searching over a restricted range of locations (steps of two pix-
els), and the location with the highest similarity measure sets a
score for the fragment and the image. The similarity measure used
in our comparisons was based on the absolute value of normalized
cross-correlation (NCC) which is given by:

NCC ¼
Pm

i¼1ðI
i � IÞðf i � �f ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1ðI
i � IÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðf i � �f Þ2

q ð1Þ

where f, I stand for the fragment and image patch of the same size,
ð�f ; IÞ correspond to their gray level mean, and m is the number of
pixels in the fragment. Other similarity measures, such as SIFT,
can also be used to allow some invariance to changes in scale and
orientation [26]. A threshold is used so that the fragments may be
considered as a binary random variable. Thus, a fragment f is con-
sidered present in the image and its value is set to 1 if its similarity
measure score is higher than a predefined threshold, and to 0 other-
wise. The joint probability distribution of the class label and frag-
ment variables P(C = c,F = f) is estimated to calculate the mutual
information I(C;F) between the fragment F and the class C of
images, defined as:

IðC; FÞ ¼
X

c;f

PðC ¼ c; F ¼ f Þ log
PðC ¼ c; F ¼ f Þ

PðC ¼ cÞPðF ¼ f Þ ð2Þ
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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Table 1
Outline of the Algorithm

� Training Stage: Given a set of training set images extract a set of fragments for subsequent classification and model parameters
– T1. Extract a candidate set of fragments: cut rectangular sub-images of different sizes and locations from the class images and compare these fragments to all training
images based on the normalized cross-correlation (NCC) measure (see Eq. (1))

– T2. For each candidate fragment, calculate the optimal detection threshold (h), the mutual information (MI), relative position, and weight (W) according to Eqs. (2) and (3).
The crucial difference between the sparse and compact feature families, is in the way the mutual information is evaluated. For distinctive features (multiple classification):
compute MI using a binary class variable. For compact features (joint classification): compute MI using an n-value class variable

– T3. Select a subset of non-redundant fragments by the max–min iterative optimization scheme (Eq. (4))

� Recognition Stage:
– R1. Given a novel image, find all the fragments Fi within a search window with NCC(Fi) P hi (normalized cross-correlation exceeds detection threshold see Section 3.1.1)
– R2. Combine detected fragments by summing their pre-determined weights and compare to threshold. By using different thresholds construct a receiver operating
characteristic (ROC) curve (see Figs. 5–7)
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The amount of mutual information depends on the fragment detec-
tion threshold. The detection threshold (h) is therefore determined
automatically to maximize the delivered mutual information
[29,30]. In a similar manner, an optimal search window is selected
for each feature, by searching for the window position and size that
will maximize the mutual information of the feature [29]. At the
end of this process each fragment has a detection threshold (h), a
mutual information (I), a weight (W), and an approximate location
within the window of analysis. The fragment’s weight is used later
for classification, and it is defined as the log likelihood ratio:

WiðFÞ ¼ log
PðFjCiÞ
PðFjCÞ

ð3Þ

where P(F|Ci) and PðFjCÞ represent the detection frequency of the
fragment in the class and non-class images and Wi is the weight
of the fragment for class i.

In performing multiple individual classifications, optimal fea-
tures are extracted for each class in turn. For class Ci, features are
selected to maximize the mutual information between the set of
features F and the class Ci. Here Ci = 1 if the image belongs to class
i, and 0 otherwise. In this case, the class Ci contains different face
images of the same individual (Fig. 3), whereas the non-class in-
cludes faces of all other individuals. The process is then repeated
for all the different classes. In contrast, in extracting joint features,
the feature F is sought to maximize the measure I(C;F) for a multi-
class variable C. As before, Eq. (2) is used to evaluate I(C;F). How-
ever, in this case the class variable C has n rather than just two val-
ues. A vector of W(F) is also computed for each fragment,
computing a particular weight for each individual.

Intuitively, the multiple classification approach is expected to
produce a sparse feature representation and the joint classification
approach a compact representation, for the following reason. The
first approach seeks for each class a subset of distinctive features
that separate this particular class from all other classes, such as
one particular face from all others. The resulting representation
is sparse since such features would ideally be activated by a single
individual, and different individuals would require different fea-
tures. The joint approach seeks features that can make a useful sep-
aration between sub-classes. Ideally, each feature will separate the
n classes into two equal subgroups. The resulting representation is
compact in the sense that each feature will be activated by many
different classes, but the joint activation of a small number of fea-
tures will be sufficient for unambiguous classification.

3.1.2. Selecting a subset of non-redundant features
The second stage of the automatic fragment selection algorithm

is based on a greedy iterative optimization scheme to select a sub-
set of non-redundant features. The algorithm is a max–min itera-
tive scheme [30] which was shown in comparative evaluations to
produce a highly effective selection [31]. The algorithm goes over
the initial pool of candidates denoted by P, in several steps. Each
Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
j.imavis.2008.03.005
E
D

P
R

O
Ostep moves the fragment that adds the largest amount of informa-

tion from P, to the selected set of fragments constructed by the pre-
vious steps, denoted by S. The set S is initialized by selecting from P
the fragment F1 with the highest mutual information. At iteration
step k + 1, the fragment Fk+1 added to Sk = {F1, . . . ,Fk}, can be formu-
lated as:

Fkþ1 ¼ arg max
Fi2Pk

fmin
Fj2Sk

½IðC; Fj [ FiÞ � IðC; FjÞ�g ð4Þ

The idea behind this pairwise selection criterion is simple. For a
fixed new fragment Fi, the term above measures how much infor-
mation is added by Fi to that of a previous fragment Fj. For example,
if Fi is very similar to a previous feature Fj, this addition will be
small. The minimization over all the already selected fragments
Fj guarantees that Fi is sufficiently different from all previous frag-
ments. Finally, the maximization stage selects the new fragment i
with maximal additional contribution. This max–min algorithm
ends when the increase in information added by new fragments
falls beyond a selected threshold (0.05) or when a maximum num-
ber of iterations is reached (1500). The final selected set of frag-
ments S will be the output of the training stage, serving as the
fragments for classification (Figs. 1 and 2). A very similar selection
procedure is applied to both the sparse and compact feature fam-
ilies, and both use information for classification as a selection cri-
terion. There is a basic difference, however, in the way the mutual
information is evaluated (Eq. (2)), using the binary class variable
for individual classification and the n-value class variable for the
joint classification. This leads to the selection of different feature
sets with different classification properties as discussed next.

The computational complexity of the learning stage is deter-
mined primarily by the number of images (T) in the training data-
base, and their size (N) in pixels. The number of candidates in the
initial fragment pool is proportional to TN. Each fragment is
searched in the database by convolution, requiring time also pro-
portional to TN. We assume that the maximal fragment size is
K� N. The max–min computation can be performed efficiently
[31], its computation time is small compared with the first selec-
tion stage, as is the selection of optimal thresholds. The overall
complexity is therefore O((TN)2). In practice, we have used up to
several tens of thousands candidates in the fragment pool and this
computation is required once only during the learning of a new ob-
ject class.

3.2. Performing classification

Both strategies perform classification of a new input image
based on the fragments detected in the image. For a given frag-
ment, its maximal NCC with the image is computed, and if it ex-
ceeds the fragment’s detection thresholds (h) within its detection
window, then the fragment is considered to be detected in the im-
age. The final decision is obtained by summing the weights (Wi) of
all the detected fragments in the image. In the case of the compact
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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strategy, the weight of the specific individual is taken from the
weight vector. The computed sum is compared to a detection
threshold. By using different thresholds we generate a receiver
operating characteristic (ROC) curve, which presents both the hits
(images detected correctly from the class) and false alarms (images
detected incorrectly in non-class examples) of the classification
(Figs. 5–7). The classification scheme was identical for the sparse
and compact families, the only difference accounting for changes
in the ROC was in the selected features. Other classification
schemes, such as SVM [6,7] can also be used based on the selected
features, but we found that the differences in classification perfor-
mance between SVM and our scheme was small. By using a fixed
classification scheme, but using different features, our comparison
focuses on the main issue of interest – comparing the usefulness of
the sparse and compact families for classification.

3.3. Details of implementation and testing

We implemented the sparse and compact feature extraction
methods described above and compared them in the task of indi-
vidual face recognition. The database included 500 faces of 25 indi-
viduals. The 20 images for each individual were divided to training
and testing sets. Both the sparse and compact features were ex-
tracted from the same training images for all faces. The database
was selected to include individuals corresponding to the artist’s
drawings. The images were taken from different internet sites,
and were often of low quality. The images were cropped to exclude
most of the background, and were normalized in size to 30 col-
umns. This is above the minimal size (18 pixels in the horizontal
dimension) required for reliable recognition by human observers
[32]. The database described has significant variability in orienta-
tion, pose, facial expression, illumination, age, and artificial fea-
tures (e.g. it includes faces with moustaches, beards, changes in
hair styles, glasses, makeup, and the like).

For each individual, a set of 50 sparse features were extracted,
yielding a total of 1250. The same total number of informative
compact features was extracted as well. These features served as
the total set of features to use for classification. In practice, as de-
scribed below, classification performance often reached an asymp-
tote with a smaller number of fragments.
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Fig. 5. Face recognition by sparse representation with either 10 (upper solid blue
trace) or 3 fragments per face (lower dotted blue trace) and compact, with either 10,
(lower solid red trace) or 30 fragments (upper dotted red trace). The ROC curves
were averaged across faces for each strategy. Adding up to 1000 fragments to the
compact family had a minor effect on the results.

Fig. 7. Occluded images recognition by sparse and compact fragments. The ROC
curves were averaged across 10 individuals for each strategy.
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After the sparse and compact features have been extracted, we
compared them in the following way. First, we compared the two
families, to test whether the two approaches produce similar or
different sets of features. Second, we tested the performance of
each family on individual face recognition. Third, the features were
compared in the task of general face detection, to test how they
generalize from one task to a somewhat different one. Fourth, we
compared the sparseness of the representations: ideal compact
features are expected to be detected for about half of the faces in
the new testing images, sparse features in only a small fraction.
Fifth, we tested the recognition of occluded images by both strate-
gies. Finally, we compared the sparse features detected automati-
cally with distinctive features selected by an artist specializing in
reduced face images. We summarize briefly below the method
and parameters used in each of these tests.

3.3.1. Test 1: similarity of the two feature families
We used for this testing the 100 most informative fragments

from each family. As explained, features are detected in the image
using normalized cross-correlation (NCC), and each feature has its
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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own detection threshold. In comparing a compact feature FCi with
a sparse feature FSj we therefore computed their NCC, and com-
pared the result with the corresponding two thresholds, (hi,hj). If
the NCC exceeded both thresholds, the features were considered
as equivalent.

3.3.2. Test 2: individual face recognition
Both sets of extracted fragments, sparse and compact, were

tested for face recognition of the individuals they were trained
on. We used the test sets with novel images for all individuals
and performed classification as described in Section 3.2, obtaining
two sets of ROC curves, one for each individual and each strategy.
The points along the ROC curve represent pairs of false alarms (FA)
and hit rates. To infer statistical significance in comparing the
schemes, the ROC’s were averaged by dividing the FA into discrete
bins and computing the average and standard deviation of the hit
rates in these bins over the individual curves of each strategy. The
recognition task was challenging compared with most past tests
[5] for two reasons. First, multi-class recognition of similar classes
is known from previous studies to be difficult [33–35]. Second, the
images were highly variable, and only a small number of images
were used for training.

3.3.3. Test 3: face detection
Both sets of extracted fragments were trained for the task of

general face detection in images. We used for this task a new set
of 300 face images and 400 non-face images, half of each set was
used for training, the other half for testing. During training, new
weights for the detection task were determined for each fragment
according to the training results, as explained in Section 3.2 (Eq.
(3)). From each set (sparse and compact fragments) we selected
the 10 best features (highest information computed after training
for detection) and compared the performance using ROC curves.
To estimate statistical significance we repeated the experiment
five times with different random division of the images into train-
ing and testing. The ROC’s were averaged and the error bars repre-
sent the standard deviation obtained by the repeated experiments.
The detection tests were always performed using a new set of test
images (see Section 3.1).

3.3.4. Test 4: sparseness of the representation
The test compared the fraction of fragments from each family

being activated on average by a face image. We used in the com-
parison the 60 best sparse fragments, compared with the 60 best
compact fragments. The experiment evaluated the fragments on
the individual test sets. The fragments were considered detected
in the test database if their NCC exceeded the fragments threshold.

3.3.5. Test 5: individual recognition in occluded images
A set of masked images for 10 individuals was generated based

on the original test sets. Square regions of different sizes (width
ranging from 7 to 13 pixels) at different locations were masked
in all the images of the test sets. The same classification procedure
described above for the sparse and compact fragments was then
applied as in test 2 to the masked images.

3.3.6. Test 6: comparing with artist’s distinctive features
To compare the two representations, faces were divided into 8

regions. We then tested whether the artist and the automatic
extraction method selected features in the same face sub-regions.
The 10 best features (highest information for recognition) for each
individual were selected from both the sparse and compact repre-
sentation, for 10 different individuals. For each individual, a human
observer made a binary decision of whether a feature was present
in the artist representation. So, for example Lenon’s mouth, Elton’s
nose and Sadam’s eyes were considered missing in the image and
Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
j.imavis.2008.03.005
their values were set to 0. We then tested the consistency between
the artist’s selection of features and the two extraction methods. A
region was considered’inconsistent’ if it contained a feature either
in the automatic extraction or in the artist’s image but not in both.
This comparison was performed for the sparse and compact feature
families, and the consistency fractions were averaged for each of
the two representations.
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4. Results

We tested by simulations the two families of visual features,
and found that they produce different features with different clas-
sification properties.

4.1. Test 1: similarity of the two families

The features produced by the two strategies were significantly
different. Comparing the 100 most informative features for the
25 individuals, only 35.5% of the sparse features were also included
in the set of compact features. In general, the compact features are
more similar to features commonly used in other face recognition
schemes, with high proportion of the eyes region. The distinctive
features are more variable, and extract idiosyncratic aspects of dif-
ferent faces. Figs. 1 and 2, illustrates several examples of these
sparse and compact fragment areas. For example, see Sadam’s hair-
line as opposed to his distinctive moustache fragment, W. Allen’s
compact fragment including hair,nose,cheeks and eyes as opposed
to his very specific spectacles and nose distinctive fragment, S.
Peres’s nose and eyes as opposed to his distinctive forehead
fragment, etc.

4.2. Test 2: individual face recognition

The sparse representation proved to be significantly better for
face recognition compared with the compact representation
(Fig. 5). Reliable recognition was obtained from 10 sparse frag-
ments for each individual, and good results were obtained with
as few as 3 fragments, showing that reliable identification of highly
variable examples can be obtained using a small number of distinc-
tive features. The graph in Fig. 5 shows the recognition perfor-
mance for the sparse and compact features plotted as ROC
curves. The sparse representation produced a significantly higher
curve than the compact representation. Significant difference in
all the following tests means (p 6 0.05). Adding more compact fea-
tures, up to 1000, has minor effect on the classification results. The
distinctive features showed a similar advantage when performing
n-class recognition, namely, when an input image is classified into
one of n given classes.

4.3. Test 3: face detection

The compact features proved better than the sparse features in
face detection, a related recognition task. Even better performance
was achieved by a new set of features that were selected specifi-
cally for the general detection task (Fig. 6) using an identical train-
ing procedure with the class variable C = 1 for all face images. The
sparse and compact ROC curves in this graph were obtained by
averaging five repetitions of the experiments.

4.4. Test 4: sparseness of the representation

The representation produced by the multiple classification ap-
proach is significantly sparser: a face view activated on average
14.5% (s.d. 10.2) of the overall set of sparse features, compared
with 50.0% (s.d. 7.1) of the features produced by joint classification,
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/
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which is in agreement with the expected optimal probability of 0.5
for compact representation. A face view activates with high prob-
ability (74.12%, s.d. 20.7) the features in the subset of sparse fea-
tures extracted for identifying this particular individual. The
results illustrate that sparse fragments have a high detection prob-
ability in images of the face they were trained for, and low proba-
bility of appearing in other faces. The compact fragments have no
systematic preferences.

4.5. Test 5: individual recognition in occluded images

The ROC curves shown in Fig. 7 were averaged over the individ-
uals faces. As can be seen, the distinctive features are highly effi-
cient in dealing with such occlusions compared with the compact
features.

4.6. Test 6: comparing with artist’s distinctive features

The features selected by the sparse representation method were
similar to the reduced representation produced by an artist ([1],
Fig. 1). The fraction of consistent regions in the sparse and artist
representations was 0.88 (s.d. 0.10, 100 total fragments), signifi-
cantly higher than the compact representation 0.65 (s.d. 0.14,
100 total fragments). Consistency for the compact features is not
significantly higher than chance, but for the sparse features,
although not perfect, it is highly significant. The comparison to
the artist’s features shows that the features selected automatically
by the sparse method are similar to the distinctive features se-
lected by the artist. The recognizability of the artist’s renditions
illustrate that these features are useful for robust identification
from reduced and distorted input images.
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5. Discussion

The present study compared two alternative feature selection
strategies for the recognition of multiple similar classes: one uses
multiple binary classifications, the other a single joint classifica-
tion. The methods produce markedly different sets of features,
one set is compact, with features shared by about half of the
classes, the other extracts distinctive individual features. When
applied to face images, our results show that the distinctive fea-
tures are better for robustly recognizing a specific individual, and
can compensate for distortions and missing information in the in-
put images. This advantage of the sparse features is not expected a
priori: although they are more informative individually, in the
compact coding each class activates on average significantly more
features, which may jointly perform better classification. The cur-
rent testing focused on face features. A recent study showed the
usefulness of distinctive features in the domain of cars as well as
individual faces compared with other methods [36]. It will be of
interest to compare in the future compact and distinctive features
in other domains as well, particularly in tasks requiring distinc-
tions between multiple similar classes.

The fact that individual distinctive features are superior for face
identification is consistent with a large body of psychological re-
search on face recognition [20,21]. Our method is the first to auto-
matically extract distinctive face features for recognition. A
previous method for defining what is distinctive in a face was
based on deviations of the face contours from the average face
[5,21] which does not capture the distinctive features extracted
by our method. The selected distinctive features showed good
agreement with the representation produced by an artist, and in
both cases reliable identification could be obtained with a small
number of features. We also found in comparisons that using the
sparse features with different classifiers (e.g. SVM) produced only
Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
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small changes in performance, probably because the distinctive
features are highly informative by themselves and produce good
separation between classes.

The results also show that different face features are better for
different recognition tasks. Compact features performed better in
general face detection. Features selected specifically for face detec-
tion achieved higher performance than either the sparse or com-
pact set. Models of visual classification often assume the use of
generic features, namely, a fixed set of features which are used
for different classification tasks. Our results show that optimal
classification features depend on the class as well as the specificity
of the recognition task. Even within a single class such as faces, dif-
ferent feature types are required for generalizations at different
levels, as opposed to general ‘‘face features” that are used for all
tasks.

A major difficulty faced by any recognition approach has to do
with image variability due to viewing conditions, noise, occlusion
and the like. In the current study, the distinctive features were
shown to be particularly useful in dealing with difficult variations
caused by large distortions, highly reduced information, occlusion,
aging effects and added artificial features. These advantages of dis-
tinct features were studied here in the context of face identification,
but we expect that they will be applicable in other domains as well,
such as identifying different cars, airplanes dogs, and the like.

Along with these advantages, it is important to note that the use
of distinctive features also has limitations compared with the com-
pact features, which are shared by multiple classes. A number of
studies [35,37–39] have shown how the extraction and use of
shared features can be useful for generalization and the fast learn-
ing of new object classes. The distinctive features proved relatively
insensitive to illumination to changes and some rotation in space,
but more complex features were shown in previous studies to
allow larger changes in viewing angle [37] and scale [38].

An intriguing question for future study is therefore the optimal
combination of different feature types within an overall recogni-
tion scheme. Such a combined scheme, which has not been devel-
oped so far, could use the relative merits of distinctive and
compact features, to obtain high discrimination and robustness
together with broad generalization and the fast learning of new
object classes from limited data.

Acknowledgments

We thank H. Piven for his help, and the excitement he added to
this work. This work was supported by ISF Grant 7-0369 and by EU
IST Grant FP6-2005-015803.

References

[1] H. Piven, Piven in America, Am Oved Publishers Ltd., Tel-aviv, 2002.
[2] A. Samal, P. Iyenger, Automatic recognition and analysis of human faces and

facial expression: a survey, Pattern Recognit. 25 (1992) 65–77.
[3] R. Chellapa, C. Wilson, S. Sirohey, Human and machine recognition of faces: a

survey, Proc. IEEE 83 (1995) 705–741.
[4] M.H. Yang, D.J. Kreigman, N. Ahuja, Detecting faces in images: a survey, IEEE

PAMI 24 (2002) 34–58.
[5] W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, Face recognition: a literature

survey, ACM Comput. Surv. (2003) 399–458.
[6] E. Osuna, R. Freund, F. Girosi, Training support vector machines: an application

to face detection, CVPR (1997) 130–136.
[7] P.J. Phillips, Support vector machines applied to face recognition, Adv. Neural

Inform. Process. Syst. 11 (1998) 803–809.
[8] M. Turk, A. Pentland, Face recognition using eigenfaces, CVPR (1991) 586–591.
[9] M.S. Bartlett, T.J. Sejnowski, Viewpoint invariant face recognition using

independent component analysis and attractor networks, Advances in Neural
Information Processing Systems, vol. 9, The MIT press, 1997. p. 817.

[10] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised
scale-invariant learning, CVPR (2003).

[11] P. Belhumeur, J.P. Hespanha, D. Kriegman, Eigenfaces vs Fisherfaces:
recognition using class specific linear projection, IEEE PAMI 19 (1997) 711–
720.
ive and compact features, Image Vis. Comput. (2008), doi:10.1016/



636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677Q1
678
679
680
681
682
683
684
685
686
687
688
689
690
691

8 A. Akselrod-Ballin, S. Ullman / Image and Vision Computing xxx (2008) xxx–xxx

IMAVIS 2692 No. of Pages 8, Model 5G

11 April 2008 Disk Used
ARTICLE IN PRESS
[12] T. Kanade, Computer recognition of human faces, Bazel, Birkhauser,
Switzerland, and Stuttgart, Germany, 1973.

[13] R. Brunelli, T. Poggio, Face recognition: features vs. templates, IEEE PAMI 15
(1993) 1042–1052.

[14] A. Lanitis, C.J. Taylor, T.F. Cootes, Automatic interpretation and coding of face
images using flexible models, IEEE PAMI 19 (1997) 743–756.

[15] A.L. Yuille, D.S. Cohen, P.W. Hallinan, Feature extraction from faces using
deformable templates, Intl. J. Comput. Vis. 8 (1992) 99–112.

[16] H. Rowley, S. Baluja, T. Kanade, Neural network based face detection, IEEE
PAMI 20 (1998) 23–38.

[17] P. Viola, M. Jones, Robust real-time object detection, Intl. J. Comput. Vis. 57 (2)
(2004) 137–154.

[18] L. Wiskott, J.M. Fellous, N. Kruger, C. von der Malsburg, Face recognition by
elastic graph matching, IEEE PAMI 19 (1997) 775–779.

[19] H. Schneiderman, T. Kanade, A statistical method for 3d object detection
applied to faces and cars, CVPR (2000) 746–751.

[20] V. Bruce, A.M. Burton, N. Dench, What is distinctive about a distinctive face?,
Quart J. Exp. Psych. 47 (A) (1994) 119–141.

[21] G. Rhodes, Superportrait Caricatures and Recognition, Hove Psychology Press,
1997.

[22] P.G. Schyns, F. Gosselin, Bubbles: a technique to reveal the use of information
in recognition tasks, Vis. Res. 41 (2001) 2261–2271.

[23] D.J. Field, What is the goal of sensory coding?, Neural Comput 6 (1994) 559–
601.

[24] E. Sali, S. Ullman, Combining class-specific fragments for object recognition,
BMVC (1999) 203–213.

[25] S. Ullman, E. Sali, M. Vidal-Naquet, A fragment-based approach to object
representation and classification, IWVF4 (2001).
U
N

C
O

R
R

E
C

T
692

Please cite this article in press as: A. Akselrod-Ballin, S. Ullman, Distinct
j.imavis.2008.03.005
R
O

O
F

[26] D. Lowe, Distinctive image features from scale-invariant key-points, Intl. J.
Comput. Vis. 60 (2004) 91–110.

[27] M. Vidal-Naquet, S. Ullman, Object recognition with informative features and
linear classification, ICCV (2003).

[28] N. Vasconcelos, M. Vasconcelos, Scalable discriminant feature selection for
image retrieval and recognition, CVPR (2004).

[29] B. Epshtein, S. Ullman, Feature hierarchies for object classification, ICCV (2005).
[30] S. Ullman, M. Vidal-Naquet, E. Sali, Visual features of intermediate complexity

and their use in classification, Nat. Neurosci. 5 (2002) 682–687.
[31] F. Fleuret, Fast binary feature selection with conditional mutual information, J.

Mach. Learn. Res. 5 (2004) 1531–1555.
[32] T. Bachman, Identification of spatially quantized tachistoscopic images of

faces: how many pixels does it take to carry identity?, Eur J. Cogn. Psychol. 3
(1991) 87–103.

[33] A.C. Berg, T.L. Berg, J. Malik, Shape matching and object recognition using low
distortion correspondences, CVPR (2005).

[34] A. Holub, P. Perona, A discriminative framework for modelling object classes,
CVPR (2005).

[35] A. Torralba, K.P. Murphy, W.T. Freeman, Sharing features: efficient boosting
procedures for multiclass object detection, CVPR (2004) 762–769.

[36] B. Epstein, S. Ullman, Satellite features for the classification of visually similar
classes, in: Proceedings of the IEEE CVPR, 2006, pp. 2079–2086.

[37] E. Bart, E. Byvatov, S. Ullman, View-invariant recognition using corresponding
object fragments, Proc. ECCV 2 (2004) 152–165.

[38] T. Serre, L. Wolf, T. Poggio, Object recognition with features inspired by visual
cortex, CVPR (2005).

[39] L. Fei-Fei, R. Fergus, P. Perona, A bayesian approach to unsupervised one-shot
learning of object categories, ICCV 2 (2003) 1134–1141.
E
D

P

ive and compact features, Image Vis. Comput. (2008), doi:10.1016/


	Distinctive and compact features
	Introduction
	Previous work
	Feature extraction
	Sparse and compact features
	Extraction of candidate fragments
	Selecting a subset of non-redundant features

	Performing classification
	Details of implementation and testing
	Test 1: similarity of the two feature families
	Test 2: individual face recognition
	Test 3: face detection
	Test 4: sparseness of the representation
	Test 5: individual recognition in occluded images
	Test 6: comparing with artist ' s distinctive features


	Results
	Test 1: similarity of the two families
	Test 2: individual face recognition
	Test 3: face detection
	Test 4: sparseness of the representation
	Test 5: individual recognition in occluded images
	Test 6: comparing with artist ' s distinctive features

	Discussion
	Acknowledgments
	References




