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Abstract

Computational models suggest that features of intermediate complexity (IC) play a central role in object categorization [Ullman, S.,
Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5,
682–687.]. The critical aspect of these features is the amount of mutual information (MI) they deliver. We examined the relation between
MI, human categorization and an electrophysiological response to IC features. Categorization performance correlated with MI level as
well as with the amplitude of a posterior temporal potential, peaking around 270 ms. Hence, an objective MI measure predicts human
object categorization performance and its underlying neural activity. These results demonstrate that informative IC features serve as cat-
egorization features in human vision.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Object category exemplars may differ substantially in
visual aspects such as shape, size and texture. For instance,
in the category of cats there are many different breeds, each
with its own distinctive visual characteristics. Despite of
this striking variability, humans are able to easily general-
ize across the various exemplars defining a ‘‘cat’’ category,
and to distinguish this category from other categories such
as ‘‘dog’’.

Multiple areas in the visual cortex contribute to visual
object categorization. Following initial processing in the
primary visual cortex (V1), the visual processing leading
to object categorization engages occipito–temporal struc-
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tures as well as structures in the ventral temporal lobe.
Together, these structures form the ventral pathway of
the visual system (Goodale & Milner, 1992; Ungerleider
& Mishkin, 1982). Although the activity of these structures
is highly interactive, different stages of processing are
reflected in their differential sensitivity to different features
of the object (Tanaka, 1996). Primitive features such as
edges and bars at different orientations and spatial fre-
quency scales are extracted and represented in the primary
visual cortex (V1) (De Valois, Albrecht, & Thorell, 1982;
Hubel & Wiesel, 1968). Further downstream, cells in areas
V4/TEO respond selectively to moderately complex fea-
tures (Tanaka, 1996, 2003) and even further downstream,
in the ventral temporal lobe, cells respond to complete
views representing the integrated shapes of the objects
(Grill-Spector & Malach, 2004; Kreiman et al., 2006).

Ample knowledge has accumulated over the years
regarding the functional tuning characteristics of V1, on
the one hand, and the ventral temporal lobe on the other.
In contrast, relatively little is known about the nature of
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intermediate representations and about the functional
characteristics of the neural systems involved with process-
ing these representations. It has been suggested that the
intermediate representations along the ventral visual path-
way are important for basic-level object categorization
(Logothetis & Sheinberg, 1996; Tjan, 2001) but the nature
of these intermediate features remained unclear. Several
types of visual features have been proposed in the past
for encoding objects and categories, ranging from simple
local image patterns such as wavelets, Gabor filters, edges
and blobs (Mel, 1997; Riesenhuber & Poggio, 1999; Wis-
kott, Fellous, Krüger, & von der Malsburg, 1997) to
abstract three-dimensional shape primitives, such as Geons
(Biederman, 1987). A common aspect of most previous fea-
tures is that they were generic in nature, that is, a fixed,
small set of features types was used to represent all objects
and categories.

Alternatively, a recent approach proposed that visual
object categorization is based on representing shapes by a
combination of category-specific shared sub-structures
called fragments (Ullman, Vidal-Naquet, & Sali, 2002).
According to this approach the fragments are extracted
from image examples by maximizing the amount of infor-
mation they deliver for categorization. This information
can be formally expressed by the equation
I(C,F) = H(C)�H(CjF), where I(C,F) denotes the mutual
information (MI) (Cover & Thomas, 1991) between the
fragment F and the category C of images, and H denotes
entropy. C and F in this scheme are binary variables: F

denotes whether a certain feature is found in the image
and C denotes whether the image belongs to the target cat-
egory C. Thus, the usefulness of a fragment for represent-
ing a category is measured by the reduction in uncertainty
about the presence of an object category C in an image by
the possible presence of that fragment F in the image. This
value is evaluated for a large number of candidate frag-
ments, and the most informative ones are selected. Nota-
bly, in contrast to many previous approaches, which
suggest either small local (Mel, 1997; Wiskott et al.,
1997) or global features (Turk & Pentland, 1991), the opti-
mal features for different categorization tasks according to
this model are typically of intermediate complexity (IC)
including intermediate size at high resolution and larger
size at intermediate resolution (for more details see
Section 2).

According to this informative fragment-based model,
the level of MI contained in an image patch (a fragment)
conveys its usefulness for categorization. If, at least in an
approximate form, MI maximization is used as a neuronal
coding principle underlying intermediate stages of object
categorization, then the model predicts that features with
high measured MI will cause higher neuronal activation
and better categorization performance in humans than fea-
tures with low MI. Because the MI of a visual feature is
determined by simple similarity between the fragment
and the image, this direct relation is not predicted by other
approaches (see Section 4).
The goal of the present study was to assess empirically
the influence of the MI contained in IC fragments on
human performance and neural activity manifested during
categorization. For this purpose, we first extracted frag-
ments with different levels of MI from a number of object
categories. We then recorded event-related potentials
(ERPs) elicited by IC fragments of different categories
and varying MI levels while participants categorized these
fragments as parts of faces or cars. Given their excellent
time resolution, ERPs can disclose the time course of the
neural events involved in object categorization. Previous
ERP studies of object visual categorization suggested that
categorical distinctions can be found in ERPs as early as
about 100 ms (e.g. Thorpe, Fize, & Marlot, 1996). How-
ever, these studies investigated the categorization of com-
plete objects rather than intermediate, incomplete
representations. Notably however, ERP studies of face
processing showed that the face-sensitive N170 component
is elicited by isolated face features (Bentin, Allison, Puce,
Perez, & McCarthy, 1996) regardless of their configuration
(Zion-Golumbic & Bentin, in press). On the basis of these
studies we expected that the influence of MI on the neural
mechanisms involved in the categorization of IC features
will be evident during the first 200 ms of stimulus. Specifi-
cally, we predicted that the amplitude of a categorically dis-
tinctive negative component analogous to the N1/N170
would be increased as a function of the feature’s MI.
2. Methods

2.1. Participants

A total of 48 volunteers participated in the three experiments for
course credit or monetary reward. All participants were Hebrew Univer-
sity students with normal or corrected to normal visual acuity and no his-
tory of psychiatric or neurological disorders. Participants signed an
informed written consent according to the institutional review board of
Hebrew University. In Experiment 1 (the explicit categorization behav-
ioral experiment) participants were 20 students (11 females), aged 20–34.
In Experiment 2 (the explicit categorization ERP experiment), participants
were 14 students (11 females), aged 19–23, and in Experiment 3 (the impli-
cit categorization ERP experiment) participants were 14 students (7
females), aged 20–32.
2.2. Stimuli selection procedures

Informative fragments were extracted from training images using the
algorithm described by Ullman et al. (2002), and briefly summarized
below. Fragments were extracted from a total of 1000 face images, 350
car images, and 2000 non-class images downloaded from the web, with
image-sizes ranging from 150 · 200 to 200 · 250 pixels. The non-class
images were a general collection from different classes of objects selected
at random. The fragment-selection process initially extracts a large num-
ber of candidate fragments at multiple positions, sizes and scale from
the class images. The information supplied by each candidate fragment
is estimated by detecting it in the training images. To detect a given frag-
ment F in an image, the fragment is searched by correlating it with the
image. If the normalized cross-correlation value at any location exceeds
a certain threshold h, then F has been detected in the image (F = 1), other-
wise, F = 0. A binary variable C(I) is used to represent the class, namely,
C(I) = 1 if the image I contains a class example, and 0 otherwise. For each
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candidate fragment, the amount of information it delivers about the class
is then estimated based on its detection frequency within and outside the
class examples supplied to the algorithm. The delivered information is a
function of the detection threshold, the threshold for each fragment is
therefore adjusted individually to maximize the delivered information
I(F;C). Finally, a subset of the most informative fragments is selected.
To avoid redundancy between similar features, fragments are selected suc-
cessively, where at each stage, the fragment that contributes the largest
amount of additional information is added to the set of selected fragments.
This selection process was found in theoretical and practical comparisons
to be highly effective for selection of features from a large pool of candi-
dates (Fleuret, 2004). In selecting low-information fragments for the test-
ing, the fragments used in this study were maximal in the sense that they
did not contain smaller sub-regions with higher mutual information than
the full fragment.

The most informative fragments found for different categorization
tasks are typically of intermediate complexity, including intermediate size
at high resolution and larger size at intermediate resolution. The reason is
that, to be informative, a feature should be present with high likelihood in
class examples, and low likelihood in non-class examples. These require-
ments are optimized by IC features: a large and complex object fragment
is unlikely to be present in non-class images, but its detection likelihood in
novel class examples also decreases; conversely, simple local fragments are
often found in both class and non-class images.

The stimuli used in all three experiments were 500 car fragments, 500
face fragments and 500 non-class fragments (see Fig. 1 for examples of
stimuli). For face fragments the MI range was 0.05–0.65 while for car
fragments it was 0.04–0.35. This difference probably reflects intrinsic dif-
ferences between the face and car categories, most notably their within-
class variability. Therefore, to allow direct comparison, we divided the
continuous MI range of each category of fragments into five consecutive
discrete levels of equal size, ranging from 1 (lowest MI level) to 5 (highest
MI level) with 100 different fragments within each level. This ordinal
(rather than continuous) scale allowed direct comparison between catego-
ries. In addition we also assessed the influence of the continuous MI values
Fig. 1. Examples of intermediate complexity fragments used in the three exper
all experiments and horse fragment (not shown here) were used only in the
ordered according to their level of MI, ranging from 1 (lowest MI level) to 5
on performance in correlational analyses, calculated separately for each
category. For the remaining of the text, we refer to the discrete variable
as MI level, and to the continuous values as MI proper.

For each category, the gray level histograms, the average number of
edges (computed by a common edge detector, Canny, 1986), and the num-
ber of ‘interest points’ (computed by the Harris detector, Schmid, Mohr, &
Bauckhage, 2000) were compared for fragments with MI below and above
the respective category MI mean. In all categories the low- and high-MI
sets were not statistically different.

The non-class fragments were included in all experiments in order to
establish a baseline activity associated with the categorization of image
fragments from various undefined categories of objects. However, since,
by definition, non-class fragments did not represent a homogeneous cate-
gory, they were not included in the main analysis. Rather, the categoriza-
tion of non-class fragments was analyzed separately (see Supplementary
material). Finally, 150 horse fragments were added as targets in the impli-
cit categorization ERP experiment but not analyzed (see Section 2.4). The
horse fragments were selected using the same computational procedures.

2.3. Explicit categorization task and procedure

Participants were asked to decide whether a fragment was a part of
a face, a part of a car, or a part of some other object by pressing one
of three pre-designated buttons. The 1500 stimuli were presented
sequentially in a fully randomized order in 10 blocks of 150 trials each
with a short (up to a minute) break between blocks. At the end of each
block a feedback of the participant’s accuracy of performance was pro-
vided. Each stimulus was presented for 100 ms and then a response was
required. The next trial commenced only after a response was made.
Stimuli were presented at fixation and seen from a distance of approx-
imately 60 cm. The behavioral and the ERP experiments were identical
in all the above details and differed only in that the ERP experiment
was run in a sound attenuated and electrically isolated booth whereas
the behavioral experiment was run in a room of similar settings except
for electrical shielding.
iments. Fragments from the car, face, and nonclass categories were used in
implicit categorization ERP experiment. Fragments in each category are
(highest MI level).
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2.4. Implicit categorization task and procedure

The task was oddball target monitoring in which car, face, nonclass
and horse fragments were presented one after another and participants
were requested to press a button each time a part of a horse appeared
on the screen. This procedure ensured that all stimulus categories of inter-
est in this study were equally task-relevant, that is, they were all distracters
to be ignored. The stimuli were the same stimuli used in the explicit cate-
gorization experiments with the addition of the horse fragment targets
(10% of total number of stimuli). The 1650 stimuli were presented sequen-
tially in a fully randomized order in 10 blocks of 165 trials each with a
short (up to a minute) break between blocks. At the end of each block,
feedback was provided to the participants about their accuracy. Stimuli
were presented for 100 ms, with 1500 ms ISI and were presented at fixation
and seen from a distance of approximately 60 cm.

2.5. EEG recording

The EEG analog signals were recorded continuously by 64 Ag–AgCl
pin-type active electrodes mounted on an elastic cap (ECI) according to
the extended 10–20 system (American Electroencephalographic Society,
1994), and from two additional electrodes placed at the right and left mas-
toids, all reference-free. Eye movements, as well as blinks, were monitored
using bipolar horizontal and vertical EOG derivations via two pairs of elec-
trodes, one pair attached to the external canthi, and the other to the infra-
orbital and supraorbital regions of the right eye. Both EEG an EOG were
sampled at 1000 Hz using a Biosemi Active II digital 24-bits amplification
system with an active input range of �262 mV to +262 mV per bit without
any filter at input. The digitized EEG was saved and processed off-line.

2.6. ERP data processing and analysis

Raw data was 1.0 Hz high-pass filtered (24 dB) and referenced to the
tip of the nose. Eye movements were corrected using an ICA procedure
(Jung et al., 2000). Remaining artifacts exceeding ±100 lV in amplitude
or containing a change of over 100 lV in a period of 50 ms were rejected.
Artifact free data was then segmented into epochs ranging from 250 ms
before to 800 ms after stimulus onset for all conditions. ERPs resulted
from averaging the segmented trials separately in each condition. The
averaged waveforms were smoothed by applying a low-pass filter of
17 Hz (24 dB) and baseline-corrected based on the time between 150 and
50 ms before stimulus onset.

For each subject the peaks of the P1 and N270 were determined (based
on the filtered waveform) as the most positive peak between 80–150 ms
and the most negative peak between 200 and 320 ms, respectively. Subse-
quent visual scrutiny ensured that the highest voltage values represented
real peaks rather than end points of the epoch. Based on scrutiny of the
present N270 distribution, the statistical analysis was restricted to poster-
ior–lateral regions. The amplitudes and latencies of the N270 at sites P8,
PO8 and P10 within each hemisphere yielded the dependent variables
for ANOVA. The characteristic scalp distribution of the N270 in each
condition was estimated by spherical spline interpolations (interpolation
order = 4). ANOVAs with repeated measures were separately applied on
P1 and N270 amplitudes and latencies. The factors were Category (car
fragments, face fragments), MI (levels 1–5), Hemisphere (right, left) and
site (P7/8, PO7/8 and P9/10). For factors with more than two levels, p-val-
ues were corrected for non-sphericity using the Greenhouse–Geisser cor-
rection (for simplicity, the uncorrected degrees of freedom are presented).

3. Results

3.1. Experiment 1: Explicit categorization—behavioral

experiment

Since all previous explorations of Ullman et al.’s (2002)
model were based on computer simulations, a first
experiment was designed to explore its psychological reality
in humans.

As presented in Fig. 2b, the RT decreased as a function
of MI level (F4, 76 = 52.83, P < .0001), and there was no
main effect of category (F1, 19 = 1.95, P = .18). However,
a significant MI by category interaction (F4, 76 = 7.17,
P < .0001) revealed different RT curves for the two object
categories. Whereas for face fragments the RTs decreased
monotonically with increasing levels of MI, for car frag-
ments they decreased in a more step-like function; the
RTs were similar for the two lower levels of MI, both
higher than the RTs to the three higher MI levels, which
did not differ among themselves. Post-hoc comparisons
showed that for face fragments all differences between
two successive MI levels were significant (P < .05) while
for car fragments the only significant difference (P < .05)
between successive MI levels was between the second and
third levels.

As a more continuous approach to the relation between
MI and RT we calculated the mean RT of correct
responses across all participants for each fragment within
each category. These individual fragments’ RTs were corre-
lated with their absolute MI value. The correlation analy-
ses revealed highly significant negative correlations in the
well-defined categories (r = �.42; P < .001, and r = �.30;
P < .001 for face and car fragments, respectively) and no
correlation for non-class fragments (r = .02; NS).

Categorization accuracy increased monotonically with
successive levels of MI (F4, 76 = 115.17, P < .0001) and a
main effect of category (F4, 76 = 2.64, P < .05) revealed an
advantage in categorization accuracy of face fragments
over car fragments across all MI levels (Fig. 2a). An MI
by category interaction was marginally significant
(F4, 76 = 2.64, P = .06).

3.2. Experiment 2: Explicit categorization—ERP

experiment

The neurophysiological correlate of the influence of MI
on the fragments’ categorization was assessed by compar-
ing the ERPs elicited by fragments of different MI levels.
An identical explicit categorization task was conducted
using the same stimuli and design as in Experiment 1. In
addition to ERPs, categorization accuracy and RTs were
also collected.

The earliest and most conspicuous manifestation of the
MI influence on ERPs was the modulation of the ampli-
tude of a negative potential peaking at about 270 ms
(N270; Fig. 3a). This component was distributed bilaterally
at posterior–temporal sites (Fig. 3b). Its amplitude was
modulated by MI (F4, 52 = 14.85, P < .0001) and category
(F1, 13 = 14.32, P < .01) with the N270 increasing with MI
level, and larger for face than for car fragments. The MI
effect on the N270 amplitude was qualified by its interac-
tion with category (F4, 52 = 48.72, P < .015). Post-hoc uni-
variate contrasts between successive levels of MI within
each category were conducted (Fig. 3c). For face
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Fig. 2. Mean reaction times and accuracy rates of categorization of car and face fragments (dashed and full lines, respectively) as a function of MI level in
the explicit categorization behavioral experiment (a and b) and in the explicit categorization ERP experiment (c and d). MI levels are in ascending order, 1
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fragments, starting at level 3, the N270 amplitude increased
continuously with the MI level; significant differences were
found between third and forth MI levels (F1, 13 = 9.36,
P = .009) and between forth and fifth levels of MI
(F1, 13 = 8.54, P = .01). For car fragments, the amplitude
increased in a step-like function, separating the MI levels
into low (MI levels 1–2) and high (MI levels 3–5), as signif-
icant differences were found between second and third MI
levels (F1, 13 = 8.64, P = .01) but not within these clusters.
Similar analyses of the N270 latency showed no significant
interaction effects.

To rule out the possibility that the current N270 effect
reflects putative systematic differences in low-level proper-
ties of the stimuli, we analyzed the effect of MI on the ear-
lier positive peak (P1) elicited by the fragments. P1 is an
early ERP component with a source in the extrastriate
visual cortex and sensitive to the amount of sensory stimu-
lation provided by a stimulus (Gonzales, Clark, Fan, Luck,
& Hillyard, 1994; Hillyard & Picton, 1987). In contrast to
the N270, there was no significant P1 amplitude change
between any successive MI levels (F4, 52 < 1.00) and there
was no interaction (F4, 52 < 1.00). This finding corroborates
the hypothesis that the effect of MI on N270 was not
related to possible differences in physical stimulus attri-
butes that might have correlated with the MI level.

The pattern of MI effects on performance during the
ERP experiment was consistent with the electrophysiolog-
ical results and replicated the results of Experiment 1.
The accuracy and speed of categorization of both car and
face fragments increased as function of MI
(F4, 52 = 122.24, P < .0001 and F4, 52 = 30.30, P < .001,
respectively). As in the ERP results, for RT there was an
interaction of category and MI (F4, 52 = 3.85, P < .05)
reflecting the difference between the RT curves for the
two object categories. Whereas for face fragments the
RTs decreased monotonically with increasing levels of
MI, for car fragments they decreased, again, in a more
step-like function. Like in Experiment 1 within the car-
fragments category the RTs were similar for the two lower
levels of MI, both higher than the RTs to the three higher
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MI levels, which did not differ among themselves (Fig. 2d).
A significant main effect of category on accuracy revealed
that across MI, categorization was more accurate for face
fragments than for car fragments (F1, 13 = 41.24,
P < .0001; Fig. 2c).

The within-category correlations between the absolute
MI value of each fragment and its mean categorization
time (for correct responses only) also replicated Experi-
ment 1. The correlations were negative and highly signifi-
cant for both well-defined categories (r = �.37; P < .001,
and r = �.28; P < .001 for face and car fragments, respec-
tively) while close to zero for non-class fragments
(r = �.06; NS).

3.3. Experiment 3: Implicit categorization ERP experiment

Together, the behavioral and the electrophysiological
data suggest that MI is a reliable diagnostic measure of
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object categorization that predicts the efficiency of catego-
rization performance and the level of neural activity asso-
ciated with it. Moreover, the relative late latency of the
MI level effect on N270 and the lack of P1 modulation sug-
gest that the mutual information between a feature and a
category affects categorization rather than low-level per-
ception. However, it is not entirely clear what kind of cat-
egorization mechanisms are reflected by the N270 and its
modulation by MI. On the one hand, it could reflect a
task-induced strategy whereby facing decision uncertainty,
participants utilize the MI to assign a fragment to one of
the pre-designated categories. On the other hand, object
categorization could be a task-independent default of
visual perception (cf. Smith, Bentin, & Spalek, 2001), in
which case, the N270 modulation might reflect the use of
MI in this process.

To distinguish between the two accounts above, we con-
ducted a second ERP experiment using an oddball target-
detection paradigm in which the participants were not
required to explicitly distinguish between faces and cars.
The face, car and nonclass fragments used in the previous
ERP experiment were intermixed with fragments of a
new category, horses. Horses were the only pre-designated
target category and the participants were requested to press
a button each time a horse fragment was identified. Ten
percent of the fragments were ‘‘horse’’ while non-target
fragments occurred in the rest of the trials with equal prob-
ability. The instructions did not specify the different cate-
gories of the non-targets and thus, although car, face and
non-class fragments were explicitly distinguished from
horse fragments the differentiation among these non-target
categories was not necessary for performing the task, hence
implicit.

Supporting the ‘‘categorization by default’’ account, the
analysis of the ERPs elicited by the non-target fragments
revealed a pattern that was very similar to the explicit cat-
egorization ERP experiment (Fig. 4a).

Although the N270 was slightly delayed relative to the
explicit categorization case (peaking at 285 ms for faces
and 292 ms for cars), its amplitude was modulated by MI
as in the previous experiment, was similarly distributed
across the scalp (Fig. 4b), and was identically modulated
by MI. The main effect of MI level was significant
(F4, 52 = 13.25, P < .001) as was the effect of category
(amplitudes higher for face than car fragments,
F1, 13 = 20.90, P < .01). Again, the pattern of the MI effect
on the N270 amplitude was different for faces and cars
(F4, 52 = 13.25, P = .05). Post-hoc univariate contrasts
between successive levels of MI within each category were
conducted (Fig. 4c). For face fragments, the N270 ampli-
tude increased gradually with the MI level; significant dif-
ferences were found between second and third MI levels
(F1, 13 = 4.60, P = .05) and between forth and fifth level
of MI (F1, 13 = 8.54, P = .01). For car fragments, the
amplitude again increased in a step-like function, separat-
ing the five MI levels into low (MI levels 1–2) and high
(MI levels 3–5). Significant differences were found only
between second and third MI levels (F1, 13 = 12.58,
P = .004). An analysis of the occipital P1 showed a main
effect of category (F1, 13 = 8.79, P = .01) and of MI level
(F4, 52 = 6.73, P = .02). However, there was no MI by cat-
egory interaction (F4, 52 < 1.00) and post-hoc univariate
contrasts between successive levels of MI across categories
showed no significant differences (P > .05) between any two
successive MI levels. In summary, N270 responses
increased in monotonic and predicted manner with MI
level during fragments’ processing although there was no
need for explicit further assignment of non-target frag-
ments to specific categories. This outcome supports the
notion that the enhanced neural activation associated with
MI utilization underlies a default perceptual categorization
process that is independent of task-related strategies.

4. Discussion

ERP and behavioral data in the present experiments
indicate that mutual information between feature and cat-
egory is predictive of the neural activity associated with
perceptual categorization, as well as of human categoriza-
tion performance. Although the features selected by the
algorithm were simply fragmented image patches rather
than clearly delineated whole parts of objects (as would
be a wheel of a car, or a human eye, for example), they
were sufficiently diagnostic for object categorization by
humans. The diagnosticity of the features was reflected in
performance, and was correlated with the neural activity
that they elicited, as reflected by a posterior negative
ERP component (N270); the amplitude of the N270 was
modulated by the MI level of the fragments. For face frag-
ments the N270 amplitude increased continuously with
successively increasing levels of MI. For car fragments
the amplitude increased in a step-like function distinguish-
ing between the two low and the three high-MI levels. The
modulation of the N270 amplitude by MI level mirrored
performance indicating that the pattern of the relation
between MI and performance has neural origins.

As noted in the introduction, categorical distinctions
were found in the visual system as early as 100–150 from
stimulus onset (Thorpe et al., 1996; Van Rullen & Thorpe,
2001). Accordingly, we expected that the utilization of the
MI for basic-level categorization should occur somewhere
during the first 200 ms of stimulus processing. However,
although the onset of the MI-sensitive, category selective
waveform peak was earlier than 200 ms,1 its peak ampli-
tude of was around 270 ms post-stimulus onset while no
conspicuous negative component (N1) was found prior to
this potential. Specifically, it is intriguing that fragments
of faces, although categorized correctly by the participants,
did not elicit the N170 potential normally found in
response to faces (Bentin et al., 1996; George, Evans, Fiori,
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Davidoff, & Renault, 1996). The absence of this effect is
particularly intriguing because robust N170 effects were
reported not only in response to complete faces, but also
in response to face components presented in isolation (Ben-
tin et al., 1996; Smith, Gosselin, & Schyns, 2004; Zion-
Golumbic & Bentin, in press). A possible account for this
unexpected pattern is that the N270 is, in fact, a delayed
N170. This account is supported by the higher amplitude
for face than car fragments across MI levels, by the poster-
ior lateral distribution of the N270, (which is similar to that
of the N170; Figs. 3b and 4b), and by the fact that the
N170 to isolated face components is also somewhat
delayed compared to full faces (Bentin et al., 1996).
According to this account, the delay in latency may reflect
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additional processing needed to categorize isolated features
when the activation of the face processing mechanism is
lower than normal. This could happen because in the pres-
ent study the category exemplars were represented by iso-
lated fragments. In contrast, in previous studies in which
ERP distinctions between categories were found earlier,
the stimuli were full-shaped category exemplars, which
according to our model are in effect combinations of infor-
mative fragments. It is possible, that when whole objects
(or a configuration of fragments) are seen, bottom-up uti-
lization of the mutual information of the IC features
becomes faster, either by facilitation between features or
by recurrent activity generated by higher levels in the visual
processing hierarchy (Rao & Ballard, 1999). This would
explain the discrepancy between our findings and the fast
object categorization found in previous studies.

Alternatively, it is possible that the N270 is not a
delayed N170 but an independent ERP component that
reflects a general categorization principle of MI extraction
from visual objects in the environment. The lack of an
N170 effect could be due to the fact that the face fragments
were insufficient for the pre-determined tuning characteris-
tics of the face perception system, and thus did not elicit
face-sensitive neural mechanisms. Still, it is conceivable
that extensive experience with a particular category, such
as faces, enables higher sensitivity to changes in MI levels.
Thus, the categorical differences in N270 amplitudes elic-
ited by face and car fragments could reflect different levels
of visual experience with various objects (Palmeri & Gau-
thier, 2004). Further research using fragments of other
object categories of varying experience levels is needed to
clarify the issue of the effect of experience and learning
on the utilization of MI for categorization.

Importantly, the modulation of N270 by MI level is
unlikely to reflect low-level visual differences between the
different levels of MI. First, the latency of the N270 was
probably too late to be directly modulated by physical
stimulus dimensions such as size, luminance, contrast etc.
Second, the earlier P1 component which is usually sensitive
to such dimensions did not vary across MI levels. Similar
arguments were used to account for the amplitude modula-
tion of another occipito–temporal ERP component peak-
ing at 290 ms, which increased gradually with the degree
of perceptual closure of line-drawn objects (Doniger
et al., 2000). Third, as reveled by a separate analysis, the
MI level had no influence on the N270 amplitude elicited
by non-class fragments that were equivalent with the car
and face fragments in low-level visual properties (see Sup-
plementary material). Finally, the comparison of image
statistics revealed that low and high-MI fragments did
not differ on low-level visual properties (see Section 2 for
details).

The previous arguments speak against the possibility
that the N270 amplitude has been modulated in this study
by low level stimulus properties. Another argument to be
considered is that the modulation of the N270 reflects a
general effect of task difficulty rather than being specific
to MI. This argument is weakened by reports showing
that, in contrast to the present pattern, the amplitude of
the N2b, a negative component peaking during the same
time range, is increased by difficulty in visual discrimina-
tion tasks (Senkowski & Hermann, 2002). This trend is
opposite to the current findings that show a positive cor-
respondence between the N270 amplitude and categoriza-
tion accuracy.

Excluding low level visual factors, on the one hand, and
general difficulty effects, on the other hand, leads to the
conclusion that a high-level perceptual categorization
mechanism accounts for the present findings. Since the
instructions in Experiments 1–2 emphasized the distinction
between two basic-level categories (‘‘faces’’ and ‘‘cars’’) we
believe that in these experiments MI influenced basic-level
categorization. Note, however, that each of these basic-
level categories might also be conceptualized as superordi-
nate categories (e.g. ‘‘human’’ and ‘‘vehicle’’ or even
‘‘living’’ and ‘‘non-living’’; see Mandler, Bauer, & McDon-
ough, 1991). While the obvious option for superordinate
categorization exists there are reasons to reject it. First,
there is considerable evidence suggesting that the basic-
level is the preferred level of categorization (e.g. Archa-
mbault, Gosselin, & Schyns, 2000; Johnson & Mervis,
1997; Jolicoeur, Gluck, & Kosslyn, 1984; Rosch, Mervis,
Gray, Johnson, & Boyes-Bream, 1976). Second, computa-
tionally, the present fragments were extracted and their
MI rated using training at the basic-level, that is, by con-
trasting a particular class with general non-class images.
Still, claims about the level of categorization addressed in
this study should be considered with caution, and the ques-
tion of how MI relates to different hierarchical levels of cat-
egorization remains a question for future studies.

The correspondence between MI level and categoriza-
tion is not trivial. We found that an objective measure,
the mutual information between a feature (fragment) and
a class predicts neural activity (as reflected by the N270)
as well as categorization performance. This relation is con-
sistent with common sense, since an image region that is
objectively informative can also be expected to be useful
in human vision. It is not clear, however, that fragment
MI, a simple measure used to assess the amount of infor-
mation delivered by an image fragment, would be sufficient
for predicting neural activation and categorization perfor-
mance. The MI computation was based on using the frag-
ment directly as a feature, based on its frequency within
and outside the class of interest. In different theories of rec-
ognition, such as geon-based (Biederman, 1987), eigen-
faces (Turk & Pentland, 1991), internal transformations
(Shepard & Metzler, 1971; Tarr, 1995) and others, such
information measure would not be predictive of either neu-
ral activity or performance because no measure of informa-
tiveness is assigned to the basic elements of the image. The
patch-information measure used here allowed us to directly
compare, for example, two different parts of a car and pre-
dict their usefulness for categorization, both at the neural
and at the behavioral level.
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As revealed in the implicit categorization experiment,
the utilization of MI for categorization, as indexed by
the N270 modulation, is at least in part a task-indepen-
dent process. Although in that experiment the task did
not require the distinction between non-target categories,
the data indicated that the visual system was still sensi-
tive to the information content of the face and car frag-
ments. Moreover, the similar patterns of modulation of
the N270 in the explicit and in the implicit categorization
tasks suggest that MI utilization is the default of the
visual system. Note however, that the �20 ms delay of
the N270 peak in the implicit categorization experiment
might indicate that task-related explicit strategies can
influence the efficiency of using the MI. At any rate,
the similar pattern of results suggests that despite its late
latency the N270 reflects primarily sensory rather than
post-sensory, target-decision processes (Johnson & Ols-
hausen, 2005).

In conclusion, the present results demonstrate that a
simple objective measure of mutual information between
a visual feature and a category predicts categorization per-
formance by humans and its underlying neuronal activity
as measured by N270 ERP component. This outcome sup-
ports the notion that features of intermediate complexity
are the basis for swift basic level categorization in humans.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.visres.
2007.04.004.
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