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Abstract 

The paper describes a method for automatically 
extracting informative feature hierarchies for object 

classification, and shows the advantage of the features 

constructed hierarchically over previous methods. The 

extraction process proceeds in a top-down manner: 

informative top-level fragments are extracted first, and by 

a repeated application of the same feature extraction 
process the classification fragments are broken down 

successively into their own optimal components. The 

hierarchical decomposition terminates with atomic 

features that cannot be usefully decomposed into simpler 

features. The entire hierarchy, the different features and 
sub-features, and their optimal parameters, are learned 

during a training phase using training examples. 

Experimental comparisons show that these feature 

hierarchies are significantly more informative and better 

for classification compared with similar non-hierarchical 

features as well as previous methods for using feature 
hierarchies. 

1. Introduction

The selection of effective image features is a crucial 

component of a successful classification scheme. A 

number of recent classification methods have used 

features composed of image patches, or fragments, 

selected from training images during a learning stage [1-

5].  The success of these methods is mainly due to two 

reasons: first, they identify common object parts that 

characterize the different objects within the class, and 

second, the parts are combined in a manner that allows 

variations learned from training data. This notion is 

extended in the present work from the representation of 

objects to the representation of their constituent parts. 

Instead of representing a local part by a fixed image 

fragment, the part itself (such as an eye in face detection) 

is decomposed into its own optimal components (e.g. 

eyelid, eye corner, eye pupil, etc.), and the allowed 

variations in the configuration of the sub-parts are learned 

from the training data. The decomposition into sub-parts 

continues recursively and terminates at the level of 

‘atomic fragments’, which cannot be broken down further 

without loss in mutual information. We describe in this 

paper an algorithm for obtaining informative feature 

hierarchies, and show that the resulting hierarchies are 

more informative and better for classification compared 

with holistic features. The input to the algorithm is a set 

of images belonging to the same object class and a set of 

non-class images. The output is a set of hierarchical 

features together with the learned parameters 

(combination weights, geometric relations) suitable for 

the recognition of novel instances of the learned class. 

Examples of the hierarchical features obtained by the 

algorithm are shown in Figures 1, 5.  

Figure 1: Examples of the hierarchies obtained by 
the algorithm. 

Experimental evaluations show that the decomposition 

by our method increases the amount of information 

delivered by the fragments by a wide margin, improves 

the detection rate, and increases the tolerance for local 

distortions and illumination changes.  

The rest of the paper is organized as follows. In the 

next section we briefly review previous relevant 

approaches to the problem of selecting and combining 
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features for recognition.   In Section 3 we describe the 

proposed algorithm. In Section 4 we show experimental 

results, comparing the use of hierarchical features with 

holistic features for object detection on several object 

classes. We conclude with general remarks on possible 

extensions and applicability of the method in Section 5.  

2. Previous work 

In several recent schemes for object detection and 

classification, the basic features used for classification are 

local image fragments, or patches, depicting significant 

object components, and selected from training images 

during a learning stage [1-5]. The features can be selected 

from a large pool of candidate fragments [1] or from a set 

of regions selected by interest operators [2, 3]. During the 

classification stage, the features are located in the image 

being classified, and then combined using a number of 

possible methods including a naïve-Bayesian combination 

[1], a probabilistic model combining appearance, shape 

and scale [3], the output of a classifier network [2] or an 

SVM-based classifier [4]. The features used by these 

methods were non-hierarchical, that is, they were not 

broken down into distinct simpler sub-parts, but detected 

directly by comparing the fragment to the image. Their 

similarity can be measured by different measures, 

including normalized cross-correlation, affine-invariant 

measures [6], and the SIFT measure [7].  

A number of classification schemes have also used 

feature hierarchies rather than holistic features. Such 

schemes were often based on biological modeling, 

motivated by the structure of the primate visual system, 

which has been shown to use a hierarchy of features of 

increasing complexity, from simple local features in the 

primary visual cortex, to complex shapes and object views 

in higher cortical areas. In a number of these models, [8, 

9], the architecture of the hierarchy (size, position and 

shape of features and their sub-features) is pre-defined 

rather than learned for different classification tasks. The 

learning of a particular class was obtained by the 

combination of weights from the upper level of the 

hierarchy. A hierarchical model trained by examples was 

studied in [10]. The study uses a network model in which 

both the combination weights and the convolution 

templates were learned from examples by back-

propagation, whereas the number of hierarchy levels and 

positional tolerance were pre-defined. Previous 

comparisons [11] as well as our experiments (Section 4) 

show that the features used by these hierarchical models 

are not as informative and useful for classification as the 

classification features extracted by the methods reviewed 

above, and this accounts in part for limitations in their 

performance. In summary, classification features used in 

the past were either highly informative but non-

hierarchical, or hierarchical features which were less 

informative and not as useful.  

In the present work, we combine the advantages of 

learning informative classification fragments, with the 

learning of hierarchical structure with adaptive 

parameters. Informative object components are used for 

classification, but they are represented and detected using 

a hierarchy of simpler sub-parts. The next section 

describes the method of extracting the full hierarchy and 

its associated parameters.  

3. The construction of the feature hierarchies 

In this section, we describe the algorithm for obtaining 

the feature hierarchies. The algorithm proceeds along the 

following main stages. First, initial informative fragments 

are selected (Section 3.1). Second, the selected fragments 

are used to define new training sets for the selection of 

sub-features (3.2). These two steps are applied recursively 

until a level of ‘atomic fragments’ is reached. Third, 

parameters of the features hierarchy are optimized (3.3). 

Finally, the classification using the derived hierarchy is 

described in (3.4). We begin with a description of the 

initial selection of informative image fragments. 

3.1. Selecting informative image fragments 

We use a method for extracting good initial features 

similar to [11]. The process identifies fragments that 

deliver the maximal amount of information about the 

class. A large number (tens of thousands) of candidate 

fragments are extracted from the training images. We 

consider as initial candidates rectangular fragments of 

class images at multiple sizes and positions. We used 

fragments sizes ranging from 10% up to 50% of image 

size in each dimension, with scaling step of 1.2. For each 

fragment size, we examine fragments in positions placed 

on a regular grid with step equal to 1/3 of the size of a 

fragment. For every fragment, the optimal detection 

threshold is determined by maximizing the mutual 

information between the fragment and the class, as 

explained below. The normalized cross-correlation was 

used as similarity measure, but other measures, such as 

SIFT [7], can also be used. A binary variable is associated 

with every fragment in the following way: 
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Here S(I, fi) is the maximal visual similarity between 

fragment fi and image I, i is the detection threshold 

associated with fi. A binary variable C(I) is used to 

represent the class, namely, C(I) = 1 if the image I

belongs to the class being detected and 0 otherwise. 
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Candidate fragments are evaluated by the amount of 

mutual information [13] they deliver about the class. The 

advantages of selecting features by their MI are discussed 

in [14]. The mutual information between the two binary 

variables is defined as: 

∑
=

=

≡

}1,0{

}1,0{)(

)
)())((

)),((
log()),((

));((

C

f ii

ii
ii

ii

ii
Cpfp

Cfp
Cfp

CfMI

θ θ
θθ

θ

        (2) 

The mutual information is a function of the detection 

threshold i. If the threshold is too low, the information 

delivered by the fragment about the class will be low, 

because the fragment will be detected with high frequency 

in both class and non-class images. A high threshold will 

also yield low mutual information, since the fragment will 

be seldom detected in both class and non-class images. At 

some intermediate value of threshold, the mutual 

information reaches a maximum. The detection threshold 

for each fragment is selected to maximize the information 

MI(fi;C) between the fragment and the class. From the 

initial pool of candidate fragments, the most informative 

fragments are selected successively. After finding the 

fragment with the highest mutual information score, the 

search identifies the next fragment that delivers the 

maximal amount of additional information with respect to 

previously selected fragments. At iteration i the fragment 

fi was selected to increase the mutual information of the 

fragment set by maximizing the minimal addition in 

mutual information with respect to each of the first i-1 

fragments. 
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Here Ki is the set of candidate fragments, Si is the set of 

selected fragments up to iteration i, fi is the fragment to be 

selected at iteration i. The min is taken over all previously 

selected fj, to avoid redundancy: if fk is similar to one of 

the selected fragments, this minimum will be small. The 

max stage then finds the candidate in the pool with the 

largest additional contribution. In empirical testing, this 

algorithm was shown to select highly effective 

classification features [12]. 

We drop the dependence on thresholds  since they are 

already set to the optimal value for each fragment 

separately. The update rule for the fragment sets is: 

}{\1 fKK ii =+                                                             (4) 

}{1 fSS ii ∪=+                                                            

The initial K0 is the set of all candidate fragments; S0 is 

the set containing the fragment with highest mutual 

information with the class. The iterations end when the 

increment in mutual information gained by a new feature 

is less than some small threshold  (0.08) or until the 

number of selected fragments has reached a pre-selected 

limit.  

For each fragment the extraction process determines an 

allowed region, or Region of Interest (ROI) within which 

the fragment is searched. The size of the ROI is also set 

by an information maximization process described further 

in Section 3.3. 

3.2. Selecting optimal sub-fragments 

The top-level classification features described above 

appear often in the images containing object to be 

detected and seldom in non-class images. In a similar 

manner, useful sub-features should appear often in the 

regions containing ‘parent’ feature and seldom elsewhere. 

To identify such sub-features, we construct for each 

fragment f a set of positive examples, which are image 

regions containing the fragment f,  and negative examples, 

where detection of it should be avoided as much as 

possible.  The negative examples are selected from non-

class images that give “false alarms”, and therefore lie 

close to the class/non-class boundary. The positive 

examples for the fragment f were provided by identifying 

all the locations in the class images where the fragment f

was detected. This set was then increased, since the goal 

of the fragment decomposition is to successfully detect 

additional examples that were not captured by the 

fragment f alone. For this end, the positive set was 

increased by lowering the detection threshold of the 

fragment f, yielding examples where f is either detected or 

almost detected. The reduced threshold was determined to 

increase the positive set by 20%. This amount of increase 

was chosen to add a significant number of almost-

detected examples, and avoid examples that are dissimilar 

to f. A set of negative examples was similarly derived 

from the non-class images. Figure 2 shows the example of 

an informative fragment together with positive and 

negative examples of this fragment extracted from the 

training data. 

For the extraction of the sub-fragments of a feature on 

lower level of the hierarchy, the same procedure of 

obtaining positive and negative examples is used. Positive 

examples come from regions in class images where the 

parent feature was detected or almost detected within its 

ROI, and negative examples come from regions in the 

non-class images where the feature was detected. In this 

case, the feature position in the training images was 

determined by the computation of optimal positions of all 

the hierarchy nodes together (Section 3.4), so that at most 

one example was taken from each training image. 

Once the positive and negative sets of examples are 

established, sub-fragments are selected by exactly the 

same information maximization procedure used at the first 
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level. The candidate sub-fragments   in this case are the 

sub-images with their center point within the parent 

fragment, and having area not greater than ¼ of the 

parent’s area.   Sub-features are added to the tree until the 

additional information was lower than a threshold (0.08) 

or their number reached a pre-defined maximum (10 

fragments). Experimentally, fragments with smaller 

contributions did not improve significantly the detection 

of the parent feature. If the decomposition of f into 

simpler features increased the delivered information, the 

same decomposition was also applied to f’s sub-features.  

Each of the sub-fragments was considered in turn a parent 

fragment, positive and negative examples were found and 

the set of its informative sub-fragments was selected. 

Otherwise, decomposition was terminated, with f
considered an atomic fragment. Atomic fragments were 

usually simple, typically containing edges, corners or 

lines. Hierarchy examples are shown in Figures 1, 5. 

As explained in Section 3.4, during the classification 

stage, only the atomic features are directly correlated with 

the input image, and their responses are combined using 

weights learned at the training stage.  

Fragment to be detected 

Faces database 

Detected Almost detected 

Non-faces database 

Detected Almost detected 

Figure 2: The positive and negative examples for 
fragment detection. The original fragment f is shown 
on top. Row 1: class image examples where this 
fragment was detected (left) or almost detected 
(right). Row 2: the positive examples. Row 3: Non-
class images where the fragment was detected (left) 
or almost detected (right). Row 4: Negative 
examples. 

3.3. Optimizing the regions of interest 

For each fragment, a region of positional tolerance is 

extracted, called the feature’s region of interest (ROI). 

The ROI defines the area in novel images where the 

fragment is searched for.  The locations of the ROIs of 

sub-fragments in every image are determined relative to 

the detected position of their parent fragment. The amount 

of information a fragment delivers about the class 

depends on the size of its ROI. When the ROI is too 

small, the information is low, because in many class 

images the fragment will fall outside the ROI and 

therefore will not be detected. If the size of ROI is too 

large, the number of false detections will increase. At 

some intermediate size of the ROI, the mutual information 

reaches a maximum (Figure 3). The size of ROI for a 

fragment f was therefore chosen to maximize the mutual 

information MI(f;C). For first-level fragments, the 

optimization process evaluated different candidate ROI 

sizes from zero to half the size of the search window, and 

found the size that brought the MI to the maximum. The 

search window is a fixed region within the input image, 

where the algorithm looks for the entire object. This 

window was set in our experiments to size 200x200 

pixels. To detect an object within a larger image, the 

search window can either scan the image or move only to 

selected salient locations [16]. The locations of the ROIs 

of first-level fragments were defined relative to the center 

of the search window.  

Figure 3: Plot of MI of a sub-fragment as a function 
of its ROI size, the maximum is selected as ROI. 

During the hierarchy construction, the initial ROI size 

of a sub-fragment was set to be equal to the size of its 

parent. After the hierarchy was completed, additional 

optimization of the ROI sizes was performed in a top-

down manner: first, the ROI of the uppermost node was 

optimized to maximize the mutual information between 

the class variable and hierarchy’s detection variable, 

while all other ROIs were fixed. A similar process was 

then applied to its children, and the optimization 

proceeded down the hierarchy, where at each stage the 

ROIs of the higher levels are kept fixed. 
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Another set of hierarchy parameters is the combination 

weights of the sub-features responses. The optimization of 

the combination weights is described in Section 3.4 below 

together with the use of these weights in the classification 

process. 

3.4. Classification by feature hierarchies

Performance of the hierarchical features was evaluated 

using a network model similar to HMAX [9], with layers 

performing max and weighted sum operations.  For a 

given feature, the maximal response of each sub-feature is 

taken over the sub-feature’s ROI, and then the responses 

of all sub-features are combined linearly: 

∑
=

+=
n

i

ii swwr
1

0                                                         (5)           

where r is the combined response, si the maximal 

response of sub-feature i within its ROI, wi are the 

weights of the combination, and n the number of sub-

features.  For the atomic sub-features, the response was 

equal to the maximal normalized cross-correlation 

between the sub-feature and the image within the ROI. 

The final response sp of the parent feature was obtained 

by a sigmoid function,  

1
1

2 −
+

= −rp
e
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which normalizes sp to the range [-1,1]. 

The response of the topmost node of the hierarchy, 

corresponding to the entire object, is then compared to 0. 

Positive response means that object is detected. The 

amount of information about the class carried by the 

hierarchy is defined as the mutual information between 

the class variable C and the hierarchy detection variable 

H, equal 1 when the response of the topmost node is 

positive and zero otherwise. 

The combination weights were adjusted during training 

using iterative optimization that alternates between 

optimizing positions and weights, as described below. 

First, the weights are initialized randomly in the range 

[0..1]. The scheme then alternates between the following 

two steps.  

Positions Step: fix weights, optimize feature positions.  

For every position of the parent fragment within its ROI 

the positions of sub-fragments (within their relative ROIs) 

that maximize the responses of the sub-fragments were 

found. Then, the position of the parent fragment that 

maximizes its response sp is chosen. This routine can be 

implemented efficiently using Dynamic Programming.  

Weights Step: fix feature positions, optimize weights.   

The combination weights of the features were optimized 

using the standard Back-Propagation algorithm with batch 

training protocol. The algorithm ends when no feature 

changes its position at Positions Step. 

This weight selection procedure can be shown to 

converge to a local minimum of classification error. 

Experimentally, we found that the algorithm converged in 

less than 10 iterations. The obtained optimum is stable, 

starting from multiple random initial weights we end up 

with similar performance.  

3.5. Summary of the hierarchy construction 

algorithm 

The full process of constructing hierarchical features 

can be summarized by the following steps.  

INPUT: A set P of class images. A set N of non-class 

images. 

OUTPUT: A feature hierarchy H – a tree with nodes 

corresponding to parts and sub-parts of the object being 

recognized together with a set of associated parameters: 

ROI of every node and combination weights. 

HIERARCHY CONSTRUCTION ALGORITHM:

1. Initialize H as a tree containing a single node (root) f0
,

corresponding to the entire object. 

2. Using the original training sets (P and N), extract a set 

S(f0) of first-level informative fragments as described in 

Section 3.1. Add the fragments from S(f0) as children to f0
.

Evaluate the mutual information MI(H;C) as described in 

Section 3.4. 

3. For each leaf fragment f determine the sets P(f) and 

N(f) of positive and negative examples as in Section 3.2. 

4. Find the set S(f) of the most informative sub-fragments 

of  f.

5. Add the fragments from S(f) as children of f and re-

evaluate MI(H;C). If it does not increase compared with 

the case without S(f) – remove S(f), mark the leaf node f

as ‘atomic’ fragment. Otherwise leave S(f) in H.

6. Repeat steps 3 – 5 until all leaf fragments are marked as 

‘atomic’. 

7. Optimize the ROI sizes of the hierarchy nodes, as in 

Section 3.3. 

The classification stage using the hierarchy of features 

H can be summarized as follows: 

INPUT: A novel image I. A feature hierarchy H, extracted 

from examples. 

OUTPUT: A binary decision variable S (1 if the object 

was found in I, and 0 otherwise). 
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CLASSIFICATION ALGORITHM:

1. Compute the correlations of all the leaf nodes of H with 

the image I. Call the 2D arrays (of size equal to the size of 

I) containing the correlation values the response maps.

2. For every node of H whose children’s response maps 

have been computed, compute its own response map: for 

each position of the feature within the image I, find 

maximal responses of its children within their ROIs and 

combine their responses using equations (5) and (6). Store 

the response of the node in its own response map. 

3. Repeat Step 2 from the bottom nodes to their parents 

until the top of the hierarchy is reached. 

4. Using the response map of the topmost node, find the 

maximal response within its ROI (eq. 6) and compare it to 

0. If the response is greater than 0, set S to 1, otherwise 

set it to 0. 

4. Experiments 

Hierarchical features were extracted and compared 

with holistic (non-hierarchical) ones using their mutual 

information, and by comparing classification 

performance. The mutual information measures the 

quality of the features directly in a manner that does not 

depend on the particular classifier [12, 14].  

The information carried by the hierarchical and holistic 

features was compared using 3 object classes: faces (200 

faces, 500 non-faces in the training set, 800 faces, 1500 

non-faces in the test set), cows (100 cows, 500 non-cows 

in the training set, 220 cows, 2500 non-cows in the test 

set) and airplanes (320 airplanes, 500 non-airplanes in the 

training set, 750 airplanes, 2500 non-airplanes in the test 

set).  

For each object class, the most informative holistic 

feature was first determined using the algorithm described 

in Section 3.1. For comparison, a hierarchy of sub-

features was extracted from this feature. In computing the 

ROC curves of a feature [15], the hits and false alarms 

were defined by using the hierarchy as a single feature 

classifier.  That is, test images were classified based on 

the feature in question; hits corresponded to class image 

identified correctly, false alarms to non-class images 

identified incorrectly.  The experiment was repeated 50 

times for each class, the image database each time split 

randomly into training and test set. Overall, 150 top-level 

fragments were extracted, and for each one a hierarchy 

was constructed using the algorithm above. The 

information supplied by the first-level hierarchical 

features increased in the test set for all fragments (n=150, 

3 classes) by a large amount compared with the 

corresponding holistic features (average increase 46.6%, 

s.d. 30.5%, p < 10
-9

 one-tailed paired t-test). The holistic 

and hierarchical features were also compared using their 

complete ROC curves, showing a significant advantage of 

the hierarchical detection over the entire range, (0-90% 

false alarm, n=150, p<0.000001).  

Further decomposition into a multi-level hierarchy 

provided additional significant gain in information (n=97 

features, average increase 10.0%, s.d. 10.7% p < 10
-9

 one-

tailed paired t-test). The ROC detection curves also 

improved significantly.  Results of the comparisons are 

shown in Figure 4a,b. Figure 4a shows the comparison of 

ROC curves obtained by a holistic feature (blue), the 

same feature decomposed into a single level of sub-

features (magenta), full hierarchy (red), and a 

decomposition using fixed spacing and sub-fragment sizes 

(black). Figure 4b shows the mean difference between 

the ROC curves of classifier based on a single holistic 

feature and its hierarchical decomposition (averaged over 

50 runs).   

The results show that hierarchical features are 

significantly more informative and lead to much better 

classification results compared with holistic features. 

Significant improvement is obtained already with a single 

additional level.  

We found in comparisons that optimizing the size and 

locations of the sub-fragments relative to their parent 

fragments add significantly to the MI compared with a 

hierarchy that uses fixed (and optimized) sizes for the 

sub-fragments and spacing between them. If the sub-

fragments’ centers were arranged on a uniform grid, 

rather than selecting their optimal locations during 

training, the MI decreases (average 43% s.d. = 35% p < 

10
-10

 paired t-test), and the detection performance of the 

units decreases.  The fixed spacing was set to the average 

spacing obtained at each level by the adaptive scheme. 

Optimizing ROI size also adds significantly to the MI 

compared with a fixed ROI size that was optimized for 

each level separately (average 8.1% s.d. 13.7% p < 

0.0055).  

The performances of classifiers based on multiple 

holistic features and multiple hierarchies were also 

compared. The comparison was performed on 3 object 

classes: airplanes (same as above), horses (160 horses and  

500 non-horses in the training set, 160 horses and 2500 

non-horses in the test set) and side views of cars (160 cars 

and 500 non-cars in the training set, 160 cars and 2500 

non-cars in the test set). First, to determine the number of 

fragments required for full classifier, the Equal Error 

Probabilities (EEP) were computed for classifiers based 

on 1 to 50 fragments. The classifier performance 

asymptoted at 30-40 fragments (Fig. 4c). Next, the 

performances of full classifiers using 50 holistic features 

and 50 hierarchical features were compared (Fig. 4d). The 

comparison clearly shows the advantage of hierarchical 

features. 
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The informative sub-fragments selected by our method 

were also compared with an alternative method in which 

informative sub-features are obtained by directly 

maximizing the mutual information using gradient ascent 

with simulated annealing. For this experiment, a set of 20 

informative parent fragments of size 40x40 pixels each 

was computed from two object classes (faces, horses). For 

each fragment, a set of positive and negative examples 

was determined as described in Section 3.2. Two sub-

features were compared: the most informative sub-

fragment of size 20x20 pixels, computed using the 

method described in Section 3.2 and the sub-feature of the 

same size computed using gradient ascent with simulated 

annealing. In this case, the sub-fragment starts either from 

a uniform or a random grey-level image. These grey 

levels are then modified by a gradient ascent computation 

that used MI as the optimization measure. For each parent 

fragment, the computation was performed 10 times, the 

image database each time split randomly into training and 

test set. The comparison shows that the image sub-

fragments are significantly more informative than features 

learned by the gradient ascent procedure (average MI 

increase 36% s.d 31%). Selecting sub-features from the 

training images thus leads to better features than 

synthesizing new ones by gradient ascent. The likely 

reason is that the search in the space of all possible sub-

features has multiple local maxima which are significantly 

lower than the optimal sub-features. 

5. Discussion 

We presented a scheme for extracting feature 

hierarchies for classification. The top-level features are 

informative image fragments, which are then broken 

down successively into informative sub-fragments. The 

extraction is automatic, including the selection of the sub-

features as well as their combination weights and ROIs. 

The hierarchy outperforms the single-level features by a 

wide margin, both in the amount of delivered information 

and recognition performance. The amount of positional 

tolerance of sub-features and their positions should be 

learned from examples, since using sub-parts of uniform 

size and spacing degrades performance. 

Classification using the feature hierarchy was 

implemented in the current work using a simple feed-

forward combination scheme, with weights extracted 

during learning. We also tried a combination scheme 

using a Bayesian network structure with bi-directional 

computation. An advantage of the modified scheme, 

which will be discussed in more detail in future work, is 

that it uses the entire hierarchy to recognize not only 

complete objects, but also object parts. In this manner, 

feature hierarchies can be used to improve the 

performance of recognition and classification schemes, 

and also to extend them to provide a fuller description of 

the objects together with their parts and sub-parts at 

different levels. 
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Figure 4: a. Example of ROC curves obtained by a holistic feature and the same feature represented 
hierarchically (see text). b. Average ROC difference (additional hits) and s.d. of one holistic feature vs. the 
same feature represented hierarchically for one class (cows, 50 runs). c. Equal Error Probability of classifiers 
based on hierarchical (red) and holistic (blue) features. d. Example of ROC curve of full classifier based on 
hierarchical (red) and holistic (blue) features. 

Figure 5: Examples of class images and computed hierarchies from 5 classes. 
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