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Abstract
The dorsal stream in the primate visual cortex is involved in the perception of motion and
the recognition of actions. The two topics, motion processing in the brain, and action
recognition in videos, have been developed independently in the field of neuroscience and
computer vision. We present a dorsal stream model that can be used for the recognition of
actions as well as explaining neurophysiology in the dorsal stream.

The model consists of a spatio-temporal feature detectors of increasing complexity: an
input image sequence is first analyzed by an array of motion sensitive units which, through a
hierarchy of processing stages, lead to position and scale invariant representation of motion
in a video sequence. The model outperforms or on par with the state-of-the-art computer
vision algorithms on a range of human action datasets.

We then describe the extension of the model into a high-throughput system for the
recognition of mouse behaviors in their homecage. We provide software and a very large
manually annotated video database used for training and testing the system. Our system
outperforms a commercial software and performs on par with human scoring, as measured
from the ground-truth manual annotations of more than 10 hours of videos of freely behav-
ing mice.

We complete the neurobiological side of the model by showing it could explain the
motion processing as well as action selectivity in the dorsal stream, based on comparisons
between model outputs and the neuronal responses in the dorsal stream. Specifically, the
model could explain pattern and component sensitivity and distribution [161], local motion
integration [97], and speed-tuning [144] of MT cells. The model, when combining with the
ventral stream model [173], could also explain the action and actor selectivity in the STP
area.

There exists only a few models for the motion processing in the dorsal stream, and
these models were not be applied to the real-world computer vision tasks. Our model is
one that agrees with (or processes) data at different levels: from computer vision algorithm,
practical software, to neuroscience.

Thesis Supervisor: Tomaso Poggio
Title: Professor
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Chapter 1

Introduction

1.1 The problem

The dorsal stream in the primate visual cortex is involved in the perception of motion and

the recognition of actions. The two topics are closely related and have form an important

research area crossing the boundaries between several scientific disciplines from computer

vision to computational neuroscience and neuropsychology.

Recognizing human actions in videos has also drawn attention in computer vision due to

its potential applications in video surveillance, video retrieval/ archival/ compression, and

human-computer interaction (Here the term ’action’ refers to a meaningful short sequence

of motions, such as ’walking’, ’running’, ’hand-waving’, etc). For example, the growing

number of images, videos on the internet and movie archives rely on automatic indexing

and categorization. In robotics, action recognition is a key to allow the interaction between

human and computers and between robots and the environment. In video surveillance,

tremendous amount of work of one human observing all the cameras simultaneously can

be automated by an action recognition system.

In the field of neuroscience, researchers have been studying how human recognize and

understand each other’s actions because it plays an important role in the interaction be-

tween human and the environment as well as human-human interaction. The brain mech-

anisms that are involved in the recognition of actions are believed to be mediated in the

dorsal stream in the primate visual cortex [202, 54, 53]. Specifically, the MT neuronal re-
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sponses are closely related to the perception of motion and behavioral choice [18, 20], and

in area STP (superior temporal polysensory area), neurons have been found to be sensitive

to whole human body movements such as walking [130], or partial body movements such

as mouth-opening/ closing and hand-closing/ opening [216]. Moreover, motion process-

ing, the process of inferring the speed and direction of stimulus based on visual inputs, is

thought to be highly related to the recognition of actions. Several computational models for

motion processing have been built based on neuronal responses to various types of motion

[169, 177, 211, 168, 138, 135, 136, 161, 157], and the theoretic solutions have been derived

to compute the velocity of an image [64]. These models were able to simulate neurons’ se-

lectivity to a range of moving patterns but they were not constructed in a system level such

that the motion-selectivity could be applied to the recognition of real-world actions.

Action recognition and the motion processing in the visual cortex have been treated as

independent problems. In this work, we will bridge the gap of the two problems by building

a dorsal stream model that could explain the physiological recording from neurons in the

dorsal stream as well as be used for the recognition of real world actions.

1.2 The approach

The visual information received from retina are processed in two functionally specialized

pathways [202, 204]: the ventral stream (’what pathway’) that is usually thought of pro-

cessing shape and color information and involved in the recognition of objects and faces,

and the dorsal stream (’where pathway’) that is involved in the space perception, such as

measuring the distance to an object or the depth of a scene, and involved in the analysis

of motion signals [202, 54], such as perception of motion and recognition of actions. Both

streams have the primary visual cortex (V1) as the source and consist of multiple visual

areas beyond V1 (Figure 1-1). Both streams are organized hierarchically in the sense that

through a series of processing stages, inputs are transformed into progressively complicated

representations while remaining invariant to the change of positions and scales.

Our approach continues two lines of research for the modeling of the visual system.

HMAX [152] was based on the organization of the ventral stream and has been applied to
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Figure 1-1: Visual processing in monkeys. Areas in the dorsal stream are shown in green,
and areas in the ventral stream are shown in red. Lines connecting the areas indicate known
anatomical connections, modified from [201].

the recognition of objects with simple shapes. Its was then extended by Serre et al. for

the recognition of complex real-world objects and shown to perform on par with existing

computer vision systems [171, 119]. The second line is the model developed by Giese and

Poggio [52]. Their model consists of two parallel processing streams, analogous to the

ventral and dorsal streams, that are specialized for the analysis of form and optical-flow

information, respectively. While their model is successful in explaining physiological data,

it has only been tested on simple artificial stimuli such as point-light motion.

1.3 Outline & summary of thesis chapters

The thesis is organized as follows:
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Chapter 2 We give an overview of the dorsal stream model that is used throughout the

whole thesis work, its physiology origin, and prior related models.

Chapter 3 We introduce the problem of action recognition and describe the use of the

model in Chapter 2 as an action recognition system. The performance of the system and

the comparison with state of the art computer vision systems are reported on three public

action datasets. This chapter was published in 2007 [75].

Chapter 4 While much effort has been devoted to the collection and annotation of large

scalable static image datasets containing thousands of image categories, human action

datasets lack far behind. In this chapter we present a dataset (HMDB51) of 51 human ac-

tion categories with a total of around 7,000 clips manually annotated from various sources

such as YouTube, HollyWood movies, Google video. We benchmark the performance of

low-level features (color and gist) on HMDB51 as well as four previous datasets to show

that HMDB51 contains complex motion which can not be easily recognized using simple

low-level features. We use this database to evaluate the performance of two representa-

tive computer vision systems for action recognition and explore the robustness of these

methods under various conditions such as camera motion, viewpoint, video quality and

occlusion. This chapter is currently under submission(Kuehne, Jhuang, Garrote, Poggio &

Serre, 2011).

Chapter 5 The extensive use of mouse in biology and disease modeling has created a

need for high throughput automated behavior analysis tools. In this chapter we extend the

action recognition system in Chapter 3 for the recognition of mouse homecage behavior in

videos recorded over a 24 hour real lab environment. In addition, two datasets (totally over

20 hours) were collected and annotated frame by frame in order to train the system and

evaluate the system’s performance. The system was proven to outperform a commercial

software and performs on par with human scoring. A range of experiments was also con-

ducted to demonstrate the system’s performance, its robustness to the environment change,

scalability to new complex actions, and its use for the characterization of mice strains. This

chapter is published in [73].
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Chapter 6 A substantial amount of data about the neural substrates of action recognition

is accumulating in neurophysiology, psychophysics and functional imaging, but the un-

derlying computational mechanisms remain largely unknown, and it also remains unclear

how different experimental evidence is related. Quantitative models will help us organize

the data and can be potentially useful for predicting the neuronal tuning for complex hu-

man movements in order to understand the representation of movements and how human

recognize actions. In this chapter, we show that the model in Chapter 2 could explain neu-

rophysiology of the dorsal stream - it not only mimics the organization of the dorsal stream,

but the outputs of the model could also simulate the neuronal responses along the dorsal

hierarchy. Specifically, the model account for the spatiotemporal frequency selectivity of

V1 cells, pattern and component sensitivity and distribution [161], local motion integration

[97], and speed-tuning [144] of MT cells. The model, when combining with the ventral

stream model [173], could also explain the action and actor selectivity in the STP area, a

high level cortical area receiving inputs from both the ventral and the dorsal stream. An

early version of this chapter is published in [74].

1.4 Contribution

Chapter 3 Recognition of actions has drawn attention for its potential applications in

computer vision and the role in social interactions that has intrigued neuroscientists. Com-

puter vision algorithms for the recognition of actions and models for the motion processing

in the dorsal stream have been developed independently. Indeed, none of the existing neu-

robiological models of motion processing have been used on real-world data [52, 24, 175].

As recent works in object recognition have indicated, models of cortical processing are

starting to suggest new algorithms for the computer vision [171, 119, 148]. Our main con-

tribution for this topic is to connect the two lines of work, action recognition and motion

processing in the dorsal stream, by building a biologically plausible system with the orga-

nization of the dorsal stream and apply it to the recognition of real world actions. In order

to extend the neurobiological model for object recognition [171] into a model for action

recognition, we mainly modify it in the following ways:
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• Propose and experiment with different types of motion-sensitive units.

• Experiment with the dense and sparse features proposed in [119].

• Experiment with the effect of the number of features on the model’s performance.

• Experiment with the technique of feature selection.

• Add two stages to the model to account for the sequence-selectivity of neurons in the

dorsal stream.

• Evaluate the system’s performance on three publicly available datasets.

• Compare the system’s performance with a state-of-the-art computer vision system.

Chapter 4 The proposed HMDB database is, to our knowledge, the largest and perhaps

the most realistic available database to-date. Each clip of the database was validated by

at least two human observers to ensure consistency. Additional meta-information allows

a precise selection of test data as well as training and evaluation of recognition systems.

The meta tags for each clip include the camera view-point, presence or absence of camera

motion and occluders, and the video quality, as well as the number of actors involved in

the action. This should allow for the design of more flexible experiments to test the perfor-

mance of state-of-the-art computer vision databases using selected subsets of this database.

Our main contribution is the collection of the dataset HMDB51 and perform various ex-

periments to demonstrate that it is more challanging than existing action datasets. Our

specific contribution are:

• Compare the performance of low-level features (color and gist) on HMDB51 as well

as four previous datasets.

• Compare the performance of two representative systems on HMDB51: C2 features

[75] and HOG/HOF features [86].

• Evaluate the robustness of two benchmark systems to various sources of image degra-

dations.
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• Discuss the relative role of shape vs. . motion information for action recognition.

• Using the metadata associated with each clip in the database to study the influence

of variation (camera motion, position, occlusions, etc. ) on the performance of the

two benchmark systems.

Chapter 5 Existing sensor-based and tracking-based approaches are successfully applied

to the analysis of coarse locomotion such as active vs. resting, or global behavioral states

such as distance traveled by an animal or its speed. However these global measurements

limit the complexity of the behaviors that can be analyzed. The limitation of sensor-based

approach can be complemented by vision-based approaches. Indeed two vision-based sys-

tems have been developed for the recognition of mice behaviors [36, 218, 219]. However,

these systems haven’t been tested in a real-world lab setting using long uninterrupted video

sequences containing potentially ambiguous behaviors or at least evaluated against human

manual annotations on large databases of video sequences using different animals and dif-

ferent recording sessions. Our main contribution is to successfully apply a vision-based

action recognition system to the recognition of mice behaviors, to test the system on a huge

dataset that includes multiple mice under different recording sessions, and to compare the

performance of the system with that of human annotators and the commercial software

(CleverSys, Inc). Our specific contributions are:

• Datasets. Currently, the only public dataset for mouse behavior is limited in scope: it

contains 435 clips and 6 types of actions [36]. In order to train and test our system on

a real-world lab setting where mice behaviors are continuously observed and scored

over hours or even days, we collect two types of datasets: clipped database and full

database.

– The clipped database contains 4, 200 clips with the most exemplary instances

of each behavior (joint work with Andrew Steele and Estibaliz Garrote).

– The full database consists of 12 videos, in which each frame is annotated (joint

work with Andrew Steele and Estibaliz Garrote).
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– The SetB: a subset of full database, in which each frame has a second annotation

(joint work with Andrew Steele).

– Make above datasets available.

• Feature computation stage

– Optimizing motion-sensitive units by experimenting with the number of tuned

directions, different types of normalization of features and video resolutions.

– Learning a dictionary of motion patterns from the clipped dataset.

– Designing a set of position features that helps the recognition of context-dependent

actions.

– Implementing the computation of motion features using GPU (based on CNS

written by Jim Mutch [118]).

• Classification stage

– Experimenting with two different machine learning approaches (SVM vs. SVMHMM).

– Optimizing the parameters of SVMHMM.

– Experimenting with the number of required training examples for the system to

reach a good performance.

• Evaluation

– Comparing the accuracy of the system with a commercial software and with

human scoring.

– Demonstrating the system’s robustness to partial occlusions of mice that arose

from the bedding at the bottom of homecage.

– Demonstrating the system is indeed trainable by training it to recognize the

interaction of mice with a wheel.

• Large-scale phenotypic analysis
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– Building a statistical model based on the system’s predictions to 28 animal of 4

strains in a home-cage environment over 24 hours, and showing that the statis-

tical model is able to characterize the 4 strains with an accuracy of 90%.

– Based on system’s predictions, we can reproduce the results of a previous exper-

iment that discovered the difference of grooming behaviors between 2 strains

of mice.

Chapter 6 The motion processing in the dorsal stream has been studied since 80’s [64,

177, 138, 161, 136, 137, 198, 197, 157, 58]. The existing models could explain a range

of known neuronal properties along the dorsal hierarchy. These models are however in-

complete for three reasons. First, they are not constructed to be applicable in read world

tasks. Second, most of them couldn’t explain the neural properties beyond the first two

stages (V1 and MT) of the dorsal hierarchy. Third, they couldn’t explain the recent results

of neurophysiology [144, 97]. Our main contribution is to use the model proposed for ac-

tion recognition to explain the dorsal stream qualitatively and quantitatively by comparing

outputs of model units with neuronal responses to stimuli with various types of complexity

and motion. Our specific contributions are:

• A detailed survey for the known neuronal properties along the dorsal stream.

• Design a population of spatiotemporal filters to match the statistics of V1 cells [47].

• Simulate the pattern and component sensitivity of MT cells [115].

• Simulate the continuous distribution of pattern and component sensitivity of MT cells

[161].

• Propose the origin of continuous pattern and component sensitivity MT cells.

• Simulate the speed tuned V1 complex and MT cells [144].

• Simulate the motion opponency of MT cells [180].

• Propose a combination of dorsal and ventral stream model.
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• Simulate the action/actor selectivity of STP cells [178].

36



Chapter 2

The Model

In this chapter, we describe the dorsal stream model that will be used in the next three

chapters for various tasks from computer vision to neurophysiology.

2.1 Motivation from physiology

The receptive field (RF) of a cell in the visual system is defined as the region of retina over

which one can influence the firing of that cell. In the early 1960s, David Hubel and Torsten

Wiesel mapped the receptive field structures of single cells from the primary visual cortex

of cat and monkey [68, 69] using bright slits and edges. They concluded that a majority of

cortical cells respond to edges of a particular orientation, and cells could be grouped into

”simple” or ”complex” cells, depending on the complexity of the receptive field structures.

Simple receptive field contains oriented excitatory regions in which presenting an edge

stimulus excited the cell and inhibitory regions in which stimulus presentation suppressed

responses. Hubel and Wiesel suggested simple cells structures could be shaped by receiving

inputs from several lateral geniculate cells arranged along an oriented line, as shown in

Figure 2-1.

Complex receptive fields differ from the simple fields in that they respond with sus-

tained firing over substantial regions, usually the entire receptive field, instead of over a

very narrow boundary separating excitatory and inhibitory regions. Most of the complex

cells also have larger receptive field size than simple cells. Hubel and Wiesel suggested
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Figure 2-1: A possible scheme for explaining the elongated subfields of simple receptive
field. Reprinted from [69].

Figure 2-2: A possible scheme for explaining the organization of complex receptive fields.
Reprinted from [69].

complex cells pool the response of a number of simple cells whose receptive field is lo-

cated closely in space, therefore the activation of any simple cell can drive the repones of

the complex cell, as shown in Figure 2-2.

Moving edges are more effective in eliciting responses of orientation selective cells

than stationary edges. Some cells show similar responses to the two opposite directions

perpendicular to the preferred orientation, and the rest of the cells are direction selective,

meaning cells show a clear preference of moving direction. Directional selective V1 cells

distribute in the upper layer 4 (4a, 4b, and 4Cα) and layer 6 of the visual cortex [62].

These cells then project to area MT [203], where most of neurons are direction and speed
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sensitive and the receptive field is 2 − 3 times larger than V1 direction selective neurons

[107]. MT neurons then project to MST, where neurons are tuned to complex optical-flow

patterns over a large portion of the visual field, and are invariant to the position of moving

stimulus [56]. The linked pathway of visual area V1, MT, and MST is called dorsal steam

(”where” pathway) and is thought to be specialized for the analysis of visual motion.

Non-direction selective V1 cells distribute in the layer 2, 3, and 4 (4Cβ) of the visual

cortex. They project to cortical areas V2, to V4, and then to the inferiortemporal area

(IT). IT cells respond selectively to highly complex stimuli (such as faces) and also invari-

antly over several degrees of visual angle. This pathway is called ventral stream (”what”

pathway) and is thought to be specialized for the analysis of object shape.

It was hypothesized that the two streams form functionally distinct but parallel pro-

cessing pathways for visual signals. Their computations are similar in the sense that lower

level simple features are gradually transformed into higher level complex features when

one goes along the visual streams [202].

2.2 Background: hierarchical models for object recogni-

tion

The recognition of objects is a fundamental, frequently performed cognition task with two

fundamental requirements: selectivity and invariance. For example, we can recognize a

specific face despite changes in viewpoint, scale, illumination or expression. V1 simple

and complex cells seem to provide a good base for the two requirements. As a visual signal

passes from LGN to V1 simple cells, its representation increases in selectivity; only pat-

terns of oriented edges are represented. As the signal passes from V1 simple to complex

cells the representation gains invariance to spatial transformation. Complex cells down-

stream from simple cells that respond only when their preferred feature appears in a small

window of space now represent stimuli presented over a larger region.

Motivated by the finding of Hubel and Wiesel, several models have been proposed to

arrange simple and complex units in a hierarchical network for the recognition of objects or
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digits. In these models, simple units selectively represent features from inputs, and complex

units allow for the positional positional errors in the features. The series of work starts

with the Neocognitron model proposed by Fukushima [49], followed by the convolutional

network by Lecun [88], and then HMAX by Riesenhuber & Poggio [152].

The early version of HMAX uses a limited handcrafted dictionary of features in inter-

mediate stages and is therefore too simple to deal with real-world objects of complex shape.

In its more recent version developed by Serre et al. [173], a large dictionary of intermediate

features are learned from natural images and the trained model is able to recognize objects

from cluttered scene or from a large number of object categories. HMAX could also ex-

plain neurobiology: the computations in HMAX were shown to be biologically plausible

circuits and outputs of different layers could simulate the neuronal responses in the area

V1, V4, and IT [172, 80]. A sketch of HMAX is shown in Figure 2-3.

Figure 2-3: HMAX. Figure reprinted from [152]
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2.3 The model

The problem of action recognition could be treated as a three-dimensional object recogni-

tion problem, in which selectivity to particular motion patterns (as a combination of direc-

tion and speed) and invariance to the visual appearance of the subjects play an important

role for the recognition of particular action categories. Here we propose a model for the

recognition of actions based on HMAX. Our model is also a hierarchy; where simple and

complex layers are arranged repetitively to gradually gain the specificity and invariance

of input features. The main difference from HMAX is, instead of representing oriented

edge features from stationary stimuli, our model represents motion features (directional

and speed) of stimuli. Our model is also different from HMAX in terms of detailed imple-

mentations, such as normalization of features.

Here we describe an overview of the model structure and a typical implementation. The

detailed implementation will vary depending on the particular task and will be described

in each of the subsequent chapters. The model’s general form is a hierarchy of 4 layers

S1 → C1 → S2 → C2: 2 simple layers, S1 and S2, and 2 complex layers, C1 and C2.

Features are selectively represented in the S(simple) layer using a template matching op-

eration. Features are invariantly represented accordingly in the C(complex) layer using a

max pooling operation. The model is illustrated in Figure 2-4. The first two stages (S1,

C1) are designed to mimic the receptive field structures of V1 simple and complex cells,

respectively. The latter two stages (S2,C2) are designed to repeat the computations in the

first two stages. S2 and C2 units are our prediction to neurons in the higher-level cortical

areas. We will verify this prediction in Chapter 5.

2.3.1 S1

The input to the model is a gray-value video sequence that is first analyzed by an array of

S1 units at all spatial and temporal positions. A S1 unit is a three-dimensional filter (two

in space and one in time), such as Gabor filter, tuned to a combination of motion (direction

and speed) in a particular spatial and temporal scale. Here scale refers to the spatial and

temporal size of the filter. Let I denote the light intensity distribution of a stimulus, f
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MAX

Template matching

or weighted sum

Figure 2-4: The structure of the proposed model. The model consists of a hierarchy of
layers with template matching operations (S layer) and max pooling operations (C layer).
The two types of operations increase the selectivity and invariance to position and scale
change.

denote a receptive field of a S1 unit. The linear response is computed as the convolution of

the stimulus with the unit:

f · I
||f || × ||I||

. (2.1)

The absolute value is then taken to make features invariant to contrast reversal. For the

recognition of actions in a video with frame rate 25 fps, we typically use 8 Gabor filters

tuned to 4 directions and 2 speeds. For a typical video resolution 240 × 320 (pixels), we

use one single scale representation, and filter size 9 (pixels) × 9 (pixels) × 9 (frames).

2.3.2 C1

At the next step of processing, at each point of time(frame), C1 units pool over a set of

S1 units distributed in a local spatial region by computing the single maximum response
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over the outputs of S1 units with the same selectivity (e.g. same preferred direction and

speed). To avoid over-representation of motion feature caused by continuously pooling

from adjacent spatial regions, the max-pooling is not performed at all the locations. Assume

each C1 unit pools over a spatial n×n (pixel) grid, we only use C1 units at every n/2 pixel

locations. If multiple scales of S1 units are used, a C1 unit computes the max response

in both neighboring spatial positions and across scales. As a result a C1 unit will have a

preferred velocity as its input S1 units but will respond more tolerantly to small shifts in

the stimulus position and scale.

2.3.3 S2

The S2 stage detects motion features with intermediate complexity by performing a tem-

plate matching between inputs with a set of templates(prototypes) extracted during a train-

ing phase. The template matching is performed at each position and each scale of the C1

outputs. A template is defined as a collection of responses of spatially neighboring C1 units

that are tuned to all possible selectivity at a particular scale. Each template is computed

from a small spatio-temporal patch randomly sampled from training videos. One can think

that a template corresponds to the weights of a S2 unit, and the preferred feature of the S2

unit is the template. The responses of a S2 unit to an input video can be thought of as the

similarity of the stimulus’ motion (C1 encoded) to previously seen motion patterns encoded

in the same layer (C1).

Let nl denote the number of S1/C1 selectivity (i.e. the number of tuned directions× the

number of tuned speeds) and nc the number of spatially neighboring C1 units converging

into a S2 unit, a template’s size is nc (pixels) × nc (pixels) × nl (types). A template

with large spatial size (nc) includes features from a large region and therefore has higher

complexity in the feature space than a small template. In the task of action recognition,

templates with many sizes are used to encode motion of a range of complexity. A set of

typical values is nc = 4, 8, 12, 16 (pixels).

The S2 units compute normalized dot product (linear kernel); let w denote the unit’s

weights and x a C1 patch of the same size, the response is given by:
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x ·w
||x|| × ||w||

. (2.2)

The S2 response can be treated as similarity of motion, measured in the C1 level, be-

tween the present stimulus and the stored template. The S2 response is 1 if the motion of

present stimulus is identical to the template, and close to 0 if their motion is lowly corre-

lated.

In HMAX, a Gaussian kernel (RBF kernel, as opposed to linear kernel used here) is

used to compute the S2 response:

exp−
||x−w||2

σ2 (2.3)

The parameter σ controls the sensitivity of the response to the similarity between input

features and a template. A large σ value will make the response tolerate to large deviations

from the template’s preferred feature while a small σ value will cause a unit to respond

only when the input closely resembles the stored template.

The linear kernel and Gaussian kernel are similar in the sense that they both respond

maximally when the input and stored pattern are identical, and the response decreases with

their dissimilarity. Indeed these two operations could be equivalent under some conditions,

and linear kernel is a more biologically plausible operation [80].

2.3.4 C2

In the next stage, C2 units pool a maximum response over all spatial positions and scales,

receiving input from all S2 units of the same weights (template). One can think that there

is exactly one C2 unit tuned for each template but invariant to the scale and position of the

present stimulus. In other words, we obtain a value of the best matching between all the

input local motions and a stored motion template.
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Chapter 3

A Biologically Inspired System for

Action recognition

This chapter has been published as a conference paper in 2007 [75].

Abstract
We present a biologically-motivated system for the recognition of actions from video se-
quences. The approach builds on recent work on object recognition based on hierarchical
feedforward architectures. The system consists of a hierarchy of spatio-temporal feature
detectors of increasing complexity: an input sequence is first analyzed by an array of
motion-direction sensitive units which, through a hierarchy of processing stages, lead to
position-invariant spatio-temporal feature detectors. We experiment with different types of
motion-direction sensitive units as well as different system architectures. Besides, we find
that sparse features in intermediate stages outperform dense ones and that using a simple
feature selection approach leads to an efficient system that performs better with far fewer
features. We test the approach on different publicly available action datasets, in all cases
achieving the best results reported to date.
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3.1 The problem

What is an action? Polana and Nelson [140] separated the class of temporal events into

three groups (1) temporal textures which are of indefinite spatial and temporal extent (e.g. .

flowing water). (2) activities which are temporally periodic but spatially restricted (e.g. . a

person walking), and (3) motion events which are isolated events and do not repeat either in

space or in time (e.g. . smiling). Bobick’s taxonomy is from a viewpoint of possible human

”actions” [11]. He grouped the percept of motion into movements, activity, and actions.

Movements are the most atomic motion primitives, requiring no contextual or sequence

knowledge to be recognized. Activity refers to sequences of movements or states, where

the only real knowledge required is the statistics of the sequence. Actions are larger-scale

events, which typically include interaction with the environment and causal relationships.

In this work, the term ’action’ refers to a meaningful short sequence of motions, such

as ’walking’, ’running’, ’standing’, etc. It is an union of Polana and Nelson’s group (2)

and (3): spatially restricted but not necessarily temporally periodic. It is also an union of

Bobick’s ”activity” and ”action”.

Action recognition is one of the mostly studied computer vision problem due to its im-

portant applications such as surveillance, video retrieval and archival, and human-machine

interaction. The difficulty of this task in a real world scenario comes from the large varia-

tions within action categories as well as the recording condition. For example, ”walking”

can differ in speed and stride length, and the same action observed from different view-

points can lead to very different image observations. The size and appearance difference

between individuals further increase the variation. More complex actions are even involved

in the interaction with the environment such as ”drinking from a cup”, or interaction wither

others such as ”shaking hands” or ”hitting people”. The environment in which the action

performance takes place is another important source of variation in the recording. Dynamic

backgrounds increase the complexity of localizing a person in the image due to background

clutter or partial occlusion of the person. Recording from a moving camera not only makes

human localization difficult but also distorts the movements to be different from a static

camera. A practical system for video surveillance will, for example, firstly segment all the
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persons from the background scene, then recognize actions, which might be each individ-

ual’s action or a group’s action. Most of the current action datasets were collected to test

the ”recognition” part, in which each clip (short video sequence) contains one single actor

performing one single action, and the task is to predict an action class for the clip.

The problem of action recognition in videos could be treated as three-dimensional ob-

ject recognition in a sequence of frames. Indeed, the extension of 2D shape (object) de-

scriptors to 3D motion (action) descriptors has demonstrated its success in some previous

works [85, 36, 9]. Motivated by neurophysiology experiments that studied the function and

organization of the visual cortex, a series of hierarchical architecture has been proposed for

the recognition of objects. A recent model HMAX, firstly developed by Riesenhuber &P

oggio [152] and later on extended by Serre et al. , has been shown to be a promising model.

On one side it is comparable to state of the art computer vision systems for the recogni-

tion of objects with complex appearances among a larger number of possible categories

[171, 119]. On the other side, it could explain physiological data from various cortical

areas as well as human psychophysics [172, 80]. In this work, we describe a system that

extends HMAX from representing 2D objects to representing 3D actions and apply it for

the recognition of actions in videos collected under real-world scenarios.

3.2 Previous work

Early progress of human action recognition has been achieved by shape-based parametric

models of the human skeleton [98, 61, 14, 220, 147, 17]. These systems are based on the

assumption that a moving object consists of several parts, and the time-varying relative

positions of these parts characterize its action. These approaches rely on the tracking of

object parts, and are suitable for recognizing actions of articulated objects such as human

(see [51] for a review) but don’t apply to less articulated objects such as mice [36].

More recent work shift to the paradigm that characterizes actions based on the motion

patterns obtained from the space-time video volume. The representation of motion pat-

terns can be grouped based on their scale: local or global (A complete review of action

recognition algorithms is in [109, 199, 141]).
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3.2.1 Global representation

Global representations encode the space-time volume of a person as a whole, as shown in

Figure3-1. The volume is usually obtained through background subtraction or tracking.

Common global representations are derived from silhouettes, edges or optical flow. They

are sensitive to imperfect background subtraction, noise, partial occlusions and variations

in viewpoint. They also have the disadvantage of not being able to distinguish the actions

of less articulated objects. One of the earliest work by Bobick and Davis is to use silhou-

ettes from a single view and aggregate differences between subsequent frames of an action

sequence [11, 10]. This results in a motion history image (MHI). Other silhouettes-based

works are [223, 9, 213, 182]. Instead of silhouette shape, motion information can be used.

Efros et al. [38] calculated optical flow centering around human in very low-resolution

videos.

Actions as Space-Time Shapes

Moshe Blank Lena Gorelick Eli Shechtman Michal Irani Ronen Basri

Dept. of Computer Science and Applied Math.
Weizmann Institute of Science

Rehovot 76100, Israel

Abstract

Human action in video sequences can be seen as sil-
houettes of a moving torso and protruding limbs undergo-
ing articulated motion. We regard human actions as three-
dimensional shapes induced by the silhouettes in the space-
time volume. We adopt a recent approach [9] for analyzing
2D shapes and generalize it to deal with volumetric space-
time action shapes. Our method utilizes properties of the so-
lution to the Poisson equation to extract space-time features
such as local space-time saliency, action dynamics, shape
structure and orientation. We show that these features are
useful for action recognition, detection and clustering. The
method is fast, does not require video alignment and is ap-
plicable in (but not limited to) many scenarios where the
background is known. Moreover, we demonstrate the ro-
bustness of our method to partial occlusions, non-rigid de-
formations, significant changes in scale and viewpoint, high
irregularities in the performance of an action and low qual-
ity video.

1. Introduction

Recognizing human action is a key component in many
computer vision applications, such as video surveillance,
human-computer interface, video indexing and browsing,
recognition of gestures, analysis of sports events and dance
choreography. Some of the recent work done in the area of
action recognition [7, 21, 11, 17] have shown that it is use-
ful to analyze actions by looking at the video sequence as
a space-time intensity volume. Analyzing actions directly
in the space-time volume avoids some limitations of tra-
ditional approaches that involve the computation of opti-
cal flow [2, 8] (aperture problems, smooth surfaces, singu-
larities, etc.), feature tracking [20, 4] (self-occlusions, re-
initialization, change of appearance, etc.), key frames [6]
(lack of information about the motion). Most of the above
studies are based on computing local space-time gradients
or other intensity based features and thus might be unreli-

Figure 1. Space-time shapes of “jumping-jack”, “walking” and
“running” actions.

able in cases of low quality video, motion discontinuities
and motion aliasing.

On the other hand, studies in the field of object recog-
nition in 2D images have demonstrated that silhouettes
contain detailed information about the shape of objects
e.g., [16, 1, 9, 5]. When a silhouette is sufficiently detailed
people can readily identify the object, or judge its similarity
to other shapes.

Our approach is based on the observation that the human
action in video generates a space-time shape in the space-
time volume (see Fig. 1). These space-time shapes contain
both spatial information about the pose of the human figure
at any time (location and orientation of the torso and the
limbs, aspect ratio of the different body parts), as well as
the dynamic information (global body motion and motion
of the limbs relative to the body). Several other approaches
use information that could be derived from the space-time
shape of an action. [3] uses motion history images repre-
sentation and [14] analyzes planar slices (such as x-t planes)
of the space-time intensity volume. Note, that these meth-
ods implicitly use only partial information about the space-
time shape. Methods for 3D shape analysis and matching
have been recently used in computer graphics (see survey
in [18]). However, in their current form, they do not apply
to space-time shapes due to the non-rigidity of actions, the
inherent differences between the spatial and temporal do-
mains and the imperfections of the extracted silhouettes.

1

Figure 3-1: Global space-time shapes of ”jumping-jack”, ”walking”, and ”running”. Figure
reprinted from [9]

3.2.2 Local representation

Local representations describe the observation as a collection of local descriptors or patches

(bag of words) [85, 165, 36, 43, 121, 87, 123, 164, 86, 5], as shown in Figure 3-2. The

procedure is as follows: fist spatio-temporal points are sampled or detected at regions of

interest, and a descriptor is applied to represent a small patch around these points. Fi-

nally, the patch representations are combined into a vector representation for the whole

clip. A benchmark paper [210] compares many types of descriptors and evaluates their

performance on a set of datasets such as KTH, UCF sports and HollyWood2. Local repre-

sentations are less sensitive to noise, changes in viewpoint, person appearance, and partial
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occlusion. It doesn’t not strictly require accurate localization, background subtraction or

tracking. However, the simplicity of local unordered representation will prevent it from

being discriminative when the number of action categories increases.

Behavior Recognition via Sparse Spatio-Temporal Features

Piotr Dollár Vincent Rabaud Garrison Cottrell Serge Belongie

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093 USA
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Abstract

A common trend in object recognition is to detect and lever-
age the use of sparse, informative feature points. The use
of such features makes the problem more manageable while
providing increased robustness to noise and pose variation.
In this work we develop an extension of these ideas to the
spatio-temporal case. For this purpose, we show that the
direct 3D counterparts to commonly used 2D interest point
detectors are inadequate, and we propose an alternative.
Anchoring off of these interest points, we devise a recogni-
tion algorithm based on spatio-temporally windowed data.
We present recognition results on a variety of datasets in-
cluding both human and rodent behavior.

1. Introduction

In this work we develop a general framework for detecting
and characterizing behavior from video sequences, making
few underlying assumptions about the domain and subjects
under observation. Consider some of the well known diffi-
culties faced in behavior recognition. Subjects under ob-
servation can vary in posture, appearance and size. Oc-
clusions and complex backgrounds can impede observation,
and variations in the environment, such as in illumination,
can further make observations difficult. Moreover, there are
variations in the behaviors themselves.

Many of the problems described above have counter-
parts in object recognition. The inspiration for our approach
comes from approaches to object recognition that rely on
sparsely detected features in a particular arrangement to
characterize an object, e.g. [6, 1, 18]. Such approaches tend
to be robust to pose, image clutter, occlusion, object vari-
ation, and the imprecise nature of the feature detectors. In
short they can provide a robust descriptor for objects with-
out relying on too many assumptions.

We propose to characterize behavior through the use of
spatio-temporal feature points (see figure 1). A spatio-
temporal feature is a short, local video sequence such as

Figure 1: Visualization of cuboid based behavior recognition. Spatio-
temporal volume of mouse footage shown at top. We apply a spatio-
temporal interest point detector to find local regions of interest in space
and time (cuboids) which serve as the substrate for behavior recognition.

an eye opening or a knee bending, or for a mouse a paw
rapidly moving back and forth. A behavior is then fully de-
scribed in terms of the types and locations of feature points
present. The motivation is that an eye opening can be char-
acterized as such regardless of global appearance, posture,
nearby motion or occlusion and so forth, for example, see
figure 2. The complexity of discerning whether two behav-
iors are similar is shifted to the detection and description of
a rich set of features.

Although the method is inspired by approaches to object
recognition that rely on spatial features, video and images
have distinct properties. The third dimension is temporal,
not spatial, and must be treated accordingly. Detection of
objects in 3D spatial volumes is a distinct problem, see for
example [8].

In this work we show that direct 3D counterparts to com-
monly used 2D interest point detectors are inadequate for
detection of spatio-temporal feature points and propose an
alternative. We also develop and test a number of descrip-

1

Figure 3-2: Local space-time interest points detected from a space-time shape of a mouse.
Figure reprinted from [36]

3.3 System Overview

The system follows a standard procedure for pattern recognition, it firstly converts an input

video from gray pixel values into a set of feature representations, then uses the supervised

learning technique to train a classifier from a set of feature vectors as well as their labels.

The feature representation is based on the four layer hierarchical model( S1 → C1 →

S2 → C2) described in Chapter 2. By alternating between a maximum operation in the C

stage to gain the invariance, and a template matching operation in the S stage to gain the

selectivity and complexity of features, the model gradually builds a representation which is

tolerant to 2D changes (e.g. the variation of position or appearance of an actor in the visual

field) yet specific enough so as to allow fine discrimination between similar actions (e.g.

jogging and running) . We also experimented with adding two extra layers S3 → C3 on top

of the C2 layer to account for the selectivity and invariance in time. Here We consider two

types of features. One is the C2 output computed for each frame. Note that a C2 feature
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Figure 3-3: Sketch of the model for action recognition (see text for details).

vector is computed for each frame, but the computation in the S1 stage already incorporates

information in the temporal dimension. Another one is the C3 output computed for each

video. The classification is done with a support vector machine (SVM). The model is

illustrated in Figure 3-3

3.4 Representation stage

A general implementation and function of the model is described in Chapter 2, here we

experimented with different implementations and parameter settings in the S1 and S2 stage,

with the goal of building a robust feature representation of actions. On top of the S1 →

C1 → S2 → C2 stages, we also experimented with adding one more simple and complex

layer S3 → C3 to increase the specificity and invariance in the time domain.

3.4.1 Motion-direction sensitive S1 units

In order to extend HMAX from representing objects to representing actions, we experi-

mented with 3 types of motion-direction sensitive S1 units: gradient based units, optical

flow based units, and space-time oriented filters [177], which have been shown to be good
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models for the motion-sensitive simple cells in the primary visual cortex [117].

Space-time gradient-based S1 units: This type of S1 units is based on space and time

gradients, which were used for instance, in the system by Zelnik-Manor & Irani [223].

The spatial gradients along the x and y axis for each frame are denoted as Ix and Iy, and

the temporal gradient of adjacent frames as It. Motivated by the optical-flow algorithms

that are based on the constant-brightness assumption, we consider two types of S1 units:

|It/(Ix + 1)| and |It/(Iy + 1)|. The absolute value is taken to make features invariant to

contrast reversal.

Optical flow based S1 units: We also experimented with S1 units that compute responses

based on the optical flow of the input image sequence using the Lucas & Kanade’s algo-

rithm [95]. We denote θ and ν, the direction and magnitude of the optical flow at each

pixel position at the current frame. As in [52], the response of a S1 unit was obtained by

applying the following equation:

b(θ, θp) = {1
2
[1 + cos(θ − θp)]}q × exp(−|ν−νp|), (3.1)

where θp is the preferred direction of the S1 unit and νp is the preferred speed. We use to-

tally 8 types of units with 4 preferred directions θp = 0o, 90o, 180o, 270o and two preferred

speeds, an intermediate one (νp = 3) and a higher one (νp = 6 pixels / frame). The constant

q, which controls the bandwidth of the direction tuning curve, is set to q = 2 as in [52, 24].

Space-time oriented S1 units: These units constitute the most direct extension to the

object recognition systems by Serre et al. [171, 119]. In [171, 119], S1 units are 2D

Gabor filters at multiple orientations. A natural way to extend these filters to the analysis

of motion is to add a third dimension (temporal dimension) to their receptive fields.

Several specific implementations of such motion-direction selective cells have been

proposed [52]. Here we used the implementation by Simoncelli & Heeger which uses (3rd)

derivatives of Gaussians [177]. These filters have been shown to agree quantitatively with

the RF profiles of some direction selective simple cells in the primary visual cortex [117].

As for the optical flow based S1 units, we used 8 space-time filters tuned to 4 directions
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(0o, 90o, 180o, 270o) and 2 speeds (3 and 6 pixels/ frame). The receptive field size of each

S1 unit is 9 pixels ×9 pixels ×9 frames (a typical video frame rate is 25fps). The filter

outputs were half-wave rectified.

3.4.2 C1 stage

At the C1 stage, a local max is computed over an 8 × 8 grid of S1 units with the same

selectivity. C1 units are computed at every 4 pixels, which is designed to be half the size of

the pooling region.

3.4.3 S2 templates of intermediate complexity

A S2 template is a collection of responses of spatially neighboring C1 units that are tuned to

all possible selectivity, it could be treated as motion patterns learned from training videos.

A template’s size is nc (pixels) × nc (pixels)× nl (types). nl is the number of S1/C1 selec-

tivity, the value is 2, 8, 8 for the gradient based, optical flow based, and space-time oriented

S1 units, respectively. nc is the number of spatially neighboring C1 units converging into a

S2 unit. To include motion patterns ( encoded as C1 responses) in a range of spatial scales,

we use four sizes, nc = 4, 8, 12, 16 (pixels).

To obtain the S2 templates from all types of actions, we randomly extract 500 patches

from C1 outputs of training videos for each action category and for each template size.

This leads to 2,000 stored templates per action category and a total number of templates

d1 = 10, 000− 18, 000 for a dataset containing 5-9 action categories.

3.4.4 S2 template matching

Recently, Mutch & Lowe showed that S2 features can be sparsified leading to a signifi-

cant gain in performance [119] on standard object recognition datasets (see also [148]).

Motivated by this finding, we experiment with the dense as well as sparse S2 features.

In our experiments (Section 3.6.4), we compare two alternative S2 template repre-

sentations: the dense Euclidean distance adapted from [171] and the sparse normalized

dot-product suggested by [119]. For the dense template [171], the template matching is
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Figure 3-4: An illustration of a dense S2 template [171] (a) vs. a sparse S2 template [119]
(b).

computed over all nl × n2
c coefficients of the template. For the sparse template, only the

strongest coefficients among all the S1/C1 types are stored for each pixel location of the

template. Thus only n2
c sparse coefficients are stored for matching. The difference between

dense and sparse S2 features is illustrated in Figure 3-4.

3.4.5 C2 feature selection with zero-norm SVM

In the same publication of Mutch & Lowe [119], they also showed that applying a simple

feature selection technique to the C2 features can lead to an efficient system which can

perform better with less features. Here we experiment with the zero-norm SVM [215]

feature selection technique.

The SVM classifier tries to optimize the objective function:

||w||0 + C
N∑

i=1

ζi, such that (wTxi + b) > 1− ζi (3.2)

The zero norm ||w||0 here indicates the count of the features used. In practice this is done in

multiple rounds. At each round a SVM classifier is trained on a pool of C2 vectors randomly

selected from the training set, and each dimension of the vectors is then re-weighted using

the weights of the hyperplane computed by the SVM. Typically this leads to sparser C2

vectors at each round. As described in Chapter 2, each value of a C2 vector corresponds

to the best matching with a motion template. At each round, a set of features (motion

templates) that receives weights higher than some threshold is selected. In Section 3.6.4,
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we compare the performance at each round using the selected features.

3.4.6 S3 and C3 stage

The perception of actions is selective to temporal order: randomization of the temporal

order usually destroys the perception of the movement. While the C2 vectors achieve a

high degree of selectivity to complex motion patterns and spatial invariance, they lack

selectivity to temporal-orders and invariance to shifts in time. We experimented with the

addition of a S layer (S3) that adds the temporal order selectivity, and a C layer C3 that

adds the temporal invariance to the features representations.

A S3 template encodes the temporal order of an action by collecting C2 vectors com-

puted from 7 consecutive frames, resulting in a size d1 dimensions × 7 frames ( d1 is the

dimension of a C2 vector as well as the number of S2 templates). Similarly to the sparse

features described in section 3.4.4, here for each C2 vector, only the top 50% coefficients

with largest values are stored for matching. We select d2 = 300 S3 templates at random

frames from random training clips.

For each frame of an input video, we perform a template matching between d2 S3 tem-

plates and 7 consecutive C2 vectors centering at current frame, the S3 response is computed

according to Equation 2.2. The C3 response is then computed as maximum S3 response

over the whole duration of the video for each S3 template. This results in d2 C3 responses,

this d2 dimensional vector is then used to represent the whole clip. The C3 representation

is selective to the temporal order and invariant to the shifts in time, meaning, in order for

two video sequences to have similar C3 vectors, they have to have the same temporal order,

but aren’t necessary aligned in time.

3.5 Classification stage

The final classification stage is a linear multi-class SVM classifier trained using the all-pairs

method. We experimented with classifying outputs of the C2 stage and the C3 stage.

When passing C2 features into the classifier, each training point is a C2 vector computed

for a random frame, the label of the point is the action category frame which the frame is
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sampled. For a test clip, we thus obtain a classification label for each frame as well. The

predicted label for the entire clip was obtained by a majority voting across predictions for

all its frames.

When passing C3 features into the classifier, each training point is a C3 vector computed

for a random clip, the label of the point is the action category of the clip. For a test clip, a

single prediction is obtained for the entire clip.

3.6 Experiments

We have conducted an extensive set of experiments to evaluate the performance of the

proposed action recognition system on three publicly available datasets: two human action

datasets (KTH and Weizmann) and one mice action dataset (UCSD). For each dataset, the

system’s performance is the average of 5 random splits. The KTH Human Set and the

Weizmann Human Set were recorded under static background and the actions are whole-

body motion. The UCSD Mice Behavior Set is the most challenging one because the

actions of the mice are minute (see Figure 3-5 for examples) and because the background

of the video is typically noisy (due to the litter in the cage).

3.6.1 Preprocessing

Instead of computing features on a whole frame, we speed-up the experiment by computing

features on a bounding box surrounding the moving subject. For the KTH human and

UCSD mice datasets we used the openCV GMM background subtraction technique based

on [184]. In short, a mixture of Gaussians are modeled at each spatial (pixel) location over

the entire clip to identify whether the current pixel belongs to the foreground. For each

frame, we compute the center of all the foreground pixels, denoted as c(x, y), and then

compute a bounding box (full height and half the width of the frame) centering at c(x, y).

For the Weizmann Human dataset, the bounding boxes were extracted directly from the

foreground masks provided with the dataset. Figure 3-6 shows snapshots of the actions in

the three datasets.
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Figure 3-5: Sample videos from the mice dataset (1 out 10 frames displayed with a frame
rate of 15 Hz) to illustrate the fact that the mice behavior is minute.

3.6.2 Datasets

KTH human: The KTH Human Set [165] contains 600 clips (6 types of human actions×

25 human subjects × 4 recording conditions). The six types of human actions are walking,

jogging, running, boxing, hand waving and hand clapping. These actions are performed

several times by twenty-five subjects in four different conditions: outdoors (s1), outdoors

with scale variation (s2), outdoors with different clothes (s3) and indoors with lighting

variation (s4). The sequences are about 4 seconds in length and were down-sampled to

a spatial resolution of 160 × 120 pixels. We split the dataset as: actions of 16 randomly

drawn subjects for training and that of the remaining 9 subjects for testing.

Weizmann human: The Weizmann Human Set [9] contains 81 clips (9 types of human

actions × 9 human subjects) with nine subjects performing nine actions: running, walk-

ing, jumping-jack, jumping forward on two legs, jumping in place on two legs, galloping-

sideways, waving two hands, waving one hand, and bending. The sequences are about 4

seconds in length and with spatial resolution of 180 × 144 pixels. We split the dataset as:

actions of 6 randomly drawn subjects for training and of the remaining 3 subjects for test-

ing. The size of a subject in this dataset is about half the size of a subject in the KTH human

action dataset. However, we run experiments on the two sets using the same parameters.

UCSD mice: The UCSD Mice Behavior Set [36] contains 435 clips ( 5 actions of 7

mice subjects, each being recorded at different points of time in a day such that multiple

occurrences of actions within each subset vary substantially). There are five actions in
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Figure 3-6: Illustration of KTH, Weizmann, and UCSD dataset.

total: drinking, eating, exploring, grooming and sleeping. The sequences have a resolution

of 240 × 180 pixels and a duration of about 10 seconds. This dataset presents a double

challenge. First the actions of the mice are minute (see Figure 3-5 for examples) and

second the background of the video is typically noisy (due to the litter in the cage). Each

split, we randomly choose 4 subsets for training and the remaining 3 subsets for testing.

3.6.3 Benchmark algorithms

For benchmark we use the algorithm by Dollar et al. which has been compared favorably

to several other approaches [223, 38, 121] on the KTH human and UCSD mice datasets

described earlier. In short, the approach detects interest points in the spatio-temporal do-

main and extracts cuboids, i.e. spatio-temporal windows of pixel values, around each point

detected. These cuboids are further matched to a dictionary of cuboid-prototypes learned

from sequences in the training set. Finally, a vector description is obtained by computing

the histogram of cuboid-types of each video, and a SVM classifier is used for classification.

The code for was graciously provided by Piotr Dollar.

3.6.4 Results

We have studied several aspects and design alternatives for the system. First we show

that the zero-norm feature selection can be applied to the C2 units and that the number
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of features can be reduced from 12, 000 down to ≈ 500 without sacrificing accuracy. We

then proceeded to apply feature selection for all the remaining experiments and compare

different types of motion-direction sensitive input units. We also compared the performance

of sparse vs. dense C2 features and present initial preliminary results with the addition of a

high-level C3 stage.

Selecting C2 features with the zero-norm SVM

The following experiment looks at feature selection and in particular how the performance

of the system depends on the number of selected features. For this experiment, we used

space-time oriented S1 units and sparse C2 features. Performance is evaluated on the four

conditions of the KTH dataset. For computational reason the performance reported is based

on a single split of the KTH dataset. In the first iteration, all 12, 000 motion patterns ex-

tracted from the training set were used to compute the C2 features. In each of the following

iteration, only features (motion patterns) with a weight |wi| > 10−3 were selected.

1 5 10 15 20
s1 No. feat. 12000 3188 250 177 158

accu. 91.7 91.7 89.3 88.9 90.3
S2 No. feat. 12000 4304 501 340 301

accu. 86.6 86.6 85.2 87.0 85.7
s3 No. feat. 12000 3805 392 256 224

accu. 90.3 90.7 89.4 88.4 88.0
s4 No. feat. 12000 3152 313 217 178

accu. 96.3 96.3 96.3 95.3 95.0
Avg accu. 91.2 91.3 90.1 90.0 89.8

Table 3.1: Selecting features: System performance for different number of selected C2

features at rounds 1, 5, 10, 15 and 20 (see text for details).

Table 3.1 compares the performance of each round. In agreement with previous results

on object recognition [119], we found that it is possible to reduce the number of C2 features

quiet dramatically (from∼ 104 down to∼ 102) with minimal loss in accuracy. This is likely

due to the fact that during learning, the S2 prototypes were extracted at random locations

from random frames. It is thus expected that most of the prototypes should belong to the
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background and should not carry much information about the category of the action. In the

following, feature selection was performed on the C2 features for all the results reported.

Comparing different C2 feature-types with baseline

Table 3.2 gives a comparison between C2 features computed from three S1/C1 types: gra-

dient based GrC2, optical flow based OfC2 and space-time oriented StC2 features. In

each column, the number on the left vs. the right corresponds to the performance of dense

[171] vs. sparse [119] C2 features (see Section 3.3 for details). s1, . . . s4 corresponds to the

different conditions of the KTH database (see Section 3.6.2).

Overall the sparse space-time oriented and the gradient-based C2 features (GrC2 and

StC2) perform about the same. The poor performance of the OfC2 features on the UCSD

mice dataset is likely due to the presence of the litter in the cage which introduces high-

frequency noise. The superiority of sparse C2 features over dense C2 features is in line with

the results of [119] for object recognition.

[36] GrC2 OfC2 StC2

KTH s1 88.2 94.3 / 92.7 92.8 / 93.3 89.8 / 96.0
s.e.m. s1 ±1.9 ±1.7 / ±3.2 ±2.8 / ±2.9 ±3.1 / ±2.1

KTH s2 68.3 86.0 / 86.8 80.7 / 83.1 81.3 / 86.1
s.e.m. S2 ±2.1 ±3.9 / ±3.9 ±4.0 / ±3.9 ±4.2 / ±4.6

KTH s3 78.5 85.8 / 87.5 89.1 / 90.0 85.0 / 88.7
s.e.m. s4 ±2.9 ±2.7 / ±3.3 ±3.8 / ±3.5 ±5.3 / ±3.2

KTH s4 90.2 91.0 / 93.2 92.9 / 93.5 93.2 / 95.7
s.e.m. s4 ±1.8 ±2.0 / ±1.9 ±2.2 / ±2.3 ±1.9 / ±2.1

Avg 81.3 89.3 / 90.0 88.9 / 90.0 87.3 /91.6
s.e.m. Avg ±2.2 ±2.6 / ±3.1 ±3.2 / ±3.1 ±3.6 / ±3.0

UCSD 75.6 78.9 / 81.8 68.0 / 61.8 76.2 / 79.0
s.e.m. ±4.4 ±4.3 / ±3.5 ±7.0 / ±6.9 ±4.2 / ±4.1

Weiz. 86.7 91.1 / 97.0 86.4 / 86.4 87.8 / 96.3
s.e.m. ±7.7 ±5.9 / ±3.0 ±9.9 / ±7.9 ±9.2 / ±2.5

Table 3.2: Comparison between three types of C2 features (gradient based GrC2, optical
flow based OfC2 and space-time oriented StC2) and between dense vs. sparse C2 features.
In each column, the number on the left vs. the right corresponds to the performance of dense
[171] vs. sparse [119] C2 features. Avg is the mean performance across the 4 conditions
s1, . . . s4. Below the performance on each dataset, we indicate the standard error of the
mean (s.e.m.).
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Comparing different C3 feature-types

We have started to experiment with high-level C3 features. Table 3.3 shows some initial

results with C3 features computed from three S1/C1 types: gradient based GrC3, optical

flow based OfC3 and space-time oriented StC3 features. In each column, the number to the

left vs. the right corresponds to the performance of C3 features computed from dense [171]

vs. sparse [119] C2 features. For the KTH dataset, the results are based on the performance

on a single split. Overall the results show a small improvement using the C3 features vs.

C2 features on two of the datasets (KTH and Weiz) and a decrease in performance on the

third set (UCSD).

GrC3 OfC3 StC3

KTH s1 92.1 / 91.3 84.8 / 92.3 89.8 / 96.0
KTH s2 81.0 / 87.2 80.1 / 82.9 81.0 / 86.1
KTH s3 89.8 / 90.3 84.4 / 91.7 80.6 / 89.8
KTH s4 86.5 / 93.2 84.0 / 92.0 89.7 / 94.8

Avg 87.3 / 90.5 83.3 / 89.7 85.3 / 91.7
UCSD 73.0 / 75.0 62.0 / 57.8 71.2 / 74.0
Weiz. 70.4 / 98.8 79.2 / 90.6 83.7 / 96.3

Table 3.3: Comparison between three types of C3 features (gradient based GrC3, optical
flow based OfC3 and space-time oriented StC3). In each column, the number to the left
vs. the right corresponds to the performance of C3 features computed from dense [171] vs.
sparse [119] C2 features. Avg is the mean performance across the 4 conditions s1, . . . s4.
Below the performance on each dataset, we indicate the standard error of the mean (s.e.m.).

Running time of the system

A typical run of the system takes a little over 2 minutes per video sequence (KTH human

database, 50 frames, Xeon 3Ghz machine), most of the run-time being taken up by the

S2 +C2 computations (only about 10 seconds for the S1 +C1 or the S3 +C3 computations).

We have also experimented with a standard background subtraction technique [184]. This

allows us to discard about 50% of the frame thus cutting down processing time by a factor

of 2 while maintaining a similar level of accuracy. Finally, our system runs in Matlab

but could be easily implemented using multi-threads or parallel programming as well as
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General Purpose GPU for which we expect a significant gain in speed.

3.7 Conclusion

We have applied a biological model of motion processing to the recognition of human

and animal actions. The model accounts only for part of the visual system, the dorsal

stream of the visual cortex, where motion-sensitive feature detectors analyze visual inputs.

It has also been suggested [52] that another part of the visual system, the ventral stream

of the visual cortex, involved with the analysis of shape may also be important for the

recognition of motion (consistent with recent work in computer vision [121] which has

shown the benefit of using shape features in addition to motion features for the recognition

of actions). Future work will extend the present approach to integrate shape and motion

information from the two pathways. Another extension is to incorporate top-down effects,

known to play an important role for the recognition of motion (e.g. [174]), to the present

feedforward architecture.
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Chapter 4

HMDB: A Large Video Database for

Human Motion Recognition

This chapter is currently under submission [82].

Abstract
With nearly one billion online videos viewed everyday, an emerging new frontier in com-
puter vision research is recognition and search in video. While much effort has been
devoted to the collection and annotation of large scalable static image datasets contain-
ing thousands of image categories, human action datasets lack far behind. Current action
recognition databases contain on the order of ten different action categories collected un-
der fairly controlled conditions. State-of-the-art performance on these datasets is now near
ceiling and thus there is a need for the design and creation of new benchmarks. Here we
collected the largest action video database to-date with 51 action categories and around
7,000 manually annotated clips extracted from a variety of sources ranging from digitized
movies to YouTube. We use this database to evaluate the performance of two representative
computer vision systems for action recognition and explore the robustness of these methods
under various conditions such as camera motion, viewpoint, video quality and occlusion.
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Figure 4-1: Illustrations of the 51 actions in the HMDB51, part I.

4.1 Introduction

With several billions of videos currently available on the internet and approximately 24

hours of additional video uploaded to YouTube every minute, there is an immediate need

for robust algorithms that could help organize, summarize and retrieve this massive amount

of data. While much effort has been devoted to the collection of realistic internet-scale

static image databases [159, 193, 194, 217, 35, 41], current action recognition datasets

lag far behind. The three most popular benchmark databases (i.e. KTH [165], Weizmann

[9] and the IXMAS [213]) datasets contain around 6-11 actions each (see Table 4.1 for a

comparison between existing action recognition datasets). These databases are not quite

representative of the richness and complexity of real-world action videos as they are fairly

well constrained in terms of illumination and camera position. A typical video clip contains

a single (staged) actor with no occlusion and very limited clutter.

Recognition rates on these datasets tend to be very high. For instance, a recent survey

of action recognition system comparison [214] reported that 12 out of the 21 systems tested

perform better than 90% on the KTH dataset. For the Weizmann dataset, 14 out of 16 tested

systems perform at 90% or better, 8 out 16 better than 95%, and 3 out of 16 scored a perfect
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Figure 4-2: Illustrations of the 51 actions in the HMDB51, part II.

100% recognition rate. In this context, we describe an effort to advance the field with the

design and collection of a large video database containing 51 distinct action categories,

dubbed the Human Motion DataBase (HMDB51), that tries to capture the richness and

complexity of human actions (see Figure 4-1, 4-2).

The Hollywood2 and UCF50 datasets are two examples of a recent effort to try to build

more realistic action recognition datasets by considering video clips taken from HollyWood

movies and YouTube. These datasets are more challenging due to large variations in camera

motion, object appearance, changes in the position, scale and viewpoint of the actor(s) as

well as cluttered background. The UCF50 and a preliminary version UCF Sports Action

Dataset as well as a recently introduced Olympic sports dataset [122] contain mostly sports

videos from YouTube. These types of actions are relatively unambiguous (as a result of

searching for specific titles on YouTube), and are highly distinguishable from shape cues

alone (such as the raw positions of the joints or the silhouette extracted from single frames).

To demonstrate this point, we conducted a simple experiment: Using Amazon mechan-

ical Turk, we manually annotated stick-figures from 5 random clips for each of the 13

action categories on the UCF YouTube Sport Dataset, as illustrated in Figure 4-3. Using
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Figure 4-3: An stick-figure annotated on YouTube Action Dataset. The nine line segments
correspond to the two upper arms (red), the two lower arms(green), the two upper legs
(blue), the two lower legs (white), and the body trunk (black).

a leave-one-clip-out procedure, classifying the raw joint locations from single frames lead

to a recognition rate above 98% (chance level 8%). This would suggest that kinematics

does not play any role in the recognition of biological motion and does not seem realis-

tic of real-world scenarios. For instance, using a point-light walker stimulus, Johansson

famously demonstrated decades ago that joint kinematics play a critical role for the recog-

nition of biological motion by human observers [76].

We conducted a very similar experiment on the proposed HMDB51 database described

in this paper where we drew from 10 action categories similar to those used in the UCF (e.g.

climb, climb-stairs, run, walk, jump, etc. .) and manually annotated the joint locations for a

set of over 1,100 random clips. The accuracy reached by a classifier using the joint location

computed from single frames as inputs reached only 35% this time (chance level 10%) and

performed below the level of performance of the same classifier, using instead motion cues

(e.g. the HOG/HOF features described below performed at 54% on the HMDB and 66%

on the UCF50). Such a dataset may thus be a better indicator of the capability of real-world

action recognition systems and the relative contributions of motion vs. shape cues, which

are known to play a critical role in the recognition of actions in biological vision [191].
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4.2 Background: existing action datasets

This section and Table 4.1 summarize the existing action datasets. Also see a recent paper

for a similar summarization [141].

KTH Action Dataset The KTH Action Dataset [165] contains 600 clips (6 types of hu-

man actions × 25 human subjects × 4 recording conditions). The six types of human

actions are walking, jogging, running, boxing, hand waving and hand clapping. These

actions are performed several times by twenty-five subjects in four different conditions:

outdoors, outdoors with zooming, outdoors with different clothes and indoors with lighting

variation. The sequences are about 4 seconds in length and were down-sampled to a spa-

tial resolution of 160 × 120 pixels. The backgrounds are relatively static with only slight

camera movement.

Weizmann Action Dataset The Weizmann Action Dataset [9] contains 81 clips (9 types

of human actions × 9 human subjects) with nine subjects performing nine actions: run-

ning, walking, jumping-jack, jumping forward on two legs, jumping in place on two legs,

galloping-sideways, waving two hands, waving one hand, and bending. The sequences are

about 4 seconds in length and with spatial resolution of 180×144 pixels. The backgrounds

are static and foreground silhouettes are included in the dataset. The viewpoint is also

static.

INRIA XMAS multi-view dataset The IXMAS dataset [213] contains 11 actions cap-

tured from five viewpoints, each performed 3 times by 10 actors (5 males / 5 females).

The 11 actions are check watch, cross arms, scratch head, sit down, get up, turn around,

walk, wave, punch, kick, and pick up. The backgrounds illumination settings are static.

Silhouettes and volumetric voxel representations are part of the dataset.

UCF Sports Action Dataset The UCF Sports Action Dataset [156] contains a set of ac-

tions from various sports featured on broadcast television channels such as the BBC and

ESPN. The 9 actions in this dataset include diving, golf swinging, kicking, lifting, horse-
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back riding, running, skating, swinging a baseball bat, and pole vaulting. The dataset

contains over 200 video sequences at a resolution of 720× 480 pixels. Bounding boxes of

the human figure are provided with the dataset. For most action classes, there is consid-

erable variation in action performance, human appearance, camera movement, viewpoint,

illumination and background.

UCF YouTube Action Dataset The UCF YouTube Action Dataset [91] contains 11 ac-

tion categories: basketball shooting, biking/cycling, diving, golf swinging, horse back rid-

ing, soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking,

and walking with a dog. The clips are collected from YouTube and contain variations in

camera motion, object appearance and pose, object scale, viewpoint, cluttered background,

illumination conditions, etc. For each action category, there are 25 groups of videos with

more than 4 clips per group. The clips in the same group are performed by the same actor

and have similar background and viewpoint.

Hollywood human action dataset & Hollywood2 The Hollywood human action dataset

[86] contains eight actions (answer phone, get out of car, handshake, hug, kiss, sit down,

sit up and stand up), extracted from Hollywood movies. The second version of the dataset

[99] includes four additional actions (drive car, eat, fight, run) and an increased number

of clips. There is a huge within class variation, and occlusions, camera movements and

dynamic backgrounds make this dataset challenging. Most of the samples are at the scale

of the upper-body but some show the entire body or a close-up of the face.

Olympic Sports Dataset The Olympic Sports Dataset [122] contains 50 YouTube videos

from each of 16 classes: high jump, long jump, triple jump, pole vault, discus throw,

hammer throw, javelin throw, shot put, basketball layup, bowling, tennis serve, platform

(diving), springboard (diving), snatch (weightlifting), clean and jerk (weightlifting) and

vault (gymnastics). The clips contain occlusions and camera movements and the motion

is the composition of many short actions. For instance, sequences from the long-jump

action class, show an athlete first standing still, in preparation for his/her jump, followed

by running, jumping, landing and finally standing up.
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Table 4.1: Comparison between existing datasets.

Dataset Year Actions Clips
KTH 2004 6 100
Weizmann 2005 9 9
IXMAS 2006 11 33
Hollywood 2008 8 30-129
UCF Sports 2009 9 14-35
Hollywood2 2009 12 61-278
UCF YouTube 2009 11 100
Olympic 2010 16 50
UCF50 2010 50 min. 100
HMDB51 2011 51 min. 101

UCF50 Dataset The UCF50 Dataset contains 50 action categories collected from YouTube:

Baseball Pitch, Basketball Shooting, Bench Press, Biking, Biking, Billiards Shot,Breaststroke,

Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, Playing Guitar, High Jump,

Horse Race, Horse Riding, Hula Hoop, Javelin Throw, Juggling Balls, Jump Rope, Jump-

ing Jack, Kayaking, Lunges, Military Parade, Mixing Batter, Nun chucks, Playing Piano,

Pizza Tossing, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rock Climbing

Indoor, Rope Climbing, Rowing, Salsa Spins, Skate Boarding, Skiing, Skijet, Soccer Jug-

gling, Swing, Playing Tabla, TaiChi, Tennis Swing, Trampoline Jumping, Playing Violin,

Volleyball Spiking, Walking with a dog, and Yo Yo. For each action category, there are

25 groups of videos with more than 4 clips per group. The clips in the same group are

performed by the same actor and have similar background and viewpoint. The clips are

collected from YouTube and contain variations in camera motion, object appearance and

pose, object scale, viewpoint, cluttered background, illumination conditions, etc.

4.3 The Human Motion DataBase (HMDB51)

4.3.1 Database collection

It has been estimated that there are over 1,000 human action categories. In order to isolate

human actions that are representative of everyday actions, we first asked a group of students

to watch videos from various internet sources and Hollywood movies while using a subtitle

annotation tool to annotate any segment of these videos that they deemed to represent a
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single non-ambiguous human action. Students were asked to consider a minimum quality

standard (i.e. a single action per clip, a minimum of 60 pixels in height for the main

actor, minimum contrast level, minimum action length of about 1 second and acceptable

compression artifacts). Students considered videos from three sources: digitized movies

available on the internet, public databases such as the Prelinger archive, and YouTube and

Google videos. A first set of annotations was thus generated in this way with over 60 action

categories. To further guarantee that we would be able to populate all action categories with

at least 101 different video clips we considered the top 51 action categories and further

asked students to specifically look for these types of actions.

The actions categories can be grouped in five types: a) General facial actions: smile,

laugh, chew, talk; b) Facial actions with object manipulation: smoke, eat, drink; c) Gen-

eral body movements: cartwheel, clap hands, climb, climb stairs, dive, fall on the floor,

backhand flip, handstand, jump, pull up, push up, run, sit down, sit up, somersault, stand

up, turn, walk, wave; Body movements with object interaction: brush hair, catch, draw

sword, dribble, golf, hit something, kick ball, pick, pour, push something, ride bike, ride

horse, shoot ball, shoot bow, shoot gun, swing baseball bat, sword exercise, throw; Body

movements for human interaction: fencing, hug, kick someone, kiss, punch, shake hands,

sword fight.

4.3.2 Annotations

In addition to action category labels, each clip was annotated with meta-data to allow for

a more precise evaluation of the limitation of current computer vision systems. This meta-

data contains six additional fields for the following properties:

• visible body parts / occlusions: head, upper body, lower body, full body.

• camera motion : moving or static

• camera view point relative to the actor : front, back, left, or right

• the number of people involved in performing the action: single, two, or multiple
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• video quality ranging : high (i.e. detailed visual elements such as the fingers and

eyes of the main actor identifiable through most of the clip, limited motion blur and

compression artifacts), medium (i.e. larger body parts like the upper and lower arms

and legs identifiable through most of the clip), or low (i.e. even larger body parts not

identifiable due in part to the presence of motion blur and compression artifacts).

4.3.3 Training and test set generation

For evaluation purposes, three distinct training and test splits were generated from the

database. The sets were built to ensure that the same video source could not be used

for both training and testing and that the relative proportion of possible conditions such as

camera position, video quality, motion, etc. (see above) would be balanced across the train-

ing and test sets. For example, each action category in our dataset contains 100 clips and

instead of randomly drawing 70/30 clips for training/testing, we selected a particular set of

70/30 clips such that they make up 70%/30% of the high quality clips, 70%/30% of the bad

quality clips, 70%/30% of the front-view camera, 70%/30% of the side-view camera, and

so on with the added constraint that clips in the training and test set could not come from

the same source.

To do so, we implemented a very simple constraint satisfaction algorithm to select the

subsets of clips that best satisfy these criteria from a very large number of randomly gener-

ated splits. To ensure that the various splits were not too similar, we implemented a greedy

approach where we first picked the split with the best parameter distribution and subse-

quently chose the second and third best splits that would be least correlated as measured by

a normalized Hamming distance. Note that because different numbers of clips under vari-

ous conditions might have been selected from the different sources it is not always possible

to find an exact solution but we found that in practice the simple approach described above

provided reasonable splits.
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4.3.4 Videos normalization

The original video sources used to extract the action video clips varied in size and frame

rates. To ensure consistency across the database, we resized all clips to a height of 240

pixels. The width of the clips was scaled accordingly so as to maintain the original aspect

ratio. We further normalized all video frame rates to ensure a frame rate of 30 fps for all

clips. All clips were compressed using the DviX 5.0 codec with the ffmpeg video library.

4.3.5 Videos stabilization

One significant challenge associated with the use of video clips extracted from real-world

videos is the potential presence of significant camera/background motion (about 2/3 of

the clips in our database). Such camera motion is assumed to interfere with the local

motion computation and should potentially be corrected. Video stabilization is thus a key

pre-processing step. We used a simple algorithm for camera motion based on standard

image stitching techniques to align successive frames according to the camera motion.

In this approach, a background plane is estimated by first detecting and then matching

salient features between adjacent frames. Correspondences are then computed using a

distance measure that includes both the absolute pixel differences and the Euler distance

of the corner points. Points with a minimum distance are then matched and the RANSAC

algorithm is used to estimate the geometric transformation between all neighboring frames

(independently for every pair of frames). Using this estimate, the single frames are warped

and combined to achieve a stabilized video. We visually inspected a large number of the

resulting stabilized clips and found that the corresponding approach works surprisingly

well. For the evaluation of the action recognition algorithms, all tests were conducted with

both the original clips as well as with the stabilized videos. An example of a stabilized

video is shown in Figure 4-4
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Table 2. Mean recognition performance of low-level shape/color
cues for different action databases.

Color Color+
PCA

Color+
Gray

Color+
Gray+
PCA

Gist HOG/
HOF

Hollywood 21.4% 21.4% 19.9% 26.9% 25.9% 30.3%
UCF Sports 82.7% 84.3% 89.6% 89.6% 90.0% 78.1%
Hollywood2 13.9% 15.7% 18.9% 16.1% 23.8% 45.2%
UCFYouTube 34.6% 39.2% 44.2% 41.9% 55.5% 56.4%
HMDB51 6.1% 5.9% 8.7% 8.8% 14.3% 20.4%

2.5. Videos stabilization

One significant challenge associated with the use of
video clips extracted from real-world videos is the potential
presence of significant camera/background motion (about
2/3 of the clips in our database). Such camera motion
is assumed to interfere with the local motion computation
and should potentially be corrected. Video stabilization is
thus a key pre-processing step. We used a simple algo-
rithm for camera motion based on standard image stitch-
ing techniques to align successive frames according to the
camera motion. In this approach, a background plane is es-
timated by first detecting and then matching salient features
between adjacent frames. Correspondences are then com-
puted using a distance measure that includes both the abso-
lute pixel differences and the Euler distance of the corner
points. Points with a minimum distance are then matched
and the RANSAC algorithm is used to estimate the geo-
metric transformation between all neighboring frames (in-
dependently for every pair of frames). Using this estimate,
the single frames are warped and combined to achieve a sta-
bilized video. We visually inspected a large number of the
resulting stabilized clips and found that the corresponding
approach works surprisingly well. For the evaluation of the
action recognition algorithms, all tests were conducted with
both the original clips as well as with the stabilized videos.

3. Comparison with other action datasets

Here we compare the HMDB51 database to other similar
databases (Hollywood, UCF sports, Hollywood2 and UCF
YouTube). To assess the discriminative power of various
low-level cues on these datasets, we extracted a number of
very simple visual features, which, in principle should not
be predictive of a high-level action category. This included
a measure of color based on the mean color in HSV space
computed for each frame over a 12 × 16 grid arrangement.
We also tried to use a combination of color and gray value
information as well as PCA to further reduce the feature di-
mension. Last we computed a gist vector for every frame
(i.e. a coarse orientation-based representation of an image
that has been shown to capture well the contextual informa-
tion about objects in natural scenes and shown to perform
quite well on a variety of recognition tasks, see [14]). Here
we used the source code provided by the authors.

Figure 3. Examples of videos stabilized over 50 frames with the
algorithm described in Section 2.4.

Results obtained by classifying these very simple fea-
tures suggest that the UCF Sports dataset is closer to a scene
recognition dataset than an action recognition dataset as
both color and low-level global scene information is more
predictive than mid-level spatio-temporal features. While
we were expecting color cues to be predictive of the action
category on a sport dataset (e.g. green grass for ball games,
blue water for swimming sports, white snow for skiing,
etc.), it seems that the problem remains in the UCF YouTube
dataset where the gist descriptors achieve almost as well as
the HOG/HOF. This might be due to low-level biases (e.g.
preferred vantage points and camera positions for amateur
directors) for videos on YouTube. In comparison the perfor-
mance of these low-level cues is much reduced in compari-
son to the mid-level motion descriptors and certainly reveal
that databases generated from YouTube do not capture the
large array of appearances of action videos present in Hol-
lywood movies.

4. Benchmark systems
To evaluate the discriminability of our 51 action cate-

gories we focus on the class of algorithms for action recog-
nition based on the extraction of local space-time informa-
tion from videos, which have become the dominant trend
in the past five years [23]. Local space-time based ap-
proaches mainly differ in the implementation of the spatio-
temporal filters used and in the number of spatio-temporal
points sampled (dense vs. sparse). Wang and colleagues
have grouped these descriptors into six types and evaluated
their performance on the KTH, UCF sports and Hollywood2
datasets [23] and shown that Laptev’s HOG/HOF descrip-

4

Figure 4-4: Examples of videos stabilized over 50 frames.

4.4 Comparison with other action datasets

Here we compare the HMDB51 database to other similar databases (Hollywood, UCF

sports, Hollywood2 and UCF50). To assess the discriminative power of various low-level

cues on these datasets, we extracted a number of very simple visual features, which, in

principle should not be predictive of a high-level action category. This included a measure

of color based on the mean color in HSV space computed for each frame over a 12 × 16

grid arrangement. We also tried to use a combination of color and gray value information

as well as PCA to further reduce the feature dimension. Last we computed a gist vector

for every frame (i.e. a coarse orientation-based representation of an image that has been

shown to capture well the contextual information about objects in natural scenes and shown

to perform quite well on a variety of recognition tasks, see [127]). We also benchmark the

performance using one of the state-of-the-art action recognition system (HOG/HOF) [86]

that uses motion features extracted from local spatio-temporal volumes to do classification.

Table 4.4 shows the results.

Results obtained by classifying these very simple features suggest that the UCF Sports

dataset is closer to a scene recognition dataset than an action recognition dataset as both

color and low-level global scene information is more predictive than mid-level spatio-

temporal features. While we were expecting color cues to be predictive of the action cat-
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egory on a sport dataset (e.g. green grass for ball games, blue water for swimming sports,

white snow for skiing, etc. ), it seems that the problem remains in the UCF50 where the

gist descriptors achieve almost as well as the HOG/HOF. This might be due to low-level

biases (e.g. preferred vantage points and camera positions for amateur directors) for videos

on YouTube. In comparison the performance of these low-level cues is much reduced in

comparison to the mid-level motion descriptors and certainly reveal that databases gener-

ated from YouTube do not capture the large array of appearances of action videos present

in Hollywood movies and HMDB51.

Table 4.2: Mean recognition performance of low-level shape/color cues for different action
databases.

Color Color+
PCA

Color+
Gray

Color+
Gray+
PCA

Gist HOG/
HOF

Hollywood 21.4% 21.4% 19.9% 26.9% 25.9% 30.3%
UCF Sports 82.7% 84.3% 89.6% 89.6% 90.0% 78.1%
Hollywood2 13.9% 15.7% 18.9% 16.1% 23.8% 45.2%
UCF50 34.6% 39.2% 44.2% 41.9% 55.5% 56.4%
HMDB51 6.1% 5.9% 8.7% 8.8% 14.3% 20.4%

4.5 Benchmark systems

To evaluate the discriminability of our 51 action categories we focus on the class of algo-

rithms for action recognition based on the extraction of local space-time information from

videos, which have become the dominant trend in the past five years [210]. Local space-

time based approaches mainly differ in the implementation of the spatio-temporal filters

used and in the number of spatio-temporal points sampled (dense vs. sparse). Wang and

colleagues have grouped these descriptors into six types and evaluated their performance on

the KTH, UCF sports and Hollywood2 datasets [210] and shown that Laptev’s HOG/HOF

descriptors performed best for the Hollywood2 and UCF sports. Because these datasets are

the most similar to the proposed HMDB51 (the HMDB51 contains both Hollywood movies

like the Hollywood2 dataset and YouTube videos much like the UCF sports database), we

selected the algorithm by Latptev and colleagues [86] as one of our benchmarks. To expand

over [210], we chose for our second benchmark the bio-inspired approach by Jhuang, Serre
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and colleagues [75] because it was not included in the original study by Wang et al. The

approach uses a hierarchical architecture that was modeled after the dorsal stream of the

visual cortex of the primate cortex.

Here we provide a detailed comparison between these algorithms, looking in particular

at the robustness of the two approaches with respect to various nuisance factors including

the quality of the video, the presence of occluders and camera motion, as well as changes

in the position, scale and viewpoint of the main actor(s). In addition the range of actions

included in the HMDB51 allows comparison of the two approaches over the types of ac-

tions considered (e.g. face vs. body motion and whether or not the action involves any

interaction with an object).

4.5.1 HOG/HOF features

Local space-time features have recently become a popular video representation for action

recognition. Much like their static local spatial features counterpart for the recognition of

objects and scenes, they have been shown to achieve state-of-the-art performance on sev-

eral standard action recognition databases [86, 210]. An extensive comparison between

existing methods (feature detectors and local descriptors) for the computation of space-

time features in a common experimental setup was described in [210]. We implemented a

system based on one of the most commonly used system configurations using a combina-

tion of the Harris3D detector and the HOG/HOF descriptors. For every clip we detected

3D Harris corners and computed combinations of histograms of oriented gradients (HOG)

and oriented flows (HOF) as local descriptors.

To evaluate the best code book size, we sampled 100,000 space-time interest-point

descriptors from a training dataset and the k-means clustering with k = 2, 000−10, 000 was

applied on the sample set. For every clip in the training set, the space-time interest-point

descriptors were matched to the nearest prototype as returned by k-means clustering and a

histogram was built over the index of the codebook entries. This lead to a k-dimensional

feature vector where k is the number of clusters learned from k-means. This feature vector

was then used as input to an SVM classifier for final classification.
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As described in [86], we used a support vector machine with an RBF kernel K(u, v) =

exp(−γ ∗ |u− v|2)). The parameters of the RBF kernel (cost term and γ) were optimized

using a greedy search with a 5-fold cross-validation on the training set. The best results for

the original clips was reached for k = 8, 000 whereas the best results for stabilized clips

was at k = 2000 (see Section 4.6.1). To validate our re-implementation of Laptev’s system,

we evaluated the performance of the system on the KTH dataset and were able to reproduce

the 92.1% reported in [210].

4.5.2 C2 features

Two versions of the C2 features have been described in the literature. The former corre-

sponds to a model of the ventral stream of the visual cortex described in [171, 173] (as-

sumed to be critically involved in the processing of shape information and invariant object

recognition). The model starts with a pyramid of Gabor filters (S1 units at different ori-

entations and scales (see [171, 173] for details). These mimic processing by the so-called

simple cells in the primary visual cortex. The next stage correspond to complex cells,

which pool together the activity of S1 units via a local neighborhood in both space and

spatial frequency to build some tolerance to 2D transformations (translation and scale).

Next S2 maps are computed by convolution with a dictionary of features/prototypes

learned by random sampling from a training set of images. Unlike the bag-of-words ap-

proach described above that uses vector quantization, the final C2 vector is obtained by

computing the best match between an input image and each feature of the dictionary across

all positions and scales. This final stage has been shown to account well for the properties

of cells in the inferotemporal cortex, which is the highest purely visual area of the primate

brain.

Building on the work described above, Jhuang et al. described a model of the dorsal

stream of the visual cortex (thought to be critically involved in the processing of motion

information in the primate brain). The model starts with spatio-temporal filters modeled

after motion-sensitive cells in the primary visual cortex [177]. Just like the V1-like simple

units in the model of the ventral stream described above, these units are tuned to specific
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Table 4.3: Performance of the benchmark systems on the HMDB51.
System Original clips Stabilized clips
HOG/HOF 20.44% 21.96%
C2 22.83% 23.18%

orientations. As opposed to those in the model of the ventral stream, which respond best

to static stimuli, simple units in the model of the dorsal stream have non-separable spatio-

temporal receptive fields and respond best to a bar moving in a direction orthogonal to their

preferred orientation.

Consistent with these models of the ventral and dorsal streams, it has been suggested

that motion-direction sensitive cells and shape-tuned cells constitute two ”channels” of pro-

cessing, the former projecting to the dorsal stream and the latter to the ventral stream (see

[75]). In intermediate stages of the model of the dorsal stream, S2 units are now tuned to

optic-flow patterns corresponding to combinations of several complex cell receptive fields

(tuned to different directions of motion instead of spatial orientations in the model of the

ventral stream and learned via sampling of a training set) and the final C2 vector is obtained

by computing the best match between an input frame (or series of frames) and each feature

in the dictionary.

4.6 Evaluation

4.6.1 Overall recognition performance

We first evaluated the overall performance of both systems on the HMDB51 (averaged over

the three random splits described in Section 4.3.3). Both systems exhibited very compara-

ble levels of performance slightly over 20% (chance level 2%). The confusion matrix for

both systems is shown in Figure 4-5 and Figure 4-6. Errors seem to be randomly distributed

across category labels with no apparent trends. The most surprising result is that the perfor-

mance of the two systems improved only marginally after stabilization for camera motion

despite the apparent effectiveness of the algorithm (as revealed by visual inspection of the

stabilized videos).
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Figure 4-5: Confusion Matrix for the HOG/HOF features

C2 − Original Clips
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Figure 4-6: Confusion Matrix for the C2 features
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Table 4.4: Mean recognition performance as a function of camera motion and clip quality.
Camera motion Quality
yes no low med high

HOG/HOF 19.84% 19.99% 17.18% 18.68% 27.90%
C2 25.20% 19.13% 17.54% 23.10% 28.62%

4.6.2 Robustness of the benchmarks

In order to asses the relative strengths and weaknesses of the two benchmark systems on

the HMDB51 in the context of various nuisance factors, we broke down their performance

in terms of the presence/absence of 1) occlusions and 2) camera motion, 3) viewpoint/

camera position and 4) the quality of the video clips. Surprisingly we found that, the pres-

ence/absence of occlusions and the camera position did not seem to influence performance.

A major factor for the performance of the two systems, however, was the clip quality. As

shown on Table 4.4, from high to low quality videos, the two systems registered a drop

in performance of about 10% (from 27.90%/28.62% for the HOG/HOF vs. the C2 fea-

tures down to 17.18%/17.54% respectively for the low quality clips). Camera motion was

one of the factors that differentially affected the two systems: Whereas the HOG/HOF

performance was stable with the presence/absence of camera motion, surprisingly, the per-

formance of the C2 features actually improved with the presence of camera motion. We

suspect that camera motion might actually improve the response of the low-level S1 motion

detectors. An alternative explanation is that the camera motion by itself (e.g. its direction)

might be correlated with the action category. To evaluate whether camera motion alone

can be predictive of the performed action, we tried to classify the mean parameters re-

turned by the video stabilization algorithm (estimated frame-by-frame motion). The result

of 5.29% recognition shows that at least camera motion alone does not provide significant

information.

To further investigate how various nuisance factors may affect the recognition perfor-

mance of the two systems, we conducted a logistic regression analysis to try to predict

whether each of the two systems will be correct vs. incorrect for specific conditions. The

logistic regression model was built as follow: The correctness of the predicted label was

used as binary dependent variable, the camera viewpoints were split into one group for

front and back views (because of similar appearances; front, back =0) and one group for
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Table 4.5: Results of the logistic regression analysis on the key factors influencing the
performance of the two systems.

HOG/HOF
Coefficient Coef. est. b p odds ratio
Intercept -1.60 0.000 0.20
Occluders 0.07 0.427 1.06
Camera motion -0.12 0.132 0.88
View point 0.09 0.267 1.09
Med. quality 0.11 0.254 1.12
High quality 0.65 0.000 1.91

C2
Coefficient Coef. est. b p odds ratio
Intercept -1.52 0.000 0.22
Occluders -0.22 0.007 0.81
Camera motion -0.43 0.000 0.65
View point 0.19 0.009 1.21
Med. quality 0.47 0.000 1.60
High quality 0.97 0.000 2.65

side views (left, right = 1). The occluded condition was split into full body view (=0) and

occluded views (head, upper or lower body only =1). The video quality label was converted

into binary variables for medium and high quality. Labels 10, 01 and 00 thus corresponded

to a high, medium and low quality video respectively.

The estimated β coefficients for the two systems are shown in Table 4.5. The largest

factor influencing performance for both systems remained the quality of the video clips.

On average the systems were predicted to be nearly twice as likely to be correct on high

vs. medium quality videos. This is the strongest influence factor by far. However this

regression analysis also confirmed the counterintuitive effect of camera motion reported

earlier whereby camera motion either lead to stable or improved performance. Consistent

with the previous analysis based on error rates, this trend is only significant for the C2

features. The additional factors, occlusion as well as camera view point, did not have a

significant influence on the results of the HOG/HOF approach.

4.6.3 Shape vs. motion information

The role of shape vs. motion cues for the recognition of biological motion has been the

subject of an intense debate. Computer vision could provide critical insight to this question
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Table 4.6: Average performance for shape vs. motion cues.
HOG/HOF HOGHOF HOG HOF

Original 20.44% 15.01% 17.95%
Stabilized 21.96% 15.47% 22.48%
C2 Motion+Shape Shape Motion
Original 22.83% 13.40% 21.96%
Stabilized 23.18% 13.44% 22.73%

as various approaches have been proposed that rely not just on motion cues like the two

systems we have tested thus far but also on single-frame shape-based cues, such as posture

[221] and shape ([165, 121]), as well as contextual information [99].

We here study the relative contributions of shape vs. motion cues for the recognition

of actions on the HMDB51. We compared the HOG/HOF descriptor with the recognition

of a shape-only HOG descriptor and a motion-only HOF descriptor. We also contrasted

the performance of the previously mentioned motion-based C2 feature to those of a shape-

based C2 descriptor. Table 4.6 shows a comparison between the performance of the various

descriptors.

In general we find that shape cues alone perform much worse than motion cues alone

and that their combination tend to improve recognition performance very moderately (the

effect seems to be stronger for the original vs. stabilized clips). An earlier study [164]

suggested that ”shape is enough to recognize actions”. The results described above suggest

that this might be true for simple actions as is the case for the KTH database but motion

cues do seem to be more powerful than shape cues for the recognition of complex actions

like the ones on the HMDB51.

4.7 Conclusion

We described an effort to advance the field of action recognition with the design of what

is, to our knowledge, currently the largest action recognition database. With currently 51

action categories and a little under 7,000 video clips, the proposed database is still far from

capturing the richness and the full complexity of video clips commonly found on the in-

ternet. However given the level of performance of representative state-of-the-art computer

vision algorithms (i.e. about 25% correct classification with chance level at 2%), this initial
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database is arguably a good place to start (performance on the CalTech-101 database for

object recognition started around 16% [44]). Furthermore our exhaustive evaluation of two

state-of-the-art systems suggest that performance is not significantly affected over a range

of factors such as camera position and motion as well as occlusions. This suggests that cur-

rent methods are fairly robust with respect to these low-level video degradations but remain

limited in their representative power in order to capture the complexity of human actions.
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Chapter 5

A Vision-based Computer System for

Automated Home-Cage Behavioral

Phenotyping of Mice

A preliminary version of this chapter has been firstly published as an abstract at Neuro-

science [74] and a technical report at MIT [170] in 2009. A complete version is published

as a journal paper in Nature communications [73] and a short version is published as a

conference paper in Measuring Behavior [72] in 2010. This work has also been presented

at the workshop of ”Visual Observation and Analysis of Animal and Insect Behavior” in

2010 and CSHL (Cold Spring Harbor Laboratory) conference on ”Automated Imaging &

High-Throughput Phenotyping” in 2010.

Abstract

Neurobehavioural analysis of mouse phenotypes requires the monitoring of mouse behav-
ior over long periods of time. In this study, we describe a trainable computer vision system
enabling the automated analysis of complex mouse behaviors. We provide software and
an extensive manually annotated video database used for training and testing the system.
Our system performs on par with human scoring, as measured from ground-truth manual
annotations of thousands of clips of freely behaving mice. As a validation of the system,
we characterized the home-cage behaviors of two standard inbred and two non-standard
mouse strains. From these data, we were able to predict in a blind test the strain identity
of individual animals with high accuracy. Our video-based software will complement ex-
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isting sensor-based automated approaches and enable an adaptable, comprehensive, high-
throughput, fine-grained, automated analysis of mouse behavior.

5.1 Introduction

Automated quantitative analysis of mouse behavior will play a significant role in com-

prehensive phenotypic analysis - both on the small scale of detailed characterization of

individual gene mutants and on the large scale of assigning gene functions across the entire

mouse genome [7]. One key benefit of automating behavioral analysis arises from inherent

limitations of human assessment: namely cost, time, and reproducibility. Although au-

tomation in and of itself is not a panacea for neurobehavioral experiments [28], it allows

for addressing an entirely new set of questions about mouse behavior such as conducting

experiments on time scales that are orders of magnitude larger than traditionally assayed.

For example, reported tests of grooming behavior span time scales of minutes [57, 102]

whereas an automated analysis will allow for analysis of this behavior over hours or even

days.

Indeed, the significance of alterations in home cage behavior has recently gained atten-

tion as an effective means to detect perturbations in neural circuit function - both in the

context of disease detection and more generally to measure food consumption and activity

parameters [158, 26, 185, 55, 34]. Most previous automated systems [55, 34, 71, 124] rely

mostly on the use of sensors to monitor behavior. The physical measurements obtained

from these sensor-based approaches limit the complexity of the behavior that can be mea-

sured. This problem remains even for expensive commercial systems using transponder

technologies such as the IntelliCage system by NewBehavior Inc. While such systems can

be effectively used to monitor the locomotion activity of an animal and even perform oper-

ant conditioning, they cannot be directly used to study natural behaviors such as grooming,

hanging, sniffing or rearing.

Recent advances in computer vision and machine learning yielded robust computer

vision systems for the recognition of objects [29, 209] and human actions [109]. The use

of vision-based approaches is already bearing fruit for the automated tracking [208, 48, 77]
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and recognition of behaviors in insects [16, 30]. Several computer-vision systems for the

tracking of animals have been developed [124, 15, 183]. Such systems are particularly

suitable for studies involving spatial measurements such as the distance covered by an

animal or its speed. These tracking techniques have the same limitations as the sensor-

based approaches and are not suitable for the analysis of fine animal behaviors such as

micro-movements of the head, grooming or rearing.

A few computer-vision systems for the recognition of mice behaviors have been re-

cently described, including a commercial system (CleverSys, Inc) and two prototypes from

academic groups [36, 219]. They have not been tested yet in a real-world lab setting using

long uninterrupted video sequences and containing potentially ambiguous behaviors or at

least comprehensively evaluated against human manual annotations on large databases of

video sequences using different animals and different recording sessions.

In this chapter, we describe a trainable, general-purpose, automated and potentially

high-throughput system for the behavioral analysis of mice in their home-cage. We char-

acterize its performance against human labeling and other systems. In an effort to motivate

further work and set benchmarks for evaluating progress in the field, we also provide a very

large database of manually annotated video sequences of mouse behaviors. Developed

from a computational model of motion processing in the primate visual cortex [52, 75],

our system consists of several steps: first a video input sequence is converted into a rep-

resentation suitable for the accurate recognition of the underlying behavior based on the

detection of space-time motion templates. After this feature computation step a statistical

classifier is trained from labeled examples with manually annotated behaviors of interest

and used to analyze automatically new recordings containing hours of freely behaving an-

imals. The full system provides an output label (behavior of interest) for every frame of

a video-sequence. The resulting time sequence of labels can be further used to construct

ethograms of the animal behavior and fit statistical models to characterize behavior. As a

proof of concept, we trained the system on eight behaviors of interest (eat, drink, groom,

hang, micro-move, rear, rest and walk, see Figure 5-1 for an illustration) and demonstrate

that the resulting system performs on par with humans for the scoring of these behaviors.

Using the resulting system, we analyze the home-cage behavior of several mouse strains,
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including the commonly used strains C57BL/6J, DBA/2J, the BTBR strain that displays

autistic-like behaviors, and a wild-derived strain CAST/EiJ. We characterize differences in

the behaviors of these strains and use these profiles to predict the strain type of an animal.

5.2 Background: automated Systems for Mice Behavior

Analysis

Sensor-based approaches

Previous automated systems [55, 34, 71, 124, 224] have relied on the use of sensors to mon-

itor behavior by deriving patterns from trajectories of an animal. Popular sensor-based ap-

proaches include the use of PVDF sensors [105], infrared sensors [34, 23, 188, 189], RFID

transponders [90] as well as photobeams [55]. Such approaches have been successfully ap-

plied to the analysis of coarse locomotion activity as a proxy to measure global behavioral

states such as active vs. resting. Other studies have successfully used sensors for the study

of food and water intake [224, 50]. However the physical measurements obtained from

these sensor-based approaches limit the complexity of the behavior that can be measured.

This problem remains even for commercial systems using transponder technologies such

as the IntelliCage system (NewBehavior Inc). While such systems can be effectively used

to monitor the locomotion activity of an animal as well as other pre-programmed activities

via operant conditioning units located in the corners of the cage, such systems alone cannot

be used to study natural behaviors such as grooming, sniffing, rearing or hanging, etc.

Video-based approaches

One of the possible solutions to address the problems described above is to rely on vision-

based techniques. In fact such approaches are already bearing fruit for the automated track-

ing [208, 48, 77] and recognition of behaviors in insects [16, 30]. Several computer-vision

systems for the tracking of mice have been developed [124, 15, 183, 206, 200, 89, 225].

As for sensor-based approaches, such systems are particularly suitable for studies involv-

ing coarse locomotion activity based on spatial measurements such as the distance covered
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by an animal or its speed [108, 31, 12, 37]. Video-tracking based approaches tend to be

more flexible and much more cost efficient. However, as in the case of sensor-based ap-

proaches, these systems alone are not suitable for the analysis of fine animal activities such

as grooming, sniffing, rearing or hanging. Most of the existing computer vision systems for

human action recognition, however, cannot be applied to mice actions because they rely on

the articulation of body structures (Ramanan & Forsyth, 2003), whereas mice lack clearly

visible limbs or joints, therefore these approaches can not be directly apply to mice actions.

The first effort to build an automated computer vision system for the recognition of

mouse behaviors was initiated at USC. As part of this SmartVivarium project, an initial

computer-vision system was developed for both the tracking [15] of the animal as well

as the recognition of five behaviors (eating, drinking, grooming, exploring and resting)

[36]. Xue & Henderson recently described an approach [218, 219] for the analysis of

rodent behaviors; however, the system was only tested on synthetic data [66] and a very

limited number of behaviors. Overall, none of the existing systems [36, 218, 219] have

been tested in a real-world lab setting using long uninterrupted video sequences containing

potentially ambiguous behaviors or at least evaluated against human manual annotations on

large databases of video sequences using different animals and different recording sessions.

Recently a commercial system (HomeCageScan by CleverSys, Inc) was also introduced

and the system was successfully used in several behavioral studies [55, 158, 26, 185]. This

commercial product relies on the contour shape of an animal and simple heuristics such as

the position of the animal in the cage to infer behavior. It thus remains limited in its scope

(tracking of simple behaviors) and error-prone (See [185] and Table 5.6 for a comparison

against our manual annotations). In addition, the software packages are proprietary: there

is no simple way for the end user to improve its performance or to customize it to specific

needs.

5.3 Dataset collection and its challenges

We video recorded singly housed mice from an angle perpendicular to the side of the cage

(see Figure 5-1 for examples of video frames). In order to create a robust detection system
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we varied the camera angles as well as the lighting conditions by placing the cage in dif-

ferent positions with respect to the overhead lighting. In addition, we used many mice of

different size, gender, and coat color. Several investigators were trained to score the mouse

behavior using two different scoring techniques.

5.3.1 Behavior of interest and definition

We annotate 8 types of common behaviors of inbred mice: drinking (defined by an animal

attaching its mouth on the tip of the drinking tube), eating (defined by an animal reach-

ing and acquiring food from the foodhopper), grooming (defined by a fore- or hind-limbs

sweeping across the face or torso, typically the animal is reared up), hanging (defined by

a grasping of the wire bars with the fore-limbs and/or hind-limbs with at least two limbs

off the ground), rearing (defined by an upright posture and forelimbs off the ground, and

standing against a wall cage), resting (defined by inactivity or nearly complete stillness),

walking (defined by ambulation) and micro-movements (defined by small movements of

the animal’s head or limbs).

drink eat groom hang

micro-movement rear rest walk

Figure 1

Figure 5-1: Snapshots taken from representative videos for the eight home-cage behaviors
of interest.
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5.3.2 Datasets

Currently, the only public dataset for mice behaviors is limited in the scope: it contains

435 clips and 6 types of actions [36]. In order to train and test our system on a real-world

lab setting where mice behaviors are continuously observed and scored over hours or even

days, Two types of datasets are collected. The clipped database contains clips with the most

exemplary instances of each behavior and is used to train and tune the feature computation

module of our system as described in Section 5.5.2 The full database was used to train and

test the classification module of our system as described in Section 5.5.3. To compare the

performance of the system against human performance, we compiled set B, a subset of the

full database, where each frame is assigned a second annotation.

clipped database The first type of dataset denoted as the clipped database includs only

clips scored with very high stringency, best and most exemplary instances of each behavior

from 12 videos. These videos contain different mice (differ in coat color, size, gender,

etc) recorded at different times during day and night during 12 separate sessions. Each

clip contains one single behavior. Through this style of annotation we created more than

9, 000 short clips, each containing a unique annotation. To avoid errors, this database

was then curated by one human annotator who watched all 9, 000 clips again, retaining

only the most accurate and unambiguous assessments, leaving 4, 200 clips (262, 360 frames

corresponding to about 2.5 hours) from 12 distinct videos. This database is significantly

larger than the currently publicly available, clip-based dataset [36], which contains only

5 behaviors (eating, drinking, grooming, exploring and resting) for a total of 435 clips.

Figure 5-2 shows the distribution of labels for the clipped database.

full database The second dataset, called the full database involved labeling every frame

for 12 distinct videos (different from the 12 videos used in the clipped database). Each

video is 30−60 min in length, resulting in a total of over 10 hours of continuously annotated

videos. As in the clipped database, these videos are chosen from different mice at different

times to maximize generalization of the dataset. These labels are less stringency than in the

clipped database. Currently there is no other publicly available dataset with continuously
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labels like the full database. By making such a database available and comparing the

performance against human labeling and other vision-based systems, we hope to further

motivate the development of such computer vision systems for behavioral phenotyping

applications. Figure 5-3(A) shows the distribution of labels for the full database.

set B We considered a small subset of the full database corresponding to many short

video segments which are randomly selected from the full database. Each segment is

5−10 min long and makes of a total of about 1.6 hours of dataset. Each frame of the set B is

assigned a second human annotation. We estimate an average human labeler’s performance

by computing the average agreement between the second set of human annotations with the

first set of human annotations (ground truth). Ground truth (first human annotation) of the

full database is not 100% accurate mostly due to frames containing ambiguous actions

arising during the transition of two actions (as described in detail below), therefore we

use the human labeler’s performance as a close-to-upper bound of performance since the

system relies on these human annotations to learn to recognize behaviors. Figure 5-3(B)

shows the distribution of labels for the set B.

5.3.3 Annotation

All the 24 videos (12 in the clipped database + 12 in the fill database ) were annotated

using a freeware subtitle editing tool, Subtitle Workshop freeware subtitle editing tool from

UroWorks available at http://www.urusoft.net/products.php?cat=sw&lang=

1. A team of 8 investigators: ’Annotators group 1’ was trained to annotate mouse home

cage behaviors. Set B was annotated by 4 human annotators randomly selected from ’An-

notators group 1’, denoted as ’Annotators group 2’. Some segments of set B have the first

and second set of annotations made by the same annotator. For the full database to be an-

notated, every hour of videos took about 22 hours of manual labor for a total of 230 hours

of work. For the clipped database it took approximately 50 hours to manually score 9, 600

clips. The second screening used to remove ambiguous clips took around 40 hours.
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Figure 5-2: Distributions of behavior labels for the clipped database over (A) the number
of clips and (B) the total time.
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Figure 5-3: Distribution of behavior labels on the (A) full database annotated by ’Annotator
group 1’ and the (B) set B (a subset of the full database), which was annotated by one more
annotator from ’Annotator group 2’ (a subset of ’Annotator group 1’ ) to evaluate the
agreement between two independent annotators.

5.3.4 Challenge

Context dependency

Labeling of actions can not be made on a frame-by-frame basis. Contextual information

from nearby frames are required for both robust behavior annotation and recognition. An

example is illustrated in Figure 5-4.
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Ambiguous actions

The accuracy of the system depends mostly on the quality of the ground truth human an-

notations. Given the definition in Section 5.3.1, we observe from the labeled examples that

the main confusion for a human annotator is between:

• (1) eat vs. rear: at the instance when a mouse stands against the back side of a cage

(rearing), it looks like reaching the foodhopper (eating) because in both cases, the

head of the mouse seems to touch the foodhopper when seeing from the front side of

the cage where the camera is placed.

• (2) micro-movement vs. walk: small movements of a mouse’s limbs (micro-movement)

sometimes result in slow and continuous changes of positions, and therefore being

annotated as ”walking”.

• (3) micro-movement vs. grooming: when sitting back to the camera during groom-

ing, the mouse seems to only move its head slowly and therefore annotated as ”micro-

movement”.

• (4) grooming vs. eating: chewing (eating) is usually followed by acquiring food from

the foodhopper (eating). If the temporal association is neglected, the appearance of

chewing (rearing up with fore-limb sweeping across the face) indeed looks similar to

grooming. Apparently, some annotators assign the most suitable category for each

frame independently without considering the temporal association.

These confusions arise from the limited resolution, the limited viewpoint((1),(3)), and

ambiguity of actions per se ((2),(4)).

Transition of actions

The annotators have to assign a label for each frame even when the underlying action is

ambiguous. The main disagreement between human annotators is the misaligned boundary

between two actions. For example, a mouse typically takes around 10 milliseconds to

transit from a well-defined walking to a well-defined eating, these transition frames can

fall into both categories and therefore are usually disagreed between two human labelers.
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Figure 5-4: Single frames are ambiguous. Each row corresponds to a short video clip.
While the leftmost frames (red bounding box) all look quite similar, they each correspond
to a different behavior (text on the right side). Because of this ambiguity, frame-based
behavior recognition is unreliable and temporal models that integrate the local temporal
context over adjacent frames are needed for robust behavior recognition.

5.4 System Overview

Our system is a trainable, general-purpose, automated, quantitative and potentially high-

throughput system for the behavioral analysis of mice in their home-cage. Our system,

developed from a computational model of motion processing in the primate visual cortex

[75] consists of two modules: (1) a feature computation module, and (2) a classification

module. In the feature computation module, a set of 304 space-time motion templates that

are learned from most exemplary clips in the clipped database are used to convert an input

video sequence into a representation, which is then passed to a classifier to reliably classify

every frame into a behavior of interest. In the classification module, the classifier is trained

from continuously labeled temporal sequences in the full database and outputs a label (as

one of the 8 types of behaviors) for every frame of a input video-sequence. The resulting

time sequence of labels can be further used to construct ethograms of mouse behavior to

characterize mouse strain. The system modules are illustrated in Figure 5-15.
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5.4.1 Feature Computation

The feature computation module takes as input a video sequence and outputs for each

frame a feature vectors of 316 dimensions (a concatenation of 304 motion features + 12

position- and velocity-based features). A background subtraction procedure is first applied

to an input video to compute a segmentation mask for pixels belonging to the animal vs.

the cage based on the instantaneous location of the animal in the cage (Figure 5-15(A)).

This is adapted from our previous work for the recognition of human actions [75]. A

bounding box centering on the animal is derived from the segmentation mask (Figure 5-

15(B)). Two types of features are then computed: position- and velocity-based features as

well as motion features. Position- and velocity-based features are computed directly from

the segmentation mask (Figure 5-15(C)). In order to speed-up the computation, motion-

features are performed on the bounding-box within a hierarchical architecture (Figure 5-

15(D-F)).

Motion features The system models the organization of the dorsal stream in the visual

cortex, which has been critically linked to the processing of motion information [13]. The

model computes features for the space-time volume centering at every frame of an input

video sequence via a hierarchy of processing stages, whereby features become increasingly

complex and invariant with respect to 2D transformations along the hierarchy. The model

starts with the S1/C1 stage consisting of an array of spatio-temporal filters tuned to 4 direc-

tions of motion and modeling after motion-direction-sensitive cells in the primary visual

cortex (V1) [177]. By convolving the input sequence with these filters, we obtain the out-

puts of the S1/C1 stage as a sequence of C1 maps, each corresponding to motion present

at a frame along the 4 directions (Figure 5-15(E)). In the S2/C2 stage, we computed for

every C1 map, a vector of matching scores that measure the similarity between the motion

present in the current map and each of the 304 motion templates (Figure 5-15(F)). More

specifically, at every spatial position of a C1 map, we perform a template matching between

a motion template and a patch of the map centering at the current position with the same

size of the template and then we obtain a matching score. The C2 output is the global max-

imum pooled over the matching scores computed at all the spatial locations of one frame.
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We repeat this procedure for all the motion templates, and obtain a C2 feature vector, for

each frame, of 304 dimensions.

Learning the dictionary of motion templates The motion templates used in the S2/C2

stage are extracted from the clipped database because this set contains the most exemplary

instances of each behavior. We draw 12, 000 motion templates, each as a local patch of

a C1 map randomly selected from 3 videos in the clipped database. In order to select

templates that are useful for discriminating between actions and speed up the experiment,

we perform feature selection on a set of 4, 000 C2 feature vectors computed from frames

which are randomly selected from the 3 videos. As in [75], the zero-norm SVM [215] of

Weston et al. is used for feature selection. The algorithm is described as below.

A SVM classifier is trained on the pool of C2 vectors and returns a hyperplane that

maximizes the margin between pairs of behavior categories (8 in this case). The hyper-

plane is a vector of 12, 000 dimensions, each corresponding to the significance (how well

it discriminates between categories) of one motion template. Each dimension of the C2

vectors is then reweighed using the coefficient of the hyperplane in the same dimension.

The reweighed data is then used for training another SVM. By repeating this procedure,

the weights of the hyperplane corresponding to motion templates that highly discriminate

between behavior categories increase, whereas the weight corresponding to other templates

gradually decrease to zero. Finally, we select 304 highly-weighted templates that lead to a

good performance without taking too much time to compute. Detailed results are described

in Section 5.5.2.

Evaluation of the motion features on the clipped database In order to evaluate the

quality of our motion features (C2 feature vectors) for the recognition of high-quality un-

ambiguous behaviors, we trained and tested a multi-class Support Vector Machine (SVM)

on motion features of single frames from the clipped database using the all-pair multi-class

classification strategy. This approach does not rely on the temporal context of behaviors

beyond the computation of low-level motion signals in the S1/C1 stage and classifies each

frame independently. We also rely on the performance on the clipped database to optimize

95



some parameters of the model. The parameters include preferred directions of the filters,

the nature of the non-linear transfer function, and the video resolution. The results are de-

scribed in Section 5.5.2. The optimized motion features led to 93% accuracy (chance level

12.5% for 8-class classification). This suggests that the representation provided by the dic-

tionary of 304 motion templates is suitable for the recognition of the behaviors of interest,

even under conditions when the global temporal structure, temporal structure beyond the

computation of low-level motion signals, of a temporal sequence is completely discarded.

Position- and velocity-based feature computation In addition to the motion features

described above, we computed an additional set of features derived from the instantaneous

location of the animal in the cage (Figure 5-15(C)). To derive these features, we first com-

puted a bounding box for each frame centering at the animal by subtracting off the video

background. For a static camera as used here, the video background can be well approxi-

mated by a median frame in which each pixel value is the median value across all the frames

at the same pixel location (day and night frames under red lights were processed in separate

videos). Position- and velocity-based measurements were estimated for each frame based

on the 2D coordinates (x, y) of the bounding box. These include the position and the as-

pect ratio of the bounding box (indicating whether the animal is in a horizontal or vertical

posture), the distance of the animal from the feeder as well as the instantaneous velocity

and acceleration. Figure 5-15(C) illustrates 6 types of features. A complete description of

the 12 types of features is listed in Table 5.1.

The position and size of the cage vary between videos due to the variations in the camera

angle and the distance between the camera and the cage. To make position- and velocity-

based features comparable between videos, we calibrate these features with respect to the

x and y coordinates of the top, bottom, left and right sides of the cage.

5.4.2 Classification

Performing a reliable phenotyping of an animal requires more than the mere detection of

stereotypical non-ambiguous behaviors. In particular, the present system aims at classify-

ing every frame of a video sequence even for those frames whose underlying actions are
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Cx x coordinate of the center of the mouse
Cy y coordinate of the center of the mouse
w width of the mouse
h height of the mouse

h/w aspect ratio of the mouse
fd nearest distance from the mouse to the feeder
td1 nearest distance from the mouth of the mouse to the far tip of the drinking spout
td2 nearest distance from the mouth of the mouse to the near tip of the drinking spout
Vx speed of the mouse in the x direction
Vy speed of the mouse in the y direction
sVx smoothed speed of the mouse in the x direction
sfd smoothed nearest distance from the mouse to the feeder

Table 5.1: A list of 12 position- and velocity-based features, where Vx(t) = |Cx(t) −
Cx(t − 1)|,Vy(t) = |Cy(t) − Cy(t − 1)|, sVx(t) = |Cx(t) − Cx(t − 2)|, and sfd(t) =
(fd(t−2)+fd(t−1)+fd(t))

3

difficult to categorize, as described in Section 5.3.4. For this challenging task, the temporal

context of a specific behavior becomes an essential source of information; thus, learning

an accurate temporal model for the recognition of actions becomes critical. Here we used

a Hidden Markov Support Vector Machine(SVMHMM) [195, 196], which is an extension

of the Support Vector Machine classifier for sequence tagging. This temporal model was

trained on the 12 continuously labeled videos of the full database. SVMHMM takes input

as a sequence of C2 features vectors of an input video and their annotations, and outputs a

predicted label (behavior of interest ) for each frame (Figure 5-15(G)).

Hidden Markov Support Vector Machine(SVMHMM) SVMHMM combines the ad-

vantage of SVM and HMM by discriminatively training models that are similar to a hidden

Markov model. The general setting of SVMHMM allows for learning a kth-order hidden

Markov model. Here we use the first-order transition model. Given an input sequence

X = (x1 . . .xT ) of feature vectors, the model predicts a sequence of labels y = (y1 . . . yT )

according to the following linear discriminant function:

y = argmaxy

T∑
t=1

[xt ·wyt + Itrans(yt−1, yt) ·wtrans] (5.1)
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wyt is an emission weight vector for the label yt and wtrans is a transition weight vector

for the transition between the label yt−1 and yt. Itrans(yt−1, yt) is an indicator vector that

has exactly one entry set for the sequence (yt−1, yt).

During training, SVMHMM was given a set of training examples of sequences of fea-

ture vectors, X1 . . .XN with their label sequences y1 . . .yN and tries to minimize a loss

function ∆(yi,y) which is defined as the number of misclassified labels used in a sequence.

min
1

2
||w||2 +

C

n

N∑
i=1

ξi (5.2)

s.t. for all y and i = 1 . . . N :
∑

t(x
i
t ·wyi

t
+ Itrans(y

i
t−1, y

i
t) ·wtrans) ≥ (5.3)∑

t(x
i
t ·wyt + Itrans(yt−1, yt) ·wtrans) + ∆(yi,y)− ξi(5.4)

w is the concatenation of the emission and transition weight vector. C is a parameter

that trades off margin size and training error.

5.5 Experiments and the results

5.5.1 Training and Testing the system

The evaluation on the full database and the set B was obtained using a leave-one-video-out

cross-validation procedure. This consists in using all except one videos to train the system

and the left out video to evaluate the system and repeating this procedure n = 12 times

for all the videos. The system’s predictions as well as ground truth annotations for all the

videos are then concatenated to compute the overall accuracy as

accuracy =
# total frames correctly predicted by the system

# total frames
(5.5)

Human labelers’ performance is computed similarly as

accuracy =
# total frames correctly labeled by the system

# total frames
(5.6)
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Here a prediction or a label is ’correct’ if it matches ground truth made by ’Annotators

group 1’. Such a procedure has been shown to provide the best estimate of the performance

of a classifier and is standard in computer vision. This guarantees that the system is not just

recognizing memorized examples but generalizing to previously unseen examples.

For the clipped database, the leave-one-video-out procedure is performed on 9 videos

that were not used to extract motion templates. The clips from all except one video are

used to train the system while testing is performed on the clips of the remaining video.

This procedure is repeated n = 9 times. A single prediction was obtained for each clip via

voting across frames as in [75], and predictions for all the clips are then concatenated to

compute the overall accuracy as

accuracy =
# total clips correctly predicted by the system

# total clips
. (5.7)

In addition to measure the accuracy of the system as above, we also use a confusion

matrix to visualize the system’s performance for each individual behavioral category. A

confusion matrix is a common visualization tool used in muti-class classification problem.

Each row of the matrix represents a true class, and each column represents a predicted

class. Each entry C(x, y) in a confusion matrix is the probability with which a behavior of

type y (along rows) is classified as type x (along column), as computed by

C(x, y) =
# total frames annotated as type y and predicted as type x

# total frames annotated as type y
(5.8)

The higher probabilities along the diagonal and the lower off-diagonal values indicate

successful classification for all behavioral types.

5.5.2 Results for the feature computation module

The clipped database contains the best exemplary instances of each behavior, therefore it is

suitable for optimizing parameters of the feature computation module. Particularly, in the

S1/C1 stage, the parameters are the preferred directions of the spatio-temporal filters, the

nature of the non-linear transfer function used, and the video resolution. We also optimize

the S2/C2 stage by selecting a set of motion templates that are useful for discriminating
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different action categories. Finally, we compare our optimized system with a computer

vision system developed by Dollar et al. [36].

Optimization of the S1/C1 stage

When optimizing the S1/C1 stage, we evaluate the system’s performance by training and

testing a multi-class Support Vector Machine (SVM) classifier on C1 feature vectors com-

puted from single frames of the 9 videos that were not used to extract motion templates. The

training/testing is done on a leave-one-video-out procedure, and the accuracy is computed

as in Equation 5.7. To speed up the evaluation, we experiment with a subset of 36, 000 C1

feature vectors computed from random frames of the 9 videos.

Comparison of 7 types of S1 units The animal as well as the background color vary

between videos and the lighting condition changes with time; it is white in the day and red

in the night. In order to find the best S1 units that are invariant to these contrast changes,

we experimented with 7 types of S1 units as shown in Table 5.2. Table 5.2 shows very close

recognition rates, 76% 77% for all types. We choose the first type, i.e. , after convolving an

input sequence with the 4 direction-selective filters, we normalize these S1 responses along

each direction with respect to the summation of responses across all the directions.

Comparison of video resolutions We also experimented with video resolutions in order

to find one in which motion can be best captured by the fixed-sized spatio-temporal filters.

We start from the original video resolution 480 pixels× 720 pixels then down to 0.75, 0.5,

0.375, 0.25, 0.187 times of the original resolution. The results are shown in Table 5.3.

We found that the medium resolution 180 × 270 leads to the best performance. However,

position features might not be accurate computed at a low video resolution, we therefore

choose a slightly higher resolution: 240× 360.

Comparison of the number of preferred directions of the S1 units With the use of S1

units tuned to more directions, motion can be computed more accurately, however, the com-

putation increases correspondingly. Here we tried to determine the number of directions
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normalization formula accuracy
1 S1(d)′ = F ·X

S1(d) =
S′

1(d)2
P

d S′
1(d)2

77.1%

2 S1 = F ·X 76.8%
3 S1 = F ·X

||X|| 76.8%
4 S1 = F ·X

||X||2
76.8%

5 apply a z transform on every 3×3(pixels) patch of the frame
S1 = F ·X

76.8%

6 apply a z transform on every 9×9(pixels) patch of the frame
S1 = F ·X

76.1%

7 do a histogram equalization within the bounding box
S1 = F ·X

75.9%

Table 5.2: 7 types of S1 types we experimented with and the accuracy evaluated on the
C1 features computed from the 7 types. F is a spatio-temporal filter with size 9 pixels ×
9 pixels × 9 frames. X is a space-time patch of the same size. S1(d) is the convolution
between the patch X and the F that is tuned to the d− th direction.

resolution 480× 720 360× 540 240× 360 180× 270 120× 180 90× 135
accuracy 74% 76.5% 76.8% 79.5% 78% 77%

Table 5.3: All the video resolutions we experimented with (unit: pixel) and the accuracy
evaluated on the C1 features.

that best balance the tradeoff between accuracy and the computation. We experimented

with n tuned directions that are equally spaced between 0o and 360o, n = 1, 2, 4, 8. As

shown in Table 5.4, the accuracy grows with n, the number of directions, as expected, but

the growth rate decreases after n = 4. That is, accuracy increases by 3% when n is doubled

from 1 to 2 and from 2 to 4, but only increases by 1.5% from n = 4 to n = 8. We choose

n = 4 to compromise between computation and performance.

n 1 2 4 8
accuracy 69.5% 72.5% 76.0% 77.5%

Table 5.4: n, the number of tuned directions of the filters and the accuracy evaluated on the
C1 features.
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Selection of motion templates

The goal of the feature selection stage is to choose from an initial set of motion templates a

subset of that is useful for discriminating between behavioral categories. The initial set of

12, 000 patches were randomly drawn from the C1 maps of 3 videos in the clipped database

and used to compute C2 vectors of 4, 000 frames, which are randomly drawn from the same

3 videos.

We applied the feature selection technique, zero-norm SVM, on these C2 vectors. Fig-

ure 5-5 shows the number of motion templates that receive weights higher than some

threshold for the first 50 rounds of the zero-norm SVM. The number drops quickly, from

12, 000 down to 2, 000 in the first 6 rounds and remains steadily around 300 after the 15th

round.

We next evaluate the system’s accuracy as a function of the number of selected tem-

plates. We select 6 rounds and report the system’s accuracy in Table 5.5. The accuracy

remains 93% for 954 down to 304 templates. We therefore conclude that the 304 motion

templates are very significant in discriminating actions, and they will be used to compute

motion features for the full database.

Figure 5-5: The number of selected motion templates in each round of the zero-norm SVM.
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round 8 9 10 11 12 20
# templates 954 709 573 490 407 304
Accuracy 93.4% 93.3% 92.9% 92.8% 92.9% 92.9%

Table 5.5: The number of selected motion templates in each round of the zero-norm SVM
and the accuracy evaluated on the C2 features.

Comparison with a computer-vision system on the clipped database

The computer vision system used here for benchmark is the system developed by [36] at

the University of California (San Diego) as part of the SmartVivarium project [8]. The

system has been shown to outperform several other computer vision systems on several

standard computer vision databases and was tested for both the recognition of human and

rodent behaviors [36]. The authors graciously provided the source code for their system.

Training and testing of their system was done in the same way as for our system using a

leave-one-video-out procedure on the clipped database. Here we attempted to maximize

the performance of the baseline system [36] by tuning some of the key parameters such as

the number of features and the resolution of the videos used. Nevertheless we found that

the default parameters (50 features, a 320 × 240 video resolution as used for our system)

led to the best performance (81% for their system vs. 93% for our system). It is possible

however that further refinement of the corresponding algorithm could nevertheless improve

its performance.

5.5.3 Results for the classification module

The full database contains a set of continuously labeled videos and therefore is suitable for

learning the temporal transition between frames and for optimizing the sequential tagging

algorithm, SVMHMM. We will compare our optimized system with the human annotators

(’Annotator group 2’) and with a commercial software (HomeCageScan). In this section,

we will also evaluate some aspects of the system, such as the contribution of the position

features to the system’s performance and the number of annotated examples required to

train the system.
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Optimization of the classifier

Here we evaluate the system’s performance by training and testing a SVMHMM classifier

on C2 feature vectors computed from the 12 videos of the full database. The training/testing

is done on a leave-one-video-out procedure. For each leave-one-out trial, we draw from

each training video 5 video segments, each being 1-min long, for training the SVMHMM,

and the testing is still done for the whole length of the left video. The accuracy is computed

as in Equation 5.9.

Optimizing C In the SVMHMM setting, the parameter C trades off margin size and

training error. We expect a large C increases the penalty for misclassified labels and could

therefore lead to a better performance. We tried a range of C values, from 1 to 10, the

system’s accuracy as well as required computation time are shown in Figure 5-6. The

accuracy remains quite consistent for all the values we tried, but the computation time

increases almost linearly with C, we therefore use C = 1 for the rest of the experiments.

Optimizing the length of training sequences SVMHMM takes as input a set of se-

quences. In applications such as speech tagging, an input sequence is a sentence, whereas

in our videos, there is no analogous concept or structure to that of a sentence. Our solution

is to divide a training video into many video segments of equal length, each as a training

example. During testing, the whole testing video is treated as a single example. Here we

experimented with the length of the video segments.

We firstly train a SVMHMM using the 1-min long video segments described above;

each training example is a 1-min segment (1, 800 frames). We then repeatedly divide these

segments into shorter segments down to segment length of 1 frame (3 ms) and train a

SVMHMM for each segment length. Figure 5-7 shows the accuracy increases with segment

length and remains stable ( 72%) for length longer than 100 frames. We conclude that for

the recognition of mouse behavior, a sequence of at least 3 seconds (100 frames) is required

in order for a SVMHMM to learn a good model of the temporal transition. For the future

experiments, we use 1-min as the length for each training example.

In addition, we trained a SVM classifier on single frames of the set of video segments
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and compared against the SVMHMM. The accuracy of the SVM (red cross in Figure 5-7)

is 62%, about 10% lower than the 72% achieved by SVMHMM. This suggests that learning

of temporal transition is significant to the recognition of mouse behavior in videos.
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Figure 5-6: (Top) The accuracy of the system evaluated on the full database and (Bottom)
the required computation time as a function of the C parameter.
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Figure 5-7: The accuracy of the system evaluated on the full database as a function of
length of training video segment. The red cross indicates the performance of the system
when a SVM, instead of SVMHMM, classifier is used.

Comparison with a commercial software vs. human performance on the full database

Here we evaluate the system’s performance on the doubly annotated setB. The system is

compared against a commercial software (HomeCageScan 2.0, CleverSys, Inc) for mouse
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home cage behavior classification and against human manual scoring. In order to compare

our system with the commercial software HomeCageScan 2.0 (CleverSys Inc), we manu-

ally matched the 38 output labels from the HomeCageScan to the 8 behaviors used in our

system. For instance, actions such as ’slow walking’, ’walking left’ and ’walking right’

were all re-assigned to the ’walking’ label to match against our annotations. With the ex-

ception of behaviors such as ’jump’, ’urinate’, ’unknown behavior’ which don’t occur in the

two datasets we collected, we matched all other HomeCageScan output behaviors to one

of the 8 behaviors of interest (see Table 5.7 for a list of matches between the labels of the

HomeCageScan and our system). It is possible that further fine-tuning of HomeCageScan

parameters could have improved upon the accuracy of the scoring.

Note that the annotations made by initial 8 annotators (’Annotators 1’) are used as

ground truth to train and test the system, and the second set of annotations made by ’An-

notators group 2’ on set B is used only for computing the performance of human manual

scoring.

Table 5.6 shows the comparison. Overall we found that our system achieves 76.6%

agreement with human labelers(’Annotator group 1’) on the set B, a result significantly

higher than the HomeCageScan 2.0 system (60.9%) and on par with humans (’Annota-

tor group 2’) (71.8%). Figure 5-8 shows the confusion matrices for the system, humans

(’Annotators group 2’), and HomeCageScan. Two online videos demonstrating the auto-

matic scoring of the system are at http://techtv.mit.edu/videos/5561 and

http://techtv.mit.edu/videos/5562. Two online videos demonstrating the

annotations of ’Annotators group 1’ vs. ’Annotators group 2’ are at http://techtv.

mit.edu/videos/5562 and http://techtv.mit.edu/videos/5563.

Generalization with few training examples

When the system is used under a novel setting, such as behaviors other than the existing 8

types, videos taken from a top-view camera, environment other than home-cage (for exam-

ple, fear-conditioning box), or to detect behaviors in rats, it is critical to know how many

annotated examples are required by the system to reach reasonable performance. We in-

vestigate this issue by varying the number of training examples for evaluation of the full

106

http://techtv.mit.edu/videos/5561
http://techtv.mit.edu/videos/5562
http://techtv.mit.edu/videos/5562
http://techtv.mit.edu/videos/5562
http://techtv.mit.edu/videos/5563


Our system CleverSys Human
commercial system (’Annotator group 2’)

set B 77.3%/76.4% 60.90%/64.0% 71.6%/75.7%
(1.6 hours of video)

full databse 78.3%/77.1% 61.0%/65.8%
(over 10 hours of video)

Table 5.6: Accuracy of our system, human annotators and HomeCageScan 2.0 CleverSys
system evaluated on the set B and the full database for the recognition of 8 behaviors. Us-
ing ’Annotator group 1’ as ground truth, accuracy is computed as percentage of frames
correctly classified by a system (chance level is 12.5% for the 8-class classification prob-
lem). For the set B, we also report the average of diagonal terms of confusion matrices
shown in Figure 5-8, see underlined numbers.
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Figure 5-8: Confusion matrices evaluated on the doubly annotated set B for (A) system to
human scoring, (B) human to human scoring, and (C) CleverSys system to human scoring.
Using ’Annotator group 1’ as ground truth, the confusion matrices ware obtained for mea-
suring the agreement between the ground truth (row) with the system (computer system),
with ’Annotator group 2’(human) and with the baseline software (CleverSys commercial
system). For a less cluttered visualization, entry with value less than 0.01 is not shown.
The color bar indicates the percent agreement, with more intense shades of red indicating
agreements close to 100% and lighter shades of blue indicating small fractions of agree-
ment.

database. When performing the leave-one-video-out procedure on the full database, only

a representative set of x minutes (x 1-minute video segments) from each training video is

used for training, and testing is done on the whole length of the left-out video. A repre-

sentative set is selected such that all types of actions are included. Average accuracy of the

12 videos as a function of x is shown in Figure 5-9(A). (Note in Table 5.6, overall accu-

racy is computed by concatenating predictions across videos, here we compute accuracy

for each video to obtain the standard deviation). It shows with annotating only 2 mins for
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each training video, the system is already able to achieve 90% of the performance obtained

using 30 minutes. With 10-15 minutes of annotation for each training video, the system’s

average accuracy reaches the optimal level that is obtained by using all the minutes for

training. Therefore, we expect the system can generalize well to previously unseen videos

with around 22 minutes of training examples (2 mins × 11 training video). We therefore

expect the system is able to scale up to many types of behaviors with hours of annotated

examples.

Although the goal of the present study was to create a behavior detection tool that would

generalize well in many other laboratories, this is not always necessary. In such cases where

generalization is not required, the most efficient approach is to train the system on the first

few minutes of the same video and then let the system complete the rest of that video. In

Figure 5-10(A), we show that by training on a representative set of 3 minutes of a video,

the system is able to achieve performance with 90% level of performance obtained using a

representative set of 30 minutes.
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Figure 5-9: Average accuracy of the system for the (A) full database and the (B) wheel-
interaction set as a function of minutes of videos used for training. For each leave-one-
out trial, the system is trained on a representative set of x (x axis of the figure) minutes
selected from each training video and tested on the whole length of the left-out video. A
representative set consisting of x 1-minute segment is selected to maximize types of actions
present in the set. (A) Average accuracy and standard error across the 12 trials, each for
one video in full database. (B) Average accuracy and standard error across the 13 trials,
each for one video in the wheel-interaction set.
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Figure 5-10: Average accuracy of the system for the (A) full database and the (B) wheel-
interaction set as a function of minutes of videos used for training. A representative set
of video segments is selected from 0 − 30th min of each video for training and testing is
done on 30th min- end of the same video. A representative set consisting of x (x axis of
the figure) 1-minute segment is selected to maximize types of actions present in the set.
(A) Average accuracy and standard error across the 12 trials, each for one video in the full
database. (B) Average accuracy and standard error across the 13 trials, each for one video
in the wheel-interaction set.

The effects of adding position features

Some behaviors exhibit similar motion and without the locations of occurrence, these be-

haviors are hard to distinguish for a human labeler. For example, ’drinking’, ’eating’, and

’rearing’ all have upward motion, but usually occur at different locations. ’Drinking’ oc-

curs near the water bottle spout when an animal attaches its mouth to the tip of a drinking

tube; ’eating’ occurs when an animal reaches the foodhopper; and ’rearing’ occurs when an

animal reaches against the wall. Our solution for removing these ambiguities is to compute

a set of 12 position- and velocity-based features such as the distance from a mouse to a

drinking tube or foodhooper. Table 5.1 lists the 12 types of features. To quantify the effects

of the 12 features, we remove them from the feature computation module and train and test

the system on the set B using motion-only features. Figure 5-11 shows the confusion ma-

trix evaluated for the system evaluated on the set B. Comparing Figure 5-8 (motion + pos)

with Figure 5-11 (motion), we found the system’s performance for the most static actions

benefits most from the addition of the position features. The improvement of accuracy is

62% for ’drinking’ and 28% for ’resting’. Accuracy for ’eating’ also increases by 8%.
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Figure 5-11: Confusion matrices evaluated on the doubly annotated set set B for system
to human scoring. Here only motion features are used in the feature computation module.
For a less cluttered visualization, entry with value less than 0.01 is not shown. The color
bar indicates the percent agreement, with more intense shades of red indicating agreements
close to 100% and lighter shades of blue indicating small fractions of agreement.

5.6 Application

5.6.1 Characterizing the home-cage behavior of diverse inbred mouse

strains

To demonstrate the applicability of this vision-based approach to large-scale phenotypic

analysis, we characterized the home-cage behavior of four strains of mice, including the

wild-derived strain CAST/EiJ, the BTBR strain, which is a potential model of autism [102]

as well as two of the most popular inbred mouse strains C57BL/6J and DBA/2J. We video

recorded n = 7 mice of each strain during one 24-hour session, encompassing a complete

light-dark cycle. An example of an ethogram obtained over a 24-hour continuous recording

period for one of the CAST/EiJ (wild-derived) strain is shown in Figure 5-15(H). One

obvious feature was that the level of activity of the animal decreased significantly during
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the day (12 − 24 hr) as compared to night time (0 − 12hr). The mean activity peak of the

CAST/EiJ mice shows a much higher night activity peak in terms of walking and hanging

than any of the other strains tested (Figure 5-12). As compared to the CAST/EiJ mice,

DBA/2J strain showed an equally high level of hanging at the beginning of the night time

but this activity quickly dampened to that of the other strains C57BL/6J and BTBR.

We also found that the resting behavior of this CAST/EiJ strain differed significantly

from the others: while all four strains tended to rest for the same total amount of time (ex-

cept BTBR which rested significantly more than C57BL/6J), we found that the CAST/EiJ

tended to rest for fewer but longer stretches. Their resting bouts( a continuous duration

with one single predicted label) lasted almost three times longer than those of any other

strain. (Figure 5-16(A-B)).

As BTBR mice have been reported to hyper-groom [102], we next examined the groom-

ing behavior of BTBR mice. In the study of McFarlane et al. [102], grooming was who

manually scored during the 10th-20th minute after placing mouse into a novel cage. Under

the same condition, our system detected that the BTBR strain spent approximately 150 sec-

onds grooming compared to the C57BL/6J mice which spend a little more than 85 seconds

grooming. For a sanity check, two annotators, (’H’,’A’), are randomly selected from ’An-

notators 1’ (see Section 5.3.3) to annotate the same videos independently. The behavior

difference detected by the system were able to be reproduced by both annotators (Figure

5-16(C)). Moreover, using annotator ’H’ as ground truth, frame-wised accuracy of the sys-

tem is 89% and frame-wised accuracy of annotator ’A’ is 91%. This shows the system can

detect grooming behavior with nearly human performance. Here we show that using our

system we were able to reproduce the key results that the BTBR strain grooms more than

the C57BL/6J strain when placed in a novel cage environment. Note that in the present

study the C57BL/6J mice were approximately 90 days old(+/- 7 days) while the BTBR

mice were approximately 80 days old (+/-7 days). In the McFarlane study younger mice

were used (and repeated testing was performed), but our results essentially validate their

findings.
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A

B

Figure 4

Figure 5-12: Average time spent for (A) ’hanging’ and (B) ’walking’ behaviors for each of
the four strains of mice over 20 hours. The plots begin at the onset of the dark cycle, which
persists for 11 hours (indicated by the gray region), followed by 9 hours of the light cycle.
For (A), at every 15 minute of the 20-hour length, we compute the total time one mouse
spent for ’hanging’ within a one-hour temporal window centering at current time. For (B),
the same procedure as in (A) is done for ’walking’ behavior. The CAST/EiJ (wild-derived)
strain is much more active than the three other strains as measured by their walking and
hanging behaviors. Shaded areas correspond to 95% confidence intervals and the darker
line corresponds to the mean. The intensity of the colored bars on the top corresponds to
the number of strains that exhibit a statistically significant difference (*P¡0.01 by ANOVA
with Tukey’s post test) with the corresponding strain (indicated by the color of the bar). The
intensity of one color is proportional to (N − 1), where N is the number of groups whose
mean is significantly different from the corresponding strain of the color. For example,
CAST/EiJ at hour 0− 7 for walking is significantly higher than the three other strains so N
is 3 and the red is the highest intensity.
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5.6.2 Patterns of behaviors of multiple strains

To demonstrate the patterns of behaviors can be used to characterize mice strains. We

experimented with system predictions for the 7 24-hour video for the 4 mice strains as

described in Section 5.6.1. Patterns of behaviors were computed from the system output

by segmenting the predictions for each 24-hour video into 4 non-overlapping 6-hour long

segments (corresponding to the first and second halves of the night, first and second halves

of the day, respectively) and calculating the histogram of 8 types of behaviors for each seg-

ment. The resulting 8-dimensional (one for each behavior) vectors of the 4 segments were

then concatenated to obtain one single 32-dimensional vector (8 dimensions 4 vectors) as

pattern of behavior for each animal. The pattern of behavior corresponds to the relative

frequency of each of the 8 behaviors of interest, as predicted by the system, over a 24-hour

period.

To visualize the data, we computed dissimilarity of behavioral pattern between all pairs

of animals by calculating the Euclidean distance between all pairs of 32-dimensional vec-

tors. The Euclidean distance is then scaled by non-metric Multidimensional Scaling (MDS)

analysis. MDS is a common statistical technique for visualizing dissimilarity of data.

It takes as input point-point similarities, and assigns each point a new location in a N -

dimensional space such that the relative point-point distance is maintained. Here we choose

N = 3. This analysis was done using the matlab command ’mdscale’ with the Kruskal’s

normalized stress1 normalization criterion. Although in this relatively low dimensional

space, individual animals tend to cluster by strains suggesting that different strains exhibit

unique patterns of behaviors that are characteristic of their strain-type (Figure 5-16(D)).

The exception is 2 BTBR mice that tended to behave more like DBA/2J.

To quantify this statement, we conducted a pattern classification analysis on the patterns

of behaviors by training and testing a linear SVM classifier directly on these patterns of

behaviors and their labels (as one of the 4 strains). This supervised learning procedure was

conducted using a leave-one-animal out approach, whereby 27 animals were used to train a

classifier to predict the strain of the remaining animal. The procedure was repeated n = 28

times, one for each animal. Accuracy for the 28 strain predictions is computed as:
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accuracy =
# total animals whose strain is predicted correctly

# total animals = 28
(5.9)

The SVM classifier is able to predict the genotype of individual animals with accuracy

of 90% (chance level is 25% for this 4-class classification problem). Figure 5-16(E) shows

a confusion matrix for the resulting classifier that indicates the probability with which an

input strain (along the rows) was classified as each of the 4 strains (along the columns). For

example, the value of 1 for C57BL/6J means that this strain was perfectly classified. The

higher probabilities along the diagonal and the lower off-diagonal values indicate success-

ful classification for all strains. Using a leave-one-animal-out procedure, we found that the

resulting classifier was able to predict the strain of all animals with an accuracy of 90%.

5.7 Extension of the system to more complex behaviors

and environments

5.7.1 Extension to complex behaviors

To train and evaluate the performance of the system we chose the eight behaviors described

above to capture essentially all home-cage behaviors. We next asked if the system can be

extended to other more complex behaviors based on motion features. No additional features

have to be designed for the system to adapt to new actions and the system can automatically

learn from examples of new behaviors. We demonstrate this by training and testing the

system on a set of videos of mice interacting with ”low profile” running wheels (Figure 5-

13(A)). The wheel-interaction set contains 13 fully annotated one-hour videos taken from

six C57BL/6J mice. The four actions of interest are: ”running on the wheel” (defined

as all 4 paws on the wheel and the wheel to be rotating), ”interacting with the wheel but

not running” (any other behavior on the wheel), ”awake but not interacting with wheel”,

and ”rest outside the wheel”. Snapshots of these actions are shown in Figure 5-13(A) and

in the video http://techtv.mit.edu/videos/5567. Using the leave-one-video-

out procedure and accuracy formulation as for the full database, the system achieves 92.8%
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of accuracy. The confusion matrix is shown in Figure 5-13(B) and indicates that the system

can discriminate between interacting with the wheel from running on the wheel. See also

an online video http://techtv.mit.edu/videos/5567 for a demonstration of

the system scoring the wheel-interaction behaviors.

In order to understand how many annotated examples is required to reach this per-

formance,we repeat the same experiment of varying the number of training examples as

described in Section 5.5.3. For the leave-one-video-out experiment, using 2 minutes of

annotation for each training video, the system achieves 90% of performance obtained us-

ing 30 minutes, as shown in Figure 5-9(B). Interestingly, although with different types of

actions and different number of videos, the result for the wheel-interaction set matches

that for the full database( Figure 5-9(A)). When training and testing on the same video of

the wheel-interaction set, the system’s accuracy keeps increasing and doesn’t reach opti-

mal even when all first 30 minutes are used for training, as shown in Figure 5-10(B). This

may be due to the large within-class variation of the action ”awake but not interacting with

wheel”: all the actions that are performed outside the wheel such as walking, grooming,

eating, rearing all fall into this category. A mouse may perform ”awake but not interacting

with wheel” in first 30 minutes in a way different from the way in the rest of the video.

5.7.2 Extension to more complex environments

For home-cage behavior detection, the two video databases used to train the system contain

very little nesting materials, as shown in Figure 5-1. We next asked how the system would

perform detecting behavior under more natural nesting conditions, including more bedding.

Since this system relies on motion (as opposed to shape), which is mostly visible under par-

tial occlusion, we expected that it could still perform well. For example, when grooming, a

mouse sweeps its fore- or hind-limbs across the face or torso, which can still be recognized

by the system as long as the limbs and face of the mouse is visible. To validate this point,

we apply the system to a one-hour video taken from a cage (with more bedding than the

videos in the full database) to demonstrate the recognition of actions remains robust. The

two videos and predictions of the system are available online at http://techtv.mit.
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Figure 5-13: (A) Snapshots taken from the wheel-interaction set for the four types of in-
teraction behaviors of interest: resting outside of the wheel, awake but not interacting with
the wheel, running on the wheel, and interacting with (but not running on) the wheel. (B)
Confusion matrices for system to human scoring.

edu/videos/5566 and http://techtv.mit.edu/videos/5565.

Figure 5-14: Snapshot taken from a one-hour video within natural home-cage environment.

116

http://techtv.mit.edu/videos/5566
http://techtv.mit.edu/videos/5566
http://techtv.mit.edu/videos/5565


5.8 Conclusion

In this chapter we describe the development and implementation of a trainable computer

vision system capable of capturing the behavior of a single mouse in the home-cage en-

vironment. Importantly, as opposed to several proof-of-concept computer vision studies

[36, 218], our system has been demonstrated with a ”real-world” application, character-

izing the behavior of several mouse strains and discovering strain-specific features. We

provide software as well as the large database that we have collected and annotated in hope

that it may further encourage the development of similar vision-based systems. The search

for ”behavioral genes” requires cost effective and high-throughput methodologies to find

aberrations in normal behaviors [190]. From the manual scoring of mouse videos described

in Section 5.3.3, we have estimated that it requires about 22 person hours of work to man-

ually score every frame of a one-hour video. Thus, we estimate that the 24-hour behavioral

analysis conducted above with our system for the 28 animals studied would have required

almost 15, 000 person hours (i.e., almost 8 years of work for one person working full-time)

of manual scoring. An automated computer-vision system permits behavioral analysis that

would simply be impossible using manual scoring by a human experimenter. The system

is implemented using GPU (graphical processing unit) based on a framework of (Mutch &

Poggio, in prep) and performs in real time for the computation of motion and position- and

velocity-based features (it takes about 1 second to process 30 frames).

In principle, our approach can be extended to other behaviors such as dyskinetic behav-

iors in the study of Parkinson’s disease models, seizures for the study of epilepsy, mice with

bipolar disorder. Future developments of our learning and vision approach could deal with

the quantitative characterization of social behavior involving two or more freely behaving

animals. This will require a tracking module for identifying location and identity of each

mouse prior to recognition of its behavior. In conclusion, our study shows the promise of

learning-based and vision-based-techniques in complementing existing approaches towards

a complete quantitative phenotyping of complex behavior.
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5.9 Future work

Our system can be extended to recognize behaviors of multiple animals by adding a track-

ing module for identifying the location of each individual animal prior to the recognition

of behaviors. Depending on whether a group of mice are interacting ( from their relative

positions and shapes), the system either recognizes actions of individual animal, or social

actions of the group. Under the conditions of multiple mice in a cage, it has been shown

tracking identity of three mice can be achieved by simple heuristic rules [15]. In the more

complicated case when multiple animals exist and stack on or spin with each other, the main

difficulty will be occlusions aroused from nesting materials and other animals. To deal with

occlusions, we will use at least two cameras: one from top view for better tracking of an-

imal positions and one from side view for seeing contour (limbs and body) and motion of

mouse. Mouse identity can be inferred by combining positions computed from these two

sources of images [218]. Under the complicated experimental setting with multiple animal

and multiple cameras, an abundant amount of accurate annotations will be a key for the

success of the system. The scoring process under multiple camera/mice will become more

time-consuming, therefore it is critical to develop an annotation tool that makes the best

use of our current system, meaning the trained system can predict all the labels in advance

so annotators only have to correct wrong predictions. The system can also be extended to

do incremental learning [25]: during the process of annotation, the system simultaneously

learns from examples that were corrected by annotators to make more accurate predictions

for the subsequent frames.
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System label HCS label
drink drink
eat eat

chew
groom groom
hang hang cuddle

hang vertically
hang vertically from hang cuddled

hang vertically from rear up
remain hang cuddled

remain hang vertically
micro-movement awaken

pause
remain low

sniff
twitch

rear come down
come down from partially reared

come down to partially reared
stretch body, land vertically

rear up
rear up from partially reared

rear up to partially reared
remain partially reared

remain rear up
rest sleep

stationary
walk circle

turn
walk left

walk right
walk slowly

not processed dig
forage
jump

repetitive jumping
unknown behavior

urinate

Table 5.7: Matching between 8 types of labels in our system and labels in the HomeCageS-
can.
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Figure 5-15: Overview of the proposed system for recognizing the home-cage behavior of
mice. The system consists of a feature computation module(A-F) and a classification mod-
ule(G). (A) The background subtraction technique is performed on each frame to obtain a
foreground mask. (B) A bounding box centering at the animal is computed from the fore-
ground mask. (C) Position- and velocity-based features are computed from the foreground
mask. (D) Motion-features are computed from the bounding-box within a hierarchical ar-
chitecture (D-F).(G) HMMSVM. (H) An ethogram of time sequence of labels predicted by
the system from a 24-hr continuous recording session for one of the CAST/EiJ mice. The
right panel shows the ethogram for 24 hours, and the left panel provides a zoom-in version
corresponding to the first 30 minutes of recording. The animal is highly active as a human
experimenter just placed the mouse in a new cage prior to starting the video recording. The
animal’s behavior alternates between ’walking’, ’rearing’ and ’hanging’ as it explores its
new cage.
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Figure 5-16: (A) Average total resting time for each of the four strains of mice over 24
hours. (B) Average duration of resting bouts (defined as a continuous duration with one
single label). Mean +/- SEM are shown, ∗P < 0.01 by ANOVA with Tukey’s post test. (C)
Total time spent for grooming exhibited by the BTBR strain as compared to the C57BL/6J
strain within 10th-20th minute after placing the animals in a novel cage. Mean +/- SEM are
shown, ∗P < 0.05 by Student’s T test, one-tailed. (P = 0.04 for System and P =0.0254 for
human ’H’, P = 0.0273 for human ’A’). (D-E) Characterizing the genotype of individual
animals based on the patterns of behavior measured by the computer system. (D) Multi-
Dimensional Scaling (MDS) analysis performed on the patterns of behaviors computed
from the system output over a 24-hour session for the 4 strains. (E) The confusion matrix
for the SVM classifier trained on the patterns of behavior using a leave-one-animal out
procedure.
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Chapter 6

Towards a Biologically Plausible Dorsal

Stream Model

This chapter is now under preparation for a journal submission.

Abstract

A substantial amount of data about the neural substrates of action recognition and motion
perception is accumulating in neurophysiology, psychophysics and functional imaging, but
the underlying computational mechanisms remain largely unknown, and it also remains
unclear how different experimental evidence is related. A computational model constrained
by experimental results will help organize the known physiological facts as well as suggest
novel experiments and predict the neuronal responses, which, if verified, could be used to
further refine or constrain the model.

In this work we present a hierarchical model for the motion processing in the dorsal
stream and action selectivity in the area STP. This model has been shown to perform on par
or outperforms computer vision algorithms for the recognition of human actions [75] as
well as mice behaviors in videos [73]. By comparing the model outputs with the neuronal
responses, we show that the model can explain motion processing in the area V1 and area
MT as well as action selectivity in the area STP. Specifically, the first two layers of the
model match the spatial and temporal frequency tuning of V1 cells. The latter two layers
match the distribution of pattern and component sensitivity [115], local motion integration
[97], and speed-tuning [144] of MT cells. The model, when combining with the ventral
stream model [173], could also explain the action and actor selectivity in the STP area, a
high level cortical area receiving inputs from both the ventral and the dorsal stream.
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6.1 Introduction

6.1.1 Organization of the dorsal stream

The dorsal stream is a functionally specialized pathway for processing visual signals re-

ceived from retina. It is called ”where pathway” because it is involved in space perception,

such as measuring the distance to an object or the depth of a scene. It is also called ”motion

pathway” because it is involved in the analysis of motion signals [202, 54], such as per-

ception of motion and recognition of actions. In this chapter we will focus on the motion

aspect.

The dorsal stream starts at direction selective cells in the primary visual cortex (V1)

[62]. These cells then project to middle temporal area (MT/V5) [203], where most of the

neurons are direction and speed sensitive and the receptive fields are 2 − 3 times larger

than the V1 afferents [107]. MT neurons then project to the medial superior temporal

area (MST), where neurons are tuned to complex optical-flow patterns over a large portion

of the visual field, and are invariant to the position of the moving stimulus [56]. The

dorsal stream is thought to include area V1, MT and MST. Dorsal stream signals are then

integrated with ventral stream signals, specifically from inferior temporal cortex (IT), at the

superior temporal poly-sensory area (STP). Figure 1-1 indicates the locations of these areas

in the dorsal stream. Table 6-1 lists the neuronal tuning properties and illustrates effective

stimuli in these areas.

6.1.2 Motion processing in the dorsal stream

The primary visual cortex (V1) is the first area of the dorsal stream, V1 neurons are more

studied than higher-level neurons because of their relative simpler RF structures and func-

tions.

V1 simple cells The striate neurons are diverse in terms of receptive field sizes, structures

and functions. Simple cell receptive field contains oriented excitatory regions in which pre-

senting an edge stimulus excites the cell and inhibitory regions in which stimulus presen-

tation suppresses responses. The cells respond to oriented stimuli (gratings, bars) whose
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Figure 6-1: The neuronal tuning properties in the dorsal stream and the effective stimuli.

orientation matches that of subregions [68, 70, 163]. There is a long tradition in which

simple receptive fields are modeled as linear functions; meaning the response of the cells

are a weighted sum of the light intensity distribution of the stimuli.

A subset of V1 simple cells are direction selective (DS). This subset is thought to con-

stitute the first layer of motion processing in the visual system. In these cells, the spatial

receptive field changes over time in a way that the subregions are oriented when plotted

in the space-time domain (Figure 6-2). Translating stimulus can also be pictured as oc-

cupying a space-time orientation [1, 64]; the orientation uniquely determines the speed

and direction of the stimulus. Therefore a space-time-oriented simple RF allows the cell

responding to motion characterized by the same space-time-orientation [33] and having

velocity preference. Moreover, DS simple cells are tuned to the spatial and temporal fre-
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quency of the stimulus [47, 96, 114]. The elongated receptive field structure [33] and the

tuning to spatio-temporal frequency can be well approximated by localized spatio-temporal

filters [78, 222, 64, 177], or learned from natural images [149, 128].

While many aspects of simple cells’ responses are consistent with the linear model,

there are also violations of the linearity. For example, the responses of a cell scale lin-

early with the contrast of the stimulus, but saturate at high contrast [2, 3]. Moreover, the

responses to an optimally-oriented stimulus can be diminished by superimposing an orthog-

onal stimulus that is ineffective in driving the cell when presented alone. This phenomenon

is called ”cross-orientation-suppression” [32, 143]. Linearity alone also fails to account for

direction selectivity of simple cells. In order to account for these nonlinearities, the linear

model was extended with rectification and normalization operations [113, 65, 22, 21, 139].

For example, Heeger used divisive normalization in which the response of a cell is normal-

ized by the summed responses of a pool of cells [65, 22, 21]. The pool includes cells tuned

to a range of spatial frequencies and directions in order to account for the directional and

spatial frequency tuned suppression signals [32].
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Figure 6-2: A. Dynamics of receptive field of directional selective striate simple cells.
Below each contour plot is a 1D RF that is obtained by integrating the 2D RF along the
yaxis, which is parallel to the cell’s preferred orientation. B. Spatiotemporal receptive field
for the same cell. The figure is modified from [33].
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V1 complex cells The receptive field of DS complex cells can not be mapped out by the

responses to a single stimulus because the cells are insensitive to the polarity and spatial

position of the stimulus [68, 70, 163]. The receptive field structure is investigated using

two moving bars and the reversed correlation technique, which together revealed that the

underlying subunits are elongated and oriented [116], suggesting simple cells as inputs to

complex cells. Combined with the fact that complex cells have broader tuning for spatial

frequency and larger receptive field than simple cells (around 2 − 3 times), it is gener-

ally accepted that complex cells combine multiple simple cells that are tuned to the same

direction and a range of spatial frequencies over a localized spatial region[144]. Such a

combination was modeled as a max-pooling [52, 84, 46, 79], a linear weighting [177], or

it could be learned from natural image sequences [100, 101]. Adelson & Bergen’s energy

model and the extended Reichardt detectors were often used to model DS complex cells

[151, 1, 207, 40]. The max-pooling was supported by physiological experiments [84, 46],

and it can also be approximated with the energy model under some conditions [46].

MT and MST cells Beyond the primary visual cortex, the processing of motion becomes

complex within a large receptive fields (MT RF size is least 10o). In MT area, receptive

field structures are rarely studied with a few exceptions [45, 93]. Most of the MT neurons

are tuned to direction and speed of motion [4, 83], but these two tuning are not independent

properties [83, 155], and each of them also depends on other factors. For example, direction

tuning changes with speed [126, 83], spatial configuration [97], spatial frequency [107],

and complexity of the stimulus [115]. Speed tuning also changes with the spatial frequency

of the stimulus [134, 142, 144]. In Section 6.3.1, we will describe the direction and speed

tuning of MT cells. The MST is sometimes divided into MSTI where cells are also tuned to

directions like MT afferents, and MSTd where cells are tuned to large optical flow patterns

such as spiral motion [56].

6.1.3 The problem

A substantial amount of data about the neural substrates of action recognition and motion

perception is accumulating in neurophysiology, psychophysics and functional imaging, but
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the underlying computational mechanisms remain largely unknown, and it also remains

unclear how different experimental evidence is related. A computational model constrained

by experimental results will help organize the known physiological facts as well as suggest

novel experiments and predict the neuronal responses, which, if verified, could be used to

further refine or constrain the model. There are indeed many computational models for

motion processing, motion perception, or visual attention in the dorsal stream [177, 197,

157, 58, 18, 20]. On the other hand, computer vision systems have been developed to

mimic the functions of the human visual system, such as recognition of faces, objects and

actions. However, modeling visual processing in brains and computer vision systems for

recognition have been mostly developed independently. We believe an ideal computational

model for the visual system should also be applicable to computer vision tasks, and vice

versa.

HMMAX is such a model that could explain neurophysiology, human psychophysics as

well as recognition of objects. HMAX was built partially based on neuronal recording from

V1 and partially on predictions that specificity and invariance are gradually built up along

the ventral stream hierarchy with repetitive simple and complex operations. In Chapter 2,

we described the extension of HMAX along the time domain to represent actions in videos,

and showed that the outputs of the model could be used for recognition of human actions

(Chapter 3, Chapter 4) as well as mice behaviors (Chapter 5).

In this chapter we will answer if our proposed model (Chapter 2) for the recognition of

actions could also explain physiology in the dorsal stream. In particular, the first two layers

(S1/ C1) of the model were designed to closely follow the known receptive field profiles

of DS V1 cells, and our main goal is to test our prediction that the next two layers (S2/

C2) could model the downstream MT cells. We will also go beyond the dorsal stream and

try to model the responses of STP neurons. Some STP neurons are shown to be selective

to actors, actions, or their combinations, and therefore closely related to the recognition of

actions [178]. These types of selectivity were believed to be the result of receiving shape

features from ventral afferents and motion features from dorsal afferents. We will propose

a way these two types of features are integrated and compare the results with the tuning of

STP neurons.
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6.1.4 The interpretation of velocity in the frequency domain

Perception of the velocity of moving objects is essential for extracting information about

the surrounding environment. For example, animals need to estimate the speed and di-

rection of other species in order to capture prey or avoid being captured. The definition of

speed is the total distance traveled per unit of time. This computation is involved in tracking

a particular point over time (solving a correspondence problem), then compute the delay

and distance. This seems to be implausible within neurons’ local spatio-temporal receptive

field. Fahle and Poggio [42] and Adelson and Bergen [1] have pointed out that in order

to understand neuronal processing in the visual system, motion is better characterized as

orientation in space-time, where orientation is a function of direction and speed.

Motion processing in primates starts in the striate cortex, where a group of neurons are

tuned to orientations and directions perpendicular to the orientations, and are thought to

be pre-processors for extracting motion. The striate neurons process input signals within

a spatially localized region and a restricted window of time, and the spatial structure of

receptive fields changes as a function of time. For direction-selective cells, the spatial

receptive field changes in a way that the ON/OFF subregions are oriented in space-time

(Figure 6-2). This allows the cells responding to motion characterized by the same space-

time-orientation [33]. Indeed, a simple cell’s preferred direction and speed of motion can be

predicted reliably from the structure and the slope of the oriented subregions in the space-

time domain [32, 103, 104]. The orientation in the space-time domain could be translated

as orientation in the Fourier domain.

Here we review the analysis by Watson and Ahumada in [212] (The Fourier analysis of

motion has also been discussed in [42, 64]). Consider a two dimensional pattern translating

at a constant velocity in a two-dimensional space (x-y). The trajectory of the image can be

written as

c(x, y, t) = c(x, y)δ(x− vxt)δ(y − vyt) (6.1)

where x and y are vertical and horizontal image coordinates and t is time. The image

intensity distribution at time 0 is c(x, y), and vx and vy are the velocity in the x and y

dimension.
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After applying the Fourier transform,

C(wx, wy, wt) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
c(x, y, t)exp(−i2π(xwx+ywy+twt))dxdydt (6.2)

= C(wx, wy)δ(wt + wxvx + wyvy) (6.3)

the spatial frequency along the x and y axis (wx and wy), and temporal frequency (wt)

lie on a common plane (wt + wxvx + wyvy = 0) in the frequency domain (wx − wy − wt),

as shown in Figure6-3. Here wx and wy are defined in cycles per degree, and wt is defined

in cycles per second.

Consider a one-dimensional signal (such as edges, bars, gratings) moving along the x

axis (vy = 0), the frequency spectrum is a line wt+wxvx = 0 with a slope −1
vx

in the wt−wx

space, as shown in Figure 6-8D. In other words, in the case of one-dimensional motion, the

speed of the image can be interpreted as the ratio of the spatial to the temporal frequency

of the image. A typical example of 1D motion is the motion of sine-wave grating, whose

spatial frequency is the inverse of the width of a single sinusoidal cycle and temporal fre-

quency is the inverse of the time required for a single pixel to go through a single sinusoidal

cycle.

A                   B                   

wt

1wx wy1

0 0

0

1

wt

1wx wy1

0 0

0

1

wt

1wx wy1

0 0

0

1

C                   

Figure 6-3: The surface indicates the Fourier spectrum of objects translated at a particular
velocity. The slant of the plane from the floor is proportional to the speed of motion. The
tile of the plane relative to the spatial frequency axis is equal to the direction of motion.
The greater slant of A as compared to B indicate a faster speed in A. The motion in A and
C have identical speeds but different directions. Figure modified from [59].
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6.2 The Model

The general structure of the proposed hierarchical model has been described in Chapter 2.

Here we describe the detailed implementation of each stage and their biological correlates.

S1 units S1 units are designed after the direction selective simple V1 neurons. Let I

denote the light intensity distribution of a stimulus, fi denote the receptive field profile of

the i−th S1 unit. The response S1i is the linear convolution of the stimulus with fi followed

by Heeger’s normalization model [65, 22, 21]. Prior to the convolution, the stimulus was

normalized to have unit average intensity [177].

Li = fi × I (6.4)

S1i =
L2

i∑
i L

2
i + β

(6.5)

In Heeger’s normalization model, the linear response (Li) is squared and then divided

by the pooled responses of a large number of cells. The squaring operation was shown to

approximate the transformation from the membrane potential to the spike rate [2, 166, 21].

The divisive normalization could account for the nonlinearity and dynamics of simple cell

responses [65]. Here the pool contains cells of the same receptive field tuned to 16 different

directions equally spaced in the angular space (between 0 and 2π). β is the saturation

constant. The normalization model belongs to a big class of canonical-models which could

be implemented with neuronal circuits (sigmoid-like model in [80]).

In some works, the transformation from the membrane potential to the spike rate is

modeled as rectification. The rectification operation and the squaring operation are similar

under some conditions [65, 22, 21].

Here each S1 unit’s receptive field is modeled as a three-dimensional Gabor filter tuned

to a particular speed (v) and direction θ.
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f(x, y, t) = exp(−(x′ + vt)2 + γ2y′2

2σ2
) · cos(2π

λ
(x′ + vt) + ξ) · exp(− t2

2τ 2
) (6.6)

x′ = xcosθ + ysinθ (6.7)

y′ = xsinθ + ycosθ (6.8)

In this equation, γ represents the spatial aspect ratio, λ and τ control the spatiotemporal

period (inversely proportional to the preferred spatiotemporal frequency) of the filter, λ is

also a function of the preferred speed of the filter. Each filter is normalized to be zero mean

and unit L2 norm.

The spatial size of V1 receptive fields has been approximated as a linear function of the

eccentricity [107]. Here we model cells of RF sizes 0.6o−3.4o at eccentricity 2o−15o. Let

a typical video resolution 240×360 pixels correspond to 45 degrees of a visual field, the RF

sizes will correspond to filter sizes 5−27 pixels. λ is set to be proportional to the filter size,

therefore a range of filter sizes that were designed to capture motion occurred at different

scales (sizes of moving objects) will respond as well to a range of spatial frequencies.

The temporal resolution of a typical simple cell is 300(ms) [33], corresponding to 9

frames for a typical video frame rate 29 − 35 fps. The model contains 12 sizes of filters,

see Table 6.1 for a list of parameters.

C1 units C1 units mimic the tolerance of V1 complex cells to the shift of the stimulus’

position and size by computing a maximum response over S1 units of adjacent two scales

in a local spatial region. The spatial pooling size is designed to be at least half of the S1

filter size, and the pooling step at least half of the pooling size. The parameters of C1 units

are listed in Table 6.1.

Table 6.2 compares a set of basic tuning properties of our S1 and C1 population to DS

V1 cells. The S1 and C1 units match quite well with V1 cells in terms of the tuning to

spatial frequency, temporal frequency, and direction.
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Table 6.1: Parameters of S1/C1 units. Here λ is set for a preferred speed of 1 pxs/frame.

scale S1 size λ C1 pooling size c1 pooling step size
1 5 × 5 3.5 4 3
2 7 × 7 5.3
3 9 × 9 7.1 6 3
4 11 × 11 8.8
5 13 × 13 10.6 8 5
6 15 × 15 12.3
7 17 × 17 14.1 10 5
8 19 × 19 15.9
9 21 × 21 17.7 12 7

10 23 × 23 19.4
11 25 × 25 21.2 14 7
12 27 × 27 23.0

Table 6.2: Tuning properties of S1/C1 units and V1 cells
Tuning Property S1/C1 units V1 cells eccentricity Reference

RF size range 0.6-3.4 o 0.6-4o 2-15o [107]
mean 2o 2.2o [107]

peak spatial frequency range 0.4-4.4 c/o <0.75-6 c/o 1.5-3.5o [62]
range 0.4-4.4 c/o 0.5-8 c/o 2-5o [47]
mean 1.4 c/o 2.2 c/o [47]

peak temporal frequency range 1.0-15 c/s 0.5-12 c/s 2-5o [47]
mean 4.6 c/s 3.7 c/s [47]

spatial frequency bandwidth range 0.5-4.1 octave 2-5o [47]
mean 1.35 octave 1.8 octave [47]

temporal frequency bandwidth range 0.5-5.8 octave
mean 3.14 octave 2.9 octave 2-5o [47]

direction bandwidth range 45-92o

mean 52o 68o [4]

S2 units We conjecture S2 and C2 units could model MT cells because they both inte-

grate directions and spatiotemporal frequencies extracted from a previous stage (Details in

Section 6.3.6). Each S2 unit computes a template matching between inputs and a stored

template using a normalized dot product operation (linear kernel).

Each template is normalized to be zero mean in order to account for the suppressive

signals within MT receptive field. The majority of MT neurons respond vigorously to

stimuli moving in the preferred direction and the responses are suppressed below the spon-
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taneously firing rate when stimuli move in the opposite direction [106]. The responses of

a MT cell to random dots moving in its preferred direction can also be suppressed by su-

perimposing random dots moving in the opposite direction [180, 145]. This phenomenon

is so called ”motion opponency”. These suppressive signals are present in a local space

(they don’t suppress preferred motion far apart in space) and tuned to direction [180] (See

[160] for a discussion about the possible origin of suppressive signals). In previous MT

models, these suppressive signals were accounted by negative synaptic weights or divisive

normalization[177, 94, 52, 161]. In our proposed model, C1 responses are by default posi-

tive, due to the squaring operation in the S1 stage, we therefore ”generate” negative weights

by subtracting the mean of each template. The zero-mean normalization of templates is in-

deed necessary for modeling direction tuning of MT neurons, as demonstrated in Section

6.3.6.

Here the templates were randomly sampled from C1 outputs of training sequences.

It could also be obtained by learning rules such as Hebbian rule [168] or spike timing

dependent plasticity (STDP) [181, 101]. In Lecun’s convolutional networks, weights along

the hierarchy are learned through back propagation [88].

For the experiments in this chapter, we sampled S2 templates from random scales.

C2 units C2 units perform a max-pooling operation over S2 units within its receptive

field and over all the S2 scales. Each C2 unit’s receptive field is designed to be 189 pixels,

corresponding to a 20o of visual field.

6.3 Comparing C2 units with MT cells

6.3.1 Introduction: directional tuning

Here we reviewed a nice paper for the introduction of the directional tuning in the visual

system by Movshon, Adelson, Gizzi and Newsome [115].

Aperture problem and the theoretical solutions Each cell has a specific receptive field,

which defines the region of retina over which one can influence the firing of that cell. This
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receptive field can be treated as a small aperture through which the cell looks at the world.

Within this aperture, the motion of a single extended contour (edge, line, linear border,

bar) doesn’t allow one to determine the motion of the object that contains that contour. For

example, Figure 6-4A shows three objects containing an oblique grating moving behind a

circular aperture. In all cases, the appearance of the grating, as seen through the aperture,

is identical: the gratings appear to move up and to the left, normal to their orientation.

This is because, as illustrated in Figure 6-4B, object velocity can be decomposed into two

orthogonal vectors, one perpendicular to the orientation of the contour and one parallel

to the contour. The parallel vector is invisible because one can not detect the motion of

an edge along its own length, therefore we can only perceive the perpendicular vector.

The computational problem of estimating the global motion direction of an object from

the different local motions apparent through two or more apertures is called the aperture

problem.

A

B

visible

visible
visible invisible

B

invisible

Figure 6-4: A. Three patterns moving in different direction produce the same physical
stimulus, as seen through the aperture (Adapted from [115]). B. The object velocity can be
decomposed into two orthogonal vectors, one perpendicular to the orientation of the edge
and one parallel to the edge. C.

Assuming an object is translating in the image plane (linear motion), the motion is

ambiguous when only one edge is visible, but two edges of the object with different orien-

tations should be sufficient to determine its velocity. Consider the object shown in Figure

6-5A moving to the right. The top right edge of the object, appears to move up and to

the right, as seen behind the aperture. The percept of the edge motion could be generated
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by any of the object motions shown by the arrows in Figure 6-5B. This is because motion

parallel to the edge is not visible, so all motions that have the same component of motion

perpendicular to the edge are possible candidates for the true motion of the object that con-

tains the edge. The set of possible solutions for the true motion lies along a line in the

velocity space, as shown in Figure 6-5B. In this velocity space, motion of two edges with

different orientations correspond to two non-parallel lines, whose intersection satisfies both

constraints and corresponds to the true motion of the object that contains both edges. This

is so called intersection of constraints (IOC).

A
vy

B C
vy

vxvx

Figure 6-5: A. An object moves to the right, one if its border (colored in red) appears to
moves up and to the right behind the aperture. B. Each arrow is a velocity vector that
generates the percept of the red border in A, and the set of possible velocity vectors lies
along a line (colored in red) in the velocity space (Adapted from [115]). C. Each border
of the object provides a constraint- a line in velocity space, and the intersection of the two
lines represent the unique true motion of the object that contains both edges.

Solving the aperture problem in the visual system Since most neurons in the primary

visual cortex have relatively small receptive fields, they confront the aperture problem when

an object larger than their receptive field moves across the visual field. How does the

visual system solve the aperture problems and perceive true motion of the objects in this

world? Tony Movshon, and his colleagues proposed a two stage model. The initial stage

performed orientational filtering. In this stage orientation tuned cortical neurons respond

to components of motion perpendicular to their preferred orientation. In the second stage,

high-order neurons integrate the component motion analyzed by the first stage and infer the

true motion. The hypothesis that motion information in the visual system is processed in
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two stages was tested by physiological experiments described as below.

In the experiments of Movshon et al [115], two kinds of stimuli were used to investigate

how visual system analyze motion: sine wave grating and sine wave plaids. The grating

moves in the direction perpendicular to its orientation, and therefore exhibits the ambiguous

motion as shown in 6-5B. A sine wave plaid is composed of two overlapping gratings at

different orientations, each moving in a direction perpendicular to its orientation. The two

gratings have the same spatial frequencies and move at the same speed. The motion of the

plaid could be uniquely determined by IOC solutions. Because the two component gratings

have identical spatiotemporal properties, the IOC solution is simply the summation of the

two velocity vectors.

Two types of directional selectivity have been defined in visual electrophysiology: com-

ponent directional selectivity (CDS) and pattern directional selectivity (PDS). CDS cells

respond to the motion of single oriented contours, whether they are presented in isolation

or embedded in a more complex 2-dimensional pattern, such as plaids. PDS cells respond

to the direction of motion of the overall pattern; therefore, theoretically they have responses

that are identical for a grating and a plaid moving in the same direction, even though the

underlying gratings have different motion.

Figure 6-6 illustrates the responses of a hypothetical directional-selective cell to a grat-

ing and a plaid. The direction tuning curve is shown as a polar plot, in which the moving

direction of the stimulus is given by the angle, and the cell’s response is given by the radial

distance to the origin. When presenting a grating, the direction tuning curve peaks when

the grating moves in the optimal direction of the cell, as shown in Figure 6-6C. A cell can

be classified as PDS or CDS based on its responses to the plaid.

If the cell is CDS (tuned to the individual motion of gratings), the response to the

plaid could be predicted by combining the responses to two gratings that are presented

separately. Let α be the plaid angle, defined as the angular difference of the two gratings’

directions. In other words, the component gratings move in α/2 degrees to either side of

the plaid direction. The prediction for the direction tuning curve to a plaid could therefore

be obtained by summing the direction tuning curve to the two gratings, each shifted to

either side by α/2 degrees, resulting in a bi-lobed direction tuning curve. Let yc(θ) be the
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response to a grating moving in direction θ, the response of a CDS cell to the plaid could

be predicted as:

ŷc(θ) = yc(θ −
α

2
) + yc(θ +

α

2
) (6.9)

If the cell is PDS (tuned to the overall motion of the stimulus), its responses to the plaid

could be predicted to be identical to the responses to the grating:

ŷp(θ) = yc(θ) (6.10)

Figure 6-6 D illustrates the CDS prediction (bi-lobed solid line) and PDS prediction

(single-peaked dashed line).

A B

C D

Figure 6-6: Stimulus and direction tuning curve of a hypothetical directional-selective cell.
A. sine wave grating. B. sine wave plaid. C. direction tuning curve to a grating D.ideally
predicted direction tuning curve to a plaid, a cell is classified as pattern directional selective
if the tuning curve is the same as to the grating (shown in dashed line). A cell is classified as
pattern directional selective if the tuning curve is as in bi-lobed solid line. Figure modified
from [115]

To measure the type of directional selectivity of a neuron (referred alternatively as pat-

tern direction sensitivity), the actual neuronal responses to the plaid are correlated with the

predicted responses. The partial correlation for the pattern prediction (Rp) and component

prediction (Rc) is defined respectively as:
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Rp =
rp − rcrpc√

(1− r2
c )(1− r2

pc)
(6.11)

Rc =
rc − rprpc√

(1− r2
p)(1− r2

pc)
(6.12)

where rc is the correlation between the actual responses to the plaid and the component

prediction. rp is the correlation between the actual responses and the pattern prediction. rpc

is the correlation between the component prediction and the pattern prediction.

A cell is classified as a ”pattern cell” if the partial pattern correlation is significantly

larger than the partial component correlation (Rp > Rc). It is classified as a ”component

cell” if the partial component correlation is significantly larger than the partial pattern cor-

relation (Rc > Rp). Cells that are intermediate between the two extremes, i.e. the two

partial correlations don’t significantly differ from each other, are classified as an interme-

diate type- ”unclassified” (Rp Rc). Figure 6-24A illustrates the boundary of the three cell

types.

Most of the directional selective V1 cells are tuned to the motion perpendicular to the

optimal orientation. The results in [115] showed a majority of DS V1 neurons are classified

as component cells. In MT area, cells’ pattern direction sensitivity (Rp and Rc) forms a

broad distribution; ∼ 25% of MT cells are classified as ”pattern cells”, whereas ∼ 40%

of MT cells are classified as ”component cells”, and the rest 35% of cells fall into the

”unclassified” category [115].

This study revealed the analogy of the proposed two-stage model in the visual system.

In the initial stage of the model, component motion that is perpendicular to the orienta-

tion of edges is extracted, and in the second stage, the motion to more complex pattern

is computed by integrating the component motions from the first stage. In the visual sys-

tem analogy, component directional selective V1 neurons correspond to the first stage, and

pattern directional selective MT cells correspond to the second stage.
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6.3.2 Introduction: speed tuning

Speed tuning in the visual system IOC could be used to disambiguate motion seen

through apertures. For example, consider a zebra moving to the left as in Figure 6-7, two

motion vectors computed within two apertures (green and red 1 circle in Figure 6-7) should

uniquely determine the velocity of the zebra as long as they signal non-parallel component

directions. If we replace the aperture ( from red 1 to red 2), where the spatial frequency of

the zebra changes, the solution should remain the same. For a visual system to implement

IOC, neurons therefore have to ”speed-tuned”, meaning they should respond to a particular

speed of motion independent of the spatial composition of the stimulus (Figure 6-8 C),

which can be measured as spatial frequency.

21

Figure 6-7: A zebra in motion. Modified from [110].

The speed of a one-dimensional motion is given by its temporal frequency divided by its

spatial frequency (Section 6.1.4). A speed-tuned neuron with a peak speed v will respond

to the spatial frequency ws maximally when the stimulus moves in the temporal frequency

wt = v ×ws. In other words, the preferred temporal frequency of the neuron changes with

the stimulus’ spatial frequency. When plotting the responses as a function of the spatial
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and temporal frequency in a 2D plot (wt − ws), the preferred spatio-temporal frequency

will lie on a line with slope v, equivalent to the neuron’s preferred speed (Figure 6-8D). Al-

ternatively, a neuron could have independent (or separable) tuning for spatial and temporal

frequency (Figure 6-8B), meaning the preferred temporal frequency is independent of the

stimulus’ spatial frequency, and as a result, the preferred speed changes with the stimulus’

spatial frequency (Figure 6-8A).

Most of the DS V1 cells are sensitive to the speed [131] of the stimulus. These neurons

are however tuned independently to the spatial and temporal frequencies (Figure 6-8B),

meaning they are not speed-tuned [192, 47, 96, 114].

Perrone and Thiele firstly showed that some MT cells are speed tuned [134] (Brief

accounts of such experiment have been reported [120, 112]). They measured the spa-

tiotemporal frequency responses of MT cells using sinusoidal gratings with thirty different

spatiotemporal frequency combinations moving in the preferred direction of a cell (tem-

poral frequencies, 1, 2, 4, 8 or 16 Hz; spatial frequencies, 0.2, 0.4, 0.7, 1.4, 2.8 or 5.6

cycles/degree). The results showed that some MT cells have inseparable spatio-temporal

frequency tuning oriented in the Fourier space (Figure 6-8D, termed as ”spectral recep-

tive field” in [134]) that enables them to respond selectively to particular spatiotemporal

frequency combinations, that is, to a certain speed of motion. Priebe et al [142] later con-

firmed the existence of speed-tuned MT cells and estimated they make up 25% of the MT

population.

In a subsequent study [144], Priebe et al measured the spatio-temporal frequency of DS

V1 simple and complex cells as well as MT cells. It was known that V1 simple → V1

complex → MT cells constitute a direct pathway for the processing of motion [111, 160,

107] in the visual cortex of primates. A two-dimensional Gaussian is then used to fit the

spectral receptive field of each cell:

R(sf, tf) = Aexp(
−(log2sf − log2sf0)

2

2σ2
sf

)× (6.13)

[exp(
−(log2tf − log2tfp(sf))2

2(σtf + ζ(log2tf − log2tfp(sf)))2
)− exp(

−1

ζ2
)] (6.14)
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where

log2tfp(sf) = ξ(log2sf − log2sf0) + log2tf0 (6.15)

A is the peak response of the neuron, sf0 is the preferred spatial frequency averaged across

temporal frequencies, tfp(sf) is the preferred temporal frequency of the neuron for a par-

ticular spatial frequency of the stimulus, and ζ is the skew of the temporal frequency tuning

curve. The parameter ξ, called speed-tuning index, captures the dependence of the preferred

temporal frequency (and therefore preferred speed) on the stimulus’ spatial frequency. A

neuron whose peak temporal frequency is independent of the stimulus’ spatial frequency

(ideal separable responses) has speed tuning index 0. A neuron whose peak temporal fre-

quency increases or decreases with the spatial frequency has positive or negative speed

tuning index, respectively. An ideal speed-tuned neuron has speed tuning index 1, and an

ideal neuron with separable spatiotemporal tuning has speed tuning index 0.

Priebe et al. [144] showed that most of the V1 simple cells have separable tuning (mean

speed-tuning index 0.08). V1 complex and MT cells have more diverse tuning property,

ranging from 0 (separable tuning) to 1 (speed tuned). Surprisingly, the distribution and

mean value of speed-tuning indices of V1 complex and MT cells are similar ( 0.44 and

0.48 for V1 complex and MT, respectively), as shown in Figure 6-22.

6.3.3 Summary

We described the transformation of motion processing from DS V1 neurons to MT neurons:

V1 simple neurons respond to component directions and have separable spatiotemporal

tuning. V1 complex neurons also respond to component directions but start becoming

speed-tuned. MT neurons are of diverse tuning properties. In terms of pattern direction

selectivity, MT cells range from CDS, unclassified, to PDS. In terms of speed tuning, MT

cells range from separable tuning to speed tuning. It is tempting to think that the V1 simple

neurons’ function is to decompose motion into channels of directions, spatial frequencies,

and temporal frequencies, which are then integrated by the PDS and speed-tuned MT cells

to determine the velocity of the stimulus.
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Figure 6-8: Responses and spectral receptive field of hypothetical cells. (A, B) cells of
separable spatial and temporal frequency tuning. (C, D) cells that are tuned to speed. Figure
reprinted from [144]

6.3.4 Previous computational models

Indeed, MT cells have been modeled as velocity tuned units that integrate multiple elemen-

tary features (directions, spatio-temporal frequencies). In the Fourier space, the spectrum

of an object in translation lies on a plan, whose slant and tilt uniquely determine the ob-

ject’s velocity (Section 6.1.4 and Figure 6-3). Simoncelli and Heeger’s PDS MT model

( in some works referred as ”SH model”) [177] sums the responses of V1 cells whose

preferred spatio-temporal frequencies lie on such a plane, and therefore achieves veloc-

ity tuning (Figure 6-9). Their V1 cells are implemented as 3rd order Gaussian derivative

spatio-temporal filters. The MT responses are then squared and normalized with respect to
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a set of MT population.

Qj =
∑

i

wijCi (6.16)

Qj ←
KQ2

j∑
i Q

2
i + σ2

2

(6.17)

In the latest version of the SH model [161], the divisive normalization includes a self-

normalization term to account for the suppression outside the receptive field [6]:

Qj ←
KQ2

j∑
i Q

2
i + σ1Qj + σ2

2

(6.18)

Figure 6-9: Construction of MT pattern cell from combination of V1 complex cell afferents,
shown in the Fourier domain. Figure reprinted from [177]

Perrone’s MT model [138, 135, 136, 137] combines two V1 neurons; one with a low

pass temporal frequency tuning (sustained, S) and another with a band-pass temporal fre-

quency tuning (transient, T). In primates, the S type has a unimodal temporal response

profile that extends for the duration of the stimulus and the T type has a biphasic profile

with the response primarily at stimulus onset and offset [47, 63]. The S type and T type

have separable spatio-temporal tuning, and they are combined in a way such that the result-

ing MT spectral receptive field is tilted (inseparable). The response of their MT model to a

spatio-temporal frequency is computed as

WIM(sf, tf) =
log(φT (sf, tf) + S(sf, tf) + α)

|logφT (sf, tf)− logS(sf, tf)|+ δ
(6.19)
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There are more algorithms that combine outputs of a set of densely sampled spatio-

temporal filters to approximate the image velocity [64, 60]. PDS responses have also been

modeled as a combination of directional signals [167, 125, 211].

6.3.5 Two constraints for modeling MT PDS cells

MT pattern cells might be strongly related to the human’s ability to estimate velocity of

the motion of the surrounding environment, which could further help understand higher-

order decision making or cognitive functions. Therefore the modeling of MT PDS cells has

been a topic of great interest. To the best of our knowledge, there are at least 10 models

[64, 59, 167, 125, 211, 177, 138, 135, 161, 198] simulating the PDS cells.

Most of the existing computational models for PDS cells could be summarized as a

general class of a linear-nonlinear (LN) model, in which a linear combination of V1 CDS

cells followed by a non-linear normalization could explain both PDS and CDS cells. These

linear coefficients are derived based on the IOC in the Simoncelli and Heeger’s model

[177], learned from moving gratings and plaids in the Nowlan and Snowjeski’s work [125],

and chosen from a parameter space to fit neuronal responses in the work by Rust et al.

[161].

Here we propose two constraints for the modeling of MT PDS cells based on physio-

logical results.

Constraint 1: diverse directional selectivity of MT cells In MT area, pattern direction

sensitivity (Rp and Rc in Equation 6.12) forms a continuous distribution, as shown in Figure

6-24. A large number of cells couldn’t be classified into either PDS or CDS, but instead into

”unclassified” type. Moreover, PDS and CDS cells also range from strong PDS/CDS to the

”unclassified” type. We propose that, if direction selectivity of all the MT cells is generated

through the same mechanism, a PDS/CDS model should also explain the unclassified type

as well as the continuous distribution of Rp and Rc. Table 6.4 summarizes from various

experiments the percentage of MT direction selective cells that are classified into CDS,

unclassified, or PDS type. Although the percentage numbers vary across experiments, they

show consistently that a majority of cells are CDS, and 20%− 30% of cells are PDS.
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Constraint 2: local directional integration of MT cells Previous experiments for mo-

tion integration in MT have used stimuli that fills the receptive field, and thus do not test

whether directional features are really integrated across the whole area. Most of the exist-

ing MT models have also assumed the V1 afferent weights were homogeneous across the

MT receptive field [64, 59, 167, 125, 211, 177, 138, 135, 161, 198]. The work of Majaj,

Carandidi and Movshon provides a spatial constraint for the direction integration within

the receptive filed of MT cells [97].

In their study, the direction selectivity of each cell is tested using three stimuli: gratings,

plaids, and pseudoplaids, referring to plaids whose grating components delivered separately

in space . For each MT neuron, they identified two regions (”patches”) within the receptive

field that were approximately equally effective in driving responses to gratings. Pattern

selectivity was measured for each region separately by presenting gratings (Figure 6-10

(a,d)) and plaids (Figure 6-10 (b,e)) confined in the region. They then measured responses

to pseudo-plaids (Figure 6-10 (c,f)), which have the same component gratings as plaids

except the grating were separated in the two patches. If MT cells simply pooled all the

inputs across the receptive field, the spatial separation of motion signals would not affect

the responses, and the pattern direction sensitivity measured using pseudo-plaids should be

identical to plaids.

The results show that PDS cells, which respond to the plaid direction, respond instead

to the individual grating direction (CDS) when the gratings separated in two patches. These

indicate that the computation of plaid direction, or integration of component directions in

MT, is processed within a scale that is smaller than the whole receptive field.

6.3.6 Why our model could explain MT cells

The first two stages of our model, S1 and C1, extract component motion at particular spatial

and temporal frequency scales. S2 units detect motion features with intermediate complex-

ity by performing a template matching (normalized dot product) between inputs encoded

in the previous C1 layer and a set of templates (prototypes) extracted also from the C1 layer

during a training phase. In the perspective of computational modeling, the S1 → C1 → S2
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MT neurons to overlapping and nonoverlapping gratings pre-
sented within the receptive field. We reasoned that if the compu-
tation of pattern motion were local, the ability of the neuron to
integrate the motions of the two gratings would be compromised
when we separated them. If the pooling were global, and the
neuron simply combined all of the inputs that contribute to its
receptive field without regard to their receptive field location,
then the neuron would signal a coherent direction of motion
whether the gratings overlapped or not.

Materials and Methods
We studied the responses of 54 MT neurons in 12 anesthetized, paralyzed
macaque monkeys. Our methods for animal preparation and data col-
lection are standard in our laboratory and were described in detail pre-
viously (Cavanaugh et al., 2002). All experimental work with animals was
conducted according to procedures approved by the New York Univer-
sity Animal Welfare Committee.

We initially determined the location and size of receptive fields on a
tangent projection screen. All cells had receptive fields centered within
25° of the fovea; most were within 15°. After mapping the receptive fields,
we presented luminance-modulated grating and plaid stimuli on a gray
background to the preferred eye; the space- and time-averaged lumi-
nance of the stimuli was 33 cd/m 2, which was also the luminance of the
background. For each cell, we determined the direction, speed, spatial
frequency, and size of the luminance-modulated sine wave that evoked
the strongest response from the cell. We then identified two regions
(“patches”) within the receptive field that were approximately equally
responsive. We chose patch sizes that gave reliable responses to gratings,
typically half the diameter (range 25–50%) of the most effective stimulus,
and arranged them so that the patches abutted but never overlapped. The
center-to-center separation between the two patches was 50 –75% of the
diameter of the receptive field. We placed the patches along an axis par-
allel to the preferred direction of the cell.

We studied the direction selectivity of each cell using three patterns:
gratings, plaids, and “pseudoplaids”. For gratings and plaids, we tested
each patch separately. Plaids were composed of two superimposed grat-
ings whose direction of motion differed by 120°. For pseudoplaids, we
presented one component of the plaid in each patch (this can be done in
two configurations, �120° or �120°). All three patterns were presented
drifting in 12 directions of motion, in three to five pseudorandomly
ordered blocks. Each stimulus was presented for 2 s followed by a brief
interstimulus interval of �300 ms. Response was measured by counting
spikes over the entire stimulus interval.

Our analysis of directional selectivity was conventional (Movshon et
al., 1985). Using the directional tuning of each cell for gratings, we con-
structed predictions of responses to plaids for idealized pattern-
direction-selective and component-direction-selective cells. For pseudo-
plaids, the predictions were based on the separate grating tuning curves
measured for each patch (Fig. 1a). We computed partial correlations of
the actual responses with the predicted tuning curves (Albright, 1984;
Movshon et al., 1985) and transformed them into normal deviates using
Fisher’s r-to-Z transformation [see equations 13.13.3–5 in Hays (1981)]
(Smith et al., 2005).

To allow histological confirmation of the recording sites, we made
small electrolytic lesions at the end of each electrode track by passing DC
current (2 �A for 5 s) through the recording electrode. At the end of each
experiment, the monkey was killed with an overdose of Nembutal and
perfused through the heart with 0.1 M phosphate buffer solution and 4%
paraformaldehyde. Sections (40 �m) were stained for Nissl substance
with cresyl violet or for myelin using the method of Gallyas (1979). Most
recording locations were confirmed directly; in the few remaining cases,
we relied on the proximity to histologically confirmed recording sites and
the high proportion of directional cells with receptive field sizes charac-
teristic of MT as evidence that the recordings were from MT (Desimone
and Ungerleider, 1986).

Results
To determine whether a neuron was component- or pattern-
direction selective, we measured the direction selectivity within
each patch using gratings and plaids composed of superimposed
gratings whose direction of motion differed by 120° (Fig.
1a,b,d,e). We used the grating response to make two predictions
for the plaid response (Movshon et al., 1985). A component-
direction neuron would have a bi-lobed tuning curve that peaks
when either of the component gratings matches the preferred
direction of motion of the cell (Fig. 1b,d, dashed lines). Con-
versely, a pattern-direction neuron would only respond when the
pattern moves in the preferred direction, in which case the tuning
curve for plaids (Fig. 1b,d) would be similar to that for gratings
(Fig. 1a,d). The latter was the case for the example cell in Figure 1,
which we thus classified as pattern-direction selective.

To test the spatial integration properties of the neuron, we
measured direction selectivity with the components of the plaids
delivered separately to each patch (pseudoplaids). In response to
pseudoplaids, the example cell was not selective for the direction
of the pattern but rather responded when either of the compo-
nents was moving in the preferred direction (Fig. 1c,f). Indeed,
the tuning curves measured with pseudoplaids were substantially
broader than those obtained with plaids (Fig. 1b,d) and agreed
well with the expectation for a component-direction cell (Fig.
1c,f, dashed lines).

Figure 1. Responses of an MT cell to gratings, plaids, and pseudoplaids. Polar plots express
cell response in spikes per second as distance from the origin, with the angle indicating the
stimulus direction of motion. The small orange circles indicate spontaneous firing rate. a, d,
Responses to a drifting grating covering one or the other of two patches within the receptive
field, as indicated by the stimulus icons. b, e, Responses to the plaids created by summing two
of the gratings tested in a, with orientations differing by 120°. Dashed red curves indicate the
predicted response of a component-direction-selective cell. c, f, Responses to pseudoplaids
obtained with gratings in the two patches arranged with a direction difference of �120 o

(c) or �120 o (f ).

Majaj et al. • Local Motion Integration in MT Neurons J. Neurosci., January 10, 2007 • 27(2):366 –370 • 367

Figure 6-10: Responses of MT cells to (a,d) gratings, (b,e) plaids, and (c,f) pseudo-plaids.
In (a,d), the grating covers one of the two patches within the receptive field, as indicated
by the stimulus icons. In (b, e), solid curves indicate responses to small plaids with plaid
angle 120o. Dashed curves indicate the CDS prediction to the small plaids. The prediction
in (b), (e) is obtained from (a), (c), respectively using equation 6.10. In (c, f), solid curves
show responses to pseudo-plaids; dashed curves show the CDS prediction based on the two
grating tuning curves in (a,d). Reprinted from [97].

connection falls into the class of LN models, where a MT cell is modeled as a linear com-

bination of V1 complex cells followed by a nonlinear operation. We claim the S2 units

can model MT cells as well. Moreover, it has mechanisms that render some properties that

were not accounted in previous MT models, as described below.

S2/C2 units can explain the continuous pattern direction sensitivity of MT cells The

operation of template matching in the S2 stage is useful for the recognition task, in which

inputs are classified based on the similarity to training data in a feature space (in this case

C1 space). In previous works, PDS MT neurons have been modeled as functional units that

solve IOC to compute the true velocity of inputs [64, 59, 177]. Although the perspective of

template matching is very different from the perspective of computing image velocity, we

claim S2 units can explain PDS cells as well. Moreover, S2 units could explain CDS and

unclassified types using the same template matching mechanism.
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Figure 6-11 shows the responses of 16 C1 units at the same location tuned to 16 di-

rections equally spaced in the angular space between 0 and 2π. A grating in translation

activates one single C1 unit (Figure 6-11 1), while a plaid with two component gratings

activates two (Figure 6-11 2).

To obtain the direction tuning curve of a template, we move the stimulus in all 16

directions and compute a normalized-dot-product between the C1 responses (Figure 6-11B)

with the template (Figure 6-12B). If the template peaks in one single direction, the matching

will result in a single-peaked direction tuning for gratings and double-peaked for plaids

(Figure 6-12 C-D). This is identical to a MT CDS cell (Figure 6-12 row 1), and we predict

that this type of templates could be learned from the motion of oriented stimuli, such as

edges, bars, or gratings.

If the template peaks in a broad range of continuous directions, the matching will result

in a single-peaked broad tuning curve for both gratings and plaids. This is identical to a

MT PDS cell (Figure 6-12 row 2-3). This template could be learned from the coherent

motion of textured patterns, which contain many orientations and therefore activate many

C1 cells. Random dots or multiple gratings are a kind of textured patterns. Note that if the

activated C1 cells’ preferred directions are not continuous (i.e. the template has multiple

peaks), the resulting tuning curve to gratings will consist of multiple peaks; the quantitative

measurement ( using Equation 6.12) shows this will fall into the CDS or unclassified type.

It is NOT a PDS cell(Figure 6-12 row 4).

It was found when presenting stimuli at a particular high or low speed, that some MT

cells exhibit bi-modal direction tuning [126]. We predict in our model that these cells could

be learned from bi-modal directional motion, such as movements of a plaid (Figure 6-12

row 4).

C2 units can account for the local directional integration of MT cells The computation

of plaid direction, or integration of component directions in MT, is processed within a scale

that is smaller than the whole MT receptive field [97]. An integration of directions within a

spatially localized region followed by a global pooling (for example, summation, average

or max) of responses over space could explain this phenomenon. Indeed, the global-pooling
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Figure 6-11: (A) Stimulus (B) Responses of C1 units to stimuli in (A). Here we concatenate
responses of C1 units tuned to 16 directions in one plot. The x axis specifies the preferred
direction of each C1 unit.

has been used in previous works [137, 198]. For example, In the MT model proposed by

Perrone & Krauzlis, nine pattern motion detectors are mapped out over the receptive field

of the model neuron. The outputs from all of the 9 detectors are summed to give an overall

response for the model neuron (Figure 6-13).

In our model, a S2 unit performs directional integration with a template matching op-

eration, a C2 unit then pools a maximum response of S2 units of the same weights (i.e. the

same template) in all the spatial positions with the C2 RF. Figure 6-14 shows that the max-

pooling operation in C2 units allows them to simulate the experimental results of Majaj et

al. [97].

The global pooling operation within MT receptive field is indeed supported by physi-

ological evidence. Britten et al [19] measured the response of pairs of gratings moving in

two local regions of MT receptive fields, denoted as R here. They then compared it with

the responses obtained by presenting the two gratings alone, denoted as r1 and r2 here.

They concluded a power-law summation model with divisive normalization could explain

the spatial summation of responses (also see [150]).

R = a(rn
1 + rn

2 )(1/n) + b (6.20)
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img template C2  grating                   C2 plaid                   RpRc

A                   B                   C                   D                   E                   

3

4

A                   B                   C                   D                   E                   

Figure 6-12: Responses of ideal S2 units that model MT component and pattern cells.
(A)Templates in image space. (B) templates. (C) Directional tuning of templates to gratings
(D) Directional tuning of templates to plaids. (E) The pattern sensitivity of the templates.
From top to bottom, the templates were ”learned” from single grating moving in 0o, five
superimposed gratings moving in 45o, 22.5o, 0o, 22.5o, 45o, random dots moving in 0o, plaid
with component gratings moving in 45o,−45o.

The mean value of the exponent n was reported as 2.72. On the other hand, Kouh and

Poggio have pointed out that such a power-law summation model with exponent n = 3

(called ”canonical circuit” in [80]) is an approximation of the max-operation [80], which is

used in our C2 layer.

Zero-mean normalization of S2 templates could account for directional suppressive

signals Suppressive signals within MT receptive field have been shown to contribute to a

range of neuronal properties.

Mikami et al. found the dominant mechanism of direction selectivity in MT was a

pronounced suppression of response for motion in the null direction (the opposite of the
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Figure 6-13: Each arrow cluster is a MT subunit where the pattern direction is computed
using a WIM model[135]. A MT cell is modeled by the set of nine clusters equally dis-
tribute within its receptive filed, and the response is obtained by summing the responses of
the 9 clusters. Reprinted from [137].

A                   B                   C                   D                   E                   

stimulus C1s S2                   C2                   RpRc

1

2

3

Figure 6-14: Responses of an ideal C2 unit that models MT pattern cells. (A) Stimuli
moving in the direction 0o. (B) Responses of C1 units to stimuli in (A). Here we show
responses of C1 units tuned to 16 directions and sampled at 9 locations. (C) Responses of
S2 units sampled at 9 locations, all the 9 S2 units store the same template learned from the
coherent motion of the random dots, as shown in 6-12, row 3 , column A. (D) Direction
tuning of the C2 unit to the stimuli moving in 16 directions from 0 to 2π. The C2 unit
computes the maximum responses of the 9 S2 units in (C). (E) Rp and Rc for the C2 unit.

preferred direction). The direction selectivity is measured as direction index (DI)
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DI = 1− response in the null direction
response in the preferred direction

(6.21)

A facilitation in the preferred direction or suppression in the null direction will both

result in a large direction selectivity [106]. Snowden et al. found that the responses of a

MT cell to the preferred direction can also be suppressed by superimposing motion in the

null direction [180]. Qian et al. ’s psychophysics results suggested that the motion signals

of different directions, of the same disparity and spatial frequency contents, locally inhibit

each other. They therefore suggest the suppression signals could reduce noise and segment

motion in different depth and scales, which is a key to solve motion transparency problem

[145].

Here we demonstrate S2 units can explain the direction tuning of MT cells, and are also

important for shaping the pattern direction selectivity of MT pattern cells. Figure 6-15 2B

shows a ”raw” template sampled from C1 responses of moving dots(Figure 6-15 2A). The

direction tuning of the C2 unit to a grating is a single-peaked curve tuned to a broad range

of directions, the tuning to a plaid is similar (Figure 6-15 2C-D). Although both tuning

curves are single-peaked, a quantitative measurement showed that the response to the plaid

is higher correlated with the component prediction (Equation 6.9) than with the pattern

prediction (Equation 6.10). The cell is therefore a component cell or an unclassified cell

(Figure 6-15 2E).

With the zero-mean normalization applied to the template (Figure 6-15 2A), the motion

that is ”far from the preferred direction” in the angular space contributes negatively to the

normalized dot product. This sharpens the direction tuning to gratings and plaids (Figure

6-15 2C-D), which in turn, decreases the correlation between the component prediction and

the plaid response. This results in a pattern cell (Figure 6-15 2E).

C1/S2/C2 units can explain speed-tuned V1 complex and MT cells The emergence of

velocity selectivity in MT neurons through a suitable combination of V1 afferents has been

described in [64, 60, 177]. A simplified version of this construction is shown in Figure

6-16, in which a hypothetical MT neuron sums the responses of of three hypothetical V1

neurons with separable spatiotemporal tuning and the same ratio for the peak temporal
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Figure 6-15: Why normalizing each S2 template’s mean

to spatial frequency. The resulting MT neuron has a tilted spectral receptive field and is

therefore speed tuned.
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news and views

This behavior may be contrasted with
that of a typical V1 neuron that is tuned
for temporal frequency10,11, but not for
speed (Fig. 1c and d).

Perrone and Thiele recorded MT
responses to an array of spatial and tem-
poral frequencies, and plotted the
responses of each neuron as a surface
like those in Fig. 2. The surface repre-
sents the full spatiotemporal frequency
selectivity (dubbed the ‘spectral recep-
tive field’ by the authors). They fit the
resulting spectral receptive field of each
neuron with an elliptical Gaussian func-
tion, and used the tilt of the best-fit
Gaussian to classify the neuron as being
selective for temporal frequency or for
speed. The spectral receptive fields of V1
neurons are parallel to the spatial and
temporal frequency axes10,11 (Fig. 2a),
but Perrone and Thiele report that for
roughly 60% of their MT neurons, the
spectral receptive fields were tilted along
lines emanating from the origin 
(Fig. 2b). Thus, for these neurons, pre-
ferred speed was largely independent of
spatial frequency. In addition, they
demonstrated that the tilt of the best-fit
Gaussian accurately predicted the pre-
ferred speed of each neuron, as mea-
sured directly with a moving bar.

Computational theories explain the
emergence of velocity selectivity in MT
neurons through a suitable combination
of V1 afferents2,3,6,9,12,13. A simplified
version of this construction is shown in
Fig. 2, in which the spectral receptive
field of a hypothetical MT neuron 
(Fig. 2b) was computed directly by sum-
ming those of three V1 neurons 
(Fig. 2a). The resulting MT neuron is
tuned for a much broader range of spa-
tial frequencies than its V1 afferents, and
has a spectral receptive field that is tilted
along a line emanating from the origin.

The experimental results of Perrone
and Thiele provide a much-needed addi-
tion to the body of evidence supporting

quent authors. Thus, even though the
response properties of the neurons in
these two cortical areas are very different,
they seem to be based on a common
canonical computation. The underlying
cortical circuitry and biophysical mecha-
nisms responsible for orientation selec-
tivity in V1 are still hotly debated, but
given the commonality of the computa-
tional principles that seem to apply in
both V1 and MT, we may optimistically
hope that the circuitry and biophysical
mechanisms in these two (and perhaps
other) cortical areas may also follow a
canonical form.
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the hypothesis that MT neurons compute
and represent local retinal image veloci-
ties. Although many previous authors
had measured speed tuning in these neu-
rons, those experiments did not rule out
the possibility that the neurons were
actually selective for temporal frequency
(as are V1 neurons) instead of speed. The
data reported by Perrone and Thiele, on
the other hand, demonstrate that at least
some MT neurons are selective for speed
per se. A relatively minor criticism of
their work is that the measured spectral
receptive fields are not very well charac-
terized by elliptical Gaussian functions.
Instead of using Gaussian fits, the analy-
sis could have been strengthened by
using previously published non-para-
metric methods for evaluating whether
the spectral receptive fields were parallel
with the axes or tilted14, and by relying
more heavily on existing computational
models of MT responses (cited above). It
is unlikely that these alternate analyses
would have changed the main conclusion
that some MT neurons are speed-tuned,
but it might, for example, have resulted
in a larger proportion of neurons being
classified as speed-tuned.

A more subtle but fundamental issue
is that although a tilted spectral recep-
tive field is sufficient to produce speed
selectivity, it is not absolutely necessary.
For example, if an MT neuron has a rel-
atively narrow spatial frequency band-
width, the tilt of its spectral receptive
field would be difficult to measure.
There is an alternative test that can pro-
vide more definitive evidence for veloc-
ity selectivity (E.P. Simoncelli, W.D. Bair, 
J.R. Cavanaugh & J.A. Movshon, Invest.
Opthalm. Vis. Sci. Suppl. 37, 1996)15.

The construction of velocity selectivi-
ty in MT from V1 afferents (Fig. 2) is
analogous to the construction of orienta-
tion selectivity in V1 from LGN afferents,
as originally proposed by Hubel and
Wiesel and elaborated by many subse-

Fig. 2. Construction of a speed-tuned MT neu-
ron from V1 afferents13. (a) Spectral receptive
fields for three hypothetical V1 neurons. (b)
Spectral receptive field of a hypothetical speed-
tuned MT neuron, constructed by summing the
three V1 afferents (compare with 
Fig. 6 of Perrone and Thiele1).
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Figure 6-16: Construction of a speed-tuned MT neuron from V1 neurons.(A) Spectral
receptive field for three hypothetical V1 neurons (B) Spectral receptive field for a hypo-
thetical MT neuron. Reprinted from [176].

6.3.7 Results

In Section 6.3.6, we showed that with S2 templates imprinted from synthetic motion, C2

units can explain a range of MT neuronal properties such as pattern direction sensitivity,

local direction integration, and speed-tuning. Here we sampled a large number of S2 tem-

plates from natural image sequences to show that the responses of the S2/C2 population

can model the MT population activity as well.

A random sampling of S2 templates results in many patches that don’t contain motion.

It was shown that direction selectivity is a prominent property of MT cells. We therefore
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apply a filtering approach to remove noisy S2 templates based on the direction selectivity

of MT neurons reported in [4]. It was reported in [4] that the distribution of direction index

(DI , Equation 6.21) clusters around 1, and the directional tuning bandwidth is between

32o - 186o with a mean value 95o. Here we filter out templates with DI smaller than 0.9 or

bandwidth lower than 57o. This filtering step will be implicitly accounted if we replace the

random sampling with leaning rules like Hebbian learning.

Figure 6-17 shows three types of video sources from which S2 templates were sampled.

Figure 6-17A illustrates videos obtained by a camera mounted to a cat’s head, so they

should approximate the natural input to the cat’s visual system. The videos’ sampling rate

is 25 frames per second and the video resolution is 240 × 320 pixels [39]. Figure 6-17B

illustrates broadcasts recorded from Dutch, British and German television. The videos’

sampling rate is 25 frames per second and the video resolution is 128 × 128 pixels. The

videos were originally collected to analyze the statistics of nature scenes [205]. Figure 6-

17C illustrates a large human motion database (HMDB) clipped from HollyWood movies.

These videos were collected to test action recognition systems [82].

A

B

C

Figure 6-17: Snapshots of videos where S2 templates are sampled. (A) Cat Camera. (B)
Street Scenes. (C) HMDB.

154



Table 6.3: Sampling of S2 templates
Experiment S1 scale S1 preferred speed S2 template size video source

Local direction integration 5-6 1 pxs/frame 1, 3, 5, 7, 9, 11 A
Motion opponency 1-2 1 pxs/frame 1 ,3, 5, 7, 9, 11 A

Speed tuning 1-12 0.5 pxs/frame 1,3,5 C
Pattern direction sensitivity 1-12 1 pxs/frame 1, 3, 5, 7, 9, 11 A,B,C

Local direction integration

Majaj et al. used pseudo-plaids (plaids with component gratings separated in space) to

measure the pattern and component direction sensitivity of MT cells. [97], and they found

that MT cells that were tuned to the pattern direction tune instead to the component direc-

tion when tested with pseudo-plaids( Figure 6-19). Figure 6-18 shows that C2 units can

explain their results.

In our experiments, the S2 template size is a key factor for this effect. Pattern and

component direction selectivity are sometimes combined to give one single measurement

called pattern index (PI) , which is defined as

PI = Zp− Zc (6.22)

Zp = 0.5
√

n− 3(ln
1 + Rp

1−Rp

) (6.23)

Zc = 0.5
√

n− 3(ln
1 + Rc

1−Rc

) (6.24)

where Zp and Zc are R-to-Z transformed Rp and Rc. PI larger than 1.25 indicates

pattern cells; PI smaller than -1.25 indicates component cells; PI between 1.25 and -1.25

is the unclassified type. As in [97], the pattern-to-component effect is characterized as the

change of PI , (∆PI = PI measured with pseudo-plaids− PI measured with small plaids).

We observe that ∆PI is a function of the S2 template size (See Table 6.3 for a list of sizes).

For a very small template size (<< size of a local patch in Figure 6-14A), all the pattern

and unclassified cells become component cells (∆PI < 0 as shown in Figure 6-20B).

For an intermediate size similar to the patch size, a majority of pattern cells become either
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unclassified or component cells (∆PI < 0) with a few some exceptions with higher pattern

index for a pseudo-plaid (∆PI > 0). A few component cells become unclassified cells and

a few unclassified cells become pattern cells.

This validates the finding of Majaj et al. . In their experiment, a majority of pattern

and component cells become component cells; one component cell becomes unclassified

cell and one unclassified cell becomes pattern cell, as shown in Figure 6-20A. We therefore

suggest that the size of the local region where directions are integrated forms a continuous

distribution in MT area. A quantitative match between the ∆PI of MT cells and various

S2 sizes will help predict the size of the local region within MT receptive field.

A B

Figure 6-18: Scatter plot of Rp and Rc of C2 units. (A) Measured using small plaids. (B)
Measured using pseudo-plaids.

Motion opponency

Snowden et al. [180] investigated the suppression in the area MT by recording MT neuronal

responses to superimposed pairs of random dot fields filling in the MT receptive field. One

field moves in the preferred direction and the other field moves with the same speed in

the null direction. In order to measure the magnitude of suppression, they defined a term

suppression index as

Is = 1− α

P
(6.25)

where P is the response of the field moving in the preferred direction, α is the response
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To quantify the degree to which cells were selective for the
direction of motion of a pattern rather than of its individual
components, we computed the partial correlation coefficients
between the pattern responses and the predictions of two models
(Movshon et al., 1985). The first model defines selectivity for
component direction: its response to a pattern is the sum of its
responses to the components. The second model defines selectiv-
ity for pattern direction: its response to a pattern is the same as
that to a single component moving in the pattern direction. The
partial correlation between the actual response and the predic-
tions of these two models determines the classification of the cell.
Because the confidence intervals around correlation coefficients
are strongly dependent on the correlation, we used Fisher’s
variance-stabilizing r-to-Z transform to convert the correlations
into Z-values that can be treated as normal deviates (Hays, 1981).
Transformation into Z space has the particular virtue for this
analysis that distances between values have the same meaning
everywhere in the space.

Figure 2a shows the resulting distribution of correlation val-
ues, as measured with small plaids; the plotted values are the
average of those measured for the two patches of the receptive
field. The gray lines divide each plot into three zones. Points
falling in the region marked “Component” indicate cells whose
component correlation coefficients significantly exceeds either
zero or the pattern correlation coefficient, whichever is larger.
Similarly, cells falling in the “Pattern” region are significantly
pattern-direction selective. Cells falling in the intermediate re-
gion are unclassed by this method, usually because their response
is well predicted by both models. For small plaids (Fig. 2a), the
distribution of correlations is very similar to that previously re-
ported, showing approximately equal numbers of cells as pattern-
direction selective (red, 20 of 54), component-direction selective
(blue– green, 10 of 54), and unclassed (black, 24 of 54) (Movshon
et al., 1985; Rodman and Albright, 1989; Smith et al., 2005).

This distribution changed when pseudoplaids were used (Fig.
2b). The data point for each cell retains the color given on the
basis of the classification in Figure 2a. All but one of the 24
pattern-direction cells (red) migrated from the pattern region
into the other two regions.

This migration can be visualized by computing and compar-
ing a pattern index, the difference between the Z-transformed
pattern and component correlation coefficients (Zp � Zc), for the
two conditions (plaids and pseudoplaids) for each cell. The dis-
tribution of pattern indices for pseudoplaids and plaids is shown
in Figure 2c (colors retained from Fig. 2a). The gray solid lines
mark the boundaries of classification regions derived from those
in Figures 2a,b. Data points falling on or close to the identity line
(the dashed line) mark cells that had the same pattern index for
pseudoplaids as that for plaids. It is clear from the graph that cells
that were component selective in response to plaids remained
component in response to pseudoplaids (all but one of the blue–
green data points are in the bottom left quadrant). However, all of
the cells that were pattern selective in the plaid condition changed
their behavior in the pseudoplaid condition. Approximately half
of them become component selective, and the other half became

Figure 2. Summary of the results across the cell population. a, The degree to which cells are
selective for the direction of a whole pattern or of the individual components as determined
with small plaid stimuli. The Z-transformed partial correlations between the data and the “com-
ponent” and “pattern” models are plotted against one another. Gray lines separate regions
within which cells are classified as pattern-direction selective or component-direction selective,
according to a conservative statistical criterion (Movshon et al., 1985). Cells classified as pattern
selective are indicated in red, as component selective in blue– green, and as unclassed by this
method in black. b, A similar plot made from data taken from the same cells using pseudoplaids.
The colors indicating the classification of the cells using small plaids are retained from a. c, The
distribution of pattern indices for the two conditions, pseudoplaids and plaids. The pattern
index is the difference between Z-transformed pattern and component partial correlations
(Zp � Zc). The gray lines bound regions of significance. We used a criterion difference of �1.28
or �1.28, equivalent to p � 0.90, for this purpose. Data points falling in the leftmost column

4

or the lowest row represent partial correlations that are significantly component. Data points in
the rightmost column and the top row represent partial correlations that have a significant
pattern. The colors indicating the classification of the cells using small plaids are retained from
a. The outlying point with an arrow at the bottom right had a pseudoplaid pattern index of
�9.8. In each plot, the datum circled in black corresponds to the cell whose responses are
shown in Figure 1.
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Figure 6-19: The pattern indices of MT cells measured using pseudo-plaids and small
plaids. Reprinted from [97].

A

B

C

C2S2

Figure 6-20: The pattern indices of C2 units measured using pseudo-plaids and small
plaids. (A) Reprinted from [97]. (B) C2 units with small template sizes. (C) C2 units with
intermediate template sizes.
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after superimposing the null field. Is 0 indicates the null motion has no effects on the

preferred motion. Is 1 indicates the null motion completely silenced the preferred motion.

Figure 6-21A shows the suppression index of a population of V1 and MT neurons. Fig-

ure 6-21B shows the suppression index of C1 and C2 units. The C2 units have higher Is

than C1 units, just like MT cells have higher Is than V1 cells, and the two sets of distribu-

tions roughly cluster at the same value. It is 0.1 for V1 and C1 units, and 0.5 for MT and

C2 units.

In our model, the directional suppression signal within MT receptive field is modeled

using the zero-mean normalization of S2 templates, we suggest a more refined model for

the suppression signal will be necessary to get a closer match of the Is distribution between

the C1/C2 population and the V1/MT population.

C1

C2

A B

Figure 6-21: Suppression index of MT cells and C2 units. (A) Histogram of suppression
indices of V1 and MT cells. (B) Histogram of suppression indices of C1 and C2 cells.

From separable spatiotemporal tuning to speed tuning

Priebe et al. [144] mapped the spectral receptive fields of DS V1 simple, V1 complex, and

MT cells, and defined the ”speed-tuning index” ξ to measure the the tilt of the fields (Equa-

158



tion 6.14). ξ 1 indicates ideal speed-tung, and ξ 0 indicates ideal separable spatiotemporal

tuning. The distribution of ξ of these cells is shown in Figure 6-22A.

In our simulation, we mapped the spectral receptive field using 180 possible combina-

tions of 15 spatial frequencies and 12 temporal frequencies. The spatial frequencies range

from 0.05 (cdeg) to 6.4 (cdeg) and the temporal frequency ranges from 0.05 (Hz) to 2.3

(Hz), both equally spaced in the logarithm space. We also exclude C2 units that have ξ out-

side the range of (−1, 1), which are mostly because the spectral receptive field could not

be fitted using a two-dimensional gaussian function. The resulting distribution is shown in

Figure 6-22B.

The mean value for the two sets of distribution is very close, it is 0.08, 0.44, 0.48 for V1

simple, V1 complex, and MT cells, and -0.03, 0.42, 0.42 for S1, C1, and C2 units. However,

the distributions shows that the model units are able to simulate the continuous distribution

of MT cells, but not of the V1 complex cells.

In our experiment, the speed tuning index is a function of the number of scales pooled

in a complex layer. Complex units (C1 or C2) become more speed tuned (larger ξ) as they

pool across more scales. Here each C1 unit pools over two scales of S1 units, and C2 unit

pools over all the scales of S2 units. We suggest the speed tuning indices of more V1

complex cells (there are only 33 cells in [144]) will help refine more accurately the ”right”

number of scales pooled in the model’s complex layer.

Figure 6-23 illustrates the spectral receptive fields of representative S1, C1, and C2

units.

Continuous pattern/component direction selectivity

Many experiments already suggested in MT area, the selectivity to pattern direction sen-

sitivity, measured as Rp and Rc (Equation 6.12), forms a continuum from pattern cells,

unclassified cells to component cells. Figure 6-24A-B illustrate this continuum. Here we

randomly sampled a set of S2 templates at all 12 possible scales from three types of video

sources at 6 template sizes. (See Table 6.3 for a list of parameters). After removing the

templates without motion ( DI < 0.9 or directional tuning bandwidth < 57o), we obtain

9100 C2 units, whose pattern direction selectivity is shown in Figure 6-24C.
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S1

C1

C2

A                   B                   

Figure 6-22: Histograms of speed tuning indices for DS neurons and model units. (A) speed
tuning indices of directional selective neurons V1 simple, V1 complex, and MT neurons,
reprinted from [144] (B) speed tuning indices of S1, C1, and C2 units.
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Figure 6-23: Spectral receptive fields for three representative model units.(A) S1 unit (B)
C1 unit (C) C2 unit.

Figure 6-25 shows the image sequences where a typical pattern, component, and un-

classified C2 unit is imprinted. Here we confirm the prediction in Section 6.3.6; a pattern

cell is learned from the motion of a textured pattern, a component cell is from the motion

of edges/bars, the rest of motion will result in unclassified cells.
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A                   B                   C                   

MT cells C2 unitsMT cells

Figure 6-24: Scatter plot of Rp and Rc of MT neurons and C2 units. (A) [179] (B) [111]
(C) 2034 C2 units

A B

Figure 6-25: What makes a component/pattern cell. (A) Rp and Rc plot. (B) Local sptio-
temporal image patches where pattern and component cells are learned. Dotted boxes
indicate the synthetic image sequences, and closed boxes indicate images from the Cat
video as shown in Figure 6-17A.

In order to quantify the fitness of the distribution of C2 units to previous experimental

results of MT neurons, we group the C2 units into a three-bin normalized histogram, the

three bins are the proportion of CDS cells, the proportion of unclassified cells, and the

proportion of PDS cells. We compute the same histograms for MT neurons recorded in four

previous experiments [115], [154], [179], and [161] (See Table 6.4 for the histograms).

We then use the chi-square distance to compute the distance between two histograms h

and k:

1−
3∑

i=1

2
(hi − ki)

2

hi + ki

(6.26)
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A distance 1 indicates the two histograms are identical, a low value indicates two his-

tograms are highly dissimilar. For each previous experiment as well as for our model, a

final score is computed as the average chi-square distance between the histogram and the

four previous experiments [115, 154, 179, 161]. The last column of Table 6.4 shows such

scores. We conclude that the distribution of C2 units are quite consistent with that of MT

neurons.

Table 6.4: Distribution of Rp and Rc of MT cells and C2 units
Reference # of cells plaid angle CDS (%) unclassified (%) PDS (%) score

[115] 108 135o 40% 35% 25% 0.97
[154] 33 135o 33% 36% 30% 0.94
[161] 50 120o 56% 25% 19% 0.90
[179] 143 135o 41% 34% 25% 0.97

C2 using RpRc 9100 135o 47% 35% 19% 0.95

We next ask what determines the ratio of the CDS vs. unclassified vs. PDS cells. For

the 9100 sampled S2 templates, we group them according to the video data source (Figure

6-26A-B), the size/scale of the S1 filters (Figure 6-26C-D), and the S2 template size (Figure

6-26E-F). In Figure 6-26A,C,E, we plot the matching score of the histogram for each group,

as determined using Equation 6.26, and we also plot the proportion of CDS vs. unclassified

vs. PDS cells for each group in Figure 6-26B,D,F. Overall we found the S2 template size

is the dominant factor. For a small template size (such as 1 × 1), almost all the C2 units

are classified as component cells, when the template size increases, the proportion of PDS

cells increases accordingly.

As explained in Section 6.3.6, a pattern cell is tuned to a broad range of continuous

directions. Here we suggest a larger spatial region is more likely to contain a broad range

of motion directions than a small region, that is why we get more pattern C2 units for a

large S2 template size. Previous computational models for the MT area focused on the

integration of signals in the directional space, but not over the spatial (x-y) domain. Here

we suggest the integration of directional signals over the x-y space is important for the

development of MT pattern cells.

We already claimed that the tuning to a broad range of directions is what makes a pattern

cell, we next quantify this statement by measuring the directional tuning bandwidth of C2
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Figure 6-26: Some factors that determine the proportion of CDS, PDS, and unclassified
C2 units. (A,C,E) The matching score as a function of video type (A), S1 filter size (C),
andS2 template size (E). (B,D,F) The proportion of component (blue), unclassified (green),
and pattern (red) cells as a function of the video type(B), the S1 filter size (D), and the S2

template size (F).

units and plot the pattern index (PI , defined in Equation 6.3.7) as a function of bandwidth

in Figure 6-27A. We observed that there is a positive correlation between the bandwidth

and the PI when the bandwidth is smaller than 2.2 octave.

We also consider the ”composition” of S2 templates. Similarly to the analysis by Rust

et al. [161], here we count the proportion of reliable positive weights in each template

that exceeds 20% of the maximum positive weight, and the proportion of reliable negative

weights that are smaller than 20% of the most negative weight. Figure 6-27B-C show the

pattern index as a function of the two measurements. We observed that there is a positive

correlation between the proportion of positive weights and the pattern index. Except for

a few outliers, most of the pattern cells have at least 20% of the positive weights. On the

other hand, the proportion of negative weights has almost no effects on the pattern index,

confirming the results in [161],
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Figure 6-27: Some factors that determine the pattern index of C2 units. (A) directional
tuning bandwidth vs PI. (B) The proportion of positive coefficients in each S2 templates vs
PI. (C) The proportion of negative coefficients in each S2 templates vs PI.

6.3.8 Comparison with other MT models

To the best of our knowledge, there are at least 10 models [64, 59, 167, 125, 211, 177, 138,

135, 161, 198] simulating the velocity tuning of MT neurons and especially MT pattern

cells.

Some of these models make an explicit assumption that one of the functions of MT

neurons is to compute the velocity of the moving stimulus [64, 59, 177, 138, 135]. They

therefore propose to integrate directional signals from V1 neurons whose frequency spec-

trum in the Fourier space lie on a common plane (See Section 6.1.4 for details). The

similarity between our S2/C2 units and previous MT models is that they both compute a

linear weighting of the input directional signals followed by a nonlinear normalization.

However, S2/C2 units are designed to perform visual recognition task, and they are

”learned” from the motion of the natural image sequences. With this learning procedure,

the model is able to generate a large number of S2/C2 units to model the population activity

in the MT area. The model also presents a possibility that the neural circuitry in MT makes

no explicit attempt to compute the true velocity of moving stimuli. Instead, MT neurons

derive pattern direction selectivity from learning a ” motion pattern” of a broad range of

directions that comprise most of the moving objects in natural scenes.

Another main difference between our model and previous MT models is that our model

considers the integration not only over directions but also over space. Indeed our model
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predicts that the MT cells don’t have uniform RF profiles like assumed in other models

and that the preferred direction of a MT cell might change as a function of the stimulus

position within RF when testing with a stimulus in a scale less than a S2 template size.

This prediction has been confirmed by Thomas Albright (personal communication).

6.3.9 Discussion

Coherency vs. transparency of a plaid An important use of motion information is to

segment a complex visual scene into surfaces and objects. Transparent motion, referring

to the motion field where more than one velocity vector occurs at each local region in the

image, is usually used in psychophysics [146] or physiology [180, 145] experiments to test

the human’s ability to perform visual segmentation.

The plaid made of two superimposed gratings is one example of the transparent motion.

Movshon et al. [115] already showed that in MT area, pattern cells are able to signal the

motion of a perceptually coherent plaid pattern, while component cells signal the motion

of individual gratings (transparency).

Qian, Andersen & Adelson [146] tested human’s perception for transparency vs. co-

herency using two sets of patterns moving in different directions. These patterns include

lines, random dots, or square waves. They found that humans perceive coherent motion

when the two sets of patterns have similar spatial frequencies and the same disparity, and

are displayed in a locally balanced manner. Snowden et al. [180] also found that the spatial

separation of two sets of velocity vectors within RF determines whether velocity vectors

inhibit each other. Stoner, Albright and Ramachandran [186] found in their psychophysics

experiment that the human’s tendency to see pattern motion depends on the luminance of

the intersections relative to that of the gratings. They also found that responses of MT

neurons can be modified by the same factor known to influence the perceptual decision

[187].

In the first layer of our model, motion is extracted into a set of directional and spatial

frequency channels at many spatial locations. The integration of directions in the S2 layer

is done for each individual spatial frequency channel at local spatial regions. Therefore our
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model will simulate the fact that human perceive coherent motion when the objects in mo-

tion have similar spatial frequencies and are presented with spatial overlapping. However,

our current model cannot explain the dependence of coherent plaid motion on the lumi-

nance of the intersection of the gratings. In the current setting, the lighting intensity of the

stimulus is normalized to be unit average.

Effects of terminators The directional tuning in the V1 and MT areas has been mostly

studied using one-dimensional stimuli or stimuli that are homogenous in space, such as ran-

dom dots, extended gratings, or plaids. These stimuli present ambiguous motion (aperture

problem), while two dimensional stimuli containing terminators (end points, corners, or

intersections) allow accurate velocity measurements. A series of experimenters performed

by Pack and his colleagues have shown that the direction tuning of V1 and MT neurons are

modulated by the geometry of the two dimensional stimuli (such as ”barber pole”) as well

as the geometry of the terminators [132, 133]. These V1 neurons are the so called ”end-

stopped cells”. They proposed a MT model that combines end-stopped V1 cells to explain

the direction tuning of MT neurons to the two-dimensional stimuli [198]. In their model,

the end-stopped cells are modeled with a divisive normalization from surrounding signals

i.e. , a V1 cell’s response is suppressed when the stimulus’s length exceeds the preferred

length.

Our current model accounts for the feedforward pathway of the motion signals (within

the first 200 ms after the onset of the stimulus), while the neurophysiological experiments

by Pack et al. account for the tuning of the MT neurons from the first 200 ms to 800ms

after the onset of the stimulus. The end-stopped V1 cells have also been considered as the

product of feedback signals from the high-level areas [149]. A Bayesian model accounting

for the feedback pathway of HMAX has been proposed to explain visual attention [27];

whether this model could be extended to explain the direction tuning of MT neurons after

the first 200ms of the stimulus onset will require further investigation.

Contrast Some tuning properties of V1 cells change as a function of the stimulus con-

trast. For example, the receptive field organization of V1 simple as well as complex cells
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change in a way that the optimal speed increases for the high-contrast stimuli [92]. The

spectral receptive field (tuning to the spatial and temporal frequency) of V1 complex cells

show a shift from separable tuning to speed tuning when the contrast of the stimulus in-

creases [144]. It was also shown that the surround suppression of V1 cells is highly de-

pendent on stimulus contrast, such that suppression is reduced or eliminated as contrast

decreases [162]. In our model, the outputs of S1 units are normalized with respect to the

summed responses of a pool of S1 units with the same receptive field but tuned to different

directions. It is possible to incorporate into this pool the S1 units from the surround in order

to account for the suppression as well as for the dependence of the suppression on stimulus

contrast. Indeed, a divisive normalization has been used to model the dependence of the

suppression on stimulus contrast [198]. However, it requires further experiments to answer

whether the divisive normalization can account for the dependence of the speed-tuning and

optimal speed on stimuls contrast.

6.4 Comparing ”ventral + dorsal C2 units” with STP cells

6.4.1 Introduction

The superior temporal polysensory area (STP) receives input from the inferior temporal

cortex (IT), as well as more posterior dorsal-stream sources, such as area MST. STP neu-

rons are selective to complex action sequences that encode both form and motion, such as

specific body view and direction combinations [130, 129], but the roles of the ventral and

dorsal pathways in action selective neurons remain unclear.

The role of ventral stream in shaping action selectivity is supported by the fact that

many actions are easily recognizable when performed under a strobe light or even single

images. A human fMRI study found a great increase of signals in MT/MST when a subject

looked at static images of moving people, animals, or natural scenes [81]. It might be that

some neurons are selective for actions because they are selective for particular poses that

arise when those actions are performed (these neurons are called ”snapshot neurons” in

[52]). Action selectivity might also be built from motion selectivity in the dorsal stream.
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Integration of signals from neurons that are selective to relatively complex local motion

patterns could give rise to the selectivity for motion vector fields that matched those gener-

ated by particular sorts of actions [67, 24, 75]. A compromising point of view is that STP

neurons obtain the action selectivity by combining the form selectivity from the ventral

and the motion selectivity from the dorsal stream [52]. Stimuli that contain only motion or

form have been used to test such a hypothesis. The ”point-light walker” that applies lights

to several points on otherwise invisible actors allows actions to be presented with greatly

reduced form information [76]. The ”formless dot field” that is made of thousands of dots

contains motion but no static form information [178]. (Also see more discussions about

these stimuli in [178].)

To study the integration of shape and motion carried by the ventral and dorsal streams

in STP neurons, we compare the responses of ”ventral + dorsal C2 units” with that of STP

neurons to complex action sequences that encode both form and motion. The 64 action se-

quences we used contain 8 types of actors performing 8 types of complex actions, generated

by [178] and illustrated in Figure 6-28. In [178], monkeys were trained to recognize actions

in these sequences, and a population of neurons was recorded from STP. To quantify the

information conveyed by the population of cells, each neuron is treated as a rate-varying

Poisson process with a mean firing rate λ, i.e. the number of spikes per unit of time. λ is

estimated for each neuron from the responses to each stimulus i during each time bin of

40 ms, t, and therefore it is a function of time and stimulus. Such a model is then used to

predict the probability of observing n spikes of the same neuron at the same time bin in

response to each of the 64 stimuli j, as computed as follows:

P(i, j, t) =
e−λ(t,i) × λ(t, i)n(t,j)

n(t, j)
i = 1 · · · 64, j = 1 · · · 64 (6.27)

The probabilities are then combined over all the time bins and of all the neurons to

obtain a 64 × 64 matrix, as shown in Figure 6-29. Each (x, y) entry in the matrix is the

probability of obtaining response for stimulus y based on the responses for stimulus x.

Along each axis of the confusion matrix, the 64 stimuli is arranged such that the first 8

stimuli are 8 actions performed by the same actor, the next 8 stimuli are 8 actions performed
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by another actor, and so on. These 8 types of actions are sorted in the same order in each

block of the 8 actors. If a population of neurons is selective to actors regardless of the

actions performed, the neuronal responses to one action can predict perfectly the responses

to another action as long as they are performed by the same actor. Therefore, this population

will result in a matrix with high values along each 8 × 8 block along the main diagonal

(Figure 6-29: ”ideal data- actor selective”). Whereas for a population of neurons that is

selective to actions regardless of the actor performing, the neuronal responses to one actor

can predict perfectly the responses to another actor as long as they perform the same action.

Therefore, this population will result in a matrix with high values at every 8 pixels along

each column (or each row) (Figure 6-29: ”ideal data- action selective”). A population that

contains both types of neurons will result in a matrix as a combination of the two ideal types

of matrices. In [178], a population of cells was recorded from area STP of two monkeys.

For one monkey, 31, 6 and 18 cells are selective to actors, actions, and pairs, respectively;

therefore the matrix has stronger magnitude in 8 × 8 main-diagonal blocks, as shown in

Figure 6-29: ”Monkey data - monkey Simon”. For another monkey, the numbers of cells

of three types are 14, 3, 33, resulting in a matrix with stronger off-diagonal values, as

shown in ”Monkey data - monkey Gal”.

6.4.2 Results

We computed the confusion matrix in a similar way with the firing rate replaced by the

C2 unit response and a time bin replaced by one frame (see Table 6.5 for a comparison).

We choose randomly a population of 100-800 C2 units from our model and the precedent

ventral stream model [173]. We vary the number of C2 units from each model and the

resulting matrices lie approximately in a continuum, from high actor selectivity to high

action selectivity (Figure 6-29, bottom row). Using ventral-only C2 units results in a strong

”actor selective” matrix and the matrix gradually shifts to be more ”action selective” as

more dorsal-C2 units are added. Interestingly, the matrices obtained from STP neurons of

the two monkeys seem to lie in the same continuum: the matrix for ”monkey Simon” is

between that of (800, 0) C2 units and that of (100, 0) C2 units, and the matrix for ”monkey
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Gal” between that of (100, 0) C2 units and that of (100, 50) C2 units. The similarity of the

matrices derived from the monkeys and from our model suggests three things. First, the

combination of C2 stages of our dorsal stream model and the ventral stream model [173]

might be a good model for some STP neurons. Second, the ventral and dorsal stream might

both contribute to the selectivity of STP neurons to these actions sequences. Lastly, the

selectivity to actions obtained for dorsal-only C2 units is too high to be compatible with the

physiology data, therefore the ventral stream may play a more significant role in forming

the selectivity of STP neurons to these sequences of actions.

Figure 6-28: Response of a single cell from the lower bank of monkey STP. The main
8× 8 grid of traces shows the mean firing rate in response to each specific combination of
character and action. Characters are in rows, actions in columns. The actors appeared in a
neutral pose at 0ms, and began to move at 300ms. Reprinted from [178].
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Figure 6-29: A comparison between the electrophysiology and model data. Each subplot
corresponds to a confusion matrix obtained from ideal data (top row), monkey data (middle
row) and the computational models (bottom row). High probability is indicated by deep
red. Stimuli are sorted first by character and then by action. Ideal data (top row) describes
the ideal case where the population of cells is tuned to characters (as indicated by 8 × 8
blocks of high probability on the main, left panel); single-pixel diagonal lines of high
probability indicate correct classification of actions (right panel). High probability on the
main diagonal indicates good performance at pair of character and action. The monkey
data is shown in the middle row. Model data (bottom row), (n1, n2) C2 corresponds to a
combination of n1 C2 units of the ventral and n2 C2 units of the dorsal stream model.

λ(t, i) n(t, j)
Singer, 2009 [178] Mean spiking rates estimated

at time bin t in response to
stimuli i

Average spike counts at time
bin t in response to stimuli j

Our model The response of a C2 unit to
the frame t of stimuli i

The response of a C2 unit to
the frame t of stimuli j

Table 6.5: The parameters of the Poisson model used in [178] and in our experiment.

6.5 Conclusion

HMAX [153, 173], a feedforward hierarchical architecture, was firstly designed for the

recognition of objects and later on shown to explain the neuronal responses in several cor-
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Area Experiment physiology data Section Figure
STP action and actor selectivity [178] Sec. 6.4 Fig. 6-29
MT direction tuning [4] Sec. 6.3.6 Fig. 6-15
MT pattern direction sensitivity [115] Sec. 6.3.7 Fig. 6-24
MT motion opponency [180] Sec. 6.3.7 Fig. 6-21
MT local directional integration [97] Sec. 6.3.7 Fig. 6-24
MT speed tuned [144] Sec. 6.3.7 Fig. 6-22
V1 speed tuned [144] Sec. 6.3.7 Fig. 6-22
V1 spatial and temporal frequency tuning [47] Sec. 6.2 Tab. 6.2
V1 direction tuning [4] Sec. 6.2 Tab. 6.2

Table 6.6: Physiological data the model can explain

tical areas of the ventral stream. In previous chapters, we have extended HMAX in the

temporal dimension for the recognition of actions in videos. The model has been shown

to perform on par or outperforms computer vision algorithms for the recognition of hu-

man actions [75, 82] as well as mice behaviors in videos [73]. In this chapter, we prove

that the model can explain the neuronal responses in V1 and MT. When combining the

C2 outputs of the model with the C2 outputs of HMAX, we can also explain the neuronal

responses in STP. Specifically, the first two layers of the model mimic the V1 simple and

V1 complex cells. We designed a population of spatio-temporal filters whose spatial and

temporal frequency tuning closely match that of V1 cells. The latter two layers mimic the

motion-sensitive MT cells. We showed that with a template matching operation in the S2

and a max operation in the C2 stage, the model can simulate the continuous distribution

of pattern sensitivity [115], integration of directional signals in a local scale [97], and the

tuning to the speed of the stimulus [144].

Table 6.6 shows a list of physiological experiments the proposed model can explain.

There are very few models that could explain neurophysiology as well as be applied to

the real-world computer vision tasks. Our model is one that agrees with (or processes) data

at different levels: from computer vision algorithm, practical software, to neuroscience.
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