Everything Old Is New Again: A Fresh Look at
Historical Approaches in Machine Learning
by
Ryan Michael Rifkin

Submitted to the Sloan School of Management Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

Author ..
Sloan School of Management Science
August 1, 2002

Certified by
Tomaso Poggio

Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences
Thesis Supervisor

Accepted by ...
James B. Orlin

Edward Pennell Brooks Professor of Operations Research

Co-director, MIT Operations Research Center

Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning
by
Ryan Michael Rifkin

Submitted to the Sloan School of Management Science
on August 1, 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

This thesis shows that several old, somewhat discredited machine learning techniques
are still valuable in the solution of modern, large-scale machine learning problems.
We begin by considering Tikhonov regularization, a broad framework of schemes for
binary classification. Tikhonov regularization attempts to find a function which simul-
taneously has small empirical loss on a training set and small norm in a Reproducing
Kernel Hilbert Space. The choice of loss function determines the learning scheme.
Using the hinge loss gives rise to the now well-known Support Vector Machine algo-
rithm. We present SvmFu, a state-of-the-art SVM solver developed as part of thesis.
We discuss the design and implementation issues involved in SvmFu, present empiri-
cal results on its performance, and offer general guidance on the use of SVMs to solve
machine learning problems.

We also consider, and advocate in many cases, the use of the more classical square
loss, giving rise to the Regularized Least Squares Classifiation algorithm. RLSC is
“trained” by solving a single system of linear equations. While it is widely believed
that the SVM will perform substantially better than RLSC, we note that the same
generalization bounds that apply to SVMs apply to RLSC, and we demonstrate em-
pirically on both toy and real-world examples that RLSC’s performance is essentially
equivalent to SVMs across a wide range of problems, implying that the choice be-
tween SVM and RLSC should be based on computational tractability considerations.
We demonstrate the empirical advantages and properties of RLSC, discussing the
tradeoffs between RLSC and SVMs. We also prove leave-one-out bounds for RLSC
classification.

Next, we turn to the problem of multiclass classification. Although a large body
of recent literature exists suggesting the use of sophisticated schemes involving joint
optimization of multiple discriminant functions or the use of error-correcting codes,
we instead advocate a simple ”one-vs-all” approach in which one classifier is trained to
discriminate each class from all the others, and a new point is classified according to
which classifier fires most strongly. We present empirical evidence of the strength of
this scheme on real-world problems, and, in the context of RLSC as the base classifier,

compelling arguments as to why the simple one-vs-all scheme is hard to beat. We
also present leave-one-out bounds for multiclass classification where the base learners
belong to a broad class of Tikhonov regularizers.

Finally, we consider algorithmic stability, a relatively new theory that results in
very elegant generalization bounds for algorithms which are ”stable”. We compare
and contrast Tikhonov regularization, to which algorithmic stability applies, with
Ivanov regularization, the form of regularization that is the basis for structural risk
minimization and its related generalization bounds. We present some interesting ex-
amples which highlight the differences between the Tikhonov and Ivanov approaches,
showing that the Tikhonov form has a much stronger stability than the Ivanov form.
We show that a simple bagging scheme in which the training set is divided into
equal-sized chunks, and the resulting classifiers averaged together, gives generaliza-
tion bounds of the same order as Tikhonov regularization, even if the underlying
binary classifiers are relatively unstable. Finally, we presult stability results for mul-
ticlass classification.

Thesis Supervisor: Tomaso Poggio
Title: Uncas and Helen Whitaker Professor of Brain and Cognitive Sciences

Acknowledgments

Thanks to Laura Baldwin for all of the XTEX help. This thesis wouldn’t have hap-
pened without her.

I would like to thank all the residents of Random Hall for making my five years
of Graduate Resident Tutor so wonderful. If it weren’t for you, I might have finished
earlier, but more likely, I wouldn’t have finished at all.

I would like to thank Professor Poggio for all the support and advice he has offered
over the years. I would also like to thank all the past and current members of CBCL
with which I’ve had so many enjoyable interactions: Sayan, Stan, Gene, Alex, Martin,
Tony, Vinay, Constantine, Massimiliano, Gadi, Alessandro, and Theos.

Thanks to my mom and dad, my brother Sam and sister Rachel for all the support.

I would like to thank my friends for good times and support: Erica, Bronwen,
Dianne, Danielle, Max, Dave, Laura, Ben, Amanda, Robyn, Mark, and of course and
especially Anna.

I would like to thank everyone I should have thanked that I’ve forgotten to thank
already.

Contents

1 Introduction 17
2 Theory and Implementation of Support Vector Machines 25
2.1 Introduction 25
2.2 Support Vector Machines, 26
2.2.1 From Regularization Theory to Quadratic Programs 26
2.2.2 Standard Notation, 31
2.2.3 Geometric Interpretationo 32
224 TheSVM Dual 35
2.2.5 Optimality Conditions 37

2.3 Previous Work 41
2.3.1 Osuna’s Decomposition Approach 42
2.3.2 Platt’s Sequential Minimal Optimization 46
2.3.3 Joachims’ SVMLight 48

2.4 The SvmFu Algorithm 51
2.4.1 Solving Subproblems o000 51
2.4.2 Choosing the Next Subproblem 5%)
2.4.3 Flexibility and Efficiency 58

2.5 Experiments Lo 59
2.6 Folk Wisdom 64
2.6.1 The Kernel, C', and Scaling 64
2.6.2 b ..o 68
2.6.3 Chunk Sizes and Memory 69

3 Regularized Least-Squares Classification 71

3.1 Imtroduction 71
3.2 The Mathematics of Regularized Least-Squares Classification 73
3.3 Leave-One-Out Bounds for RLSC 7
3.4 The Intuition of RLSC 85
3.5 Previous Work 96
3.5.1 1990 and Before 96
3.5.2 Fung and Mangasarian 97
3.5.3 Hans Suykens oo o 100
3.5.4 Conclusions 101

3.6 Linear RLSC 102
3.6.1 Linear RLSC Application: Text Categorization 103
3.6.2 Linear RLSC Application: Tumor Classification 106

3.7 Nonlinear RLSC 106
3.7.1 Low-Rank Kernel Approximations 106
3.7.2 Low-Rank Approximations for RLSC 109
3.7.3 Nonlinear RLSC Application: Image Classification 117

4 Multiclass Classification 135
4.1 Introduction 135
4.2 Previous Work oo 138
4.2.1 Single Machine Approaches 138
4.2.2 Error Correcting Code Approaches 151

4.3 Experimental Results 162
4.3.1 Preprocessing and Parameter Settings 163
432 Results. 165
4.3.3 Correlation Analysis 166

4.4 Theoretical Results oo 169
4.4.1 Multiclass Leave-One-Out Bounds 171
4.4.2 Multiclass Classification with RLSC 174

4.5 Computational Concerns

5 Stability Theory and its Implications

5.1 Definitions and Theorems

5.2 Tikhonov and Ivanov Regularization

5.3 Bagging Regularizes

5.4 Stability for Multiclass Classification

A Reproducing Kernel Hilbert Spaces

B The Representer Theorem

C The Conjugate Gradient Algorithm

Bibliography

183
183
186
193
195

199

203

207

209

10

List of Figures

2-1
2-2

2-3
2-4

2-5
2-6

3-1
3-2
3-3

3-5
3-6

The hinge loss V(f(x),y) = (L —yf(x))s. . . .« oo 28

Two hyperplanes with different margin. Intuitively, the large margin
hyperplane (b) seems likely to perform better on future examples than
the much smaller margin hyperplane (a). 32
Derivation of the optimal separating hyperplane w. 33
Geometric illustration of the reduced optimality conditions. The cir-
cles and the squares represent the two classes. The outlined points
are not support vectors, and satisfy Equation 2.74. The solid points
are unbounded support vectors, and satisfy Equation 2.75. The grey

shaded points are support vectors at their upper bound C, and satisfy

Equation 2.76. 40
SvmFu’s algorithm for solving subproblems. 55
Experiments comparing SvmFu and SVMLight. 63

The time required to solve the SVM for varying chunk sizes and total

cache sizes. L 64
The square loss V(f(z),y) = (y— f(z)% 72
RLSC and SVM: Symmetric, well-separated datasets. 87
RLSC and SVM: Unsymmetric, well-separated datasets.. 88
RLSC and SVM: Symmetric, closely-spaced datasets. 89
RLSC and SVM: Unsymmetric, closely-spaced datasets. 90

RLSC and SVM: Unsymmetric, closely-spaced datasets, “opposite”

outliers in one class. 92

3-7 RLSC and SVM: Unsymmetric, closely-spaced datasets, “opposite”

outliers in both classes.

3-8 RLSC and SVM: Unsymmetric, closely-spaced datasets, “twisting”

outliers in one class.

3-9 RLSC and SVM: Unsymmetric, closely-spaced datasets, “twisting”

outliers in both classes. L Lo
3-10 ROC curves for SVM and RLSC on the usps dataset.
3-11 ROC curves for SVM and RLSC on the faces dataset.
3-12 A crossplot for the usps dataset.
3-13 A crossplot for the faces dataset using o = 2 for RLSC.
3-14 A crossplot for the faces dataset using o =5 for RLSC.

3-15 A crossplot for the modified faces dataset using o = 2 for RLSC. The
training data is 75% of the original training set (chosen at random),
the test data is the remaining 25%. We see that the system is able to
“learn” the pattern described by the training data, and generalize well

to an independent test sample from the same distribution.
3-16 ROC curves for SVM and RLSC on the modified faces dataset using
o = 2 for RLSC. The training data is 75% of the original training set
(chosen at random), the test data is the remaining 25%.
3-17 A comparison of the subset, rectangle and nystrom approximations
to RLSC on the usps dataset. Both SVM and RLSC used o = 5.
3-18 A comparison of the subset, rectangle and nystrom approximations
to RLSC on the faces dataset. SVM used o =5, RLSC used o = 2. .
3-19 A comparison of bagged classifiers trained using the subset, rectangle

and nystrom approximations to RLSC on the usps dataset. Both SVM
and RLSCused o =5. o
3-20 A comparison of bagged classifiers trained subset, rectangle and

nystrom approximations to RLSC on the faces dataset. SVM used
o=5,RLSCusedo=2..

124

125

3-21

3-22

3-23

3-24

3-25

3-26

3-27

3-28

4-1

4-2

4-3

5-1

A comparison between the portion of the trace of K accounted for by
using a subset of the points chosen using ic and a random subset, for
the usps dataset. o
A comparison between the portion of the trace of K accounted for by
using a subset of the points chosen using ic and a random subset, for
the faces dataset. L Lo
A comparison between random subset selection and the ic method,
classifying the usps dataset using the subset method.
A comparison between random subset selection and the ic method,
classifying the usps dataset using the rectangle method.
A comparison between random subset selection and the ic method,
classifying the usps dataset using the nystrom method.
A comparison between random subset selection and the ic method,
classifying the faces dataset using the subset method.
A comparison between random subset selection and the ic method,
classifying the faces dataset using the rectangle method.
A comparison between random subset selection and the ic method,

classifying the faces dataset using the nystrom method.

An analysis of the quantity R(p). (a): R(p) vs. p. (b): ‘fi—g VS, p.
We see that R(p) is a strictly increasing function of p, implying that
if class ¢ is more likely than class j at point x, then, asymptotically,
filx) > fi(x). oo
An analysis of the binary errors of the classifiers induced by the error-
correcting coding schemes for the points which were OVA errors for
the satimage data. See the text for a full explanation.
An analysis of the binary errors of the classifiers induced by the error-

correcting coding schemes for the points which were OVA errors for

the yeast data. See the text for a full explanation.

The hinge loss V(f(x),y) = |f(x)—y|-

129

129

130

130

131

131

132

132

147

169

5-2 The e-insensitive loss V(f(x),y) =

(Ifx)—yl—€s ..o oo oo

5-3 The square loss V(f(x),y) = (y — fF(x))%« oo oo

C-1 The Conjugate Gradient algorithm

14

List of Tables

3.1

3.2

3.3

4.1

A comparison of SVM and RLSC accuracy on the 20newsgroups mul-
ticlass classification task. The top row indicates the number of docu-
ments/class used for training. The left column indicates the multiclass
classification scheme. Entries in the table are the fraction of misclas-

sified documents.,

A comparison of SVM and RLSC accuracy on the sector105 multi-
class classification task. The top row indicates the number of docu-
ments/class used for training. The left column indicates the multiclass
classification scheme. Entries in the table are the fraction of misclas-

sified documents.

Relative training times of SVM and RLSC. Classifiers indicates the
total number of binary classifiers trained (for the full training set).
Size indicates the size of the training set. The SVM and RLSC columns

indicate the total time required (in seconds) to train the classifiers. The

104

104

associated S/M columns measure the numbers of seconds per classifier. 105

Multiclass classification results for the satimage data set. Allwein et
al. used a polynomial kernel of degree four and an unknown value of C.
Rifkin used a Gaussian kernel tuned separately for each scheme. We see
that with the Gaussian kernel, overall performance is much stronger,
and the differences between coding schemes disappear. Entries in the
table are the percentage of errors; all results are rounded to the nearest

tenth of a percent. L oo

4.2

4.3

4.4

4.5

4.6

4.7

Multiclass classification results for the yeast data set. Allwein et al.
used a polynomial kernel of degree four, an unknown value of C, and
ten-fold cross-validation. Rifkin used a Gaussian kernel tuned sepa-
rately for each scheme, and leave-one-out cross-validation. We see that
with the Gaussian kernel, the performance of the one-vs-all scheme
jumps substantially, and the differences between coding schemes dis-
appear. Entries in the table are the percentage of errors; all results are
rounded to the nearest tenth of a percent.
The optimal o and C' settings for each of the five multiclass schemes
used on the 20Newsgroups dataset.
The final o and C' settings for each of the five multiclass schemes used
on the 20Newsgroups data set. The settings were tuned for OVA, AVA,
DEN and SPA, and chosen by the author for COMP.
Results for multiclass classification using five different coding schemes
on four different data sets. Entries in the tables are percentages of
misclassified points.o L Lo
Overlaps of predictions between classifiers on the satimage data set.
Each entry in the table gives the fraction of identical class predic-
tions for two different multiclass schemes. The five schemes are one-
vs-all (OVA), all-pairs (AVA), a complete code (COMP), a dense code
(DEN), and a sparse code (SPA). See the text for details of the param-
eter settings and code definitions.o
Overlaps of predictions between classifiers on the yeast data set. Each
entry in the table gives the fraction of identical class predictions for two
different multiclass schemes. The five schemes are one-vs-all (OVA),
all-pairs (AVA), a complete code (COMP), a dense code (DEN), and
a sparse code (SPA). See the text for details of the parameter settings

and code definitions.

16

159

164

164

166

167

Chapter 1

Introduction

The purpose of this introduction is to help you, the reader, understand what this
thesis is about, and what you will learn if you choose to read it. The introduction
will be informal and conversational in tone, and I will attempt to give a picture
not only of the research itself, but of the choices and developments that led to this
research. All the material discussed in this introduction is revisited at greater length
in the thesis itself, and I will provide the references there.

To a large extent, this thesis is about Support Vector Machines and related algo-
rithms. A Support Vector Machine is a machine learning algorithm for solving binary
classification problems. When I first began the research that led to this thesis, in the
fall of 1997, the SVM landscape was substantially different (and simpler) than it is
now. Edgar Osuna’s decomposition algorithm for Support Vector Machines had only
recently been developed, and required the use of an expensive, third-party quadratic
programming solver. Neither John Platt’s SMO algorithm nor Thorsten Joachim’s
SVMLight implementation had been developed. Vapnik’s seminal 1998 book (not to
mention the flood of more recent books) had not yet been published, although an
earlier, informal 1995 book was available. In my own lab, the Center for Biologi-
cal and Computational Learning at MIT, Constantine Papageorgiou had successfully
used Osuna’s SVM implementation to find faces and pedestrians in images. There
was a sense that SVMs outperformed a wide variety of other binary classification

algorithms, such as neural networks, classification trees, Fisher discriminants, and so

17

forth. There was also a sense that SVMs rested on a strong theoretical foundation,
based on Vapnik’s theory of VC-dimension.

One of the primary problems with SVMs was the lack of a good, fast, freely-
distributable implementation. Osuna’s code could often solve large problems, but
it was hard to work with, and we could not freely distribute it because it used an
expensive third-party library to solve the quadratic programming problems arising as
intermediate steps. In 1998, John Platt generated a lot of excitement in the SVM
community when he published his Sequential Minimal Optimization algorithm, or
SMO for short. By solving subproblems consisting of only two examples at a time,
which could themselves be solved analytically, the need for a third-party QP solver
was obviated. Platt made very impressive claims for his algorithm, stating that for
linear SVMs, SMO can be “1500 times faster than the Projected Conjugate Gradient
chunking algorithm.” Reading his paper, it was difficult to tell precisely what this
PCG chunking algorithm was, how carefully it was implemented, and so forth; Platt
was unable to release any of his code, as it was proprietary to Microsoft, where Platt
is a researcher. In my own attempts to replicate his results, I quickly discovered a
primary problem with SMO — as written, it suggested recomputing kernel products
between pairs of points whenever they were needed. For high-dimensional data sets,
this quickly became the crippling bottleneck for the algorithm. When I implemented
the SMO algorithm myself and tested it on a face recognition task, it was substantially
slower than the (already slow) code Osuna had written. This was my first encounter
with the problems that plague the field of machine learning — extreme hype, sloppy

experimental techniques, and irreproducible results.!

!The hype lives on. In the May/June 2002 issue of MIT’s Technology Review Magazine, one
of their five “patents to watch” is US Patent #6327581, granted to Microsoft for “Methods and
Apparatus for Building a Support Vector Machine Classifier.” From the Technology Review blurb

(page 73):

Computer scientists have long looked to machine learning methods as a way to “teach”
computers new tasks; algorithms called “support vector machines” can be trained to
produce programs that sort objects into different categories. But the algorithms have
been too slow to be practically applied to very large problems like sorting text files.
John Platt, the leader of Microsoft Research’s Signal Processing group, created an
original way to speed up support vector machines by a factor of 1,000, making it

18

I did not feel that SMO “solved” the problem of fast SVM training, and turned to
the task of building a better SVM solver. I wanted an implementation that I could
freely distribute, so I was unwilling to use a non-free quadratic programming solver.
At the time, I was not aware of any industrial strength freely available QP solvers,
and I did not want to write my own. [was therefore attracted to the idea of using
Plat’s SMO algorithm in some way. Eventually, I came up with the basic idea that
became SvmFu, which is a major part of this thesis: to decompose the problem into
subproblems as Osuna did, but to use an SMO-style algorithm to solve the resulting
subproblems.

During the process of designing, implementing and reimplementing SvmFu, a
number of other powerful SVM solvers became available, notably Thorsten Joachims’
SVMLight system and Ronan Collobert’s SVMTorch system. These systems both,
in their fashion, solved the problems that remained in SVM training. They are both
decomposition algorithms, and they both include powerful caching systems to avoid
recomputation of kernel products. Neither of these systems takes SvmFu’s specific
approach of solving relatively large subproblems using an SMO-style algorithm. I
attempted to take the best ideas from each of these applications and incorporate
them into my own work. At the end of development, SvmFu is as fast or faster than
these systems, but not so much more powerful as to be an “enabling technology”;
roughly speaking, if one of the three systems will train an SVM in a reasonable
amount of time, all three will.

The problem of training SVMs can now be considered “solved” in the following
sense: although engineering and algorithmic enhancements may improve training
speed somewhat, it is unlikely that further improvements will be substantial. With
this in mind, I decided to focus on other problems, different from the standard SVM
training problem — the goal being to find an approach that was as or more accurate as
SVMs, while simultaneously being much much faster. [was inspired by an influential

paper by Theodoros Evgeniou, Massimiliano Pontil, and my advisor Tomaso Poggio,

practical for the first time to tackle such problems.

19

which considered general regularization problems in the following form, known as

Tikhonov regularization:
¢

> V(f(xi),m:) + Ml (1.1)
i=1
Here, V' is a user-supplied loss function, X is a user-supplied reqularization constant,
and || f||3% is the norm of f squared measured in a Reproducing Kernel Hilbert Space
(see Appendix A). This equation is one of the central ones of this thesis, and will be
explored in many different ways in the succeeding chapters. One major of contribution

of the Evgeniou et al. paper was to notice that different learning schemes could be

obtained simply by varying V. The “ideal” choice of V' would be the 0-1 loss:

V() =4 O T = (12
1 otherwise

This is of course what we are really interested in, making as few mistakes as possible.
Unfortunately, trying to optimize the 0-1 loss directly leads to nonconvex, intractable
problems, so we instead consider smooth loss functions V' that upper-bound the 0-1
loss. Choosing V' to be a function known as the hinge loss leads to (almost) standard
Support Vector Machines. T was also inspired by Olvi Mangasarian’s work on Prox-
imal Support Vector Machines, where he chose V' to be the square loss (y — f(x))%.
Mangasarian presented a method for solving linear PSVMs extremely rapidly. I was
a bit put off by the name Proximal Support Vector Machines. There are no support
vectors, so the name makes no sense. In the context of regression problems, the exact
same algorithm has been in use since at least the late 1990’s. In fact, Tikhonov de-
veloped his approach to regularization assuming that the loss function was the square
loss (although he did not use the norm in an RKHS as his “stabilizer”). The primary
contributions of Mangasarian’s work were not to invent the algorithm (or, equiva-
lently, to pioneer the use of the square loss), but to show that the linear problem
could be solved very quickly, and to demonstrate on a number of benchmark datasets
that the two loss functions produced very similar results. I renamed the algorithm

Regularized Least-Squares Classification, or RLSC for short. I present a simpler anal-

20

ysis of RLSC than the one given by Mangasarian, who needlessly introduces a dual
form (possibly in order to make the analogy to SVMs stronger). I introduce addi-
tional methods for solving the linear problem quickly, and in particular, I show how
to use Conjugate Gradient to solve the linear problem quickly for text classification

problems, where the input data are very high-dimensional but sparse.

I then turned to an analysis of nonlinear RLSC. Here, the situation is reversed,
and solving an SVM is actually much faster than solving a general nonlinear RLSC
problem. For this reason, I considered a number of different approrimations to the
full RLSC problem. I found that an approach known as the Nystrom approzimation,
suggested by Williams and Seeger in the context of Gaussian process classification,
did not work well for me (I was entirely unable to replicate the extremely strong
results they reported for the method), and developed a different approximation based
on choosing a subset of the data in advance that I would use to “represent” my func-
tion. This approximation worked very well, and may represent a useful alternative
to standard SVMs for nonlinear problems. It has several advantages over standard
SVMs, including the fact that the precise amount of memory and computation re-
quired can be stated in advance, and that solving multiclass classification problems is
only slightly more expensive than solving a single binary problem (see below). In this
part of the thesis, I also prove leave-one-out bounds for Regularized Least Squares
Classification; these bounds have a similar feel to a very general set of bounds for
kernel classifiers developed by Jaakkola and Haussler, but the details are somewhat
different. Additionally, we are able to exploit the strong geometrical constraints in-
herent in the RLSC formulation to give a particularly appealing form to the bounds,
that makes explicit the connection between leave-one-out bounds and notions of al-

gorthmic stability.

I next turned my attention to the problem of multiclass classification. The most
obvious approach to combining binary classifiers (such as SVMs or RLSC) into a
multiclass classification system is a simple “one-vs-all”, or OVA approach: for each
class, we train a classifier to discriminate that class from all other classes, and classify

new points according to which of the classifiers fires most strongly. This approach has

21

been “invented” numerous times by differing researchers. In the past few years, there
has been a small cottage industry of papers describing newer, more sophisticated
methods for multiclass classification. In my own work on multiclass text document
and cancer classification, I consistently found that these sophisticated approaches
performed no better than the OVA scheme, but reviewers often seemed surprised
by this, and referred me to the relevant papers “showing” that other approaches of-
fered superior performance compared to OVA. For this reason, this thesis includes a
substantive review of the multiclass classification literature, considering in detail a
number of “sophisticated” methods for multiclass classification. Without exception,
we find that either there is no experimental evidence to support a substantial advan-
tage over a simple OVA scheme, or that the experiments are poorly controlled and
do not the support the conclusions made; in some cases, we run our own experiments
to illustrate this point. We then try to understand why the OVA scheme performs so
well in comparison to other schemes. We find that for many of the other schemes, the
theory points to their performing well if the outputs from various binary classifiers
are “decorrelated” in a certain sense. Running experiments, we find that the under-
lying binary classifiers that are combined in these multiclass schemes are extremely
highly correlated, indicating that the complicated schemes cannot use decorrelation
to improve on OVA. Additionally, in the specific context where RLSC is the underly-
ing binary learner, we present some intriguing theoretical arguments that exploit the
linearity inherent in RLSC to illustrate why other schemes are unlikely to outperform
OVA, and, directly connected to this, show how we can solve a multiclass RLSC prob-
lem using approximately the same amount of computation as a single binary problem.

Finally, we present leave-one-out bounds for multiclass classification.

In the final chapter, we turn to the notion of algorithmic stability, an elegant new
method of proving generalization bounds for algorithms. Traditional approaches to
generalization bounds rely on the notion of “structure”: they show that the space of
functions an algorithm selects from is not too large in a certain sense, and that there-
fore, with high probability, all functions in that space will have empirical performance

close to their true performance on unseen future data. Given this, it makes sense to

22

pick the function in the space with the best empirical performance. The algorithmic
stability approach, on the other hand, shows that if the particular function selected
by an algorithm is stable, in the sense that the function will not change much when
the dataset is perturbed slightly, then the function will have close agreement between
empirical and future performance (with high probability). While the “structural”
approach applies directly to Ivanov regularization algorithms (a different form of reg-
ularzation discussed in Chapter 5), the algorithms we actually use (SVMs and RLSCs)
are Tikhonov regularization algorithms, and algorithmic stability applies directy to
them. We use the theory of algorithmic stability to explore the connections between
Tikhonov and Ivanov regularization. In particular, we show that Tikhonov algorithms
automatically live in a “stucture”, so structural bounds can apply to them. In con-
trast, we show that Ivanov regularization algorithms are not necessarily stable. We
also show that certain simple bagging algorithms are stable, yielding a nice explana-
tion for the power of bagging methods. Finally, we present algorithmic stability-based
bounds for multiclass classification that operate by combining the outputs from stable
binary classifiers.

The remainder of this thesis will be written in a more technical, formal style, with

the use of “we” rather than “I.”

23

24

Chapter 2

Theory and Implementation of

Support Vector Machines

2.1 Introduction

We introduce SvmFu, a new algorithm for training Support Vector Machines. SvmFu
was designed for high performance on large datasets, providing both a fast algorithm
and the flexibility to easily adapt its operating characteristics to individual problems.
Conceptually, SvmFu can be viewed as a unification of ideas presented by Osuna [83],
Platt [85], and Joachims [57], with additional extensions. We describe and justify
our approach, and present experimental results exploring SvmmFu’s performance and
comparing SvmFu to other popular codes.

In recent years, the Support Vector Machine (SVM) has become an important
technique in machine learning [20, 115, 116]. Loosely speaking, an SVM for classi-
fication attempts to find a hyperplane that maximizes the margin between positive
and negative examples, while simultaneously minimizing training set misclassifica-
tions (for excellent introductions, see [16] or [27]).

SVMs are motivated by strong theoretical arguments, and their observed empirical
performance is extremely good. However, training an SVM requires the solution of
a quadratic program in as many variables as there are data points in the training

set. Worse still, the quadratic program has a dense (and often full rank) Hessian

25

matrix. For an SVM on 20,000 data points, representing the entire Hessian would
require 1.6 % 10® (1.6 Gigabytes) of RAM, assuming each entry was stored as a 4-byte
floating point number. The memory requirements of a direct approach to training an
SVM make solving the QP directly with standard, off-the-shelf QP codes [80, 113]
impossible. Instead, we must look to specialized methods that avoid representing the
entire Hessian explicitly.

The contributions of this chapter are as follows. In Section 2.2, we review the
mathematics associated with Support Vector Machines, presenting a particularly clear
derivation of SVMs from the standpoint of regularization theory, and comparing and
contrasting this approach to the more standard geometric derivation. In Section
2.3, we discuss previous approaches to training large-scale SVMs. In Section 2.4, we
present the SvmFu algorithm, contrasting it with previous methods. In Section 2.5,
we present experimental results on SvmFu and other algorithms. In Section 2.6, we
present accumulated “folk wisdom” and “rules of thumb” relating to SVMs — this
knowledge is quite valuable to people who actually want to use SVMs in practice or

are interested in writing their own large-scale SVM implementations.

2.2 Support Vector Machines

This is an overview of the mathematics of Support Vector Machines, focussing on
the details necessary to understand the algorithms used to train SVMs. More details
can be found in wide variety of references [16, 27, 82, 116, 98, 53]. Whereas most
developments start from a geometric viewpoint emphasizing separating hyperplanes
and “margin”, we begin with the idea of regularization, which allows us to easily

develop both the primal and dual formulations in a very clean and general way.

2.2.1 From Regularization Theory to Quadratic Programs

We are given £ examples (x1,¥1), ..., (X, y¢), with x; € R" and y; € {—1,1} for all i.
As we discussed in Chapter 1, the problem of learning a function that will generalize

well on new examples is ill-posed. The classical approach to restoring well-posedness

26

to learning is regularization theory [48, 31, 28, 111, 119, 8, 9]. This leads to the

following regularized learning problem:
1)

in— Y V(y, f(x; A . 2.1

min £ 3V £66) + A (2.1

Here, ||f][% is the norm in a Reproducing Kernel Hilbert Space H defined by a

positive definite kernel function K (see Appendix A), V' is a loss function indicating

the penalty we pay for guessing f(x;) when the true value is y, and) is a regularization

parameter quantifying our willingness to trade off accuracy of classification for a

function with small norm in the RKHS H.

The classical SVM arises by considering the specific loss function!

V(f(x),y) = (1 —yf(x))+, (2.2)

where

(k)4 = max(k,0). (2.3)

This loss function, shown in Figure 2-1, is often referred to as the hinge loss.
The hinge loss has a simple but compelling justification. Remembering that for each
example i, y; is either 1 or —1, a reasonable goal is to find a function such that f(x;)
is large and positive when 3, = 1 and is large and negative when y; = —1. The
hinge loss enforces this goal. If y; f(x;) is at least 1, we pay no penalty for point i.
If y;f(x;) < 1, we pay a penalty linear in the amount by which we fail to satisfy
the constraint. The quantity y;f(x;) is also known as the margin (see below). The
now-classical SVM algorithm as developed by Vapnik et al. [12, 115, 116] uses the

hinge loss, and this shall be our focus for most of present chapter.

!Since we are interested in solving binary classification problems, the most natural loss would be
the 0-1 loss, which simply counts the number of misclassifications. Using this loss function directly
in the training problem leads to an NP-complete, and therefore intractable, optimization problem.
Some care must be taken when deriving generalization bounds — we need these bounds to apply to
the 0-1 loss, not to the hinge loss we used to train the SVM. See Chapter 5 for additional discussion
of this point.

27

Hinge Loss

Figure 2-1: The hinge loss V(f(z),y) = (1 — yf(z))+.

Using the hinge loss, our regularization problem becomes

1 l
l}rggllz;(l = yif (xi))+ + Al fII- (2.4)

In order to make the problem easier to work with, we introduce slack variables &;,
corresponding to the penalty we pay at point :. With this definition, our problem

becomes:

min 3 &+ Al IR (2.5)
subject to: yif(x;)>1-¢& i=1,...,¢ (2.6)
& >0 i=1,....0 (2.7)

Under quite general conditions (see Appendix B) it can be shown that the solution

f* to the above regularization problem has the form
fr(x) = Z ¢ K (x,x;). (2.8)

Therefore, in order to find f*, we need only find the optimal ¢;. Using basic
facts about RKHS, defining ¢ = [¢; ...c/|T, and defining the matrix K as the (-by-/

matrix satisfying K;; = K (x;,X;), we arrive at a constrained quadratic programming

28

problem:

min I &G+ AcTKe (2.9)
ceR!
subject to : yZZ VG K (v,) > 1 =& i=1,...,¢ (2.10)

§& >0 i=1,...,¢ (2.11)

As we will see, this problem is essentially identical to a nonlinear version of the
standard “primal” problem derived in most references. The only difference is that the
standard SVM includes an additional nonregularized “bias” term b (see Subsection
2.6.2 for a discussion of the role of the bias parameter), so that the function f* takes

the form

ch (x,%;) + b. (2.12)

With this change, the quadratic program becomes

i 15) T
cefr{?,lgneR" 7 2i—1 &t Act Ke (2.13)
subject to = y; (X, K (w5, 25) +b) > 1 =& i=1,...,((2.14)
& 20 i=1,...,0 (2.15)

We derive the Wolfe dual quadratic program using Lagrange multiplier techniques
[6, 10, 75, 33]. Because the primal is a feasible convex quadratic programming prob-
lem, strong duality holds — the dual problem will also be feasible and convex, and
the optimal objective values of the primal and dual problem will be identical [125, 4].

Proceeding, our Lagrangian is

L(c,&,b,0,() = Z& +Ac"Ke — Zal yl{zcj (T,) +b} — 1+ &) — fjggi,
“2.16)

which we want to minimize with respect to ¢, b, and &, and maximize with respect to «
and (, subject to the constraints of the primal problem and nonnegativity constraints
on a and (. We will eliminate the primal variables by taking the derivatives with

respect to each of them in turn and setting these derivatives to zero, thereby deriving

29

additional dual constraints. We first take the derivatives with respect to b and &:

oL ‘
— =0 = > oy =0 (2.17)
b =1
oL 1
— =0 S —a;—G=0 2.18
o, = ;G (2.18)
1
— 0<0; <5 (2.19)

The last equation was derived using the nonnegativity of «; and (;. By using these
identities, we can write the following reduced Lagrangian in terms of the remaining
variables: , ,
L%(c,a) = A" Ke =Y ai(yi Y ;K (w5, 25) — 1) (2.20)
i=1 j=1

It is notationally simplest to take the derivative of L with respect to the entire ¢

vector simultaneously. Defining Y to be the diagonal matrix with Yj;equivy;:

OL®
6—:0 = 2\ Kc—-—KYa=0 (2.21)
¢
Yo
= —. 2.22
= c o ()

The last equation assumed that the kernel was positive definite and that the matrix
K was invertible. If K is not invertible, there will in general exist multiple solutions,
but ¢ = % will always be a solution.? Substituting in our expression for c, we are

left with the following dual program:

¢ 1T
max i1 % — G Qo (2.23)
subject to : Sty =0 (2.24)
0<w <3 i=1,...,0 (2.25)

2This point was somewhat misunderstood in Osuna’s thesis [82]. Osuna was attempting to find
additional solutions to the SVM problem which used fewer support vectors (see below). He started
with the dual program, and rederived a “nonlinear primal” which is essentially the QP we started
with. He then remarked (correctly) that the ¢; in this program do not necessarily have the same
geometric interpretation as the «; in the dual, but failed to note that if the matrix were invertible,
there is no freedom in choosing the ¢; given the «;. (Rob Freund and Gert Cauwenbachs, personal
communication.)

30

Here, () is the matrix defined by the relationship

2.2.2 Standard Notation

We derived our primal and dual quadratic programs starting from a formulation which

is standard in regularization theory:

1 4
iy 5 30V S (x0) + 1 e 2.27)

In most of the SVM literature, these equations are reparametrized. Instead of the
regularization parameter A, regularization is controlled via a parameter C', defined

using the relationship

1
= —. 2.2
¢ 20\ (2.28)
Using this definition, the basic regularization problem becomes
l 1)
min 3V (0 £05)) + 511 (2.29)

The parameter C' also controls the tradeoff between classification accuracy and the
norm of the function. The derivation of the primal and dual programs is nearly
identical. The first version is more natural from the standpoint of regularization
theory (see Chapter 5), but the version using C' is much more prevalent in the SVM
literature. Additionally, the latter version has the nice property that ¢ = Ya is a
solution, so the equivalence between c¢ and « is even closer. In this form, the primal

problem becomes

: 6 ¢ 41T
cetin Cyioi &+ 53¢ Kc (2.30)
subject to : yi(zﬁzl i K(xi,xj)+b) >1-& i=1,...,¢ (2.31)

& 20 i=1,...,0 (2.32)

31

@ (b)

Figure 2-2: Two hyperplanes with different margin. Intuitively, the large margin
hyperplane (b) seems likely to perform better on future examples than the much
smaller margin hyperplane (a).

The dual problem becomes

¢ 1
f{é%f% Yii o — 50’ Qo (2.33)
subject to: ¢,y = 0 (2.34)

0<a; <C i

1.0 (2.35)

2.2.3 Geometric Interpretation

The “traditional” approach to developing the mathematics of SVM is to start with
the concepts of separating hyperplanes and margin. The theory is usually developed
in a linear space, beginning with the idea of a perceptron [92, 79], a linear hyperplane
that separates the positive and the negative examples. Defining the margin as the
distance from the hyperplane to the nearest example, the basic observation is that
intuitively, we expect a hyperplane with larger margin to generalize better than one

with smaller margin (Figure 2-2).

32

Figure 2-3: Derivation of the optimal separating hyperplane w.

We denote our hyperplane by w, and we will classify a new point x via the function

f(z) = sign (w - x). (2.36)

Given a separating hyperplane w (geometrically, w is normal to the separating
hyperplane, but we refer to w as the hyperplane), we let x be a data point closest to
w, and we let X% be the unique point on w that is closest to z. Obviously, finding a
maximum margin w is equivalent to maximizing ||x —x"||. We have, for some value

of k* (see Figure 2-3),

w-x=kFk (2.37)
w-xV =0 (2.38)
= w-(x—x")=k (2.39)

3We assume without loss of generality that k > 0; if & < 0, the same argument applies with slight
modifications.

33

Noting that the vector x — x% is parallel to the normal vector w,

wox—xV) = w- (Mw> (2.40)

N
N
S

= wl] [[x = x|

= |Iw[| ||(x —=x")|| =k 2.43
k

= ||><—><W||=—|| T 9.44
A%

The parameter k is a nuisance parameter. Given any w, if we consider instead cw
for a positive constant ¢, ||x —xY|| will remain unchanged, but ||w||, w-x, and & will
all change by a factor of ¢. Therefore, without loss of generality, we may fix & to 1.*
Essentially, the only choice we can make geometrically is the direction of the normal
to the separating hyperplane. Once we fix k to be 1, we see that maximizing ||x —x"||
is equivalent to maximizing m, which in turn is equivalent to minimizing ||w||. We
can now define the margin as the distance between the hyperplanes w - x = 0 and
w-x=1.

The SVM introduced by Vapnik includes an unregularized bias term b, leading to

classification via a function of the form:
f(z) =sign (w-x +b). (2.45)

This b term has become a part of the “classic” SVM formulation, and will be included

throughout most of this chapter. See Sections 2.6.2 for further discussion of this point.

In practice, we want to be able to work with datasets that are not necessarily lin-
early separable, so we introduce slack variables & just as in the previous section. Un-
fortunately, this makes the interpretation of the “margin” somewhat difficult, which
is a primary advantage of explaining and deriving SVMs in terms of regularization

theory rather than geometrically. We can still define the margin as the distance be-

4Vapnik calls the set of hyperplanes for which k& = 1 the set of canonical separating hyperplanes.

34

tween the hyperplanes w - x = 0 and w - x = 1, but this is no longer particularly
satisfying.
With slack variables, the primal SVM problem becomes

- 6 e o1 2
wemin o OXin &+ 5llwll (2.46)
subject to: y(w-x+b)>1-& i=1,...,¢ (2.47)

& >0 i=1,...,0 (2.48)

Historically, most developments began with this form, derived a dual program
which was identical to the dual we derived above, and only then observed that the dual
program required only dot products and that these dot products could be replaced
with a kernel function (see Appendix A). In fact, Osuna’s thesis [82] was perhaps the
first to take the dual of the dual, recovering a formulation essentially identical to the
primal we easily derived from a regularization theory standpoint.

In the linearly separable case, there is another geometric viewpoint for the optimal
separating hyperplane. Consider all vectors connecting pairs of points in opposite
class. Let v be the shortest such vector, and let 1 and 2~ be its positive and negative
endpoints, respectively. Then, geometrically, the optimal separating hyperplane has a
normal vector parallel (or anti-parallel) to v, and passes through ﬁ% An algorithm
based on this observation was derived by Vapnik in the 1970’s [114], and another such
algorithm with extensions to the nonseparable case with squared slack variables has

recently been proposed by Keerthi et al. [60].

2.2.4 The SVM Dual

The SVM dual problem is substantially easier to solve than the primal, because the
constraint structure is much simpler — whereas the primal has a dense inequality
constraint for every data point, the dual has only a single dense equality constraint
and a set of box constraints. Therefore, we shall now focus on the SVM dual problem,
and particularly on aspects that are relevant for solving it..

For convenience, we restate the dual problem we shall focus on for most of the

35

remainder of the chapter:

max Ele oy — % Zle Zle OéiOéjQij (249)
subject to : S v =0 (2.50)
0<o; <C, V1 (2.51)

Here, Q;; = y;y; K (x;, xj), where K is a user-supplied positive semidefinite kernel
function [3, 120]. Choosing a kernel function is equivalent to choosing a (possibly
high- or infinite-dimensional) feature space in which to embed the examples. Kernels
commonly in use include linear, polynomial and radial basis function kernels (see
Appendix A).

The solution of the SVM training problem is the vector of optimal a’s. These

induce a real-valued classification function®, given by:

f(x) = Z:az-yz-[((x, z;)+0b (2.52)

Only the «;’s which are nonzero appear in this expansion.®

The corresponding
data points are known as support vectors. It is obvious that the removal of non-
support, vectors from the training set does not affect the solution. For any i, if o
is strictly between 0 and C', then point ¢ is designated an unbounded support vector
(USV).

The bias term b can be found using any «; whose value is strictly between 0 and

C:7

b=vy; — f(x;) (2.53)

In practice, most authors find b by averaging the value of b imputed by many different

unbounded support vectors. Our software makes this choice as well, although we

°In actual classification problems, we use sign(f(z)) to get 0/1 classifications.

6In essence, we are solving for the c; that solve the regularization problem introduced in Section
2.2.1; because we have parametrized the problem using C' instead of A, a valid solution is ¢; = a;y;-

"Under extremely mild conditions, such a point is guaranteed to exist (see [15] or [91]).

36

usually find that the standard deviation of the imputed values of b are all extremely
close (107® or less), indicating that this choice is not especially important if the a’s
are being found with a high degree of accuracy.

C'is a user-supplied regularization constant with a simple geometric interpretation.
We are attempting to classify each point with a margin of at least 1 — i.e., we would

like to satisfy, for each ¢, the condition

yif (z;) > 1. (2.54)

C' is then the unit cost of misclassification of an example; if y; f(x;) = m; < 1, we

pay a penalty of C'(1 —m;).

2.2.5 Optimality Conditions

The primal (Equations 2.31-2.32) and dual (Equations 2.50-2.51) are both convex
quadratic programs. Therefore, optimal solutions to the primal and dual will satisfy
complementary slackness conditions [6, 10, 75, 33]. Complementary slackness tells
us important information about optimal solutions to the primal and dual problems.
Consider the dual variable associated with a primal inequality constraint. At optimal-
ity, complementary slackness dictates that either the inequality constraint is satisfied
as an equality, or the corresponding dual variable is zero. Combining this with the
feasibility conditions for both problems, we can derive a complete set of conditions

that a pair of optimal solutions to the primal and dual problem must satisfy:

¢
> ¢ K (xi,x;) Z i K(x3,%3) =0 i=1,...,¢ (2.55)

C—o;—C¢G=0 i=1,....¢ (2.57)
Zyja] (xi,x3) +b) —14+&>0 i=1,....¢ (2.58)
yzZy]a] (xi,xj) +b) —14+&]=0 i=1,...,¢ (2.59)

37

G&E=0 i=1,....¢0 (2.60)

§i,00,G >0 a=1,....4 (2.61)

If we have c, &, b, and (satisfying the above conditions, we know that they repre-
sent optimal solutions to the primal and dual problems. These optimality conditions

are also known as the Karush-Kuhn-Tucker (KKT) conditons.

We can simplify the KK'T conditions substantially by examining the problem more

closely. Consider a point ¢ which is not a support vector. Then

=0 = =0 (2.62)
— &=0 (2.63)
= i f(x) > 1, (2.64)

where we have as usual defined
¢
F(x) = v K (x,%;) + . (2.65)
i=1

Conversely, for a point i which satisfies y; f(x;) > 1, we have

yif(xi) >1 = §=0 (2.66)
¢
= o;[yi(O i K (xi,x;) +b) — 1] =0 (2.67)
j=1
= «a; =0. (2.68)

Now consider a point ¢ which is a support vector at its upper bound, with o; = C"

4

o, =0C — yz(z yiaz-K(xi, Xj) + b) -1+ fz =0 (269)
j=1
= yif(x) < L. (2.70)

38

Also,

yif(xi) <1 = & >0 (2.71)
= =0 (2.72)
= a;=C (2.73)

Finally, we consider an unbounded support vector, a point ¢ satisfying 0 < a; <
C. Using the same argument as when «; = C (the only relevant fact about this
argument was «; > 0; the fact that it was equal to C' was not used), we again find
that y;f(x;) < 1. Using the same argument as when a; = 0, we again find that
G >0,& =0, and y;f(x;) > 1. Combining these arguments, we find that for
unbounded support vectors, y; f(x;) = 1. There is no converse argument: knowing
that y; f(x;) = 1 does not necessarily tell us anything about «;.

Putting together these results, we have the following “simplified” optimality con-

ditions for the SVM training problem:

Our goal is to find a set of a’s (and the induced b) that satisfy these equations.
In practice, we accept a solution vector of a’s as optimal when all the optimality
conditions are satisfied to within some tolerance .

We note the slight asymmetry in the arguments used to derive the simplified
optimality conditions. For example, y;f(x;) < 1 implies o; = C, but a; = C only
implies y; f(x;) < 1. This is a consequence of the possibility of degeneracy in the
solution; in particular, the fact that a point that satisfies the margin requirement
exactly has no constraint on its possible « value.

It is in interpreting these reduced optimality conditions that the geometric devel-

opment of SVMs becomes particularly valuable. Figure 2-4 provides an illustration

39

Figure 2-4: Geometric illustration of the reduced optimality conditions. The circles
and the squares represent the two classes. The outlined points are not support vectors,
and satisfy Equation 2.74. The solid points are unbounded support vectors, and
satisfy Equation 2.75. The grey shaded points are support vectors at their upper
bound C, and satisfy Equation 2.76.

of this principle. In this figure, the circles and the squares represent the two different
classes. The outlined points are the points which satisfy the margin requirement.
They satisfy Equation 2.74: y;f(x;) > 1, oy = 0, and they lie outside the margin on
the correct side of the hyperplane. The solid black points are the unbounded sup-
port vectors. They satisfy the margin requirement with equality. For these points,
Equation 2.75 holds, y;f(x;) = 1, and 0 < a; < C. Finally, the grey shaded points
are the bounded support vectors. They do not satisfy the margin requirement. For
these points, Equation 2.76, and «; = C. It is important to note (see Figure) that the
points which satisfy Equation 2.76 are not necessarily errors. They are points which
fail to satisfy the margin requirement, but they may still lie on the correct side of
the hyperplane, inside the margin. However, the converse is true — all points which
are training errors satisfy Equation 2.76. For this reason, the number of bounded
support vectors can be lower bounded by the number of training errors, a point we

shall return to later.

40

2.3 Previous Work

We now consider previous attempts to solve the SVM problem in the form discussed
above (Equations 2.50-2.51). Many modifications to this form have been proposed,
often in order to simplify the problem. These include but are by no means limited
to removing the bias term [37], penalizing the bias term (or, equivalently, adding
an extra dimension of all 1’s to the data [73]), and adding an extra dimension for
each data point, thereby making the problem separable [36, 61]. Evaluating whether
these alternatives work as well or better than the standard formulation is an open
research question; Olvi Mangasarian has made progress in addressing these issues
[74]. Chapter 3 is devoted entirely to studying a different particularly promising

alternative form.

The coverage in this section is not meant to be exhaustive, but is meant to point
out several key developments and landmark papers. In addition, we discuss some
papers that we feel are of interest, but have not seemed to have a big impact in the

field.

There exist polynomial time algorithms for solving large classes of convex pro-
gramming problems, which include convex quadratic prorgramming problems as a
special case [81]. For many quadratic programming problems, interior point methods
have led to the most efficient algorithms in practice as well as theory. However, the
quadratic programming problem arising from Support Vector Machines does not fit
this pattern, for two main reasons. The first reason is that for large problems, the
matrix () is too large to store in memory, and is in general dense. The second reason
is that the solution to an SVM is in general quite sparse — there are few nonzero
coefficients relative to the number of data points. This is because every point which
lives outside the margin on the correct side is guaranteed not to be a support vector.
For this reason, we will prefer algorithms that start with an all-zero solution and
attempt to modify « values as necessary. Interior point methods, on the other hand,
will start with a solution that contains no zeros (satisfies 0 < a; < C for all 7). These

“no-zero” solutions are much more expensive to work with.

41

For the reasons just mentioned, it has long been recognized that direct attempts
to solve the QP problem associated with SVMs will not scale to large problem sizes,
primarily due to the size of the @ matrix. Vapnik [114, 115] first observed that
because only the support vectors (those points with non-zero «a;’s) appeared in the
solution, remaining points could be removed from the training set. This led to the
method of portraits, in which the large QP was solved as a series of smaller QPs, each
one containing the support vectors from the previous iteration, as well as some new
points that violated the optimality conditions. This had the advantage of not needing
to store the entire () matrix; however, one still had to store a submatrix of size equal
to the number of support vectors squared. Recall that every point which does not
meet its margin requirements is a support vector. For large datasets, particularly if

there is noise in the labels, this is still likely to be too large to store.

2.3.1 Osuna’s Decomposition Approach

Osuna [83] introduced a key innovation for solving large-scale SVMs. He proved
that one could use a fized size working set and optimize with respect to just the
working set variables, adding variables that violate the optimality conditions to the
working set (and removing other variables) at the end of each iteration, and that the
overall objective function would increase at each iteration. With this approach, SVM
problems of arbitrary size could be solved using a fixed amount of memory. While
his argument that the solution would asymptotically converge to the optimal solution
was incorrect, and convergence of this algorithm to the optimal solution has not been
formally established, the algorithm seems to converge on all real-world examples.
Attempts to study the convergence of SVM algorithms have been made: Chang et
al. [17] study general algorithms, but rely on the algorithm finding the examples
which maximize the step size at each iteration. Keerthi and Gilbert [59] provide a
general convergence proof for SMO-style algorithms (see below), in which the working
set, consists of only two examples at each iteration. Neither of these conditions are
satisfied by Osuna’s decomposition algorithm. Nevertheless, it seems extremely likely

that the algorithm converges, assuming some minor regularity conditions such as the

42

requirement that all training points are eventually checked for membership in the
working set. This algorithm became known as the decomposition algorithm, and is
also sometimes referred to as the chunking algorithm.®

Specifically, assume that we have partitioned our dataset into two subsets, a work-
ing set W and the remaining points R. Assuming without loss of generality that the
working set of size k contains the points numbered 1,..., %, and that R consists of
points k + 1,...,¢, thereby inducing the partitioning o« = [ayy ag|, we can rewrite

the dual problems as

1o}
max Sl i+ Sim ay — %[aw aR] Qww Qwr w (2.77)
ow ERIVI, apeRIRI iEW i€R QRW QRR aR
subject to : diew Yithi + Y icrYic; = 0 (2.78)
0<aq;<C, Vi (2.79)

Suppose we have a feasible solution « to the dual problem. We can proceed by
treating the aw as variable and the agr as constant. Doing so, and eliminating terms
which are constant, and combining remaining terms leads us to the reduced dual

problem

max (1 — QWROéR)OéW — %OJWQWWQW (280)
aw€R‘W‘
subject to : diew Yiti = — Dicr YiQ (2-81)

0<o;<C,VieW (2.82)

This subproblem is of a fixed size, and can be solved using an off-the-shelf QP
solver. Osuna used the MINOS [80] solver [80] in his implementation, although other
choices are possible — Joachims [57] used the free LOQO software [113] to solve
essentially the same problem.

Osuna solved a large-scale SVM problem by solving a subsequence of problems

of the form given by Equations 2.81-2.82. His method for choosing what points to

8The earlier method of portraits is also sometimes referred to as a chunking algorithm. The
names have become somewhat confused over time.

43

put in the next subproblem was extremely simple. He simply cycled through the
data sequentially, looking for points which violated the reduced optimality conditions
(Equations 2.74-2.76) and adding them to the working set. He used a heuristic strat-
egy to determine the number of points to add, which works with two parameters,
lookahead and newlimit. The lookahead parameter defined the maximum number
of points to check optimality conditions for in a “normal” iteration — if no violat-
ing points have been out after lookahead points have been examined, the system
continued until either a single violating point had been found or all points had been
checked. At each iteration, at most newlimit points could be added to the work-
ing set, so the algorithm stops examining points and solves a new subproblem once
newlimit points have been found. Although Osuna provided experimental results in
his thesis, the values of these parameters are not specified. One assumes that a set
of heuristics are in place to deal with situations such as when there are fewer than
newlimit non-violators available to remove from the working set, although again,
these are not specified. Additional information relating to this issue is presented in
Section 2.6.

Osuna defined a tolerance 7; a violation of an optimality condition by less than
7 was not considered a violation. Although all SVM implementations proceed in
this matter, different SVM implementations use slightly different parameterizations
of the optimality conditions, which makes a comparison of training speeds across
implementations somewhat difficult (see Section 2.5). In practice, these differences do
not seem to be very important. Generally, solving the KK'T conditions to a relatively
modest accuracy such as 7 = 10~ is sufficient; many researchers have found that
using much higher accuracies does not make a difference, although counterexamples
exist.

It is worth noting that Osuna’s implementation did not store the entire dataset
in memory, but instead simply made as many passes as necessary through the file
containing the dataset. This had the advantage of allowing him to solve problems

where the individual data points were quite large,? and the entire dataset was too big

%One of the primary applications of the Osuna implementation has been (and continues to be)

44

to fit in memory. On the other hand, this approach has two major disadvantages. The
first is the large amounts of time spent reading the dataset from disk. The second
is that leaving the data on disk makes it extremely difficult to consider accessing
the data points in a nonsequential order, which is a major feature of more recent
approaches to solving large-scale SVMs.

It is also worth noting that many QP solvers, including MINOS, require the @
matrix be given explicitly. Therefore, each time Osuna’s code solved a subproblem,
it first computed and stored the entire () matrix for that subproblem. Entries from
previous subproblems were saved across entries to avoid redundant computation. An

important additional speedup came from exploiting the fact that

¢
flz) = Dy K (xi, ;) (2.83)
7j=1
¢
= D yioK (%) (2.84)
Jj=1,0;#0
¢ ¢
= Yo yiogK(xux) + Y gk (x,x;) (2.85)
J=1,0<a; <C j=l,a;=C
‘ ¢
= Z yjo K (x4, %5) + C Z Y, K (x5, %5). (2.86)
j:1,0<0éj<c j:l,aj:C

For each data point, Osuna maintained a term corresponding to the second term in
the Equation 2.86. When Osuna removed points from the working set with a; = C
(these points could be removed because they did not violate the optimality conditions,
although they of course violated the margin requirement), he updated this term.
Then, when he wanted to check whether a point not currently in the working set
violated the optimality condition, he only had to compute the first term in Equation
2.86, corresponding to the unbounded support vectors.

Osuna’s thesis and implementation included an extension to the case where two
different values of C' were used for the two classes. Such an approach is (in theory)

useful when the number of examples from the two classes is very different, particu-

detection of faces and pedestrians in images. These images are sometimes as large 64 by 128 pixels,
and there are often many thousands of them in the training set.

45

larly if these numbers are not proportional to the class membership percentages in
the target population. Although this idea was relatively straightforward and widely
known in the literature, it was nevertheless “rediscovered” and analyzed extensively

by Lin, Lee and Wahba [69, 70]

2.3.2 Platt’s Sequential Minimal Optimization

Platt [84, 85] extended Osuna’s ideas with the additional intriguing observation that
one could set the working set size in the decomposition algorithm to 2. The resulting
two point QPs could be solved analytically, avoiding the need for a QP solver, which
is generally either expensive or difficult to implement. This made it possible to solve
large problems using an extremely simple code. This algorithm is known as Sequental
Minimal Optimization (SMO), and is also often referred to as Platt’s algorithm.

A complete derivation of the mathematics associated with Platt’s paper is beyond
the scope of thesis (see [85] for a complete mathematical derivation), but we will
introduce some key equations that will be relevant to the SvmFu algorithm.

At a given step, suppose that we are interested in optimizing a; and «; while
leaving all other o’s constant. Using Equations 2.81 to 2.82, we can write a reduced
two-element dual problem. This dual problem will contain the single equality con-

straint

¢
Yioy + yjo; = — Z YOy =7y (2.87)

_ 0 T Yoy
Yj

(2.88)

Using this relationship, we can eliminate «; from the problem, leaving ourselves with
a quadratic equation in «;. We first find the unconstrained minimum of this problem,

then “clip” the solution so that the resulting new values of ; and «; are feasible.

The unconstrained value of o}°" is given by
new _ . yl(E] — EZ)

o (2.89)

46

where E; is defined to be f(x;) — y;, the “error” at point i.

Platt’s algorithm uses a set of ad-hoc heuristics to choose what pair of examples to
optimize at each step. There are separate heuristics for choosing the first and second
element of the pair. The heuristic for the first pair alternates making single passes
over the entire training set, then multiple passes over the unbounded support vectors,
in order to concentrate effort on the examples most likely to need reoptimization.
The second heuristic attempts to maximize the step size taken. SMO keeps a cached
value of F; for each USV 7, and, if 7 is the element chosen by the first choice heuristic,
will choose as the second example the j maximizing |E; — E;|. There also exist a
collection of additional heuristics to handle rare cases, primarily relating to how to

cope with the problem of multiple identical examples in the training set.

SMO uses an additional technique to greatly speed-up the training of linear SVMs.

Noting that in the linear case,

W=y, (2.90)

SMO maintains this w vector explicitly, and updates it using

new
7

W'Y = w 4y ()" — ;)i (2.91)

When SMO needs to evaluate the optimality conditions at a new point which is not
currently a USV, instead of having to compute a kernel product (dot product) with
all the support vectors, it need only compute a single inner product, which represents
a large savings.

Platt’s algorithm generated a lot of excitement in the SVM community when it
was initially introduced. One reason was that it represented a way to solve large-
scale SVMs without any dependence on a third-party quadratic program solver, and
seemed quite easy to code. Another reason was the impressive timing results Platt
claimed compared to other methods. However, the computational experiments are
somewhat suspect. Platt compared his algorithm to a “standard” chunking algorithm
using “projected conjugate gradient” as the QP solver. Few details were available,

and Platt was unable to release his code due to restrictions from Microsoft Research

47

(personal communication). In retrospect, it appears that Platt’s algorithm as written
is not particularly fast, and that the timing results spring from a poor implementation
of the alternate “chunking” method (see below). This is not surprising, given that as
written, Platt’s algorithm calls for recomputing each kernel product as it is needed.
More modern, publicly released SVM implementations such as SVMLight [57] or
SvmFu depend crucially on a cache system to cache frequently used kernel products.
Indeed, in informal experiments, this author as well as other researchers have coded

up the SMO algorithm as written and found it to be quite slow.

As written, SMO needs to examine the current values of f(x;) at each step. When
an example is updated, if the example is a USV after updating, it imputes a value
of b. If only one of the two examples is a USV, the imputed value of b is used. If
both of the two examples are USVs, the average of the imputed b’s is used. Keerthi
et al. [61] show that because the algorithm takes a step by examining E; — Ej;, the
b’s will cancel, and therefore, knowledge of b is not needed to take a step. Somewhat
strangely, instead of suggesting that we simply implement the algorithm in such a
way that b is not estimated until the end of the optimization, when all the o’s are
known (the approach which SvmFu took, see below), they provide a new algorithm
that maintains 5P and »%°"", the largest and smallest imputed valid imputed values

of b. When these two values become sufficiently close, the algorithm has converged.

2.3.3 Joachims’ SVMLight

Thorsten Joachims’ SVMLight system [55, 57| introduced several additional key in-

novations. His system is publicly available, and is quite popular.

Like Osuna’s system, Joachims solved a large SVM problem by decomposing it
into a series of smaller problems. Joachims’ solved the resulting problems using a
primal-dual interior point method based on LOQO [113], although SVMLight is now

set, up to use any of several different solvers.

Joachims introduced a much more principled way of selecting the working set

48

than Osuna used.'® The idea behind his method was that we want to select a feasible
direction vector d that has both steep descent and at most ¢ non-zero entries. Note

that the gradient vector for the dual problem is

1-Qa=g(a). (2.92)

The direction of steepest ascent is of course 1 — Qa”, but this direction is in general

neither sparse nor feasible. Instead, we examine the following maximization problem:

max g(a)Td (2.93)

y7d =0 (2.94)

subject to : d; >0 fori:oa;, =0 (2.95)
d; <0 fori:a;, =0C (2.96)

~1<d<1 (2.97)

[{di: di # 0} =q (2.98)

The first three constraints ensure that the direction is feasible. The fourth con-
straint normalizes the problem, making it well-posed, and the fifth and final con-
straint enforces sparsity. Since there aren’t actually any interactions between the d;,
this problem is extremely simple to solve; in fact, it can be solved in ¢log ¢ time. All
elements in the optimal d will be 0, 1, or -1. Define w; = y;9(a);, and sort w into in-
creasing order. Successively choose pairs of elements from opposing classes off either
the top or the bottom of this list, in such a way that the pair satisfies the constraints
and adds as much as possible to the objective value. Continue until £ pairs have been
added. Implemented properly, the runtime of this approach is dominated by the time

required to sort the w vector.

Because the LOQO software included with SVMLight is not especially robust, and

requires storage of the entire chunk submatrix, SVMLight supports fairly small chunk

19Tn SMO, because we are only selecting two examples at each step, and each step is so minimal,
these issues are entirely handled by the heuristics for example selection.

49

sizes — 2 to 400, with a default of 10, as opposed to the Osuna implementation or

SvmFu, which often use chunk sizes of 2,000 or greater.

Another important innovation introduced by Joachims was shrinking. The essen-
tial idea is that if a point is not an unbounded support vector, has not been for a long
time, and shows no prospects of becoming one, we may with high probability remove
it from further consideration, and avoid examining it further to see if it violates the
optimality conditions. Joachims controlled shrinking via two parameters.'’ The first
parameter controlled how many times a point would be looked at before it was eligi-
ble for shrinking. The second parameter controlled whether or not points that were
shrunk would be checked again at the end for optimality. Without this additional
check, the Joachims implentation could no longer guarantee (approximate) optimal-
ity. On the other hand, the check at the end rarely yielded violating points, and cost
substantial amounts of time. The user could control how aggressively shrinking was
pursued, trading off her desire for an accurate and fast solution, although the control

offered was not very direct.

The third and final major innovation in SVMLight was the introduction of a
caching strategy. The cache size ¢ (given here in number of entries for convenience)
is specified by the user, and consists of |7]| columns. The kernel products of active
variables with all other examples are stored in the columns. The cache uses a least-
recently-used (LRU) replacement strategy — when the cache is full and a new element
needs to be added, the element that was used least recently is jettisoned. When
shrinking occurs, the effective size of the training set is reduced, and the cache is
reorganized with more columns and fewer rows. This caching strategy greatly reduces
the number of kernel computations required, especially if a relatively large cache is

used.

I Examination of the available source code appears to indicate that there are additional non-user-
controlled parameters inside the code, such as the maximum percentage of points to shrink during
an iteration.

20

2.4 The SvimmFu Algorithm

The SvmFu algorithm can be viewed as a synthesis of Osuna’s, Platt’s, and Joachims’
approaches, combining the advantages of each with some additional features of our
own. With SvmFu, we solve a large problem as a sequence of subproblems small
enough that their associated Hessians can fit in memory. However, because we don’t
precompute the entire Hessian for these problems, the subproblems can be much larger
than those used by SVMLight while still being efficiently solvable. The subproblems
themselves are then solved by using a variant of Platt’s algorithm.!?

We first discuss our approach to solving subproblems. We next present how we
choose which examples to place in the working set for each subproblem. Finally,
we discuss our approach to implementation, which allows for more flexibility and

efficiency than previously available packages.

2.4.1 Solving Subproblems

In this section, we consider solving a “medium-sized” SVM problem: the problem
may have many examples, but we assume that we have enough memory to store the
entire Hessian matrix. This algorithm can be used by itself to solve small- to medium-
problems (approximately 7,000 points or less on today’s machines), or can be used
(with a very slight modification described below) to solve each of the sequence of
subproblems generated in solving a larger problem. In the latter case, within this
subsection, the term “entire dataset” refers only to all the data associated with the
current subproblem.

As in Platt’s algorithm, we will solve this problem by adjusting pairs of coefficients
until approximate optimality is reached. At each step, we consider a “working set”,
consisting of either the entire dataset or of the unbounded support vectors (USVs)

only. We maintain, for each example in the working set, the gradient of the objective

12Gtrictly speaking, the only thing this “variant” has in common with Platt’s original algorithm is
that two variables are optimized over at each step, and that these minimal optimizations are solved
analytically. It has become common in the SVM literature to refer to any approach that operates
in this manner as “Platt’s SMO Algorithm.”

ol

function with respect to that example:

9i=1—(Qa); (2.99)

Noting that f(x;) = ¢; + b, we see that knowing g, and g; allows us to trivially
compute the £; and E; necessary to optimize a; and «;. The analytic technique used

for optimizing a pair of examples is precisely the method introduced by Platt.

We then choose the pair of examples that mazimizes the local first derivative of
the objective function, and optimize with respect to that pair. This can easily be done
in time linear in the number of examples in the working set. We simply find, for each
class, the example with the largest gradient that is not currently at its upper bound,
and the example with the smallest (i.e., most negative) gradient that is not currently
at its lower bound. We then optimize over one of the pair of positive examples, the
pair of negative examples, the positive example with the largest gradient and the
negative example with the largest gradient, or the positive example with the smallest
gradient and the negative example with the smallest gradient; the pair which has the
largest combined gradient in the direction of movement is chosen. This is extremely
similar to the method Joachims uses to choose the variables in his “working set”,

specialized to a working set of size 2.

The optimization is performed analytically, as in Platt’s algorithm. The gradients
can all be updated in linear time. Therefore, the total amount of time required to
take a step (ignoring time to compute kernel computations) is linear in the number

of examples in the working set.

We allocate enough memory to store the entire kernel matrix, but we do not
precompute it. Instead, when «;, the coefficient associated with the ¢'th example,
first becomes nonzero, we compute the entire ith row of the kernel matrix. Entries
which have already been computed as parts of other rows are copied, not recomputed.
This scheme has the property that no kernel element is computed more than once,
and kernel products between pairs of elements neither of whose coefficients are ever

nonzero are never computed. Additionally, because we have enough memory to store

52

the entire matrix if necessary, we can use a simple array data structure, and lookups

are very fast.

We experimented with using a variant that exploited the symmetry of the kernel
matrix. Although in principle, this could save as much as half the memory, in practice,
the amount of memory used was close to equal, as it still need to compute and store
¢ — i entries when computing the i 4+ 1’st row of a symmetric matrix (as opposed
to computing ¢ — i and storing ¢ in the symmetric case. Unless the majority of the
Hessian has been computed, the memory savings from exploiting the symmetry are
not substantial. However, if we consider the worst case, when the entire Hessian is
needed (all the points have nonzero coefficients at some point in the computation),
we save half the memory. More important than the memory considerations, the
symmetric version ended up being slower, because whenever the algorithm updates
an «;, it needs to access every entry of row ¢ of the kernel matrix in order to update
the gradient vector. The time to reconstruct the row or traverse the symmetric matrix
was substantially longer than the time required to traverse the consecutive memory
locations of a row in the full matrix, due to hardware cache issues. Nevertheless, this
should still be considered a possible strategy if it is desirable to choose a subproblem
size where the full matrix would be too large to store, but the symmetric matrix could

fit in memory.

Initially, the working set is the entire dataset. We continue taking steps over the
entire dataset until we have taken some prescribed number of steps without going
outside the set of USVs (currently, we use a value of 100), at which point the working
set becomes the set of current USVs, referred to as the reduced working set. The
reduced working set may not consist entirely of USVs, as some of the coefficients may
be adjusted to be at bounds while we are working with the reduced working set. If
we cannot take a step and the working set is the USVs, we reset the working set to
the full dataset; if the working set is already the full dataset, we are done. Because
the time required to update a single pair of coefficients is linear in the size of the
working set, and the number of USVs is usually a small fraction of the total size

of the dataset, this reduced working set technique greatly speeds up the algorithm.

93

There is no computational cost associated with switching from the full dataset to the
reduced working set. To switch back from the reduced working set to the full dataset
requires operations proportional to the size of the reduced working set multiplied by
the size of the remainder of the dataset — each example not in the reduced working
set must have its gradient updated, and in general, the o’s for all points in the reduced

working set will have shifted.

Our technique for choosing examples to optimize over is quite different from Platt’s
technique. In the vast majority of cases, Platt’s algorithm chooses the first example
by either cycling through the working set or the entire dataset, and chooses the second
example as the USV that optimizes the absolute value of the two-example gradient
|E; — E;|, which involves searching through the set of USVs and performing a small
constant number of operations on each one. Once the example is chosen and the new
«; and «; are determined, Platt updates the error value (equivalently, the gradient)
for all the USVs. If the first example is a USV, it’s FE; is already known, so the total
number of steps is the number of USVs. If the first example is not a USV, E; needs
to be computed from scratch, which takes time equal to the total number of support
vectors. Therefore, the total time required to perform an update is either the total

number of support vectors or (more frequently) the number of USVs.

In our algorithm, we require the F; for every point in the working set, and we
update all these values. Therefore, the time required per iteration is either the size
of the reduced working set or the size of the entire dataset. The majority of the steps
are taken using the reduced working set. Therefore, we take essentially the same
amount of time per optimization step as Platt’s algorithm. However, because each
step maximizes the absolute value of the two-example gradient (either in the reduced
working set or the full dataset), we expect to take many fewer steps than Platt’s SMO
algorithm. Informal experiments agree with this assessment.

In summary, we have created and implemented an “SMO variant” that is substan-
tially different from Platt’s original Sequential Minimization Optimization algorithm.
We have replaced Platt’s heuristics with a more principled choice, allowing many

fewer steps at essentially the same cost per iteration, and we have added an intelli-

o4

Let working set W be the entire dataset
Let done == false
Let full WSteps = 0
while done = false do
Let 4, be the arguments maximizing |g; — g;|, subject to the constraint that ¢
and j can move in the directions indicated by their gradients
Let E' = |g; — g;1
if F > tolerance then
Take step on examples 7 and j, update o’s and gradients.
if W == entire dataset then
fullWSteps = fullWSteps + 1
if fullWSteps == 100 then
Set W = reduced working set of current USVs only.
end if
end if
else if W = reduced working set then
W = entire dataset
else
done = true
end if
end while

Figure 2-5: SvmFu’s algorithm for solving subproblems.

gent system for computing only the portion of the Hessian matrix that is needed while
avoiding redundant kernel computations. An overview of the algorithm for solving

subproblems is given in pseudocode in Figure 2-5.

2.4.2 Choosing the Next Subproblem

We now consider the problem of modifying the working set to generate a new sub-
problem. We first determine the maximum number of points to be removed from the
old working set. This number is the size of the chunk, minus the number of USVs,
minus some additional user-definable constant (currently, we use 200). If this number
is less than some minimum value (100 in our work), we set it to the minimum value.
This balances several competing interests. We do not want to remove USVs from
the working set, as their values are extremely likely to change (see Section 2.6). We

want to ensure that a reasonable number of new points enter the working set at each

95

iteration. Additionally, we want to maintain some additional non-USV points which
are “almost” USVs in the working set.

When a subproblem is solved, all points in the working set satisfy the optimality
conditions (Equations 2.74-2.76). For each point in the working set, we determine
the amount by which they satisfy the optimality conditions, and remove points which
satisfy the conditions with the largest margin first. Note that points which are USVs
satisfy the conditions exactly, and will not usually be removed. Additionally, the
points which are “almost” USVs, and therefore are most likely to cross the margin
line in future iterations, stay in the working set.

We maintain a priority queue of all points not in the current working set, sorted
by the amount by which that point violated or failed to violate the KK'T conditions
the last time it was looked at. (Initially, w = 0 and b = 0, so all points not in the
working set are placed in the queue with a priority of —1.) When we need to select
new points for the working set, we begin pulling points off the queue, examining
them, and moving them into the working set if they violate the KKT conditions, and
otherwise holding them to be placed back on the queue once the new working set
is established. We continue this process until we have examined all the points, we
have found as many violating points as we are willing to add to the working set, or,
if the first violating point we have found was the k’th point we examined, we have
examined at least k£ + 200 points without finding a violating example.

This procedure has the effect that points which satisfy the KKT conditions by a
large margin (i.e., are far from the separating hyperplane), will have low priority, and
will be looked at only infrequently. This is an implicit, soft form of the “shrinking”
idea forwarded by Joachims. We also incorporate an additional, explicit “shrinking”:
if a point is looked at a certain number of times in a row and never violates the
KKT conditions, that point is removed from further consideration and not looked at
again. Using explicit shrinking, we no longer have an optimality guarantee on our

final solution.'® However, we expect explicit shrinking, if not applied too aggressively,

13Gtrictly speaking, because the SVM is always solved only to some numerical tolerance, we never
have a true optimality guarantee on the final solution. Nevertheless, although we conjecture that

26

to have little effect on the optimal solution. This problem is faced by other codes
which use shrinking as well [55, 19].

Additionally, we take a sophisticated approach to caching in an attempt to avoid
redundant kernel computations. There are essentially two kinds of cache in SvmFu
(although they are both part of the same C++ object) — a square chunk cache
which stores all the computed kernel entries in the current chunk, and an additional
rectangular chunk cache which stores kernel products between members of the working
set and additional points. The idea of the extra cache is that it will save time on
recomputing the gradient for points which are not in the working set but are always
relatively close to violating the optimality conditions. The kernel products of these
points with the working set points will be stored in the extra cache, making the
relatively frequent checks of these points much faster than they would be in the

absence of the extra cache.

We can use exactly the same code described in Subsction 2.4.1 to solve the sub-
problems, with one slight modification. Looking at the form of the reduced problem
(Equations 2.81-2.82), we see that the gradient of the objective function is no longer
defined by

g =1-(Qa), (2.100)

but instead by
9i =1 - Qwror — Qwwaw. (2.101)

Essentially, this change is allowing for a modified objective function taking into ac-
count the (linear) interactions between the variable aw and the temporarily constant
(over the life of a subproblem) ag. This slight change is easily affected by allowing
the outer loop of SvmFu to modify the gradient vector before solving a subproblem.

We believe that this “two-tiered” approach of solving a sequence of larger sur-
problems, each of which is itself solved via a two-at-a-time optimization, is a strong

approach with several advantages. The two-at-a-time models have a key advantage

the basic algorithm, if applied with infinite precision, would converge to the true optimum, it is easy
to construct examples where this does not occur if explicit shrinking is used.

57

over more standard quadratic programming codes which do not exploit the structure
of the SVM: they do not require explicit precomputation of the kernel matrix for the
entire chunk, and indeed, large parts of this matrix are often never computed. At
the same time, solving the entire problem at once using our two-at-a-time approach
is infeasible because the cost to take a single step is proportional to the size of the
chunk, and we could no longer assume that we could store the entire chunk kernel

matrix if necessary, a crucial assumption in making the code simple and efficient.

2.4.3 Flexibility and Efficiency

SvmFu includes a number of engineering choices designed to make it easy to solve
large problems quickly.!* In particular, SymFu was written as a parametrized C++
library with templates, with as few assumptions as possible. By instantiating the
library in different ways, it is possible to take advantage of the particular form of
your data. Specifically, the user can easily choose the data type of both the input
data and the kernel values without recompiling. For instance, if the data consists of
integers between 0 and 256, you can represent each data point as an array of char’s.
Kernel values can be computed in single or double precision, letting the user take
advantage of tradeoffs between speed and accuracy. The kernel functions are part of
the client, not the library, so it’s easy for the user to include new kernel functions and
data types.

A more important advantage is that the structure of a “data point” is also a client
side decision: the SVM library itself takes a pointer to an array of data points, and
pointers to a kernel function which can operate on these data points, without making
assumptions about the structure of the data. This makes it extremely easy to allow
the SVM to operate on either dense or sparse data: the user may store the data in
whatever format she likes, so long as she provides a pointer to an appropriate kernel
function. It would even be easy for the user to define an SVM that operated on data

where the “data points”, were not stored in array form, but instead were stored in

4In this section, we assume some familiarity with C and C++ programming.

28

an object of arbitrary type.!®

Additionally, because of SvmFu’s client and library based interface, SymFu is an
extremely flexible system that can be used in a wide variety of applications. A client
that needs to access an SvmFu, can simply link to the SvmFu libraries, and then
train its own svms. Writing various multiclass classification systems (see Chapter 4)
was done using exactly this technique.

There are some disadvantages to using parameterized types, and putting so much
of the power on the client side. Chief among these is that the types of the data must
be chosen at compile time (the current client instantiates the SVM library a number
of times corresponding to various commonly used data types, but the addition of
new types requires a recompile). The use of templated functions presented an ex-
treme problem in ease-of-programming and portability. Templates are not currently
handled uniformly by all C+4 compilers. SvmFu was developed using the popular,
open-source Gnu compiler g++. However, the associated gdb debugger does not fully
support templates, making it essentially impossible to use advanced debugging tools
on SvmFu and requiring the antiquated technique of debugging via “print” state-
ments. Even worse, it will take a major amount of effort to get SymFu to compile
under Windows Visual C++, for which the author receives a steady stream of re-
quests. However, although some education and care is required in the use of SvmFu,
and some of the engineering choices made the code more difficult to implement and
less portable, we believe that the advantages of our approach far outweigh the prob-

lems.

2.5 Experiments

In this section, we discuss and examine the performance of SvmFu. We seek to
avoid going too far in this direction, for the following reasons. When we first began

working on SvmFu, the alternative was to solve SVMs using Osuna’s implementation

5Fasy here should not be taken to mean “trivial”. The user would still have to write her own
client program, or modify the svmfutrain client included with SvmFu.

29

— neither Platt’s SMO nor Joachims’ SymLight were known. There was a real need
for an SVM solver that was substantially faster than what was then available. In the
interim, a wide variety of high-powered SVM solvers capable of solving SVM problems
have appeared. We believe that SvmkFu is likely to be as fast or somewhat faster than
these solvers across a wide variety of problems. However, it is unlikely to be so much
faster as to be an enabling technology — it is not so much faster that there is a wide
class of problems that can be solved in a “reasonable” amount of time by SvmFu that

cannot be solved in a reasonable amount of time by any other method.

The task of benchmarking SVM software is difficult and thankless. The difficulty
lies in the fact that each implementation has its own parameters which must be
explored. Even assuming we fix the kernel and the value of C', we are still left with
the problem of ensuring the two systems to be compared have access to the same total
amount of memory, and choosing the chunk sizes for each of the two systems, noting
that the optimal choice of chunk size may not be the same. Additionally, the systems
may not represent the data in the same way, which can cause a substantial constant-
time difference in the performance of different systems. For example, SvmLight stores
all data in a “sparse” format, where for each example, a list of integer values of the
non-zero dimensions is stored, along with the floating-point value of these dimensions.
SvmFu, on the other hand, has the capability to store data in either a dense or
sparse format, and the values themselves can be integer, single- or double-precision
floating point, or even user-defined. In this context, it is very difficult to know what
constitutes a “fair” comparison. The situation only becomes more complicated when
we try to deal with options like explicit shrinking which no longer guarantee the
optimal solution. Keerthi et al. [61] have reasonably suggested that the number of
kernel evaluations be used as a measure of performance, because the majority of the
time in SVM training in spent evaluating kernel products. However, the majority
does not mean “almost all” — for SvmFu, we often found that about % of the total
time was spent evaluating kernel products. Since the differences in time performance
between different systems are often smaller than %, the number of kernel evaluations is

not necessarily a reliable predictor of which system will solve a given training problem

60

faster.

The most important reason to avoid spending too much effort study the perfor-
mance of different SVM systems very precisely is the fact that all the modern SVM
systems perform fairly closely to “optimally”. To see this, we consider the following
question: if we had an SVM training problem, and an oracle gave us the optimal «
vector at no computational cost, how much would it cost us to verify that the pur-
ported solution was correct? It seems reasonable that we would have to check the
optimality conditions (Equations 2.74-2.76). How long would this take? We would
have to compute the kernel product of all the support vectors with all the data points.
Intuitively, this is a useful lower bound on how much computation is required to train
an SVM. As pointed out by Joachims [57], for large but solvable problem sizes, SVM-
Light is already within a small constant factor of this amount of computation. We
conclude that the scope for improvement is relatively limited — we may decrease the
time required to find a solution by a factor of 2 or even in some cases a factor of 5,
but probably not a factor of 10 and certainly not a factor of 100. This is contrast to
what we see in Chapter 3, where we find that a different formulation leads to a much

simpler problem that can be solved much faster.

We benchmark SvmFu against the popular, state-of-the-art solver SVMLight. We
benchmark the two systems on two different tasks. The first problem is a database of
31,022 faces and non-faces. Each example is a 361 dimensional dense real-valued vec-
tor. The second task is the so-called “adult” database, consisting of 32,561 examples.
Each example is a 122 dimensional sparse binary-valued vector (containing no more
than 13 1’s), and a target vector indicating whether the example’s yearly income is

more or less than $50,000.

The systems were benchmarked on a computer with a Pentium III running at
500 MHz with 256 Megabytes of RAM running Linux. There were no other heavy
jobs in the system, so the results are fairly accurate. However, the machines were
not put in single process mode, so the results should only be viewed as accurate
to within a few percentage points. In all cases, we allow both systems to use 120

Megabytes of memory, we set the SymFu chunk size to 3,000 data points, we set the

61

SVMLight chunk size to 400 data points (the default). We run SVMLight with the
default settings for explicit shrinking, and try it both with and without a final check
which guarantees the optimal solutions. The results are shown over a range of nested

datasets of increasing size in Figure 2-6.

As we see, SvmFu is as fast or faster than SVMLight on both tasks. For the
faces, it is substantially faster, about a factor of 4 faster when using the entire data
set. A large part of this difference can be attributed to SVMLight’s inefficient sparse
representation for this dense dataset. In the case of the adult dataset, the performance
of the two systems is essentially identical. We conclude that SvmFu exhibits state-
of-the-art performance, performing as well or better than a well-respected system on
two different tasks. Nevertheless, these results should be taken with a grain of salt
— the tests were not exhaustive, it was difficult to control for all the variables. Most
important is still the observation that there are many systems capable of solving large
problems, and that SymFu’s primary advantage lies not in speed, but in its library

structure, flexibility and adaptability to a variety of related tasks.

In early versions of SvmFu, there was only a single cache, corresponding to the
square matrix needed to store the chunk for a subproblem. This chunk matrix was
preserved and modified from subproblem to subproblem, leading to effective reuse
of kernel computations. However, as the subproblems get bigger, each subproblem
takes longer to solve (remember that the time per step within a subproblem is often
proportional to the subproblem size), and as the chunk size grows large, beyond a
certain point the total training time required increases. Unfortunately, this led to the
“problem” that allowing SvmFu additional memory could actually cause the total
time required to solve the problem to increase, because this additionally memory was
directly linked to a larger chunk size, which slowed the whole system down. Other
state of the art systems do not have this difficulty. This was the rationale behind the
additional caching system. As is shown in Figure 2-7, for any given chunk size, the
performance of the system generally improves (there is one unexplained exception for

a chunk size of 3,000) as the total amount of memory used increases.

Although this two-tiered caching system is largely successful, it is complicated

62

9000

7000

6000

5000

4000

Training time (s)

3000

2000

1000

1500

1000

Training time (s)

500

Faces data

oo

—6— SvmFu

SvmLight, With Checks
= SvmLight, Without Checks

5 35
of points x10°
Adult data
—S— SvmFu
SvmLight, With Checks
< SvmLight, Without Checks
. 35
of points x10°

Figure 2-6: Experiments comparing SvmFu and SVMLight.

63

of Kernel computations

of Kernel computations

Faces data

x

N
@
T

N
T

=
@
T

051

—6— SvmFu
SvmLight, With Checks

SvmLight, Without Checks

oo
o

2
of points

Adult data

w
o
T

w
T

Ind
@
T

~
T

=
@
T

—©— SvmFu
SvmLight, With Checks
SvmLight, Without Checks

0.5 1 15
of points

2

25

SvmFu, Faces data, varying chunksizes
3500 T T T T

3000}
e+

2500 ——— -

@ - T <
=3 T -
£
€ 20001 i
g
s
kel
(7]
2 1500+ E
[
£
E
1000 E
Chunksize=1000
500 .- =2000 b
— — =3000
—— =4000
—+— =5000
0 T Il Il Il Il Il
40 60 80 100 120 140 160 180

Memory used (MB)

Figure 2-7: The time required to solve the SVM for varying chunk sizes and total
cache sizes.

and difficult to modify and work with. If we were reimplementing the system from
scratch, with the urge to squeeze every last ounce of speed out of SVM training, we
would probably implement a caching system more similar to SVMLight’s, incorpo-
rating explicit shrinking, with an automatic mechanism to determine the cache size.
However, SvmFu is an adequate tool for solving large scale SVMs, and the additional
advantages of such an approach are small. Combined with the fact that other formu-
lations present more interest (see Chapter 3), making another version of SymFu does

not seem worth the effort.

2.6 Folk Wisdom

2.6.1 The Kernel, C', and Scaling

People often wonder what kernel to use with an SVM. Unfortunately, there is no easy
answer to this question. The best approach is to try a variety of different kernels, and
validate their performance on an independent cross-validation set. Many users try

a number of different kernels, but only report results on the kernel that performed

64

best on their test set. This is not justifiable scientifically, as choosing the kernel
parameter that maximizes performance on a test set is a form of “overfitting” —
we lose confidence that performance on the test set is a good predictor of future
performance when we try a large number of kernels (technically, more than one) on

the same training and test set pair.

However, there are some rules of thumb. One good rule is to start with a linear
kernel, since it is the simplest kernel and often gives good performance. Another key
is to remember that performance on the training and test set will be different, and to
be sure to remember to validate your model, rather than just choosing a kernel with
the lowest training error (which can always be driven to zero in any case).

Empirically, we have found in several examples, notably face and pedestrian dec-
tection, that a Gaussian kernel with appropriate settings of the width parameter o will
usually produce results that are as good or better than any other kernel. However,
the Gaussian kernel will generally have more support vectors than the polynomial
kernel, and will therefore be much slower to use at testing time. It is also worth
paying attention to how the o term in the Gaussian relates to the number of support

vectors. Recall that the Gaussian kernel is defined by

202

|2
K(x1,%x2) = exp (—M> (2.102)

For any o, K(x,x), the kernel product of a point with itself, is always one. Now,
consider the effect of sweeping over all possible values of 0. As 0 — oo, for all pairs
of points ¢ and 7,

]2
K (x1,%x2) = exp <—M> — 1. (2.103)

202
In other words, as ¢ — oo, all the points will begin to “look alike” and we will be
unable to build a usable classification function. In terms of SvmFu, this problem will
manifest in terms of a very poor training error, and in extreme cases, an inability to
find an unbounded support vector to determine b (see below).
On the other hand, as 0 — 0, K (xi, x;3) will go to 0 for i # j, while remaining 1 for

i = j. Conceptually, when we set «; to a nonzero value, we are placing a (positive or

65

negative, depending on y;) spherical Gaussian centered at x;, with standard deviation
o and maximum height proportional to «a;.'® If o is close to zero (“close” here is
relative to the scaling of the data), then we have a situation where the Gaussian
around any point becomes very very close to zero before reaching any other point,
and therefore cannot contribute to the correct classification of any other point. In
SvmFu, this will manifest itself with essentially every point being a support vector,
and if C is sufficiently large, an unbounded support vector. Additionally, the training
time will become extremely large. Geometrically, we can only adequately classify the
training set by placing a very tightly centered Gaussian around every single point, an
obviously unsatisfactory situation that will fail to generalize.

These difficulties can be observed and corrected without recourse to a test set —
if 0 is much too big, the training performance will be terrible, and if ¢ is much too
small, almost every training point will be a support vector. Finding the best value
of sigma requires cross-validation, but a reasonable range of ¢’s to test can be found
via careful application of the above advice. Fortunately, in many problems, the best

value of o is reasonably robust over a fairly wide range.

Additionally, how to set C presents something of a challenge. Geometrically,
C controls the tradeoff between how hard we try to have a large margin and how
hard we try to avoid training error. As C' gets sufficiently large, we will converge to
the solution with minimium training error (measured using the hinge loss). Further
increases in C' beyond this point will have no effect. This situation will usually result
in a very small margin, as well as an extremely large training time. This point cannot
be overemphasized — training SVMs with an excessively large value of C' can increase
the required training time by several orders of magnitude. On the other hand, if C is
too small, this will manifest itself in a solution with no unbounded support vectors,
and therefore no ability to determine the b term [91]. Fortunately, we again find that
the solution is often not especially sensitive to the choice of the C' parameter within

a fairly wide range. In particular, especially for the Gaussian kernel, we find that

161t is not a completely standard Gaussian, as the Gaussian kernel is generally used in an unnor-
malized fashion, so it does not integrate to 1 over the entire space.

66

C =1 is often a good choice: by setting o; = 1, any given training point can be

classified correctly using only its own contribution to its classification.

Although this is not widely known or practiced in the SVM literature, stability
theory and the regularization view of SVMs (see Chapter 5) indicate that we should
scale C' as % This has the effect of maintaining a given weighting between the norm of
the function (the ||w||? term), and the total misclassification error on the training set.
However, the issue is actually more complicated than this [28, 102], and in practice,
one is often presented with only a single training set, so the issue of how to scale C'

with ¢ is not important.

Finally, a word about scaling is in order. Kernel products generally rely on either
the dot product x; - x; of two data points (linear and polynomial kernels) or the dif-
ference x; — x; of two data points (the Gaussian and related radial kernels). In the
former case, dimensions whose absolute values are larger will contribute dispropor-
tionately to the kernel product. In the latter case, dimensions whose variance is higher
will contribute disproportionately to the kernel product. There is nothing inherently
wrong with this, and indeed, if information is known about the relative importance
of the variables this should definitely be used. However, this situation is often intro-
duced unknowingly — different variables are measured in different units, and without
knowing anything particular about the problem domain, the variables have very dif-
ferent means and variances. For this reason, when no information is known about
the relative importance of the variables, we generally scale all the variables to have

mean 0 and variance 1.

Some additional care must be taken with linear or especially polynomial kernels,
which can potentially generate very large values (the Gaussian kernel’s values are
bounded between 0 and 1, so they present less of a problem in this respect). For

technical reasons relating to the fact that our code operates in finite precision floating

point arithmetic and that we compute the desired ;" using
new _ . yl(E] — EZ)

) - 1

‘ 2K;; — K;; — Kj;’

a (2.104)

67

we want to avoid situations where the kernel values become extremely large. If there
are a large number (many thousands) of variables, in addition to setting each variable
to have mean 0 and variance 1, it is often useful to divide all values by a constant

such as the number of variables.

2.6.2 b

In the standard SVM formulation which we focus on in this chapter, there is a bias
term b which is entirely unregularized. If we study the way that the dual problem is

derived from the primal, we see that the equality constraint

l
> i =0 (2.105)
=1

results directly from this unregularized b term.

If we require that b = 0 this constraint disappears from the dual problem. Alter-
natively, in the linear case (without using kernels), we can add a term of the form 1b?
to the objective function. This is equivalent to adding an extra dimension to the data
which contains a constant term 1 for every example. In this case, the constraint will
also disappear — in deriving the dual, we can obtain b = Y-%_, 9,04, and substitute
this term into the Lagrangian.

The absence of the b term removes the equality constraint from the dual, making
the problem somewhat easier to solve. In particular, we could then allow algorithms
that updated a single o; at a time, rather than updating pairs of o’s simultaneously
in order to satisfy the equality constraint. However, the main difficulty in SVMs
arises not from the equality constraint (which after all represents merely a projection
in one dimension), but in the box constraints, so for general, nonlinear SVMs, we do
not expect the absence of the b term to make a huge difference. In the linear case the
situation is different — however, in Chapter 3 we will show that in the linear case,
there is another formulation which is generally superior to standard SVMs.

In some sense, the use of the b term in SVMs is a historical accident made at

the time of their introduction [115, 21, 20]. In classical regression, it was considered

68

desirable to have enough representational power to closely represent any function in
Ly (i.e., we want our RKHS H to be dense in L,. Strictly positive definite kernels
such as the Gaussian allowed this. However, certain kernels based on splines were
slightly degenerate, and required the addition of one or more constant or polynomial
terms in order to be dense in Ly. In [87], we provide an extensive discussion of this
point. The discussion has the following practical implications of this term for SVMs.
In the case of a strictly positive definite kernel such as the Gaussian, the b term is
unnecessary for density of H in L,. For the finite dimensional feature spaces induced
by linear or polynomial kernels, the 4 will not be dense in L, either with or without
the b term. The question seems to therefore come down to whether one feels that
zero is a “priviliged” value of the bias term b, and that deviations from zero should
be paid for or even disallowed. From this standpoint, it seems that the inclusion or
omission of b is a facet of the choice of kernel. However, as we show in Chapter 5,
the inclusion of even a single unregularized bias term has substantial implications
for stability based approaches to generalization bounds, lending credence to the idea
that the unregularized b term is actually a poor choice from a theory perspective. In
practice, it doesn’t seem to make very much difference whether a b term is used or
not, although one can certainly construct (pathological) examples where it is either

helpful or harmful.

2.6.3 Chunk Sizes and Memory

There are two parameters that must be chosen to control SvmFu’s usage, the size of
the problems and the total amount of memory used. In general, it will be advatan-
geous to use as much as memory as possible (see Section 2.5). The choice of the chunk
size is somewhat more delicate. An overly large chunk size will result in a somewhat
slower system overall. However, the reverse problem is much more of an issue. If the
chunk size is too small, then the system will be forced to remove unbounded sup-

port vectors from the system. This is almost certain to lead to disaster. Unbounded

69

support vectors need to satisfy the equation:
¢
vi(Q yios K (xi,%3)) = 1. (2.106)
j=1

Therefore, if an unbounded support vector is removed from the working set, it is
almost certainly going to violate its optimality condition when it is reexamined after
the subproblem is solved. It will then have to be readded to the chunk, necessitating
the removal of additional unbounded support vectors. This will lead to churning of
the working set, resulting in an explosion of the number of subproblems necessary to
solve the overall problem.

For this reason, it is important to choose the chunk size to be substantially bigger
than the number of unbounded support vectors. Unfortunately, the number of USVs
cannot be known a priori. Therefore, we advise starting with a relatively large chunk
size (say, 2,000), and increasing it as necessary if it seems too small.

This leads directly to a crucial observation about SVMs. Given sufficient memory,
any of the modern large-scale SVM solvers will be able to solve the problem. Their
solution times may differ by a small constant factor (even as much as a factor of
5), but it is not the case that one implementation makes problems solvable which
are in general unsolvable by other implementations. On the other hand, if a given
training problem has enough unbounded support vectors that we cannot afford to
store the kernel product between all pairs of USVs, we are unlikely to be able to solve
the problem, using SvmFu or any other method. For this reason, we argue that the
number of unbounded support vectors is the primary indicator of how “difficult” an

SVM training problem is.

70

Chapter 3

Regularized Least-Squares

Classification

3.1 Introduction

A general approach to learning is Tikhonov regularization, where we try to find a

function that simultaneously has small empirical error and small norm in a Repro-

ducing Kernel Hilbert Space K. Specifically, the Tikhonov regularization problem
[111, 119, 31] is stated as

1)

in— ; ; . 1

;rg{lgiZIV(yz,f(xz))+A||f||K (3.1)

By varying our choice of V' and K, we can arrive at a wide variety of popular

learning schemes [31]. In Chapter 2, we considered the loss function V(f(x,y)) =

(1—yf(x))+, and showed how this loss function led directly to the well-known Support

Vector Machine algoritm. In this chapter, instead of the hinge loss, we consider the

square loss V(f(x,y)) = (y — f(x))? (Figure 3-1).
We call the resulting algorithm Regularized Least-Squares Classification (RLSC

71

0
y=f(x)

Figure 3-1: The square loss V(f(z),y) = (y — f(z))>.

for short):!

min (s — £(x0) + A1 (3.2)

fer l =

We will see that a Regularized Least-Squares Classification problem can be solved
by solving a single system of linear equations. This is in direct contrast to the Support
Vector Machine algorithm, which requires the solution of an inequality constrained
convex optimization problem. At first glance, it seems that we should be able to
solve RLSC much more rapidly. However, the situation is more complicated than
this, because RLSC does not permit the decomposition approach that made large-
scale SVMs tractable. Nevertheless, we will see that RLSC represents a highly viable

alternative to SVMs, especially for linear problems.

The contributions of this chapter are as follows. In Section 3.2, we derive the
essential mathematics of the Regularized Least-Squares Classification Algorithm. In
Section 3.3, we derive a bound on the leave-one-out error of RLSC. In Section 3.4, we
discuss the intuition behind the algorithm, and demonstrate on simple toy examples
that its performance is essentially equivalent to that of the SVM. In Section 3.5, we

discuss previous work on this problem, placing this work in the proper historical con-

!The author is not the inventor of this algorithm. This algorithm is a straightforward application
of the work of Tikhonov and Arsenin [111], although it has recently been rediscovered by a number
of authors (see Section 3.5 for more details). The name Regularized Least-Squares Classification is
the author’s.

72

text and comparing it to our own approach. In Section 3.6, we begin our study of the
efficiency of RLSC by considering a specialization to linear kernels (functions of the
form f(x) = w-x), and showing that in this case, the algorithm can be implemented
extremely efficiently. We also present a large-scale text classification example, and
show that on a large dataset, RLSC gives a huge speedup in training time while
offering identical quality of the learned functions. In Section 3.7, we consider more
general, nonlinear RLSC. Here, it is much more difficult to make nonlinear RLSC effi-
cient — to implement RLSC directly, we need to store the entire kernel matrix, which
is intractable for large problems. Instead of solving the problem directly, we consider
several approximation schemes, including bagging smaller classifiers, and construct-
ing low rank approximations to the kernel matrix. We find that these schemes offer
a viable alternative to SVMs, although the situation is much less clear-cut than in
the linear case. Finally, we see that some of these ideas allow us to construct an

interesting new algorithm that uses the SVM’s hinge loss.

3.2 The Mathematics of Regularized Least-Squares

Classification

In this section we review the mathematics associated with Regularized Least-Squares
Classification. Because the square loss function is differentiable everywhere, the math-

ematics ends up being substantially simpler than in the Support Vector Machine case.

Our RLSC problem can be stated as

min Z)+ Al F 1T (3:3)

Again, we can use the classical Representer Theorem to show that the solution f*

to the above regularization problem has the form

Zcz X, X;), (3.4)

73

so our function finding problem is reduced to the ¢-dimensional problem of finding
the ¢;. Substituting this into our regularization functional, and again defining ¢ =
[c1...¢]", and K as the (-by-¢ matrix satisfying K;; = K (x;,x;), we can rewrite our
problem as

min %(y _ Ke)'(y — Ke) + AT Ke. (3.5)

ceR!
For convenience, we divide our functional by 2, which will obviously not change the
minimizer:

4

1 A
min F(c) = min = ;(y — Kc)T(y — Kc) + 5cTKc. (3.6)

Because we now have a convex differentiable function, we can find the minimzer

simply by taking the derivative with respect to c:

1

VE, = Z(y — Ke)'(—=K) + AKc (3.7)
1 1
= —Ky+ ZKZC + \Kc. (3.8)

Because the kernel matrix K was positive semidefinite, VF, = 0 is a necessary and
sufficient condition for optimality of a candidate solution c. By multiplying through
by K ! if K is invertible, or reasoning that we only need a single solution if K is not

invertible, the optimal K can be found by solving

(K + MI)c =y, (3.9)

where I denotes an appropriately-sized identity matrix. We see that a Regularized
Least-Squares Classification problem can be solved by solving a single system of linear
equations. Using a standard algorithm [49] for solving this system will require O(¢?d)
time and O(f?) storage to generate and store the kernel matrix, and O(¢?) time to
find the solution given the kernel matrix K. For large problems, the O({?) memory
required to store the kernel matrix will render a direct approach intractable. We will
revisit this subject in Section 3.6, where we see that for the case of linear RLSC, these

problems disappear through the appropriate use of linear algebra, and in Section 3.7,

74

where we explore approximations to the generally intractable nonlinear, kernelized,

RLSC.

An important, intimately related difference between SVMs and RLSC is to the
issue of sparsity. For Support Vector Machines, only those points which live on the
margin, or fail to meet the margin requirements, are support vectors, and only those
points will have nonzero coefficients ¢; in the derived function. In RLSC, it should
be clear that there is no reason to expect any sparsity in the solution. In general,
all the coefficients will be nonzero, and therefore, in order to use a kernel-based
RLSC, we expect to compute the kernel products of every training point with every
test point. This has substantial computational implications, implying that nonlinear
RLSC, applied directly, will be much more computationally expensive to apply to
new data than a nonlinear SVM. This lack of sparsity is directly linked to the O(¢?)
storage requirement mentioned in the previous paragraph — the fact that the final
solution is sparse is what allows an SVM algorithm to avoid examining the majority

of the kernel matrix.

For Support Vector Machines, we used the hinge loss function (1 —yf(x))4, which
was not differentiable at yf(x) = 1. To put the problem into a form that was easy to
work with (a quadratic programming problem with linear constraints), we introduced
slack variables. This led to the standard SVM primal. We then introduced dual
variables associated with the constraints, and used Lagrangian duality to derive a
dual program by taking the derivative of the Lagrangian with respect to the primal
variables and eliminating them from the formulation. In the case of RLSC, this
is not necessary: the functional L(c) is differentiable everywhere, and the solution
can be found directly via differentiation. However, we will see in Section 3.7 that
introducing slack variables and deriving a “dual” as we did for SVMs allows us to
make some interesting connections with other ideas from the literature. Proceeding

along these lines, we rewrite our problem as:

min 5676+ 3¢ Ke (3.10)
subject to: Kc—y=¢ (3.11)

75

We introduce a vector of dual variables u associated with the equality constraints,

and form the Lagrangian:
1 A
L(c,&u) = ﬂﬁTf—i—EcTKc—uT(Kc—y—g). (3.12)

As in Chapter 2, we want to minimize the Lagrangian with respect to ¢ and &,
and maximize it with respect to u. We can derive a “dual” by eliminating ¢ and &
from the problem. We take the derivative with respect to each in turn, and set it

equal to zero:

oL u
oL 1
—— — = — .14
9 Zf—l—u 0 = ¢ lu (3.14)

Unsurprisingly, we see that both ¢ and £ are simply expressible in terms of the dual
variables u. Substituting these expressions into the Lagrangian, we arrive at the

reduced Lagrangian

l 1
L7(w) = ju"u+ su'Ku- uT(K; —y + (u) (3.15)
_ g T 1 T T
= —juu-_yu Ku+u'y. (3.16)

We are now faced with a differentiable concave maximization problem in u, and

we can find the maximum by setting the derivative with respect to u equal to zero:
1
VLE = —fu— XKu +y=0= (K + MI)u=)y. (3.17)

After we solve for u, we can recover c¢ via Equation 3.13. It is trivial to check
that the resulting c satisfies Equation 3.9. While the exercise of deriving the dual
may seem somewhat pointless, its value will become clear in later sections, when
we use this dual approach to make connections to other ideas. Additionally, some
authors [41, 40] who have published on this topic derive the dual in order to find the

solution, possibly in order to make their least-squares formulation look as much like

76

the standard SVM formulation as possible. In that context, it seems that this clear

explanation of how the identical solution can be derived directly is useful.

3.3 Leave-One-Out Bounds for RLSC

An accurate method for evaluating the performance of a learning system on future
data is to train ¢ different classifiers, each on a subset of / — 1 training points, and to
test each classifier on the single “held out” training point. This procedure is known
as leave-one-out cross validation, and it was shown by Luntz and Brailovsky in 1969
[72] that the leave-one-out error was an (almost) unbiased estimate of the generaliza-
tion error. Although the leave-one-out error is a very desirable quantity to compute
from this viewpoint, it is computationally extremely expensive, and often prohibitive.
Therefore, it is useful to have a bound on the leave-one-out error, preferably one that

is easy to compute.

Throughout this section, we denote fg to be the function obtained when RLSC is
solved on the entire dataset, and fg: to be the function obtained when the i’th point

is removed from the training set.

For RLSC, we shall see that the leave-one-out error can be computed exactly
without actually solving ¢ problems of size £ — 1. Recall that the solution to an RLSC

problem is of the form
¢

fs(x) =) el (x, %), (3.18)

=1

where the vector c is obtained by solving a system of linear equations:
(K + MI)c =y, (3.19)

or, formally,
c=(K+M)'e=y. (3.20)
Throughout this section, we assume) fixed, and define G = (K+\I)~! for notational

77

convenience. For RLSC, the following equation holds:

Yi — fs(Xi)

c. (3.21)

yi — fsi(xi) =
The above equation tells us that for RLSC, we can compute the leave-one-out values
knowing only the function values and the diagonals of the inverse matrix GG, without
actually solving ¢ — 1 training problems. The above statement is not too difficult to
prove; we present here an argument given in the very readable monograph of Green

and Silverman [50].

Define f' to be the vector whose jth coordinate is fsi(x;), the value of the function
obtained by training on a dataset with the ¢th point removed, applied to the jth point.
Define Y' to be a vector whose jth entry is y; if j # i, and whose ith entry is fg, (x;).
Then

f'=GY". (3.22)

To see this, we simply note that for any f in the RKHS,

4

SOYE = f(x)+ AR > ;(Yé—f(xj))QJrAHfH% (3.23)
Jj=1 e
> S (YE— foi(x))” + Ml fsill % (3.24)
J#i
l
= Y (Y. — fsi(x))* + M| fsill % (3.25)
j=1

where the second inequality follows by the definition of fg: as the minimizer of a
Tikhonov regularization problem with the ith point removed and the final inequality
follows because fgi(x;) = Y! by definition. This shows that fg: is the optimal solution
to a modified problem where the right-hand-side is replaced with Y, as desired.

Knowing that f = G'Y?, we can prove our desired relationship by considering just

the 7th linear equation:

yi — fsi(xi) = yi— (GY"); (3.26)

78

¢
= yi— Y GyY; (3.27)
=1

J
= yi— > Gy — Giifsi(xi) (3.28)
J#i
¢
= yi— > Gijy; + Gii(yi — fsi(xi))) (3.29)
=
= ¥ — fs(xi) + Gy — fsi(x1)). (3.30)

Combining terms and simple rearrangement gives Equation 3.21. The above equation
tells us how to compute the leave-one-out error exactly for RLSC, in far less time than
it would take to solve ¢ problems of size ¢ — 1. However, this computation requires
the diagonals of the matrix G = (K + MI)~", which for large problems is impossible
to obtain; as we will see below, we solve large problems (especially in the linear case)
using substantially less time and (more importantly) vastly less memory than the
computation of G would require. Therefore, this relationship, while exact, does not
represent a practical approach to computing the leave-one-out error for large RLSC
problems.

An alternative approach, introduced by Craven and Wahba [26], is known as the
generalized approximate cross-validation, or GACV for short. Instead of actually using
the entries of the inverse matrix G directly, an approximation to the leave-one-out

value is made using the trace of G:

i — fSi(Xi) ~ Yi — fS(Xi)

~ T 00(@) (3.31)

This approach, while being only an approximation rather than an exact calculation,
has an important advantage. The trace of a matrix is the sum of its eigenvalues.
If the eigenvalues of K are known, the eigenvalues of G' can be computed easily for
any value of A\, and we can then easily select the value of A which minimizes the
leave-one-out bound. Unfortunately, computing all the eigenvalues of K is in general
much too expensive, so again, this technique is not practical for large problems.
Jaakkola and Haussler introduced an interesting class of simple leave-one-bounds

[54] for kernel classifiers. In particular, they considered classifiers that minimize an

79

expression J(«) of the form

1 ¢
J(a) = —iaTYKYa +3" F(oy), (3.32)

i=1
where 0 < a; < 1 and F(«;) is continuous. For these systems, Jaakkola and Haus-
sler provide a simple and elegant proof that the number of leave-one-out errors of a

classifier in the above framework is bounded above by

i 0 =y Y oy K (xi,%5) < 0 (3.33)

J#i
In words, their bound says that if a given training point x can be classified correctly
by fs without using the contribution of x to fg, then x cannot be a leave-one-out

error — fgi(x;) >= 0.

This class of problems includes Support Vector Machines (without an unregular-
ized bias term, although Joachims extended the bound to include SVMs with a free
“b” term, at the expense of an algebraically complicated derivation [56, 58]), but does
not include Regularized Least Squares Classification, where the signs of the coeffi-
cients «; are unconstrained. The proof given by Jaakkola and Haussler does depend
crucially on the sign of a;. However, using a slightly more involved argument, we are

able to obtain a similar bound for RLSC, as we now see.

Our first goal is to show that points which live “outside” the hyperplanes, for which
yif(x;) > 1, cannot be leave-one-out errors (they will still be classified correctly if
they are removed from the training set). To this end, we introduce a parametrized

family of functionals.

Fail) = 3205~ o)+ o= f)* A 63
= RO+ 50— f(x))" (3.35)

where «a is between 0 and 1. At a = 1, we have the standard RLSC problem. As «

decreases from one to zero, we are weighting the ith data point less and less. When

80

a = 0, we have the reduced problem in which the ith training point has been removed

entirely.

Consider two values of o, with a3 > as. Let f; and fy be the minimizers of F},, ;

and F,, ;, respectively. The following two equations hold:

R(F) + i = iGa))* < R() + (i = o)) (3:36)
R(f)+ 7 i~ L()” < B(A)+F (0= i) (337)

Summing these two equations, subtracting R(f;) + R(f2) from both sides, and col-

lecting terms appropriately, we easily arrive at

Qp — Qg

14

Q1 — Qg

(= Fix)) < 22—) (3.38)

a1 —Qa2

Dividing through by the (positive) quantity “5%2, we see that

(vi — f1 (Xi))2 < (y; — f2(Xi))2- (3.39)

We see that as we decrease o from one to zero, the “training error” at x; is mono-
tonically nondecreasing. Additionally, it is easy (though somewhat tedious) to show
that the solution c is a continuous function of . Taken together, we can see that if
yi f(xi) > 1, then as a decreases from one to zero, the training error (y; — f(x;)?) will
increase continuously, and x; will stay on the same side of the hyperplane y; f(x;) = 1,

so x; cannot be a leave-one-out error.

We turn now to those points for which y;f(x;) < 1, and we show that in this
case, we can derive a bound using an argument essentially identical to the one used
to prove the Jaakkola-Haussler bound. For convenience, we will work in terms of
the dual variables u. Recall that ¢ can be computed from u using ¢ = § (Equation
3.13). Also, recall that the optimal solution u* is found by minimizing the following
expression (renamed from L®(u) to L(u) for convenience):

l 1
L(u) = §uTu + ﬁuTKu —u’y. (3.40)

81

Suppose we remove the ¢’th data point (without loss of generality), solve the resulting
problem L_; of size £ — 1, and the resulting solution is uf. Now suppose we add the
¢’'th point back to the data set, and considering setting v, = uj, and performing a
joint optimization over the remaining variables only. Our goal is then to minimize

the reduced problem

= 1 1

LR(Ul, e ,Ug_l) = = 2:(1%2 - uzyz) + — Z UinKij + - Z ’LLZ’LLZKM (341)

24 2\ 4 A“

1= 1,7 #L i#£L
1
= L_e(ul, ce ,UK_l) + X Zulusz (342)
i#l

We denote the vector [uf,...,u; ;]' by u*,. Then, by definition of the associated

optimization problems, L_,(u') < L_,(u*,), and L¥(u*,) < L%(u'). Expanding this

out, we find that

L%(u*,) < Lf(u) (3.43)
1 1
— L(u)+ Y wiupKy < Lo(uf)+ 33 ulujK, (3.44)
A il A il
1 1
= Y Y uKe < <> upY ulKy (3.45)
A i#l il A AT
= Gy Ku < Y clKa, (3.46)
il il

where the last equation follows from Equation 3.13 and inducing the ¢* and ¢! from

v* and u! in the obvious way.

Fortunately, we are able to reason about the sign of ¢; using a simple geometric
argument. Recall that we are only interested in the case where y,f(x,) < 1, as
we showed above that this is a prerequisite for a point to be a leave-one-out error.
Suppose that y, = 1. Then f(x,) < 1, which implies that the slack variable £; < 0 by
the definition of the slack variables, which in turn implies that ¢; > 0 by Equations
3.13 and 3.14. Therefore, dividing Equation 3.46 by ¢, we find

2:02< il S C;[KM. (347)
1#L

82

This is precisely the result we are after. The left-hand side is a quantity that we can
easily compute given only the solution the original problem ¢*, and the right-hand
side is the function value for the leave-one-out problem, bounded below for the case

where y, = 1.

If yo = —1, then f(x,) > —1 implies £; > 0 and ¢j < 0, implying that

Sk < ¢ K, (3.48)
i

again giving the desired leave-one-out bound.

Combining these results, we can bound the number of leavel-one-out errors for

leave-one-out classification by

it yif(xi) < LAy (OO0 ¢ K (xi,%5)) <0 (3.49)
J#

Further examination reveals that we can actually remove the condition y; f(x;) <

1, because points which fail to satisfy this condition will automatically fail the second
condition as well. This is because if y; f(x;) > 1, then ¢; and y; are of opposite signs,
and, using the fact that K (x;,x;) > 0 for any kernel satisfying Mercer’s condition, we
can see that the deletion of the ith point will in fact always increase y; f (x;) (assuming
yif(xi) > 1 to begin with). So in fact, the standard Jaakola-Haussler bound holds
for RLSC as well (although their proof does not), and we can bound the number of

leave-one-out errors of RLSC via

|x; : yl(g ¢; K(xi,x%;)) < 0| (3.50)
=[x ui(f(xi) — K (x5,%5)) <0 (3.51)

We can simplify the bound further using the precise geometric definitions of the
variables. Looking again at Equations 3.13 and 3.14, we can easily combine them to

derive

83

Combining this with the definition of the &;,

&= f(xi) — vi, (3.53)
we find that
Y~ f(Xi)
¢ = T (3.54)

Using this, we can eliminate ¢; from the bound, arriving at

i (7600 - (2240 R) <0 (3.55)

K(Xi, Xi)

)) f(xi) — &K(Xiaxi)> < 0. (3.56)

= |x;:y <(1+

Supposing y; = 1, for some 7, the condition reduces to

K(Xi,Xi) 1
1+ —1— D) < —K (x4, x5)
(+ g)\)f(xl) - E)\ (XUXI) (3 57)
K(Xi7 Xi)
f(X) - g)\—i-K(Xi,Xi) ()
Reasoning similarly for the case where y; = —1, we find that we can bound the
number of leave-one-out errors for RLSC via
K Xi, Xi
i g () < X)) (3.59)

K (x5, %;) + (A

This form of the bound is particularly appealing, as it makes explicit the connection
between leave-one-out bounds and algorithmic stability (discussed in Section 5). In
particular, we see that if we fix A\ and increase ¢, asymptotically, the requirement on
yif(x) in order for x not to be a leave-one-out error is O(). This meshes well with
the notion of strong stability, discussed in Chapter 5; intuitively, we expect bounds

of this form because Tikhonov regularization is a strongly stable algorithm.

84

3.4 The Intuition of RLSC

In this section, we present a collection of toy examples comparing Support Vector
Machines and Regularized Least-Squares Classification. SVMs have a well-deserved
reputation as a robust and accurate method for binary classification. A priori, it is
not obvious how the RLSC algorithm will perform. RLSC has two features that seem
somewhat “perverse” to the casual observer, although we can plausibly argue that

these features are not very problematic.

The first seemingly odd characteristic of RLSC is that large positive values are as
bad as large negative values — we pay (f(x)—y)?. For example, if we classify a positive
example with f(x) = 5, we pay a penalty of 16. This seems less desirable than an
SVM, which pays no penalty in this case. However, what we imagine (and find in the
examples) is that this simply has the effect of pulling the “margin” functions f(x) =1
and f(x) = —1 farther apart, without changing the direction of the hyperplane.

The second seemingly odd characteristic of RLSC compared to SVMs is the squar-
ing of the penalty function. This seems to imply more dependancy on outliers for
RLSC than for SVMs. However, the squared dependance on the distance from a
correct output value must be balanced by the fact that we pay a penalty for all /
training points, not just for the misclassified or almost-misclassified points as we do
for SVMs. This has a strong mitigating effect on the ability of outliers to influence

the solution.

For our examples, we consider Gaussian data generated from two classes (with
additional outliers in some examples) and linear separating hyperplanes. For ease
of comparison, we use a variant of SVMs in which there is no bias term b — the
hyperplanes for both SVMs and RLSC pass through the origin.?2 We show one data
set per page, and the top, middle, and bottom figures correspond to A = .1, A = .01,
and A = .001 respectively. In all figures, the solid lines correspond to the SVM

solution w - x = 0 (the two fainter lines correspond to the hyperplanes w-x = 1 and

2We note in passing that if the SVM hyperplane is forced to pass through the origin, there may
not be unbounded support vectors directly at the edge of the margin in both classes.

85

w -x = —1), and the dashed lines correspond to the RLSC solution.

In the first four examples, we generate 100 training examples and 1000 test exam-
ples for each class. In Figure 3-2, we consider a situation in which the two Gaussian
have symmetric (unit) variance, and the two distributions are well-separated. We ob-
serve that the SVM and RLSC algorithms find nearly identical hyperplanes, that the
margin is insensitive to the choice of A, and that a test error rate of zero is achieved by
both classifiers. In Figure 3-3, we again consider well-separated datasets, but with a
nondiagonal covariance matrix. Here we find that the SVM solution is more sensitive
to the choice of A\ than the RLSC solution, but that the two functions perform identi-
cally on the test set, with only a single test error (almost certainly an extreme outlier
in one of the Gaussian distributions). In Figure 3-4, we again consider a diagonal co-
variance matrix, but move the datasets closer together, so that there is more overlap
between the two distributions. Here we find that the margin of the SVM solution
is very sensitive to the choice of A, although its direction and test performance are
insensitive. The RLSC solution is insensitive to the choice of A. Finally, we consider
Figure 3-5, which is the non-diagonal covariance version of Figure 3-4. Again we find
that the SVM margin is the only quantity which is sensitive to A, and the functions
returned by RLSC and SVM are essentially identical. In all four of these figures, for
all chosen values of A, the test performance of RLSC and SVM is identical to within

a single example.

We now consider some examples in which outliers are added to the data. In these
examples, we add five outliers to one or both classes, and observe the effects on the
solution and the test error rate. We consider both the test rate on data drawn from
the original distribution, and the test rate on data with 50 outliers drawn from the
same distribution as the training outliers. In other words, we consider the testing
performance separately under the assumptions that the outliers do and do not reflect

the “true” test distribution.

In Figure 3-6, we add “opposite” outliers to the negative class, centered on the
other side of the positive class from the negative class. Comparing to Figure 3-5, we

see that the RLSC is basically unaffected, and that for the SVM, the added outliers

86

SVM, RLS with linear kernel, lambda=0.1 svm%error=0 ris%error=0
10 T T T T T

-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.001 svm%error=0 rls%error=0
10 ~ T T T T T
~ N

~ N

Figure 3-2: RLSC and SVM: Symmetric, well-separated datasets.

87

10

10

-2

-6

-10

SVM, RLS with linear kernel, lambda=0.1 svm%error=0.05 ris%error=0.05

Figure 3-3: RLSC and SVM: Unsymmetric, well-separated datasets.

88

10

-2

-6

-8

-10

10

-2

-6

-8

-10

Figure 3-4: RLSC and SVM: Symmetric, closely-spaced datasets.

SVM, RLS with linear kernel, lambda=0.1 svm%error=2.55 rls%error=2.5

-10 -5 0 5 10

89

-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.001 svm%error=2.45 ris%error=2.45
N T NT T T
R ~
N .
L R 4
N
N
N
N
|- N -
\
N
N
N N
I I i I
-15 -10 10 15

SVM, RLS with linear kernel, lambda=0.1 svm%error=3.5 rls%error=3.5
T T

10 ~ T T T T

Figure 3-5: RLSC and SVM: Unsymmetric, closely-spaced datasets.

90

seem to actually i¢mprove the robustness: because the new examples cannot possi-
bly be classified correctly, shrinking the margin has less effect on the training error
rate, and the sensitivity to A is therefore reduced. In Figure 3-7, we add “opposite”

examples to both classes, and observe an essentially identical effect.

In Figure 3-8, we add “twisting” outliers to the negative class, which are placed
off to the left of the data in an attempt to twist the separating hyperplane. We
find that both the RLSC and the SVM functions are twisted substantially. The
RLSC function found is much less sensitive to A than the SVM function; however,
the best performance is found for the SVM, at A = .1. In this case, we find the SVM
outperforms RLSC by .75% (if we also include outliers in the test data, the difference
declines to .4%). At smaller values of A, RLSC outperforms the SVM, and RLSC’s
performance is insensitive to the choice of A\. Figure 3-9, in which the “twisting”

outliers are added to both classes, tells a similar story.

To sum up, across a wide range of reasonable examples, Support Vector Machines
and Regularized Least-Squares Classification perform very similarly. Both the clas-
sification functions and their performance are essentially identical (it is not obvious
that any of the differences reported are statistically significant). Both SVMs and
RLSC are somewhat susceptible to outliers, and it is not clear that RLSC are more
susceptible. These experiments do not conclusively “prove” that RLSC is just as
good as (or better than) SVMs, but they do indicate that for many reasonable exam-
ples, the two algorithms will perform similarly. Further evidence is given by RLSC’s
performance on real-world datasets, as demonstrated in the work of Fung and Man-
gasarian [40] (see also the next section), and later in this chapter in experiments on

text classification and face recognition.

91

SVM, RLS with linear kernel, lambda=0.1 svm%error=3.5 ris%error=3.5

Test data with outliers svm% error=5.8537 rls%error=5.8537
T T T

10

I
-15 -10 -5 0 5 10 15

SVM, RLS with linear kernel, lambda=0.01 svm%error=3.45 rls%error=3.5

Test data with outliers svm% error=5.8049 rls%error=5.8537
T

I I
-15 -10 -5 0 5 10 15

SVM, RLS with linear kernel, lambda=0.001 svm%error=3.45 ris%error=3.5

10 Test data with outliers svm% error=5.8049 rls%error=5.8537
T T T

-15 -10 -5 0 5 10 15

Figure 3-6: RLSC and SVM: Unsymmetric, closely-spaced datasets, “opposite” out-
liers in one class.

92

SVM, RLS with linear kernel, lambda=0.1 svm%error=3.5 ris%error=3.55

Test data with outliers svm% error=8.0952 rls%error=8.1429
\ T T T

10

-15 -10 -5 0 5 10 15

SVM, RLS with linear kernel, lambda=0.01 svm%error=3.45 rls%error=3.55

Test data with outliers svm% error=8.0476 ris%error=8.1429
T

I
-15 -10 -5 0 5 10 15

SVM, RLS with linear kernel, lambda=0.001 svm%error=3.5 ris%error=3.55

10 Test data with outliers svm% error=8.0952 rls%error=8.1429
T T T

2L

6L

-8

-15 -10 -5 0 5 10 15

Figure 3-7: RLSC and SVM: Unsymmetric, closely-spaced datasets, “opposite” out-
liers in both classes.

93

Figure 3-8: RLSC and SVM: Unsymmetric,

liers in one class.

SVM, RLS with linear kernel, lambda=0.1 svm%error=4.45 ris%error=5.2

10

Test data with outliers svm% error=6.6829 rls%error=7.0732
T T T T

s 4
_10Lt I I I I I I
-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.01 svm%error=5.8 rls%error=5.25
10 Test data with outliers svm% error=7.3171 rls%error=7.0732
T T T T
sl 4

s 4
_1ol1t I I I I I I
-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.001 svm%error=5.7 ris%error=5.25
10 Test data with outliers svm% error=7.2195 rls%error=7.0732
T T T T
sl 4

—10L-

94

closely-spaced datasets, “twisting” out-

Figure 3-9: RLSC and SVM: Unsymmetric, closely-spaced datasets, “twisting” out-

liers in both classes.

10

SVM, RLS with linear kernel, lambda=0.1 svm%error=6.2 ris%error=6.55

Test data with outliers svm% error=8.1429 rls%error=8.0952
T T T T

s 4
_10Lt I I I I I I
-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.01 svm%error=7.2 rls%error=6.8
10 Test data with outliers svm% error=8.1429 ris%error=8.1429
T T T T
sl 4

s 4
_1ol1t I I I I I I
-15 -10 -5 0 5 10 15
SVM, RLS with linear kernel, lambda=0.001 svm%error=7.2 ris%error=6.8
10 Test data with outliers svm% error=8.0952 rls%error=8.1429
T T T T
sl 4

—10L-

-15

-10 -5 0 5 10

95

3.5 Previous Work

3.5.1 1990 and Before

The idea of Regularized Least-Squares Classification is not a new one. All the pieces
of it have existed in the literature for at least ten years, and several of these pieces
have often been combined. For many problems, the square loss is the most natural,
intuitive and mathematically tractable loss function. The mathematics of finding a
linear function that minimizes the square loss over a set of data was first derived
by Gauss in the 1800’s [43]. The idea of regularization is apparent in the work
of Tikhonov and Arsenin [111], who used least-squares regularization to restore well-
posedness to ill-posed problems. Schonberg’s seminal article on smoothing splines [99]
also used regularization. These authors considered regression problems rather than

classification, and did not use Reproducing Kernel Hilbert Spaces as regularizers.

In 1989, Girosi and Poggio [48, 86] considered regularized classification and re-
gression problems with the square loss. They used pseudodifferential operators as

their stabilizers; these are essentially equivalent to using the norm in an RKHS.

In 1990, Wahba [119] considered square-loss regularization using the norm in a
Reproducing Kernel Hilbert Space as a stabilizer. Wahba considered only regression

problems.

As we see, by 1990, the pieces of Regularized Least-Squares Classification were
already well-known in various places of the literature. When we perform RLSC, we
are essentially treating the classification problem as a regression problem, with the y
values restricted to 1 or —1. Viewed in this light, the RLSC algorithm is an obvious
extension of literature that is at least a decade old. Nevertheless, the algorithm has
been at least twice “discovered” independently in recent years, in both cases as a

modification of the Support Vector Machine.

96

3.5.2 Fung and Mangasarian

In 2001, Fung and Mangasarian rederived the Regularized Least Squares Classification
formulation, naming the resulting machines Proximal Support Vector Machine Clas-
sifiers [41, 40]. The later paper, published in conference proceedings, acknowledges
in passing in the abstract that the algorithm “can also be interpreted as regularized
least squares and considered in the much more general context of regularized net-
works”, in response to personal communication from Tomaso Poggio. However, this
paper begins from a more geometric approach to SVMs. Viewing both the standard
and proximal SVMs as attempts to classify data using large margin hyperplanes, the
standard SVM penalizes points which do not meet the margin requirement, whereas
the proximal SVMs instead penalize points according to their (lack of) proximity
to the appropriate hyperplane. This is obviously exactly equivalent to RLSC. They
mention that “our specific formulation leads to a strongly convex objective function
which is not always the case in” [regularization networks|, but it is unclear what is
meant by this. No intuition as to why RLSC is about as good as SVMs is provided.

They begin by deriving a linear version of RLSC. Possibly in order to make their
formulation look more like an SVM, they start with a formulation that is essentially
identical to Equation 3.10, where slack variables have already been introduced. They
also explicitly include a bias term b,®> but because the square of this bias term is
penalized, this is identical to adding an extra dimension of all ones to the data, and
not using a b. In this sense, adding the b term makes the notation slightly more
confusing, but doesn’t add any expressive power to the model.

The two main contributions of this paper are a very fast approach to solving
linear RLSC, and extensive computational results showing that in nonlinear and linear
RLSC produce results of essentially equal quality to SVMs on benchmark datasets.
We focus here on the first point, inviting the reader to peruse the papers for more

information on the second point. The presentation here is notationally different from

3Denoted as v in their work. Inexplicably, they choose to call the slack variables (our &;) the y;,
flying in the face of standard machine learning practice — generally, we think of trying to learn a
function from the data x to labels y.

97

Fung and Mangasarian’s (we rephrase everything in our notation, and suppress the b
term), but the argument is identical. We recall that the goal of RLSC is to solve a
system of the form

(K +MI)c=y. (3.60)

In the case of a linear kernel, if we denote by A the ¢ by d data matrix in which

the data points are rows and the dimensions are columns, we have the relation
K = AAT, (3.61)
and the system we want to solve becomes
(AAT + MD)c=y. (3.62)

Noting that AAT + MT is positive definite and therefore invertible (AA” is positive

semidefinite, and AT is positive definite), we can write
c = (AAT + M)y, (3.63)

Solving this system directly involves finding the inverse of an /-by-¢ matrix, which is
not in general tractable. However, we can express the inverse by using the Sherman-

Morrison-Woodbury formula [49]:
(M +BCDYY =M~ M*'B(C'+D'M'B)"'D"M". (3.64)

In our case, M = MI, M~ = LI, B=D'=A,and C =C~' =1T:

1 1 1 I

(MI + AAT) = e QA(T + ATQA)*IATQ (3.65)
— é - éA(MI + ATA)—l(A—IE)—lATA—IE (3.66)
= é - éA()\U + ATA)1AT (3.67)
_ %(1 — AN + AT 4)71AT), (3.68)

98

Fung and Mangasarian suggest explicitly computing the inverse of the d-by-d
matrix (recall d is the number of dimensions) (A1 + AT A), and then using this matrix

to solve Equation 3.63 for c, without forming any /-by-¢ matrices. Specifically,

c = (AAT + M)y (3.69)
= (T~ AT+ ATA) P AT)y (3.70)
Yy 1 T AN=1\=1/ 4T
= 5~ A + AT ATy), (3.71)

where we may have made powerful use of the associativity of matrix multiplication,
allowing the multiplication of the vector y by an /-by-¢ matrix without actually

forming the matrix.

This appears to represent the first instance in machine learning theory (the tech-
nique is “standard” in numerical linear algebra) of directly using the low-rank nature
of the linear kernel matrix to turn a problem in the number of datapoints into a
problem in the number of dimensions. However, the complicated algebraic nature of
the Sherman-Morrison-Woodbury formula seems to somewhat obscure the essential
observation, which is precisely that the matrix AA”, while having size ¢-by-/, has
rank at most d. Once we understand this, we immediately see that any factorization
of AAT that exploits its low-rank nature will allow us to achieve a similar result. See

Section 3.6 for more on this point.

Fung and Mangasarian also suggest nonlinear proximal support vector machines,
but here their case is much weaker, and they seem to make an odd error in the
derivation. As we have formulated it, the RLSC problem as stated in Equation 3.6
already includes the general nonlinear approach, and includes linear RLSC as a special

case. Fung and Mangasarian start from the linear case, where
¢
w=> ¢;K(z,1;), (3.72)
i=1

99

which in turn implies that
1fl|% =c'Ke=wlw. (3.73)

Their linear proximal support vector machine therefore (correctly) minimizes the

A

2wiw + 15 (y; — f(xr))%. However, in the nonlinear case, instead

weighted sum
of minimizing the sum of ¢”Kc and the average training error, they (inexplicably)
minimize 3c”c directly. This leads to terms of the form KK” in the dual problem,
another indication of the oddness of this approach. In any case, the method requires
solving an /-by-¢ system of equations, which is not tractable for large problems. They
suggested using a “reduced kernel method”, which amounts to choosing a small sub-
set of the data points at random and only allowing those points to have nonzero
coefficients (this was previously suggested by Lee and Mangasarian for a different
SVM-like formulation in [68]). This is in fact a good idea, and has been suggested
independently by several authors in different contexts. However, because of the ini-
tial error in their derivation of the nonlinear approach, their method is needlessly
mathematically complicated. In Section 3.7, we discuss in detail this “reduced set”

method, extensively exploring the literature on the subject and applicability of this

idea to nonlinear RLSC.

3.5.3 Hans Suykens

Hans Suykens has also rederived the RLSC algorithm, under the name of Least
Squares Support Vector Machines. He has been extremely prolific on the topic, pub-
lishing literally dozens of papers; the papers most relevant to the topics discussed in
this thesis are [109, 110, 107, 108, 118, 105, 44, 106]. However, these papers do not
seem to advance either the theory or practice of RLSC. Like the work of Fung and
Mangasarian, Suykens derives RLSC as a modification of Support Vector Machines,
rather than directly as an implementation of Tikhonov regularization with a partic-
ular loss function, and seems somewhat ignorant of previous work in approximation

theory. Suykens uses RLSC with an unregularized bias term, leading to slightly more

100

complicated algorithms. Although the speed of a variety of different methods for solv-
ing RLSC are examined, no real attempt to handle large-scale problems (problems
for which it is infeasible to store and work with ¢-by-¢ matrices) is made. Empirical
work and examples are given, but the least-squares SVM is generally compared to
nonregularized algorithms such as trees, nearest neighbors, and linear discriminants,
and the examples are often relatively small benchmark datasets such as two-spiral or
n-spiral problems. Generalizations to multiclass formulations are made in the obvious

ways (see Chapter 3).

One simple but relatively interesting technique suggested in [106] and [108] is the
idea of restoring sparsity to the solution via an iterative pruning approach. At each
iteration, a small fraction of points corresponding to the smallest multipliers are re-
moved, and the system is retrained. Pruning is continued until validation performance
is observed to decline. While this will have the effect of sparsifying the final function,
it is important to note that at each iteration, the points for which (y — f(x))? are
minimal (the points closest to satisfying | f(x)| = 1) will be removed. This will have
the effect of increasing the dependence on outliers. No real empirical evaluation of
the approach is given; it would be interesting to see if the technique was of practical

use.

3.5.4 Conclusions

In our own work, we do not claim to have “invented” the RLSC algorithm. Instead,
our primary focus is to show how to use RLSC for very large problems, in both the
linear and nonlinear cases. The two cases are quite different. As we shall see, in the
linear case, by cleverly applying simple knowledge of matrix algebra and algorithms,
we can obtain an extremely fast algorithm. In the nonlinear case, we will see that we
need to modify the basic algorithm to make the problem tractable. This difficulty is
mostly ignored in the work of Fung and Mangasarian and Suykens, but we recognize

it as a major obstacle to the widespread adoptions of RLSC and address it directly.

101

3.6 Linear RLSC

Training an RLSC system involves the solution of an /-by-/ system of linear equations.
In the specific case of a linear kernel, K = AA”, where A is the /-by-d matrix whose
rows are the data points. As we saw in the previous section discussing the work of
Fung and Mangasarian, it is possible to use the Sherman-Morrison-Woodbury formula
to transform the problem into the solution of a d-by-d system of equations. This is
certainly a reasonable approach in some circumstances. However, we instead prefer

to solve the system

(AAT + MID)c =y (3.74)

using the Conjugate Gradient algorithm (see Appendix C), which solves a linear
system of the form Mz = b by repeatedly multiplying a candidate solution x’ by the
vector M. In the case of linear RLSC, we can easily form the matrix-vector product

in O(20d + () time by taking advantage of the associativity of matrix multiplication:

(AAT + MDx = AATx+ MIx (3.75)
= A(ATx) + MIx (3.76)

It is difficult to say whether or not this approach is faster than using the Sherman-
Morrison-Woodbury formula, because the total time required by the algorithm is
proportional to the number of Conjugate Gradient iterations required, which in turn
depends both on the matrix A and the accuracy required. However, the Conju-
gate Gradient approach is applicable in an important situation where the Sherman-
Morrison-Woodbury formula approach is not, which is the case where d (the number
of dimensions is very large), but is sparse. This is a situation that often arises in text
classification problems. Here, d >> ¢, and both AA” and AT A are dense matrices, so
the Sherman-Morrison-Woodbury formula is not feasible. However, we can still form
a matrix-vector product (AAT + MI)x in O(dl), where d is the average number of

nonzero entries per example. We turn now to just such an application.

102

3.6.1 Linear RLSC Application: Text Categorization

In text categorization, we are given a corpus of documents and a collection of cate-
gories. The goal is to place each document into the correct category. SVM and RLSC
are both algorithms for solving binary classification tasks — we address multiclass
classification in detail in Chapter 4, and explain the text classification task in more
detail. We introduce this application here as it is a prime example of a case where

linear RLSC provides an impressive computational advantage over linear SVMs.

In this example, we consider two standard datasets. The 20newsgroups data con-
sists of 19,997 documents in 20 categories, which we randomly split into 15,935 train-
ing documents and 3,993 test documents. The dimensionality of the 20newsgroups
data is 62,021. The sector105 data consists of 9,649 documents in 105 categories,
which we randomly split into 4,797 training documents and 4,822 test documents.
The dimensionality of the sector105 data is 55,197. For details on the preprocessing
performed, see [90].

Rennie and Rifkin considered the multiclass text classification problem [90], and
showed that on both the datasets considered here, a multiclass SVM was able to
achieve results that were substantially better than any previously reported results.
Here we consider the use of RLSC instead of SVMs. What we find is that RLSC’s
are essentially identically as accurate as SVMs, and, on the 20newsgroups data, they

are substantially faster.

For all the experiments considered in this section, we ran RLSC with A\l = 1. The
multiclass classification schemes run a number of binary classifiers, and then combine
the results to make a multiclass prediction — for details, see Chapter 4 and [90]. The
OVA scheme trains as many binary classifiers as there are classes, and the BCH 63

scheme trains 63 binary classifiers.

Tables 3.1 and 3.2 compare the accuracies of SVM and RLSC on this task. We
also considered subsampling the training set, using fewer than the maximal number
of examples per class, in order to see how this affects the accuracy. We find that

across all the training set sizes and all the schemes, RLSC performs as well or slightly

103

800 250 100 30
SVM | RLSC || SVM | RLSC || SVM | RLSC || SVM | RLSC
OVA 0.131 | 0.129 | 0.167 | 0.165 || 0.214 | 0.211 | 0.311 | 0.309
BCH 63 | 0.125 | 0.129 || 0.164 | 0.165 || 0.213 | 0.213 | 0.312 | 0.316

Table 3.1: A comparison of SVM and RLSC accuracy on the 20newsgroups multiclass
classification task. The top row indicates the number of documents/class used for
training. The left column indicates the multiclass classification scheme. Entries in
the table are the fraction of misclassified documents.

52 20 10 3
SVM | RLSC | SVM | RLSC || SVM | RLSC || SVM | RLSC
OVA 0.072 | 0.066 || 0.176 | 0.169 | 0.341 | 0.335 || 0.650 | 0.648
BCH 63 | 0.067 | 0.069 || 0.176 | 0.178 || 0.343 | 0.344 | 0.653 | 0.654

Table 3.2: A comparison of SVM and RLSC accuracy on the sector105 multiclass
classification task. The top row indicates the number of documents/class used for
training. The left column indicates the multiclass classification scheme. Entries in
the table are the fraction of misclassified documents.

better than SVMs, indicating that from an accuracy perspective, RLSC is certainly

a feasible choice for a text classification task.

Table 3.3 shows the relative time required to train the SVM and RLSC multiclass
system. We immediately note that for the 20newsgroup dataset, which is the larger
of the two datasets, the total time to train the RLSC system is much less than the
time required for the SVM system for both the OVA and BCH schemes. For the
smaller, sector105 dataset, the SVM system is faster for OVA, and the RLSC is
somewhat faster for BCH. We also note that the time required per classifier varies
greatly between the BCH and OVA schemes for SVM, but is nearly constant for RLSC.
This is consistent with our expectations — the BCH problems involve separating a
subset of the classes from the remaining classes, which is likely to be a much more
difficult task than simply separating one class from the remainder as is required in
the OVA scheme. This makes the training time much slower for the SVM. For RLSC,
the Conjugate Gradient algorithm is known to have relatively strong invariance to
the choice of right hand side vector, which is all we are changing in the different

classifiers.

A few additional remarks about Table 3.3 are in order. The total times given are

104

Dataset/Scheme Classifiers | Size SVM | S/C | RLSC | S/C
20newsgroups, OVA 200 15,935 | 10,045 | 50 | 1,309 | 6.5
20newsgroups, BCH 63 630 15,935 | 104,027 | 165 | 3,913 | 6.2
sector105, OVA 1,050 4,797 1,706 1.6 | 3,655 | 3.5
sector105, BCH 63 630 4,797 | 4,620 7.3 | 2,857 | 4.5

Table 3.3: Relative training times of SVM and RLSC. Classifiers indicates the total
number of binary classifiers trained (for the full training set). Size indicates the size
of the training set. The SVM and RLSC columns indicate the total time required (in
seconds) to train the classifiers. The associated S/M columns measure the numbers
of seconds per classifier.

the times required to train at all data sizes shown in Tables 3.1 and 3.2, not just the
time for training on the “full” datset. As such, the columns measuring the amount
of time required per classifier are not entirely accurate, although the time required to
train on the “full” dataset strongly dominates (at a guess, roughly 90% in all cases)
the total training time. More importantly, the SVM system, which was implemented
using SvmFu, reuses kernel products between machines. If the dataset is sufficiently
small that the kernel matrix can be stored in memory (as is the case for sector105),
this will provide huge savings, and the time to train n machines will be much less
than linear in n. If the dataset is large, this effect will be negligible, and we will have
to use about the same amount of time to train each machine. RLSC, as implemented
here, does not have this property: each classifier is trained separately, no information
is preserved across the classifiers. This explains why RLSC gives a large speedup over

SVMs for the 20newsgroups data, but not for the sector105 data.

Additionally, it is worth noting that in order to keep the estimate of the relative
speed of RLSC compared to SVMs conservative, we included the time required to load
the data in the above figures. SymFu, implemented in C++ appears to take only a few
seconds to read each dataset, whereas RLSC, which is implemented in Matlab, takes
about 30 seconds to read each dataset from disk. Therefore, if we were to remove the
data loading times, RLSC would be about 300 seconds faster on all tasks, whereas

SVM would be only 100 seconds faster.

105

3.6.2 Linear RLSC Application: Tumor Classification

We also mention briefly an application to multiclass molecular tumor classification.
In [89], the author (among others) considered multiclass tumor classification. The
data consisted of 190 tumors divided into 14 classes. Each example is the 16,063
dimensional output of a DNA microarray. The best results reported in [89] were
obtained using a one-vs-all linear SVM system with C' = .1. In a leave-one-out
framework, the system attained an accuracy of 156 out of 190 samples. If instead we
used linear RLSC with A/ = 10, we achieve an accuracy of 158 out of 190 samples. It is
worth mentioning that because we have a small number of examples in a large number
of dimensions, we solve the problem by storing the kernel matrix AAT explicitly and

solving (K + MI)c =y directly.

3.7 Nonlinear RLSC

3.7.1 Low-Rank Kernel Approximations

Several authors have suggested the use of low-rank approximations to the kernel
matrix in order to avoid explicit storage of the entire kernel matrix [103, 68, 122,
45, 32]. These techniques can be used in a variety of methods, including Regularized
Least Squares Classification, Gaussian Process regression and classification, interior

point approaches to Support Vector Machines.

The approaches all rely on choosing a subset of m of the training points (or a subset
of size m, abusing notation slightly) representing those points exactly in the Hilbert
space, and representing the remaining points approximately as a linear combination
of the points in m. The methods differ in the approach to choosing the subset, and in
the matrix math used to represent the hypothesis. Both Smola and Schélkopf [103]

and Williams and Seeger [122] suggest the use of the approximate kernel matrix

K = K K, L Ko (3.77)

106

The assumption is that m is small enough so that K,,,, is invertible. If we use a
method that does not need the entries of K, but only needs to multiply vectors by K,
we can form the matrix-vector produce by taking advantage of the K’s representation

as three separate matrices:

Kx = (KK} Kpu)x (3.78)

= (Ko (K (Kmex))). (3.79)

This approximation is known as the Nystrom approrimation and is justified the-
oretically in [122]. If we approximate the kernel matrix using a subset of size m, we
can show that we are actually approximating the first m eigenfunctions of the integral
operator induced by the kernel (evaluated at all the data points). The quality of this
approximation will of course depend on the rate of decay of the eigenvalues of the

kernel matrix.

The two sets of authors differ in their suggestions as to how to choose the subset.
Williams and Seeger simply pick their subset randomly. Smola and Scholkopf suggest
a number of greedy approximation methods that greedily, iteratively reduce some
measure of difference between K and K, such as the trace of K — K. They also
suggest approximations to the full greedy approach in order to speed up their method.
However, all their methods are likely to involve computing nearly all of the entries
of K over the course of their operation (for reasonable subset sizes), implying that
forming a matrix approximation in this manner will already be slower than training

an SVM.

Referring to n as the set of points not in m (the remaining training points), it is
easy to show that K has the property that Ko, = Komm, Kme = Kume, and (trivially by
symmetry) Ko = Ky, In other words, a the approximated kernel product K (x1, X2)
for a pair of examples x; and x5 will be exact if either of x; or x5 are in m. It is also
easy to show that K, = KK, b K.

Inverting the matrix K,,, takes O(m?) steps formally, and in practice, performing

the inversion may be ill-conditioned, so this approach does not not seem to be a good

107

choice for real-world applications.

Fine and Scheinberg [32] instead suggest the use of an incomplete Cholesky factor-
ization. Noting that a positive semidefinite kernel matrix can always be represented
as K = RT R where R is an upper-triangular matrix, the incomplete Cholesky factor-
ization is formed by using only the first m rows of R. Fine and Scheinberg cleverly
choose the subset on the fly — at each iteration, they pivot a pair of rows of the
matrix so that the largest diagonal element becomes the next element in the subset.
The total running time of their approach is only O(mk?)*. In terms of the feature
space, this pivoting technique is equivalent to, at each step, adding to the subset the
data point which is most poorly represented by the current subset. Although the final
matrix contains only m nonzero rows, it is still upper-triangular, and we write
K = RIR,,. (3.80)

However, there is a serious problem with this approach. Although Fine and Schein-
berg claim that their method “takes the full advantage of the greedy approach for
for the best reduction in the approximation bound tr(AQ)”, this is not the case. To
reduce the approximation bound, we need to consider which element not in the basis
will best represent (the currently unrepresented portion of) all remaining non-basis
elements. This is what Smola and Scholkopf attempt in [103], at too large a compu-
tational cost. The Fine and Scheinberg approach, in contrast, adds to the basis the
element which is most poorly represented by the current basis element. If we believe
that the trace of K — K is a useful measure of the quality of the approximation, this
turns out to be a very poor choice, at least for Gaussian kernels. In particular, on
two different datasets (see Section 3.7.3 below), we find that the portion of the trace
accounted for by the Fine and Scheinberg approximation is consistently smaller than
the portion of the trace accounted for by selecting the subset at random. This is

not too hard to explain. Because the Fine and Scheinberg approach adds the most

4We have not formally defined “operations” (is a multiplication more expensive than an addition
or a memor access?), but it is clear that the constant involved in this approach is small compared
to the methods suggested in [103].

108

poorly represented element to the basis, under the Gaussian kernel, it will tend to
add outliers — data points that are far from any other data point. The trace would
be reduced much more by adding elements which are not as far away, but which
are themselves close to a large number of additional points. Speaking informally, we
want to add the points which are centers of clusters to the basis, not point which are
outliers.

It is not hard to show that given the same subset and ordering of the points, the
two representations are identical. The incomplete Cholesky approach is likely to be
preferable in practice, as it is numerically stable, fast, and chooses the optimal greedy
subset.

We now consider the use of a low-rank approximation, obtained by any of the

above means, in RLSC.

3.7.2 Low-Rank Approximations for RLSC

The most obvious approach (and indeed, the one suggested in [122] in the context
of Gaussian process classification and [32] in the context of Support Vector Machine
classification) is to simply use the matrix K in place of the original K, resulting in

the system of linear equations:
(K + \I) =y. (3.81)

These equations can be solved using the conjugate gradient method, taking ad-
vantage of the factorization of K to avoid having to store an ¢-by-¢ matrix. From a
machine learning standpoint, this approach consists of taking a subset of the points,
estimating the kernel values at the remaining points, then treating the estimate as
correct and solving the original problem over all the data points. In practice, we
found that this worked quite poorly, because the matrix eigenvalues do not decay
sufficiently quickly (see Section 3.7.3).

Instead, we consider the following modified algorithm, alluded to (among other

places) in [103]. We minimize the empirical risk over all points, but allow the ¢; to

109

be nonzero only at a specific subset of the points (identical to the points used in the

low-rank kernel approximation). This leads to the following modified problem:

min F'(cp,) (3.82)

—_

= mine crm —(y — Kgmcm)T(y — Kpnem) + A ! K, (3.83)

MRS

. A
= Ml cRm™ Q_E (yTy — QYTKZmCm + CTngKng) + §CmTKCm. (384)

We take the derivative with respect to c,, and set it equal to zero:

1
VEep = 5 (K + KneKenCm) + AK€ = 0 (3.85)
= (KK + KpmM)Cm = Ky (3.86)

We see that when we only allow a subset of size m points to have nonzero coeffi-
cients in the expansion, we can solve a m by m system of equations rather than an
(-by-¢ system. As with the standard full RLSC, we were able to find the system of
equations that defines the optimal solution by setting the derivative equal to zero.
Again, suppose for the sake of argument we decide to derive a “dual” problem. We
introduce a vector of dual variables u — it is important to note that this vector is of

length ¢, not m. We form the Lagrangian:
Lop, A p T
Liem, & u) = 58 €+ Sem” KnmCm — 0 (KmCm =y +). (3.87)

We take the derivative with respect to &:

oL 1
— ¢=(u (3.89)

We take the derivative with respect to cy:

oL

110

1
= Ccm =K, Knu. (3.91)

_)\ mm

Substituting these equations into L, we reduce the Lagrangian to:

L(u) (3.92)
£ o7 L 1 —1 L 1 —1 T T
= juu + U KK, Knua — Tu KK, Knu+u'y — (u u(3.93)
14 1 ~ 1 ~
= §uTu + ﬁuTKu - XuTKu +u'y — fu'u (3.94)
l 1 ~
= —guTu — 5uTKu +u’y. (3.95)

Setting the derivative to zero yields

oL 1~

_— = — — —K — .

oy~ u— Kuty=0 (3.96)
= (K +XMIu=)\y (3.97)

u

If we solve this system for 3,

we are solving exactly the same system of equations
as if we had used the Nystrom approximation at the subset m directly. However, in

order to find the optimal solution, we need to recover the vector ¢, using the equation

1
em =~ K. K. (3.98)

_>\ mm

To summarize, we suggest that instead of using the matrix K directly in place of
K, we consider a modified problem in which we require our function to be expressed
in terms of the points in the subset m. Used directly, this leads to an algorithm that
doesn’t directly involve f(, but uses only the component matrices K,,,,, Ky, and K,,,.
Although it is not strictly necessary, we can take the Lagrangian dual of this problem,
at which point we solve a system that is identical the original, full RLSC problem
with K replaced with K. However, we do not use the resulting u vector directly,

instead recovering the ¢, by means of Equation 3.98.

111

A New Approach to SVMs

A development very similar to that made for RLSC in this chapter was made by
Fine and Scheinberg for SVMs [32]. Standard approaches to solving SVMs use active
set, methods — they start with the all zero solution, and add non-zero variables
as needed, maintain dual feasibility at each iteration. For many other linear and
quadratic programming problems, interior point methods have become the method of
choice, based on their fast performance and theoretical polynomial-time guarantees.
Interior point methods work with dense (all non-zero) candidate solutions, and it is
known based on geometric reasoning that for SVMs, the majority of the dual variables
will be zero at optimality. Because the kernel matrix for SVMs is dense, this implies
that each iteration of an interior point method would require multiplying a vector
by this dense kernel matrix, which would have to be computed in full. Because an
SVM is generally trained in less time than it takes simply to compute all the entries
of the kernel matrix, it seemed that interior point methods were not useful for the
SVM problem.

Fine and Scheinberg handled this problem by using low-rank approximation to
the kernel matrix. Just as we did in this development, they noted that the linear
and nonlinear cases are very different. For the linear case (in fewer dimensions than
the number of data points), they used a product-form Cholesky factorization (see
[7, 34, 46]) of the f-by-¢ kernel matrix AA”, turning each iteration of the interior
point method from an O(¢?) operation to an O(d?*¢) operation®. For linear SVMs,
this approach seems to work quite effectively. By taking advantage of the low-rank
nature of the kernel matrix, interior point methods become a highly effective method
for solving Support Vector Machines. The experiments presented in the Fine and
Scheinberg paper are somewhat difficult to follow, with many possible confounding

factors, but the method shows promise for linear SVMs. Of course, in the linear case,

Fine and Scheinberg also considered using the Sherman-Morrison-Woodbury formulation instead
of a product-form Cholesky factorization. They remark that the SMW update has sometimes been
found to be numerically unstable, and give an example and an explanation of this behavior. However,
the examples seem somewhat contrived, especially in light of the fact that in SVM applications, only
a moderate amount of solution accuracy is required.

112

we can also solve learning problems extremely quickly and effectively using RLSC, as

we showed in this chapter.

In the nonlinear case, the authors appeal to the body of work in machine learning
suggesting that for many kernels, the eigenvalues of kernel operators are rapidly (ex-
ponentially) decaying, which implies that the kernel matrix will have rapid eigenvalue
decay [103, 122, 123, 124]. If the eigenvalues of the matrix K are rapidly decaying,
then we can accurately approximate K with a low-rank matrix K. The authors show
how to perform an incomplete Cholesky decomposition with a pivot at every iteration
so that the next “basis” data point chosen is one which is most poorly represented by
the elements already used in the approximation. In a more traditional approach to
Cholesky factorization (as described for example in [49]), we are interested in forming
the complete factorization, and the pivoting is necessary if we encounter a column
which is a linear combination of already examined columns. The end result of this

factorization is an approximate kernel matrix
K = R"R, (3.99)

where R is an upper triangular matrix of which only the first m rows are nonzero. As
we mentioned before, given the same subset m and the same ordering of the points,

the K obtained can also be written as
K = Kpn Kb Ko, (3.100)

although the RT R representation avoids some possible numerical instability issues
associated with inverting K,,,,, as well as providing an efficient mechanism for finding

the “greedy optimal” subset m.

Once the matrix K is (implicitly) determined, Fine and Scheinberg suggest substi-
tuting it directly for K in the dual SVM problem, resulting in the following modified
SVM dual:

113

V4 1 2
max Yoo — 30 Qo (3.101)
subject to: ', gy =0 (3.102)

0<o<C i=1,....¢0 (3.103)

Here,) = YKY, where Y is again a diagonal matrix with Y;; = y;. As described
earlier, this suggestion amounts to approximating the kernel products between pairs of
points not in the subset m, then treating these approximations as correct. If K — K
and Q — Q are very small, we expect the solution to this system to be essentially
equivalent to the solution of the original SVM. However, as we show in the next
section (in the context of RLSC), for reasonable subset sizes, K — K is not very
small. The eigenvalues of the kernel matrix do decay, but they don’t decay very

rapidly.

Suppose that, instead of using K as a direct proxy for K, we again consider a
modified version of the primal SVM problem, in which we require the function we

find to have nonzero coefficients only for those data points in the subset m:

: Vi L 1.T
el Oy &+ 3¢ Ke (3.104)
subject to: (X0, ¢ K (z,25) +b) >1-& i=1,...0 (3.105)
§& >0 i=1,...,¢0 (3.106)
¢i =0 i ¢m (3.107)

By defining the vector c¢,, to be the entries of ¢ corresponding to the subset m, we

can rewrite this problem as:

: 0 ¢ o 1. T
cmegl"ll,leR[CYici1&i+ 5¢m” KymCm (3.108)
subject to: Y(Kypem +0) >1—¢ (3.109)

€20 (3.110)

114

Taking the Lagrangian,
1
L(Cm, &b, 0,() = C17E + Sem” Kmem — o (V(KpmCm +) = 14¢) = (7¢ (3.111)

Identically to the case of the standard SVM developed in Chapter 2, taking the
derivatives with respect to b yields a constraint of the form Zle yia; = 0, and taking
the derivative with respect to £ yields C'1 — ¢ — ¢ = 0. We again write a reduced

Lagrangian in terms of the remaining variables:

1
LE(cm, o) = 5c,,,TKmmcm —a" (Y (Kypem) — 1) (3.112)

Taking the derivative of L with respect to ¢y, and setting it equal to zero yields
Kpmem = KnY o, (3.113)

or, assuming K, is invertible (which is guaranteed to be the case, at least formally,

if K is a positive definite kernel such as the Gaussian),
cm =K, K,.Ya. (3.114)

Substituting this into the reduced Lagrangian, we find that:

1
5cmTchm — o (Y (Kypem) — 1) = (3.115)

1
§aTYKng;l}nKmmK;l}nngYa — o (Y (KpmK,,) KpiYa)) +a"1 = (3.116)

1
—EaTYKng;Z}nKm@Ya +af1 (3.117)

Adding in the constraints we obtained when we took the derivative of the Lagrangian

with respect to b and &, we arrive at the following dual problem:

i 1T
max Yoy o — 50T Qo (3.118)
subject to: ¢, ya; =0 (3.119)

115

0<; <C i=1,...0 (3.120)

where we have defined Q = YKY = YKng,;}anmY. We see that in this case,
the quadratic programming problem we solve is identical to the one obtained if we
simply use @ in place of Q. However, in order to obtain the primal solution (which
is actually the solution to our problem, as we have defined our desired function as
f(2) = Xiem i K(x,x;) +b), instead of just setting ¢; = y;; as in the standard SVM,
we need to solve

KymCon = KoY . (3.121)

In the context of active set methods such as SvmFu, this approach is not valuable.
We never require the entire kernel matrix, and working with Q is no less costly than
working with) directly. For an interior point method such as the one outlined by Fine
and Scheinberg, this technique represents a promising modification to their approach.
In the context of RLSC (see the next section), using the modified problem in which
we require the coefficients to be zero at points not in the subset works much better
(results in more accurate classifiers) than simply using K directly. Additionally, we
see that these two approaches solve the same dual problem, and that a modification
of the relationship between the dual and primal is the difference between the two
approaches. Therefore, in order for Fine and Scheinberg to modify their interior
point SVM to take advantage of this technique, they only need to post process the «
vector into the ¢, vector — the rest of their code remains identical. At the time of
this writing, we are in contact with Dr. Scheinberg, and are considering collaborating

on a joint project.

The above developments highlight the key point that we must keep in mind the
learning problem we are actually trying to solve. If we simply modify the dual, we are
changing the underlying learning problem in an unpredictable way. Many researchers
treat the dual problems as “basic”. By treating the original primal learning problem as
basic, we were able to modify the problem in a way that seems intuitively reasonable,

and, as we shall see in the next section, gives good results.

116

3.7.3 Nonlinear RLSC Application: Image Classification

To test our ideas on nonlinear RLSC, we compare SVMs and various nonlinear RLSC
approaches on two different datasets. The first dataset is the US Postal Service
handwritten database, used in [122] and communicated to us by the authors, and
referred to here as usps. This dataset consists of 7,291 training and 2,007 testing
points; the task we consider is to discriminate images of the digit “4” from images
of other digits. The training set contains 6,639 negative examples and 652 positive
examples. The testing set contains 1,807 negative examples and 200 positive example.
The second data set is a face recognition data set that has been used numerous times
at the Center for Biological and Computational Learning at MIT [52, 2], referred to
here as faces. The training set contains 2,429 faces and 4,548 non-faces. The testing

set, contains 472 faces and 23,573 non-faces.

There is an important difference between the two datasets. The usps dataset was
divided into a training and test set at random. The faces dataset, on the other
hand, was collected from several sources: the training faces were collected for [104],
the training non-faces were collected for [52], and the testing data is a subset of the
CMU Test Set #1 [93] selected according to procedures described in [52]. For this
reason, it is plausible to speculate that the training and test portions of this dataset
are not drawn from identical distributions, ignoring the obvious discrepancy caused

by grossly varying proportions of the two classes in the training and test sets.

We first considered the question of the relative performance of SVMs and RLSC
on each dataset taken as a whole. This involved storing and working with a matrix
with as many entries as the size of the database squared. We stored the entries in the
kernel matrix as floating points (four bytes per entry), so this required approximately
200 Megabytes of storage. Running Conjugate Gradient on the full problems was
therefore resource intensive and time-consuming, particularly in comparison to the
SVMs: the time required simply to compute and store the matrix is substantially more
than the time required to completely solve the SVM (the SVM only ever requires a

small fraction of the kernel matrix, corresponding to kernel products between pairs

117

ROC curves: Full digit dataset

1 T T T T
* * * *

0.95r- q

TP rate

— SVM, sigma5,C 1
*- RLSC, sigma 5, lambda 1E-4

1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
FP rate

Figure 3-10: ROC curves for SVM and RLSC on the usps dataset.

of points which become support vectors at some time during the computation), and
overall, RLSC on these problems takes more than an order of magnitude more time to
train than an SVM. Additionally, the SVM solution is sparse, so RLSC functions will
be much slower to test on new datapoints. However, for the moment, we are interested
only in overall performance, ignoring issues of computational efficiency. Figure 3-10
shows the performance on the usps data. We first optimized the parameters (C and
o) for the SVM, then optimized the A parameter of RLSC using the same o (o = 5).
In Figure 3-10, we see that the full RLSC performed as well or better than the full

SVM across the entire range of the ROC curve.

When we made a similar figure for the faces data (Figure 3-11), we found that
the SVM performed substantially better than an RLSC with the same 0. Changing
the o from 5 to 2 for RLSC allowed RLSC to perform approximately as well as the
SVM (performance for the SVM with ¢ = 2 was also quite similar, but slightly worse
than, the SVM o = 5 performance). This was surprising, in light of our intuitive
experiments in Section 3.4 and the experimental results on real-world problems, which
indicated that in general RLSC performed very well, and was not especially sensitive

to parameter settings, so we decided to investigate this behavior using crossplots that

118

compare the outputs of both SVM and RLSC on a point-by-point basis for both the
training and testing sets. Figure 3-12 shows a crossplot for the usps data; here we
find that the RLSC and SVM outputs are very well correlated, and the training and
test crossplots look quite similar (the test crossplot is somewhat noisier). Figure 3-13
shows a crossplot for SVM with ¢ = 2 and RLSC with o = 2, and Figure 3-14 shows
a crossplot for SVM with ¢ = 2 and RLSC with ¢ = 5. These figures are in marked
contrast to Figure 3-12. Whereas the usps dataset had very similar performances (for
both algorithms) on the training and test set, for the faces dataset both algorithms
perform much more poorly on the test set than the training set, even when tuned
to have their best performance. In particular, none of the positive points attain an
output value of +1 or greater for either algorithm, indicating that none of the test
faces, if added to the training set, would be accepted by the SVM without changing
the solution. This is not too surprising in light of the fact that the training and test
sets were drawn from different sources; however, one might have expected that the
test faces would look (to the algorithms) more like training faces than they do. The
relative performance of SVM and RLSC remains somewhat mysterious, although a
reasonable hypothesis from looking at the crossplots is that the choice of 0 = 5 is
forcing the function values to be spread out more, and in particular, bringing the two
distributions closer together; however, it is not immediately clear why this translates
into a lower test error. It is also worth remembering that the test set contains only
472 faces and 23,573 non-faces, so the differences between the ROC curves are not
based on very many actual face examples. We also considered a modified version of the
faces dataset, where we removed 25% of the training data and made it into a test set.
A crossplot and ROC curves for this modified dataset are given in Figures 3-15 and
3-16 respectively. These figures show that both systems are learning the distribution
represented by the training data extremely accurately without overfitting, and the
difficulties are caused by the differences between the training and test distributions.
Although it is tempting (based on this example) to speculate that SVMs are more
robust to modification of the distribution than RLSC, it is impossible to justify this

assumption without some model of how the distribution is being modified, which is

119

ROC curves for SVM and RLSC on full Face dataset

1 T T T T As

—&- RLSC sigma 2 lambda 1E-4
0.34 —— RLSC sigma 5 lambda 1E-4 B
—A— SVM full sigma 2 C 10

DT

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

Figure 3-11: ROC curves for SVM and RLSC on the faces dataset.

beyond the scope of this thesis.

We have seen that running RLSC allows to recover solutions with very similar
power to the SVM solution on both datasets (possibly using a different value of o).
We now turn to the question of whether an approzimation to RLSC results can also
produce results that are essentially equivalent to SVM. We consider three different
approximation methods. The first method, which we call subset, involves merely
selecting (at random) a subset of the points, and solving a reduced RLSC problem
on only these points. The second method, which we call rectangle, is the primary
algorithm discussed in Section 3.7.2: we choose a subset of the points, allow only
those points to have nonzero coefficients in the function expansion, but minimize the
loss over all points simultaneously. The third method is the nystrom method, also
discussed briefly in Section 3.7.2 and presented more extensively in [122] (and in a
slightly different context in [32]): in this method we choose a subset of the points, use
those points to approximate the entire kernel matrix, and then solve the full problem
using this approximate kernel matrix. In all experiments, we try four different subset
sizes (1,024, 512, 256, and 128 for the usps dataset, and 1,000, 500, 250 and 125

for the faces dataset), and the results presented are the average of ten independent

120

train, SVM sigma=2, RLSC sigma=5

15

0.5

-0.5[

-15

rsc output
o
T

O negative points
positive points

-4

-2 0 2

svm output

lambda=0.0001
T

rlsc output

train, SVM sigma=2, RLSC sigma=2 lambda=0.0001
2

rlsc output
iy
.

-2t

O negative points
positive points

-2

Figure 3-13: A crossplot for the

0 1 2

svm output

faces dataset using 0 = 2 for RLSC.

121

rlsc output
AN
:

test, SVM sigma=5, RLSC sigma=5 lambda=0.0001

15

0.5

—05F

—1F

-15
-4

Figure 3-12: A crossplot for

svm output

the usps dataset.

test, SVM sigma=2, RLSC sigma=2 lambda=0.0001
2

-2t

O negative points
positive points

-2

0 1
svm output

train, SVM sigma=2, RLSC sigma=5 lambda=0.0001 test, SVM sigma=2, RLSC sigma=5 lambda=0.0001
2

T T T T 2 T T T T

rlsc output
L

rlsc output
iN
T

O negative points
positive points

3k 1 3k 4
O negative points
—4 i i i i —4 i i i i
-2 -1 0 1 2 3 -2 -1 0 1 2 3
svm output svm output

Figure 3-14: A crossplot for the faces dataset using o = 5 for RLSC.

train, SVM sigma=2, RLSC sigma=2 lambda=0.0001 test, SVM sigma=2, RLSC sigma=2 lambda=0.0001
15

15 T T T T T T T T
1t 1 i 1
0.5 N
0.5 . N
ok]
= Or 1 =
3 =3
= =
3 3-05F 1
o 153
o 0
= o5l | =
1k]
1k]
_15k]
-15f S 1 b |
O negative points ; ;
positive points O negative points
positive points
2 | | | i o5 i i i i
-2 -1 0 1 2 3 -2 -1 0 1 2 3
svm output svm output

Figure 3-15: A crossplot for the modified faces dataset using o = 2 for RLSC. The
training data is 75% of the original training set (chosen at random), the test data is
the remaining 25%. We see that the system is able to “learn” the pattern described
by the training data, and generalize well to an independent test sample from the same
distribution.

122

train, SVM sigma=2, RLSC sigma=2 lambda=0.0001 test, SVM sigma=2, RLSC sigma=2 lambda=0.0001
T T . Si=aps B S D

lg — o549
0.9¢
0
0.8F q
-8 svm -8- svm
0.7+ —©-r1lsc |{ —©- rlsc
0.6
2 2
g 0.50 e 0
o o
[=
0.4%
0
0.3fF
0
0
0.2
m
0
0.1
|
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FP rate FP rate

Figure 3-16: ROC curves for SVM and RLSC on the modified faces dataset using
o = 2 for RLSC. The training data is 75% of the original training set (chosen at
random), the test data is the remaining 25%.

independent runs.

The results for the usps data set are given in Figure 3-17. We see that rectangle
performs best, followed by subset, followed by nystrom. We suggest in passing that
the extremely good results reported for nystrom in [122] may be a consequence of
looking only at the error rate (no ROC curves are provided) for a problem with a
highly skewed distribution (1,807 negative examples, 200 positive examples). For
rectangle performance is very good at both the 1,024 and 512 sizes, but degrades
noticeably for 256 samples. The results for the faces dataset, shown in Figure 3-18,
paint a very similar picture. Note that the overall accuracy rates are much lower for
this dataset, which contains many difficult test examples.

We also considered a bagged RLSC, in which we averaged the ten different func-
tions derived in the previous experiment together into a single classifier. The results
are given in Figure 3-19 for the usps dataset, and in Figure 3-20 for the faces dataset.
In general, bagging improved performance for the weaker algorithms, particularly the
nystrom method at small sample sizes. However, the best algorithms did not improve

with bagging, and the relative strength of the algorithms was unchanged; if our goal

123

subset——lambdaEminus4

1 ' ' ' = —
SN -
0.95} :
Q
o
o
[A
0.9 HB —=- 1024 ||
O 512
©- 256
—<]- 128
— fullsvm
0.85 : . . .
0 0.1 0.2 0.3 0.4 0.5
FP rate
rect——lambdaEminus4
1 e — — I
% %/ A<]H/ ~ g < =g
0.95 i .
Q
o
o
|_
0.9 HP 8- 1024 ||
- 512
©- 256
—<]- 128
— fullsvm
0.85 t4 . . .
0.2 0.3 0.4 0.5
FP rate
nystrom—--lambdaEminus4
1 ; ; ;
-)‘:‘—_—W >
. o- o=
OQ@ e © o
0.95 ¢ Qq‘
A /Q
g ek
& <
09 M -5- 1024 ||
- 512
© - 256
—<]- 128
— fullsvm
0.85 . .
0.3 0.4 0.5
FP rate

Figure 3-17: A comparison of the subset, rectangle and nystrom approximations

to RLSC on the usps dataset.

Both SVM and RLSC used o = 5.
124

subset--lambdaEminus4

TP rate

D)\
0440, —&- 1000
& & 500
< o 250
—<1- 125 7
— fullsvm
—-©— fullrlsc

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

rect—-—lambdaEminus4

0.4 -8~ 1000
$- 500
© 250
—<1- 125 T
— fullsvm
—-o— fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

nystrom-—lambdaEminus4

—&- 1000
- 500
© 250
- 125
— fullsvm
-~ fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

Figure 3-18: A comparison of the subset, rectangle and nystrom approximations
to RLSC on the faces dataset. SVM used o = 5, RLSC used o = 2.

125

is to solve the problem as accurately as possible, it does not appear that bagging is

helpful.

In all the experiments described so far, the subset of points was selected at ran-
dom. Fine and Scheinberg [32] suggests selecting the points iteratively using an
optimal greedy heuristic: at each point, the example is selected which will minimize
the trace of the difference between the approximate matrix and the true matrix. Be-
cause the method simply amounts to running an incomplete Cholesky factorization
for some number of steps (with pivoting at each step), we call this method ic. As
mentioned earlier, if we believe that smaller values of tr(K — K) are indicative of a
better approximation, this method appears to produce a worse approximation than
choosing the subset at random (see Figure 3-21 and Figure 3-22). As pointed out by
Scheinberg in personal communication, a smaller value of tr(K — K) is not necessarily
indicative of a better matrix for learning, so we conducted experiments comparing ic
to choosing a subset of the data at random randomly. Figures 3-23, 3-24, 3-25 show
the results for the usps data, and Figures 3-26, 3-27, and 3-28 show the results for the
faces data. In all these experiments, we compare the average performance of the ten
classifiers trained on a random subset to the performance of a single classifier trained
on the subset of the size obtained using the ic method. In general, it does not seem
that selecting the “optimal” subset using the ic method improves performance on
learning problems, although it seems more plausible that it is helping on the smallest
subsets. One possible explanation of this phenomenon is that the best representa-
tion for reconstructing the kernel matrix is not the best representation for learning.
Reconstructing the kernel matrix as accurately as possible with a Gaussian kernel
will involve choosing many points which are far away from other points — training
outliers will be the first points to be chosen. However, since we are interested in
getting the bulk of the points right, at the expense of the outliers, this may not be a
good strategy.

In summary, we have found that for nonlinear problems, full RLSC will perform
about as well as an SVM, albeit possibly with different kernel settings. Furthermore,

it seems that using the rectangle approximation to the full RLSC problem with a

126

subset—-lambdaEminus4

0.95 ‘;',"
@ i
©
o
[= |
0.9 —-5- 1024bag ||
¢ 512bag
© 2b6bag
—~<|- 128bag
— fullsvm
0.85% : : : .
0 0.1 0.2 0.3 0.4 0.5
FP rate
rect——lambdaEminus4
1 0O & —a——————
T — =
J>
0.95 | i< f
g
©
o
= i
- 512bag
© 256bag
—~<|- 128bag
— fullsvm
0.85% : : .
0.1 0.2 0.3 0.4 0.5
FP rate
nystrom--lambdaEminus4
1 T T : yﬁﬁ
0T o o- 97 4444
e © TRl 4 <- 9 <7
0.95E <ﬁ 1
9
©
o
|_
0.0% —=— 1024bag i
- 512bag
© 256bag
—~<]- 128bag
— fullsvm
0.85% . . .
0 0.1 0.2 0.3 0.4 0.5

FP rate

Figure 3-19: A comparison of bagged classifiers trained using the subset, rectangle
and nystrom approximations to RLSC on the usps dataset. Both SVM and RLSC

used o = 5.

127

0.4 4 -5 1000bag |]
i < 500bag

¢ © - 250bag
0. —~]- 125bag |1
— fullsvm
-o— fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

rect-—lambdaEminus4

0.44 58— 1000bag |
) <~ 500bag
P © 250bag
0.2 —~- 125bag |]
0 — fullsvm
-~ fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

nystrom—--lambdaEminus4

TP rate

045/ —8- 1000bag |
<~ 500bag
© 250bag
0. —~<1- 125bag |1
— fullsvm
-~ fullrlsc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FP rate

Figure 3-20: A comparison of bagged classifiers trained subset, rectangle and
nystrom approximations to RLSC on the faces dataset. SVM used o = 5, RLSC

used o = 2.

128

Digit 4 dataset (gaussian kernel, sigma = 5) using 1024 out of 7291 points
08 - T T T T T T T _ .= - 13

0.7 P - 4

I o o
~ 0 =)
T T T

N
| | |

Fraction trace(approximated K) / trace(K)
o
w
T
Il

— using IC selected points
— - using random points

o
N
T

0.1 q

1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Using increasing number of samples (1024 total)

Figure 3-21: A comparison between the portion of the trace of K accounted for by
using a subset of the points chosen using ic and a random subset, for the usps
dataset.

Face dataset (gaussian kernel, sigma=5) using 1000 out of 6953 points
0.9 T T T T T T T

0.8

o
3

o
[2)

It
o

I
~

! —— using IC selected points
— - using random points

Fraction trace(approximated K)/trace(K)

o
w
I

0.2 4

0.1

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Using increasing number of samples (1000 total)

Figure 3-22: A comparison between the portion of the trace of K accounted for by
using a subset of the points chosen using ic and a random subset, for the faces
dataset.

129

subset-—lambdaEminus4

subset-—lambdaEminus4

1 =
0.95
Q Q
s s
o o
[=
0.9 0.9
-8 1024 —— 512
0. 1C1024 - IC512
0.85 0.85%
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
FP rate FP rate
subset-—lambdaEminus4 subset-—lambdaEminus4
1 1
_4—
@ FITT g
I g
N
0.95 0.95
2 2
© ©
o o QT
[= {{
0.9 0.9 b
1
256 <§J —+ 128
1C256] < IC128
0.85 0.85
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
FP rate

FP rate

Figure 3-23: A comparison between random subset selection and the ic method,
classifying the usps dataset using the subset method.

rect-—lambdaEminus4

rect-—lambdaEminus4

TP rate
TP rate

—— 512
- 1C512

—£- 1024
O 1C1024

0.85
0 0.1 0.2 0.3 0.4 0.5
FP rate

0.1 0.2 0.3 0.4 0.5
FP rate

rect-—lambdaEminus4 rect-—lambdaEminus4

1 1
S A —4
OIS
fﬁﬁq
<
4
0.95 0.95
T Il .
a o <C]
= = <J<]
0.9 0.9
s
256 jﬂ < 128
1C256 e <4 Ic128
0.85 0.85
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 03 04 05

FP rate FP rate

Figure 3-24: A comparison between random subset selection and the ic method,
classifying the usps dataset using the rectangle method.

130

nystrom—-lambdaEminus4

TP rate

a
o 5 1024
i 0 1C1024

0.85
0 0.1 0.2 0.3 0.4 0.5
FP rate
nystrom--lambdaEminus4
1
0.95
Q
@
o
= ¢
0.9
~5- 256
q O 1C256
0.85 >
0 0.1 0.2 0.3 0.4 0.5

FP rate

Figure 3-25: A comparison between random subset selection and the ic method,

nystrom--lambdaEminus4

TP rate

o
8 % 512
{- 1C512

0.85
0

0.1 0.2 0.3 0.4 0.5
FP rate

nystrom--lambdaEminus4

1

0.95
2
[
o
=

0.9

<1 1Cc128
0.85 < ép
0 0.1 0.2 0.3 0.4 0.5

FP rate

classifying the usps dataset using the nystrom method.

subset-—-lambdaEminus4

0.2¢f “& 1000
O 1C1000
0=,
0 0.2 0.4 0.6 0.8 1
FP rate
subset--lambdaEminus4
1 ~—ooor a8
0.8
© 0.6
= g
o
0.4t
0.21C
0 0.2 0.4 0.6

FP rate

Figure 3-26: A comparison between random subset selection and the ic method,

subset-—-lambdaEminus4

1
0.8 O
2 0.6
g o
o
04
02 500
¢ 1C500
0 0.2 0.4 0.6 0.8 1
FP rate
subset—-lambdaEminus4
1 > 4—&@6@
/ﬂ"ﬁér/%
0.8 <
<
© 0.6
5]
o | fe
Foa4rd
q
02l *
i —+ 125
<l IC125

0.2 0.4 0.6 0.8 1
FP rate

classifying the faces dataset using the subset method.

131

rect-—lambdaEminus4

1
0.8
06
[
o
0.4
]
02 “5- 1000 0.2 =~ 500
O 1C1000 ¢ 1C500
O
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
FP rate FP rate

rect-—lambdaEminus4

rect-—lambdaEminus4

rect-—lambdaEminus4
1 — 1 67764"444&%\1@
<1
0.8 <
: <
A
206 7
©
A
F 0.4
250 02 < 125
@ O Ic250 é < Ic125
0}\‘“(
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
FP rate FP rate

nystrom--lambdaEminus4

Figure 3-27: A comparison between random subset selection and the ic method,
classifying the faces dataset using the rectangle method.

nystrom--lambdaEminus4

02 “5- 1000 =~ 500
o 1C1000 ¢ 1C500
o &
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
FP rate FP rate

nystrom--lambdaEminus4

0.8 0.8
© 0.6 © 0.6
= =
o o
=04 Fo04

—5- 250
O 1C250

0.8 1

0.4 0.6
FP rate

0.2

nystrom--lambdaEminus4

—~+ 125
<. IC125

0.4 0.6 0.8

FP rate

0.2

Figure 3-28: A comparison between random subset selection and the ic method,
classifying the faces dataset using the nystrom method.

132

moderate sized subset will also produce very powerful results. We found that the
rectangle method consistently produced better results than either the subset or
nystrom methods. We found that bagging did not improve the performance (of the
best methods), and that choosing the subset using ic rather than randomly did not
improve performance.

If we approximate a dataset of size ¢ with a subset of size m, we decrease our stor-
age requirements by a factor of O(’}), and the time to run each iteration of Conjugate
Gradient will be reduced from O(£?) to O(2¢m+m?) = O(¢m), so the computational
requirements will also be reduced by a factor of O('}), assuming (reasonably) an
approximately equal number of iterations are required for the original problem and
the approximation. One possible advantage of a nonlinear approximate RLSC system
over an SVM system is that for the former, it is possible to easily specify in advance
the total amount of memory required to solve the problem. In contrast, the amount
of memory required to effectively solve an SVM problem will depend on the number
of support vectors, which is not known in advance. One can also easily control the
total time commitment of RLSC by limiting the number of iterations of Conjugate
Gradient; however, one may also (at greater difficulty) implement a similar compu-
tational cap on an SVM solution, stopping with whatever has been achieved at that

point.

133

134

Chapter 4

Multiclass Classification

4.1 Introduction

The Support Vector Machine and Regularized Least Squares classifiers discussed in
Chapters 2 and 3 are inherently binary classifiers: they classify an example as being
positive or negative. In contrast, many problems we are interested in solving are
multiclass problems — there are more than 2 classes, and our job is to pick the
single class to which a data point belongs.! SVMs and RLSCs have been shown to
perform very well for binary problems, and it is desirable to extend their capabilities
into multiclass domains. In order to deal with multiclass problems, it is necessary to
somehow adapt or combine the binary classifiers provided by SVMs or RLSCs.
Throughout this chapter, N refers to the number of classes in a multiclass clas-
sification problem. Given a data point x, yx € {1,..., N} refers to the class of z.
Abusing notation slightly, given an index i € {1,...,0}, y; = yx,-
Probably the simplest multiclass classification scheme is to train N different binary
classifiers, each one trained to distinguish the examples in a single class from the

examples in all remaining classes. When it is desired to classify a new example,

the N classifiers are run, and the classifier which outputs the largest (most positive)

!Note that we wish to distinguish this from the case when there are more than 2 classes, but a
given example can be a member of more than one class simultaneously. In this case, the problem
very naturally decomposes into N unlinked binary problems (N is the number of classes), where the
tth binary learner simply learns to distinguish whether or not an example is in class i.

135

value is chosen. This scheme will be referred to as the “one-vs-all” or OVA scheme
throughout this chapter. The one-vs-all scheme is conceptually simple, and has been
independently invented numerous times by different researchers. One might well
argue that OVA is the first thing one might think of when asked to come up with
an approach for combining binary classifiers to solve multiclass problems. Although
it is simple and obvious, a primary thesis of this chapter is that the OVA scheme
is extremely powerful, producing results that are often as or more accurate than
other methods. This thesis seems to be somewhat in opposition to a large body of
recent literature on multiclass classification, in which a number of more complicated
methods have been developed and their superiority over OVA claimed. For this
reason, a substantial portion of this chapter shall be spent reviewing and discussing
this literature in detail. What we will find is that although this literature develops a
wide array of more sophisticated methods for multiclass classification, experimental

evidence of the superiority of these methods is either lacking or sloppy.

One reason for preferring the OVA approach is its implementational simplicity
and relatively fast running time. Training an OVA-system simply requires training N
binary systems, each the size of the data set. For RLSC using Conjugate Gradient,
where the running time is relatively independent of the labelling, this implies that
training an OVA system will take approximately /N times as long as training a single
classifier; furthermore, this work can be trivially parallelized N ways on N machines.
In contrast, many of the methods discussed below require training far more than N
classifiers on the full data set, or solving a single quadratic program with O(¢N) vari-
ables. Because solving a quadratic program generally takes time superlinear in the
number of variables, these methods represent a much larger computational burden
than OVA schemes. Furthermore, many of these methods require sophisticated soft-
ware which is not commonly available (such as in-house implementations not released
by the researchers who have published) in order to perform well. Therefore, there
is reason to prefer an OVA system unless a different scheme offers some compelling

advantage in performance.

In the majority of cases discussed below, the authors present a sophisticated

136

method but offer no substantial experimental evidence to help judge whether the
method is useful or not. In those cases where they do, we often find that the evidence
is grossly overstated due to sloppy experimental conditions. Unfortunately, there
are numerous difficulties associated with trying to decide whether two different tech-
niques are equally good, and there is no simple statistical test that will answer this
question. Additionally, in order to truly be useful, a test would not have to simply
say whether or not two systems were equally good, but if they were different, would
have to quantify this difference: if I have to use one of two systems, and I know that
one approach will always perform .001% better, I will choose the approach which is
easier to implement. Many authors choose to take the opposite approach, building a
table with one column per method and one row per dataset, putting the best result
for each data set in bold, and declaring as “best” the classifier with the most boldface
entries in its column, ignoring the fact that the differences are often miniscule. This
is especially troublesome considering that the differences involved are often smaller
than those associated with variations in parameters that are generally not even re-
ported, such as the particular choice of tolerance for the optimality conditions in an

algorithm.

Our main interest is to help the reader choose a system for multiclass classification
which will be both fast to train on large data sets and have a high accuracy relative
to other available choices, and our claim is that using SVMs or RLSC in a simple
OVA scheme meets this goal. In Section 4.2, we will discuss in great detail alternative
approaches to multiclass classification, showing that in all these papers, the authors
either do not provide experimental evidence as to the value of their method or that the
experimental work is sloppy. In Section 4.3, we will bolster our claim by presenting the
result of our own experiments on applying multiclass methods to real-world data sets;
some of these results were also discussed in the context of RLSC in Chapter 3. Finally,
in Section 4.4, we will prove leave-one-out bounds for multiclass classification, provide
some theoretical and intuitive arguments as to why error-correcting code approaches

seem unlikely to improve on the performance of the simple one-vs-all scheme.

137

4.2 Previous Work

The central thesis of this chapter is that one-vs-all classification using SVMs or RLSC
is an excellent choice for multiclass classification. In the past few years, many pa-
pers have been presented that claim to represent an advance on this technique. We
will review these papers in detail, pointing out specifics of these papers in order to
demonstrate the weakness of their claims.

The papers claiming to offer more advanced techniques for multiclass classification
fall into two main categories. The first category attempts to solve a single optimiza-
tion problem rather than combine the solutions to a collection of binary problems.
The second category attempts to use the power of error correcting codes to improve

multiclass classification. We deal with these two approaches separately.

4.2.1 Single Machine Approaches
Vapnik, Weston and Watkins

The single machine approach was introduced simultaneously in the 1998 book of
Vapnik [116] and a technical report by Weston and Watkins [121]. The formulations
introduced in these two sources are essentially identical. The approach is a multiclass

generalization of Support Vector Machines. A standard SVM finds a function
‘
flz) =2 ;K (x, ;) +b (4.1)
j=1

The multiclass SVM of Weston and Watkins finds NV functions fi, ..., fy simultane-

ously, where

filz) = Z: ci; K (v, ;) + b;. (4.2)

The basic idea behind the multiclass support vector machine of Weston and Watkins
(as well as all other single machine approaches, with slight modifications, as we shall
see) is that instead of paying a penalty for each machine separately based on whether

each machine satisfies its margin requirements for a given point, we pay a penalty

138

based on the relative values output by the different machines. More concretely, given
a single data point x belonging to class ¢, in the one-vs-all scheme we pay a penalty for
machine ¢ if f;(xz) < 1, and for all other classes j we pay a penalty if f;(xz) > —1. In the
Weston and Watkins scheme, for each pair i # j, we pay a penalty if f;(z) < f;(x)+2.
If f;(z) <1, we may not pay a penalty, as long as f;(x) is sufficiently small for i # j;
similarly, if f;j(x) > 1, we will not pay a penalty for z is f;(x) is sufficiently large.
To facilitate this, we will use /(N — 1) slack variables &;;, where i € {1,...,¢} and
j €{1,..., N}y;. Using these slack variables, the optimization problem being solved

can be expressed using our notation as

i N 112 ¢ , .
fl,...,fNEIgllalgéR[(N—l) i | fillx + C Xis Z]#yi €ij (4.3)
subject to 1 fy,(xi) + by, > fi(x3) + 0, +2—&; (4.4)
& >0 (4.5)

where the constraints all run over ¢ € {1,...,¢} and j € {1,..., N}\y;. As we did
for SVMs and RLSCs in Chapters 2 and 3, we can write for each f;

Ifill% = ¢i." Kei, (4.6)

where ¢; is the vector whose jth entry is ¢;;. Doing so leads to a single quadratic
programming problem with N/ function defining variables ¢;;, (N —1)¢ slack variables
&i; variables, and N bias terms b;. The dual of this problem can be taken using
the standard Lagrangian approach. Weston and Watkins define «;; to be the dual
variables associated with the first set of constraints (including “dummy” variables
@;y.), and F;; to be the dual variables associated with the second set of constraints.

Introducing the notation

N
Ai = Z &ij, (47)
7=1

139

and defining ¢;; = 1 if y; = j and 0 otherwise. Skipping the intermediate algebra, the
dual problem derived by Weston and Watkins is

afélfi%[)](\r 2 Ezy Qjj + Zi,j,k _%Cj:yiAiAj + ai,kaja Yi — %ai,kaj,k] K(Xi7 Xj) (48

subject to : Ele Qjj = Ele cijAi (4.9

iy = 0 (4.11

The first set of constraints holds for j € {1,..., N}, the second over i € {1,...,¢}
and j € {1,..., N}, and the third over i € {1,...,/¢}.

It is not clear whether this is useful or not, as it is unknown whether the resulting
dual problem can be decomposed in any useful way. Weston and Watkins mention in
passing that “decomposition techniques can be used, as in the usual SV case,” but
provide no mathematical derivation or implementation. Unlike the SVM, which has
box constraints and a single equality constraint over all the variables, this system has
N equality constraints, where the equality constraint for class j involves £+ .JN terms,
where .J is the number of points in class j. The relative complexity of the constraints
makes it likely that the decomposition algorithm would have to be substantially more
complicated to maintain feasibility of the generated solutions at each iteration. Also,
unlike the SVM scenario, the “dual” problem does not succeed in fully eliminating

the primal variables c;;.

Weston and Watkins take the dual for a different reason — they appear to be
unaware of how to use kernels directly in the primal formulation, and write the
primal formulation only for the linear case, directly in terms of the N hyperplanes
Wi,...,WN. They then proceed through several pages of rather tedious algebra to
derive a dual problem, and note that in the dual problem, only the dot products of
training points appear, and that these dot products x;-x; can be replaced with kernel
products K (x;, X;).

Weston and Watkins perform two different sorts of experiments. In the first set

of experiments, they work with toy examples where several classes in the plane are

140

classified using their algorithm. They show some examples which are both separable
and nonseparable, but they do not compare their algorithm to any other method,
so these experiments only serve as a proof of concept that the algorithm works in
some vaguely reasonable way. Since any good solution to the one-vs-all problem is
automatically a good solution to this problem, this is fairly obvious.

In the second set of experiments, they compare their algorithm to a one-vs-all
scheme on five data sets from the UCI repository [77] (the data sets used were iris,
wine, glass, soy, and vowel). They find that on two of the five data sets, the mul-
ticlass support vector machine performs substantially better, and on the remaining
three, the performance is about the same. However, they state that “to enable com-
parison, for each algorithm C' = oo was chosen (the training data must be classified
without error),” implying that they are simply performing empirical risk minimization
rather than regularization, making the formulations extremely difficult to compare.
They also note that the total number of support vectors appearing in the one-vs-all
scheme is more than in the single machine scheme, but they do not compare the
total number of support vectors corresponding to different data points, so it is also
impossible to draw any conclusions about which formulation is faster at testing new

points.

Lee, Lin and Wahba

In [66] and [67], Lee, Lin and Wahba present a substantially different single-machine
approach to multiclass classification. The work has its roots in an earlier paper by
Lin [71] on the asymptotic properties of Support Vector Machine regularization for
binary classification. If we define p(x) to be the probability that a data point located
at x is in class 1, Lin proved using elegant elementary arguments that the minimizer
of B[(1 —yf(x)4)] is f(x) = sign(p(x) — 3). In other words, if we consider solving
an SVM problem and let the number of data points tend to infinity, the minimizer
of the loss functional (ignoring the regularization term M||f||%, and the fact that the

functional f has to live in the RKHS #) tends to sign(p(x) — 3). Lee refers to this

function as the Bayes-optimal solution.

141

Considering this to be a useful property, they set out to design a multiclass clas-
sification technique with similar behavior. They begin by noting that a standard
one-vs-all SVM approach does not have this property. In particular, defining p;(x) to
be the probability that a point located at x belongs to class 4, the results of Lin show

1

that f;(x) — sign(p;(x) — 5) as £ — oo. For all points for which arg max; p;(x) >

1
27
we will recover the correct result: asymptotically, f;(x) =1, and f;(x) = —1 for j # i.
However, if arg max; p;(x) < %, then asymptotically, f;(x) = —1 Vi, and we will be

unable to recover the correct class. They note that for other formulations such as the

one of Weston and Watkins [121], the asymptotic behavior is hard to analyze.

Lee, Lin and Wahba proceed to derive a multiclass formulation with the desired
correct asymptotic behavior. For 1 < i < N, they define v; to be an N dimensional
vector with a 1 in the 7th coordinate and ﬁ elsewhere.? The v; vector plays the
role of a “target” for points in class ¢« — we try to get function outputs that are very
close to the entries of v;. However, for technical reasons, instead of worrying about
all N functions, they only worry about f;(x;) for j # yx,, and ensure (approximate)

correctness of f;(x;) by requiring that for all x, >~ fi(x) = 0. This leads to the

following optimization problem:

Cmin AR (G0) ARGl (@)
subject to : L filx)=0 Vx (4.13)

Using arguments along the same lines of those in [71], it is shown that the asymp-
totic solution to this regularization problem (again ignoring the A term and the fact
that the functions must live in the RKHS) is f;(x) = 1 if ¢ = arg max,—;__n p;(x)
and f;(x) = —x+ otherwise; fi(x) is one if and only if ¢ is the most likely class for
a point located at x. They point out that this is a natural generalization of binary
SVMs, if we view binary SVMs as producing two functions, one for each class, con-

strained so that fi(x) = f_1(x) for all x. They also prove a variant of the Representer

2We have taken some liberties with the notation in order to shorten the presentation and keep
notation consistent with the rest of the thesis.

142

Theorem (the “standard” Representer Theorem is discussed in Appendix B), which
is instrumental in showing that the above mathematical optimization problem can
be (reasonably) feasibly solved. A Lagrangian dual is derived, and it is noted that
the approach retains some of the sparsity properties of binary SVMs. The resulting
optimization problem is approximately N — 1 times as large as a single SVM problem,

and no decomposition method is provided.

Although this approach is interesting, there are a number of problems with it.
The primary difficulty is that the analysis is entirely asymptotic, holding only as
the number of data points goes to infinity and the regularization term is ignored.
In this framework, any method which asymptotically estimates densities accurately
will also perform optimally. However, such density estimation methods have been
shown to be grossly inferior to discriminative methods such as SVMs in real-world
classification tasks using limited amounts of data. Therefore, it is difficult to argue
the superiority of a method based only on its asymptotic behavior. In the Lee, Lin
and Wahba analysis, no information is provided about the rate of convergence to the
Bayes-optimal solution. In order to arrive at this Bayes-optimal solution, we must
also let A — 0 and ¢ — oo; although this is a reasonable requirement, no information
about rates is provided. Additionally, comparing this method to one-vs-all SVMs, the
only points x for which this approach (asymptotically) makes a difference are points
for which arg max; p;(x) < % In other words, if a single class is more than 50% likely
at a given x, this approach and the computationally much simpler one-vs-all approach
will make the same prediction (asymptotically). We expect this to be the case for the
vast majority of the probability mass of many real-world problems, although this is

an intuition rather than a known fact.

If the class densities are highly overlapping in some region (one class is only slightly
more likely than all the others), there are two additional problems. The first is that
classification accuracy is inherently limited to the likelihood of the most likely class,
indicating that our problem is too difficult to be usefully solved or that we have
not represented or measured our data in a manner that allows good classification.

There may be exceptions to this, such as problems involving financial data (which

143

are notoriously hard to achieve high rates of accuracy on), but in general, we are most
interested in problems which can be solved quite accurately. The second difficulty is
that in high dimensions, if two class densities are similar over a region, we expect that
we will need a large number of points (exponentially many in the dimensionality) to

accurately capture this distinction.

Another intimately related problem with this approach is that it ignores the fun-
damental goal of regularization theory, which is the attempt to find smooth functions
that fit the data accurately. Although the optimization problem suggested does in-
clude a regularization term, the analysis of the technique is completely dependent
on ignoring the regularization term. The Bayes-optimal asymptotic solution can be
arbitrarily non-smooth, and convergence to it relies on the use of an RKHS that is

dense in Ly (such as the one obtained when the kernel K is Gaussian).

Two toy examples illustrating the method are presented. In one example, the
method is illustrated graphically, and no comparisons to other methods are made. In
the other example, a comparison to one-vs-all is made. The training data consists of
200 one-dimensional points (in the interval [0, 1]) from three overlapping classes, and
the test data consists of 10,000 independent test points from the distribution. The
distributions are chosen so that class 2 never has a conditional probability of more
than 50%. In the example, the method of Lee, Lin and Wahba is able to predict
class 2 over the region where it is more likely than any other class, and a one-vs-
all system is not. On the test set, the one-vs-all system has an error rate of .4243
and the Lee, Lin and Wahba method has an error of .389. However, it is difficult
to understand how the parameter settings were chosen — it is mentioned (and the
equations given support this hypothesis) that they were selected to optimize the
performance of the Lee, Lin and Wahba method, and that they were selected using
the characteristic of the test distribution (for (not very much) more information see
[66]), possibly indicating that different parameter settings would help the one-vs-all
system. Nevertheless, this experiment is somewhat interesting, and it would be good

to see a number of better-controlled experiments on more realistic data sets.

Some additional insights can be gained from taking another look at the original

144

Lin paper [71]. The Lee, Lin and Wahba paper was based on Lin’s results for the SVM
hinge loss function: V(f(x),y) = (1 — yf(x))+. The Lin paper also includes easily
proved results stating that for any ¢ > 1, if the loss function is either (1 — yf(x))?
or |y — f(x)]9, then the asymptotic minimizer is given by (recalling that p(x) is the

conditional probability of a point at x being in class 1):

I (4.14)

In the specific case of Regularized Least Squares Classification discuss in Chapter 3,

V(f(x,y)) = (y — f(x))? so the asymptotic discrimination function is

(4.15)

D= o=

+ (1 —p(x))

Now, instead of SVM, let’s consider the use of RLSC in a one-vs-all framework. We

will (asymptotically) arrive at N functions, where

(pi(x))
(pi(x))

— (1= pi(x)

+ (1= pi(x))

W= ol
W= ol

fix) = (4.16)

Now assume p;(x) > pj(x). We will show that this implies that fj(x) > f;(x).

Specifically, we consider the notationally simplified quantity

(4.17)

and show that R(p) is increasing as a function of p, for p € [0, 1]. We first note that
R(0) = —1 and R(1) = 1. Next, for p € (0,1), we find that

dR

o (4.18)
d(p? —(1-p)¥) (1 CVEY (b (1 —)b d@Z ()T
_ P+ (1 f)))—(p 1 (1-p)2)=— (4.19)
(P2 + (1 =p)2)?
A s D R U L) @20)
(pz + (1 —p)2)?

" (p? + (1 —p)?)2 -
1 Ukl it Ll s S PS
(p2 + (1 — p)2)2
_ (5t (4.23)
(p? + (1 —p)7)? |
o (4.24)

In other words, R(p) is a strictly increasing function of p (Figure 4-1 shows both R(p)
and % as a function of p), which implies that if class 7 is more likely than class j at
point x, f;(x) > f;(x). This in turn implies that if we use a one-vs-all RLSC scheme,
and classify test points using the function with the largest output value (which is of
course the common procedure in one-vs-all classification), the error of our scheme will
asymptotically converge to the Bayes error, just as the multiclass SVM of Lee, Lin
and Wahba does. Put differently, the need for a single-machine approach with a sum-
to-zero constraint on the functions in order to asymptotically converge to the Bayes
function was a specific technical requirement associated with the use of the SVM hinge
loss. When we change the loss function to the square loss, another commonly used

loss function, the one-vs-all approach has precisely the same asymptotic convergence

properties.

We are not claiming that this analysis is a strong argument in favor of the one-vs-
all RLSC scheme as opposed to the one-vs-all SVM. The argument is an asymptotic
one, applying only in the limit of infinitely many data points. There are a large
number of schemes that will work equivalently with infinite amounts of data, and it is
something of a technical oddity that the one-vs-all SVM appears not to be one of them.
However, we do not believe that this asymptotic analysis tells us anything especially
useful about the performance of a multiclass scheme on finite, limited amounts of
high-dimensional data. In this regime, both a one-vs-all SVM scheme and a one-vs-
all RLSC scheme have been demonstrated to behave quite well empirically. However,
the fact that the one-vs-all RLSC scheme has equivalent asymptotic behavior to the

Lee, Lin and Wahba scheme casts further doubt on the idea that their scheme will

146

dRIdp vs. p
T

R(p)
dRIdp

Figure 4-1: An analysis of the quantity R(p). (a): R(p) vs. p. (b): ‘2—? vs. p. We see

that R(p) is a strictly increasing function of p, implying that if class i is more likely
than class j at point x, then, asymptotically, f;(x) > f;(x).

prove superior to one-vs-all on real applications.

Bredensteiner and Bennett

Bredensteiner and Bennett [14] also suggest a single-machine approach to multiclass
classification. Like Weston and Watkins, they begin by stating the invariant that

they want the functions generated by their multiclass system to satisfy:
WyiT-xi—i—bi > WjT-xi—i—bj—i—l —&ij, (4.25)
where x; is a member of class y; and 7 # y;. They rewrite this equation as
(wy, —wi)T %3 > (b — bi) + 1 —&;. (4.26)

They then (rather inexplicably) argue that a good measure of the separation between

class ¢ and j is FZw-H’ and suggest maximizing this quantity by minimizing ||w; —
i Wj

w;j|| over all pairs i and j. They also (with no additional justification) add the

regularization term 1 3V, [|w;|[* to the (supposedly already regularized) objective

function. The resulting optimization problem (where we have adjusted the notation

147

substantially to fit with our development) is:

AL 5 O Din lwi — wyl P+ 5 5 wil P+ O Einy Sy, &7 (4.27)

subject to : wy, — Wil x; > (b —b)+1—&; (4.28)

§ij > 0 (4.29)

Using standard but rather involved techniques, they derive the Lagrangian dual prob-

lem, and observe that the dot products can be replaced with kernel products.

Two sets of experiments were performed. The first set involved two data sets from
the UCI repository [77] (wine and glass). Ten-fold cross validation was performed
on each data set, and polynomials of degree one through five are used as models. On
both data sets, the highest performance reported is for a one-vs-all SVM system rather
than the multiclass system they derived (their multiclass SVM does perform better

than an unregularized system which merely finds an arbitrary separating hyperplane).

In the second set of experiments, two separate subsets of the USPS data (no ref-
erence for this data set was provided) were constructed. Subsets of the training data
were used, because training their multiclass method on the full data set was not com-
putationally feasible.®> On both data sets, a one-vs-all SVM system performs (slightly)

better than their single-machine system.

Crammer and Singer

Crammer and Singer consider a similar but not identical single-machine approach
to multiclass classification [24]. This work is a specific case of a general method
for solving multiclass problems, discussed in [23, 22, 25] and in Section 4.2.2 below.
The method can be viewed as a simple modification of the approach of Weston and
Watkins [121]. Weston and Watkins start from the idea that if a point x is in class

i, we should try to make f;(x) > f;j(x) + 2 for ¢ # j, and arrive at the following

3For example, their method takes over 10,000 seconds to train on a data set of 1,756 examples
in three classes. SvmFu routinely solves problems on 5,000 or more points in 30 seconds or less.

148

formulation:

. N 112 ¢) ..
£, CHLECRIN 1) i [illie + O 2t X & (4.30)
subject to : fyl (Xi) + byl 2 f]' (Xi) + b]' +2— gij (431)

§ij > 0 (4.32)

Crammer and Singer begin with the same condition, but instead of paying for each
class j # i for which f;(x) < f;(x) + 1, * they pay only for the largest f;j(x). This
results in a single slack variable for each data point, rather than the N — 1 slack vari-
ables per point in the Weston and Watkins formulation. The resulting mathematical
programming problem is (as usual, placing the formulation into our own notations

for consistency):

i N 2 V4
i=1 11/ i=1 2ujy; Si 4.
oommin o T illke + O im X € (4.33)
subject to 1 fy(xi) > fi(xi) +1 & (4.34)

& >0 (4.35)

The majority of the paper is devoted to the development of an efficient algorithm
for solving the above formulation. The Lagrangian dual is taken, and the standard
observations that the dot products can be replaced with kernels are made. A rather
elegant dual decomposition algorithm is developed, in which a single data point is
chosen at each step (we note in passing that the Crammer and Singer formulation
does not include unregularized bias terms) and an iterative algorithm is used to solve
the reduced N-variable quadratic programming problem associated with the chosen
data point. A number of additional implementation tricks are used, including using

the KKT conditions for example selections, caching kernel values, maintaining an

4The choice of 1 rather 2 as a “required difference” is arbitrary. Crammer and Singer quite
reasonably choose 1 for simplicity. The choice of 2 in Weston and Watkins seems to be motivated
from a desire to make the system as like standard binary SVMs as possible, where we require a
margin of 1 for points in the positive class and -1 for points in the negative class. This choice is
arbitrary: if we required 1 for points in the positive class and 0 for points in the negative class, the
details of the algorithm would change, but the function found by the algorithm would not.

149

active set from which the example to be optimized in a given iteration is chosen, and
cooling of the accuracy parameter (all of these techniques except the last are utilized

in SvmFu, see Chapter 2).

In the experiments section of the paper, Crammer and Singer make claims regard-
ing both speed and accuracy of their method. For speed, they claim that their method
is orders of magnitude faster than a one-vs-all approach, but the comparison is not
fair: their system uses 2Gb of memory and a sophisticated caching scheme, and they
compare it to Platt’s 1998 results that used no caching whatsoever. Furthermore, the
paper states that the fastest version has “two more technical improvements which
are not discussed here but will be documented in the code that we will shortly make
available”; as of this writing, fourteen months after the paper was submitted to the
Journal of Machine Learning Research, the code has not been made available, so this

claim is impossible to evaluate.

As far as accuracy, Crammer and Singer considered a number of data sets from the
UCT repository. They produce a chart showing the difference in error rate between
their one-machine system and an OVA system, but not the actual error rates. There
are two datasets for which the difference beween their system and OVA seems to be
large: satimage with a difference of approximately 6.5% in performance, and shuttle
with a difference of approximately 3% in performance. In personal communiation,
Crammer indicated that the actual error rates for his system on these two datasets
were 8.1% and 0.1%, respectively. In our own one-vs-all experiments on this dataset,
we achieved error rates of 7.9% for the satimage data and 0.35% on the shuttle
data.® The extra 2 tenths of Crammer’s system on the shuttle data, given that the
problem can be currently solved to such high accuracy, is intriguing, although not
obviously statistically significant. In any case, these numbers are in sharp contast
to the numbers reported in the paper; we speculate that the kernel parameters were

optimized for the Crammer and Singer scheme, and not for the one-vs-all scheme.

5The satimage experiments are discussed in greater detail later in the chapter. For the shuttle
data, the results were obtained with o = 16 and C' = 8; these parameters were selected in the same
way as for the satimage data, described later.

150

Summary

When we apply the one-vs-all strategy, we solve N separate optimization problems,
where N is the number of classes. The single machine approaches solve a single
optimization problem, finding all N functions simultaneously. Although these ap-
proaches may have theoretical interest to some, it does not appear that they offer
any advantages in the solution of multiclass classification problems. In particular,
the methods are generally complicated to implement and slow to train, while giving

no better performance than a simple one-vs-all scheme.

4.2.2 Error Correcting Code Approaches

We now turn to error-correcting code approaches, a second major approach to com-

bining binary classifiers into a multiclass classification system.

Dietterich and Bakiri

Dietterich and Bakiri [29] first popularized the idea of using error-correcting codes
for multiclass classification. We will describe the method using notation introduced
later by Allwein et al. ([1], see below) in order to simply the presentation.
Dietterich and Bakiri suggested the use of a {—1,1}-valued matrix M of size N
by F (M € {—1,1}¥*F) where N is the number of classes and F' is the number of
binary classifiers to be trained. To avoid excessive subscripting, we let M;; refer to
the entry in the ¢th row and the jth column of M. The i¢th column of the matrix
induces a partition of the classes into two “metaclasses”, where a point x; is placed in
the positive metaclass for the jth if and only if M,,; = 1. In our framework, in which
the binary classifiers implement Tikhonov regularization, the jth machine solves the

following problem:

¢
min Y V(fj(xi), My;) + M| fl[%- (4.36)
i=1
When faced with a new test point x, we compute fi(x),..., fr(x), take the signs

of these values, and then compare the Hamming distance between the resulting vector

151

and each row of the matrix, choosing the minimizer:

I .
f(x) = argrer{}.iEN;::l <1 — Slgn(é”f*ifi("))) ‘ (4.37)

This representation had been previously used by Sejnowski and Rosenberg [100],
but in their case, the matrix M was chosen so that a column of M corresponded to
the presence or absence of some specific feature across the given classes. For example
(taken from [29]), in a digit recognizer, one might build a binary classifier that learned
whether or not the digit contained a vertical line segment, placing the examples in

classes 1, 4, and 5 in the positive metaclass for this classifier, and the remaining

classes in the negative metaclass.

Dietterich and Bakiri take their cue from the theory of error-correcting codes
[11], and suggest that the M matrix be constructed to have good error-correcting
properties. The basic observation is that if the minimum Hamming distance between
rows of M is d, then the resulting multiclass classification will be able to correct any
L%J errors. They also note that good column separation is important when using
error-correcting codes for multiclass classification; if two columns of the matrix are
identical (or are opposites of each other, assuming an algorithm that treats positive

and negative examples equivalently), they will make identical errors.

After these initial observations, the majority of the paper is devoted to exper-
imental results. A number of data sets from various sources are used, including
several data sets from the UCI Machine Learning Repository [77], and a subset of
the NETtalk data set used in [100]. Two learning algorithms were tested: decision
trees using a modified version of the C4.5 algorithm [88], and feed-forward neural
networks. The parameters were often tuned extensively to improve performance. In
some cases, the algorithms were modified for individual data sets. They considered
four different methods for constructing good error-correcting codes: an exhaustive
method, a method that selects a subset of the columns generated by the exhaustive
method, a method based on randomized hill climbing, and a method based on using

BCH codes or a subset of BCH codes (sometimes selected using manual intervention).

152

In summary, although the description of the experimental work is quite lengthy, it

would be essentially impossible to replicate the work exactly.

A large variety of experimental results are reported. It appears that in general,
with the data sets and algorithms tried, the error-correcting code approach performs
better than a one-vs-all approach. However, the difference is often small, and it is dif-
ficult to know how good the underlying binary classifiers are. In many instances, only
relative performance results are given — the difference between the error-correcting
and a one-vs-all method is given, but the actual performance numbers are not given,
making comparison to alternate approaches (such as a one-vs-all SVM scheme) im-

possible.

Allwein, Schapire and Singer

In 2000, Allwein, Schapire and Singer [1] extended the earlier work of Dietterich and
Bakiri in several directions. They were specifically interested in margin-based classi-
fiers, where the underlying classifier is attempting to minimize (while also possibly

trying to minimize a regularization term) an expression of the form

4

Y L) (4.39)

=1

where L is an arbitrary (chosen) function. The quantity y; f(x;) is referred to as the

margin, and is notated as z, so that we are interested in minimizing

72 L(2), (4.39)

In the case of the SVM, L(yf(x)) = (1 — yf(xi))+ = (1 — 2)+ and in the case of
RLSC, L(yf(x)) = (1 —yf(x))?> = (y — f(x))? = (1 — 2)?; we see that both SVM
and RLSC are margin-based classifiers, and that we can easily relate the margin loss
function L(yf(x)) to the loss function V'(f(x),y) we considered in Chapters 2 and

3. Allwein et al. are also very interested in the AdaBoost algorithm [35, 96], which

153

builds a function f(x) that is a weighed linear combination of base hypothesis h;:

f(x) = Et: ahy(x), (4.40)

where the h; are selected by a (weak) base learning algorithm, and reference numerous

papers indicating that AdaBoost is approximately greedily minimizing
¢
3 e widba) (4.41)
i=1

demonstrating that AdaBoost is a margin-based classifier with L(yfx) = e ¥/t It
is important to note that this notion of “margin” is more general and not necessarily
entirely equivalent to the idea as used in the context of SVMs, where (at least in
the separable case) there is an obvious geometric meaning associated with the term
“margin”. In particular, note that we do not always prefer to achieve “large margin”:
for RLSC, we want to force the margin at each example to be as close to 1 as possible,
rather than trying to maximize the margin.

Allwein et al. chose the matrix M € {—1,0,1}V*¥ rather than only allowing
1 and —1 as entries in the matrix as Dieterrich and Bakiri did. If M,,; = 0, then
example ¢ is simply not used when the jth classifier is trained. With this extension,
they were able to place one-vs-all classification, error-correcting code classification
schemes, and all-pairs classification schemes [51] in a single theoretical framework.

If the classifiers are combined using Hamming decoding (taking the signs of the
real values output by the classifiers, then finding the closest match among the rows

of M), we again have

F (1 — sign(Mmfi(X))> , (4.42)

f(x) =arg min_>»_ 5
i=1

rel,...,.N =

where it is now understood that if M,; = 0 (class 7 was not used in the ith classifier),
class r will contribute % to the sum. Allwein et al. note that the major disadvantage of
Hamming decoding is that completely ignores the magnitude of the predictions, which

can often be interpreted as a measure of “confidence” of a prediction. If the underlying

154

classifiers are margin-based classifiers, they suggest using the loss function L instead
of the Hamming distance. More specifically, they suggested that the prediction for a
point x should be the class r that minimizes the total loss of the binary predictions

under the assumptions that the label for point x for the ¢th machine is M,;:

f(x) = arg_min _ZL M, fi(x)) (4.43)

rel,.

This procedure is known as loss-based decoding. If the matrix M represents a one-
vs-all coding scheme (M,; = 1 if r = i, M,; = —1 otherwise), the above equation

simplifies to

F
f(x) = arg Teril’.i.r.}N Z L(M,; fi(x)) (4.44)
= arg rem,u}N L(f-(x ; L(- (4.45)

It is easy to check that for all the loss functions considered here (SVM, RLSC, and

AdaBoost), the prediction in the one-vs-all scheme will be chosen so that

f(x) = arg max f, (x;). (4.46)

Allwein et al. provide an elegant analysis of the training error of multiclass error-
correcting code based systems using both Hamming decoding and loss-based decoding.
Some notation is required to state these bounds. They define € to be the average loss

of the underlying binary classifiers:

XF:ZL yjzfz Xj). (4.47)

i=1j=1

3=

They define p to be the minimum distance between a pair of rows of the matrix M,
using a generalized notion of Hamming distance in which, d(i, j) = 3 if either ¢ or j is

zero, and d(i, j) is the standard Hamming distance between i and j otherwise. Using

155

this notation, p can be expressed as

N
p = min > d(M,,;, M,,;) (4.48)

c1,e2€1,...,N,c17c2 i=1

N 1-— McliMczi

= min
c1,c2€1,...,N,c1#£c2 i

(4.49)

1

They begin by considering loss-based decoding. They make the (mild, and satisfied
by all loss functions considered) requirement on the loss function that

L L(—

w > L(0) > 0. (4.50)
Under these assumptions, they are able to show that the training error of a multi-

class system (the number of mistakes made on the training set) that uses loss-based

decoding is bounded above by
(Ne

. 4.51
pL(0) 45
For Hamming decoding, assuming instead that L satisfies
z< 0= L(z) > L(0) >0, (4.52)
they are able to bound the training error by
2¢Ne
. 4.53
pL(0) (453)

Some additional discussion notes that these bounds implicitly depend on the fraction
of zero entries in the matrix, and modified versions of the bounds that make this

dependence explicit are provided.

Allwein et al. next turn to an analysis of the generalization performance of mul-
ticlass loss-based schemes in the particular case when the underlying binary classifier
is AdaBoost. The arguments are extensions of those given by Schapire et al. in [95],

but are beyond the scope of this thesis.

The remainder of the paper is devoted to experiments on both toy and UCI

156

Repository data sets, using AdaBoost and SVMs as the base learners. The two stated
primary goals of the experiments are to compare Hamming and loss-based decoding

and to compare the performance of different output codes.

The toy experiment considers 100k one-dimensional points generated from a single
normal distribution, selecting the class boundaries so that each class contains 100
training points. AdaBoost is used as the weak learner, and comparisons are made
between Hamming and loss-based decoding, and a one-vs-all code and a complete
code. The authors find that the loss-based decoding substantially outperforms the
Hamming decoding, and that the one-vs-all and complete codes perform essentially

identically.

Allwein et al. next consider experiments on a number of data sets from the
machine learning repository. For SVMs, eight data sets are used: dermatology,
satimage, glass, ecoli, pendigits, yeast, vowel, and soybean. Five differ-
ent codes are considered: the one-vs-all code, the all-pairs code (omitted when there
were too many classes), the complete code (omitted when there were too many
classes), and two types of random codes. The first type had [10logs(NN)] columns,
and each entry was chosen to be 1 or —1 with equal probabilities. The codes were
picked by considering 10,000 random matrices, and picking the one with the highest
value of p which did not have any identical columns. These codes were refereed to
as dense codes. They also considered sparse codes, which had [15l0g2(N)] columns,
and each entry was 0 with probability %, and 1 or —1 with probability i each. Again,
10,000 random matrices were considered, and the one with the best p with no identical

columns and no columns or rows containing only zeros was chosen.

Direct numerical results of the experiments are presented, as well as bar graphs
showing the relative performance of the various codes. The authors conclude that “For
SVM, it is clear that the widely used one-against-all code is inferior to all the other
codes we tested.” However, this conclusion is somewhat premature. All the SVM
experiments were performed using a polynomial kernel of degree 4, and no justification
for this choice of kernel was given. Additionally, the regularization parameter used

(i.e., A) was not specified by the authors. Looking at the bar graphs comparing

157

relative performance, we see that there are two data sets on which the one-vs-all
SVMs seem to be doing particularly badly compared to the other codes: satimage
and yeast. We performed our own SVM experiments on this data, using a Gaussian
kernel with o and C' tuned separately for each scheme (for actual parameter values,

see Section 4.3). 6

The results are summarized in Table 4.1 and Table 4.2. We find that while other
codes do sometimes perform (slightly) better than one-vs-all, that none of the differ-
ences are large. This is in stark contrast to the gross differences reported by Allwein
et al. Although we do not test the other data sets from the UCI repository, this
experiment strongly supports the hypothesis that the differences observed by Allwein
et al. result from a poor choice of kernel parameters, which makes the SVM a much
weaker classifier than it would be with a good choice of kernel. In this regime, it is
plausible the errors from the different classifiers will be somewhat decorrelated, and
that a scheme with better error-correcting properties than the one-vs-all scheme will
be superior. However, given that our goal is to solve the problem as accurately as
possible, it appears that choosing the kernel parameters to maximize the strength of
the individual binary classifiers, and then using a one-vs-all multiclass scheme, per-
forms as well as the other coding schemes, and, in the case of the satimage data,
substantially better than any of the coding schemes when the underlying classifiers

are weak.”

5We replicated the dense and sparse random codes as accurately as possible, but the information
in Allwein et al. is incomplete. For both codes, we added the additional constraint that each
column had to contain at least one +1 and at least one —1; one assumes that Allwein et al. had this
constraint but did not report it, as without it, the individual binary classifiers could not be trained.
For the sparse random code, the probability that a random column of length six (the number of
classes in the satimage data set) generated according to the probabilities given fails to contain both
a +1 and a —1 is more than 35%, and the procedure as defined in the paper fails to generate a
single usable matrix. Personal communication with Allwein et al. indicate that it is likely that
columns not satisfying this constraint were thrown out immediately upon generation. Additionally,
there are only 601 possible length six columns containing at least one +1 and one —1 entry, and
if these columns were chosen at random, only 28% of the matrices generated (the matrices have
[15l0g2(6)] = 39 columns) would not contain duplicate columns. Because there was no mention in
either case of avoiding columns which were opposites of each other (which is equivalent to duplication
if the learning algorithms are symmetric), we elected to allow duplicate columns in our sparse codes,
in the belief that this would have little effect on the quality of the outcome.

"In this context, weak is not use in a formal sense, but merely as a stand-in for “badly tuned.”

158

One-vs-All | All-Pairs | Complete | Dense | Sparse
Allwein et al. 40.9 27.8 13.9 14.3 13.3
Rifkin 7.9 7.9 8.0 8.2 8.2

Table 4.1: Multiclass classification results for the satimage data set. Allwein et al.
used a polynomial kernel of degree four and an unknown value of C. Rifkin used a
Gaussian kernel tuned separately for each scheme. We see that with the Gaussian
kernel, overall performance is much stronger, and the differences between coding
schemes disappear. Entries in the table are the percentage of errors; all results are
rounded to the nearest tenth of a percent.

One-vs-All | All-Pairs | Complete | Dense | Sparse
Allwein et al. 72.9 40.9 40.4 39.7 47.2
Rifkin 39.0 39.3 38.5 39.3 38.8

Table 4.2: Multiclass classification results for the yeast data set. Allwein et al. used a
polynomial kernel of degree four, an unknown value of C, and ten-fold cross-validation.
Rifkin used a Gaussian kernel tuned separately for each scheme, and leave-one-out
cross-validation. We see that with the Gaussian kernel, the performance of the one-vs-
all scheme jumps substantially, and the differences between coding schemes disappear.
Entries in the table are the percentage of errors; all results are rounded to the nearest
tenth of a percent.

Crammer and Singer

In [23, 22, 25], Crammer and Singer develop a formalism for multiclass classification
using continuous output coding. This formalism includes the single-machine approach
discussed in [24] and above as a special case.

The Crammer and Singer framework begins by assuming that a collection of binary
classifiers fi, ..., fr is provided. The goal is then to learn the N-by-F' error-correcting
code matrix M. Crammer and Singer show (under some mild assumptions) that
finding an optimal discrete code matrix is an NP-complete problem, so they relax
the problem and allow the matrix M to contain real-valued entries. Borrowing ideas
from regularization, they argue that we would like to find a matrix M that has
good performance on the training set but also has a small norm. To simplify the
presentation, we introduce the following notation. We let f(x) denote the vector
fi(x), ..., fr(x), and we let M; denote the ith row of the matrix M. Given a matrix

M, we let K(f(x), M;) denote our confidence that point z is in class i; here K is

an arbitrary positive definite kernel function satisfying Mercer’s Theorem. Then, the

159

Crammer and Singer approach is:

min MM, + S5 & (4.54)

MeRNXFE

K(f(xi), My,) > K(f(xi), M,) +1—& (4.55)

In the above formulation, the constraints range over all points x;, and all classes
r # y;. Simply put, we try to find a matrix with small norm so that the confidence
for the correct class is greater by at least one than the confidence for any other class.
Note that as in [24] above, there is only a single slack variable &; for each data point,
rather than N — 1 slack variables per data point as in many of the other formulations

we discuss.

In their general formulation, the norm in which the matrix is measured (||M]|,)
is left unspecified. Crammer and Singer briefly show that if p = 1 or p = oo and
K(x,y) = x-y, the resulting formulation is a linear program. They spend the majority
of the paper considering p = 2 (technically, they penalize |[M||3, not ||M|]), and
showing that this choice results in a quadratic programming problem. They take the
dual (in order to introduce kernels; again, they start with the linear formulation in

the primal), and indicate some algorithmic approaches to solving the dual problem.

In an interesting twist, Crammer and Singer also show that we can derive the
one-machine multiclass SVM formulation in [24] (and discussed in a previous section)
by taking f(x) = x. In this case, the implicit assumption is that our “given” binary
classifiers are d (the dimensionality of the input space) machines, where f;(x) is equal
to the value of the ith dimension at point x. In the linear case (K(z,y) = x - y), the
code matrix M becomes the N separating hyperplane functions wy, wo, ..., wy. This

formulation is discussed in greater detail in the previous section.

Experiments are performed on seven different data sets from the UCI repository,
as well as (a subset of) the MNIST data set. The experiments compare the perfor-
mance of the continuous output codes to discrete output codes, including the one-
vs-all code, BCH codes, and random codes. Personal communication with Crammer

indicates that the “base learners” for the continuous codes are linear SVMs. Seven

160

different kernels are tested, although their identities are not disclosed (although I re-
ceieved personal communication that they were homogeneous and nonhomogeneous
polynomials of degree one through three, and a Gaussian kernel with a sigma that
was not recorded). No performance results for individual experiments are given.
Instead, for each dataset, we find the improvement in performance for the “best
kernel” (presumably the kernel with the largest difference in performance), and the
average improvement in performance across the seven kernels. It is important to
note that his comparison was NOT against an OVA system, but against using the
error-correcting coding approach directly with linear SVMs as the underlying binary
classifiers. Therefore, he was comparing the classification ability of nonlinear and
linear systems on datasets for which we have already seen that Gaussian classifiers
perform very strongly. In this context, his results are unsurprising.

Crammer communicated to us personally the actual performance numbers, which
allows us to compare his continuous codes to an OVA approach. For the satimage
data, the best error rate he achieved (over all seven kernels and three coding schemes)
was 9.8%, compared to 7.9% for OVA in our own experiments. For the shuttle data,
his best error rate was 0.5%, as opposed to 0.35% for OVA in our own experiments.
We see that although his nonlinear system did greatly outperform a linear system, it
did not allow us to actually achieve better multiclass classification error rates, which

is of course our actual goal.

Furnkranz

Very recently, Fiirnkranz published a paper on Round Robin Classification [42], which
is his 2002 name for all-vs-all classification. He used Ripper [18], a rule-based learner,
as his underlying binary learner. He experimentally found that an all-vs-all system
had improved performance compared to a one-vs-all scheme. His data sets included
the satimage and yeast data sets studied here, and the round robin system achieved
error rates of 10.4% and 41.8% on the two data sets (as opposed to 7.9% and 39.0%
for one-vs-all in our own experiment with SVM as the base learner). These numbers

support the hypothesis that Ripper is not as effective a binary learner as SVMs,

161

and are therefore able to benefit from an error-correcting scheme such as all-pairs;
however, the scheme does not enable Fiirnkranz to obtain better results than an OVA

SVM scheme.

Summary

Dietterich and Bakiri were fully aware of both the promise and the difficulty of this
approach, which obviously relies heavily on the errors produced by different binary
classifiers being (at least somewhat) decorrelated. In a companion paper, they address
this issue for the specific case where the underlying binary classifiers are decision trees
[62]. We believe (and show experimentally in Section 4.3) that when the underlying
classifiers are appropriately tuned regularization systems such as SVM or RLSC, that
the errors produced by different binary classifiers will be extremely highly correlated,
implying that a one-vs-all scheme will be at least as effective as an error-correcting
code scheme. Furthermore, we will show that across several data sets, using SVM (or

RLSC) in a one-vs-all framework yields extremely strong results.

4.3 Experimental Results

In this section we provide experimental results on multiclass classification using the
schemes suggested by Allwein et al. [1], with well-tuned SVMs or RLSCs as the
underlying binary classifiers. We will observe, across a number of different data sets,
that a simple OVA system performs approximately as well as any other system. We
will also see that the systems, and the underlying classifiers, produce results which are
very highly correlated, making it unlikely that the more complicated error-correcting
code schemes will outperform OVA.

For clarity, we briefly review the error-correcting code schemes here; more details
can be found in our discussion of the Allwein et al. paper (Section 4.2.2). The one-
vs-all code, referred to as OVA, builds one classifier per class, trying to separate a
single class from all other classes. The all-vs-all or all-pairs code, referred to as AVA,

builds w classifiers, each trying to separate a pair of classes. The complete code,

162

referred to as COMP, builds 2V~ — 1 classifiers, where each classifier tries to separate
a nontrivial subset of the classes from the remaining classes. The dense code, also
referred to as DEN, builds [10log2(N)] classifiers, each of which separates a random
subset of the classes from the remaining classes. The sparse code, also referred to as
SPA, builds [15logy(N)] classifiers, and is similar to the dense code except that each
classifier only involves approximately half the classes. For more details on the dense
and sparse codes, see Section 4.2.2.

In this section, we will consider results on four data sets: the satimage and
yeast data considered (among other data sets) by Allwein et. al, the 20newsgroups
text classification data set considered by Rennie and Rifkin [90], and the gcm cancer
classification data set explored by the author in joint work with members of the

Cancer Genomics Center at the Whitehead Institute, published in [127] and [89].

4.3.1 Preprocessing and Parameter Settings

The satimage data consists of 4,435 training points and 2,000 testing point in six
classes, obtained from the UCI Machine Learning Repository [77]. For numerical
stability, we divided all the numbers by 100, and also renumbered the classes (in the
data set as distributed, the classes are numbered 0, 1, 2, 3, 4, and 6). We tested all five
schemes using SVMs with a Gaussian kernel as the binary learner. For each scheme,
we tuned the o for the Gaussian and the regularization parameter C' individually. We
tuned each parameter by starting it at 1, and then increasing it and decreasing it by
powers of 2 until a local minima was found. Because the dependence on o was much
stronger than on C, we tuned o first and then C. Table 4.3 describes the optimal
settings for each scheme. We note that neither dependency seemed very strong —
often several powers of two in each direction induced performance differences of less
than one percent.

The yeast data, also from the UCI Machine Learning Repository, consists of
1,484 points in 10 classes. Because no separate testing set was provided, we tested
our schemes using leave-one-out cross-validation. SVMs were again used as a binary

learner. We tested all five schemes using SVMs with a Gaussian kernel. For the

163

Scheme | o | C
OVA 25| 2
AVA 251 8
COMP | .25 | 2
DEN 25| 2
SPA 25 1

Table 4.3: The optimal o and C' settings for each of the five multiclass schemes used
on the 20Newsgroups data set.

Scheme | o | C
OVA A25 | 1
AVA 25 | 8
COMP | 125 | 1
DEN A25 | 1
SPA A25] 2

Table 4.4: The final o and C' settings for each of the five multiclass schemes used on
the 20Newsgroups data set. The settings were tuned for OVA, AVA, DEN and SPA,
and chosen by the author for COMP.

OVA, AVA, DEN and SPA code, we tuned the parameters as above. For the COMP
code, because there were 511 classifiers and the experiments took a long time to
run, and because none of the other systems showed a very strong dependence on
the parameters, we simply chose a single set of parameters that seemed likely to be
effective. Table 4.4 describes the final settings for each scheme. Again, the dependence
on the parameters was not strong.

The Global Cancer Map, or gcm data in this study, is a collection of tumors
collected to explore the task of automatic cancer classification.® There are 190 samples
in 14 classes, and each example is a 16,063 dimensional vector. For numerical stability
we divided all raw values by 5,000. We tested each scheme using leave-one-one cross
validation. We used a linear SVM with C tuned individually for each scheme. We
found that C' = .125 was best for the OVA and DEN schemes, and C' = .25 was best

8The data is available online from the Cancer Genomics website, at
http://www-genome.wi.mit.edu/cgi-bin/cancer/data sets.cgi.

164

for the AVA and SPA schemes. We did not use the COMP scheme as we would have
needed 2 — 1 classifiers.

The 20Newsgroups data is a set of documents divided into twenty classes; the
task is to choose which of 20 different newsgroups a document came from.? There are
a total of 19,998 documents in 20 classes; perform ten-fold cross-validation, creating
ten training sets of size 15,935 and 10 test sets of size 3,993. We used linear RLSC
with Al tuned individually for each scheme. We found that A/ = 1 worked best for
OVA and DEN, and M = .5 worked best for AVA and SPA, although the sensitivity
to the precise choice of A/ within a wide range was quite low. We did not use the

COMP scheme as we would have needed 2'° — 1 binary classifiers.'°

4.3.2 Results

Table 4.5 presents the accuracy rates for the different classification schemes. We see
immediately that across the data sets, the performance of the OVA scheme is quite
strong. On the satimage and 20Newsgroups data, OVA is strongest overall, and on
the yeast data set, it is within one half of one percent of the strongest performance.
On the gem data, it is 2.6% worse than the DENSE scheme; however, this data set
consisted of only 190 points total (in 16,063 dimensions), with the difference in error
being 5 samples out of 190, and the difference is not clearly statistically significant.
These numbers are in stark contrast to the observations of Allwein et. al, who found
that the OVA scheme was much worse than any of the error-correcting schemes.
Their work used polynomial kernels, and it seems that this resulted in poorly tuned
SVMs that had errors that were somewhat decorrelated, allowing the error-correcting
schemes to improve performance. However, the best performance they report on the
satimage and yeast data set were lower than what we found, so it appears that a
good way to get the best possible performance is simply to use an OVA scheme with

well-tuned binary classifiers.

9The data is available online from http://www.ai.mit.edu/people/jrennie/ecoc-svm.
10Tn Section 4.4, below, we show that for RLSC, the predictions for the COMP scheme will be
identical to those of the OVA scheme, providing another good reason not to use it.

165

OVA | AVA | COMP | DEN | SPA
satimage | 7.85 | 7.85 7.95 8.2 | 8.15
yeast | 39.0 | 39.4 | 38.5 39.3 | 38.8

gem | 189 | 30.5 — 16.3 | 22.1
20Newsgroups | 12.8 | 14.8 — 14.2 | 13.3

Table 4.5: Results for multiclass classification using five different coding schemes on
four different data sets. Entries in the tables are percentages of misclassified points.

4.3.3 Correlation Analysis

For the satimage and yeast data sets, we performed additional experiments in order
to further illustrate the behavior of the different schemes. Intuitively (but naively),
it seems that the OVA scheme may be inferior, because it is unable to correct for
any errors. The other four schemes all possess an innate ability to correct numerous
errors, and indeed, this is the primary motivation for their use. However, the value
of the ability to correct some number of errors depends crucially on there being some
amount of decorrelation between the classifiers. In particular, the error-correction of
these schemes works when a relatively small number of incorrect binary classifiers are
“outvoted” by the remaining classifiers. If the classifiers all make essentially identical
errors, the code’s ability to correct will be of no value. We see in this section that

this is exactly what occurs.

Tables 4.6 and 4.7 show, for each pair of codes used, the fraction of points which
were predicted to be in the same class by both codes in the pair. We see immediately
that the numbers are very high, indicating that on both data sets, the different
systems are not just getting the same points correct, but they are making the same
mistakes — if one scheme incorrectly decides that a point in class ¢ is instead in class
j, then the other systems are likely to also mistakenly place the point in class j.
Indeed, fully 95.5% of the test points in the satimage data set and 84% of the points
in the yeast data set are placed into the same class by all five schemes. The numbers
are lower for the yeast then the satimage data (likely related to the fact that the

overall error rate is much higher), but the correlation is very high for both data sets.

166

OVA | AVA | COMP | DEN | SPA
‘ 1.0 | .987 2995 | .995 | .980 | OVA
1.0 986 | .986 | .979 | AVA
1.0 | .997 | .980 | COMP
1.0 | .980 | DEN

Table 4.6: Overlaps of predictions between classifiers on the satimage data set. Each
entry in the table gives the fraction of identical class predictions for two different mul-
ticlass schemes. The five schemes are one-vs-all (OVA), all-pairs (AVA), a complete
code (COMP), a dense code (DEN), and a sparse code (SPA). See the text for details
of the parameter settings and code definitions.

OVA | AVA | COMP | DEN | SPA
‘ 1.0 | .888 970 | .920 | .950 | OVA
1.0 906 | .894 | .870 | AVA
1.0 | .923 | .967 | COMP
1.0 | .924 | DEN

Table 4.7: Overlaps of predictions between classifiers on the yeast data set. Each
entry in the table gives the fraction of identical class predictions for two different mul-
ticlass schemes. The five schemes are one-vs-all (OVA), all-pairs (AVA), a complete
code (COMP), a dense code (DEN), and a sparse code (SPA). See the text for details
of the parameter settings and code definitions.

167

To further understand the behavior of the systems, we performed an additional
experiment. For each point x that belonged to class ¢ but was mistakenly placed in
class j, we considered (separately for each scheme) the behavior at x for each binary
classifier that placed classes 7 and j into different metaclasses. The idea is that if an
error-correcting scheme is going to avoid making the same mistake on a point that
the OVA scheme makes, it must be able to construct a majority of binary classifiers
that successfully tell that the point is in a metaclass including class ¢ rather than a
metaclass including class j. This is precisely the opposite of what we see. Figures
4-2 and 4-3 show the results of the experiment for the satimage and yeast data
sets, respectfully. Each figure shows the reverse cumulative distribution function of
the percentage of binary errors made on points that were errors for the OVA system
for classifiers that placed the true class and the class chosen by the OVA system
into separate metaclasses. For example, looking at Figure 4-2c, we see that for the
DENSE code, for 80% of the points which were OVA errors, 70% or more of the
binary classifiers that tried to separate the true class from the mistakenly chosen
OVA class failed to do so. Intuitively (this is not strictly correct, because predictions
are turned into confidences via the loss function), we expect that we would expect an
error-correcting approach to correct an OVA error only if more than half of the binary
classifiers successfully avoided the error. As we see from the figures, this is only the
case for a very small portion of the OVA errors. Indeed, a reasonable conclusion to
draw from the figures is that if the OVA system mistakenly places a point x that is
in class i into class 7, nearly every binary classifier that places classes i and j into
different metaclasses will mistakenly place x into the wrong metaclass. Viewed from
this perspective, it is unsurprising that the error-correcting approaches fail to correct
many errors — the OVA classifiers, when well-tuned, are extremely accurate at using
the information that is present to tell whether a point belongs to a given class or not.
When the OVA system makes an error on x, it is because, as far as our classification
systems can tell, the point “looks” more like it belongs to the incorrect class than the

correct one. We can reassign additional classes to the metaclasses however we like,

resulting in the AVA, COMPLETE, DENSE and SPARSE schemes, but this does

168

Fraction of Binary Classification Erors on OVA Errors for the AVA Code Fraction of Binary Classification Errors on OVA Errors for the COMPLETE Code
T T T T T T T T T T T T T T T T T T

o
©
T
L
o
©
T

o
©
T
L
o
©
T

°
2
T
L

o
>
T
L

o

o
T
L

Percentage of Binary Errors
°
g
:
.

Percentage of Binary Errors

o
©
T
L
o
©
T
L

0.2 4 0.2 4
01 4 01 4
0 L L L L L L L L L 0 L L L L L L L L L
0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Points Fraction of Points

(a) (b)

Fraction of Binary Classification Errors on OVA Errors for the DENSE Code Fraction of Binary Classification Errors on OVA Errors for the SPARSE Code
T T T T T T T T T T T T T T T T T T

09F 09F g
08 08 g

007} 207F g

s s

i i

Eo.e r Eo.e r g

@ @

s 2

S5k S5k 4

s s

g g

804 804 q

5 5

& &

o
©
T
L
o
©
T
L

o
N
T
L
o
N
T
L

o
2
T
L
o
2
T
L

=)

L L L L L L L L L 0 L L L L L L L L L
01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Points Fraction of Points

(c) (d)

o

Figure 4-2: An analysis of the binary errors of the classifiers induced by the error-
correcting coding schemes for the points which were OVA errors for the satimage
data. See the text for a full explanation.

not seem to give any benefit, as these other schemes will make (most of) the same

mistakes.

4.4 Theoretical Results

In this section, we explore two theoretical issues relating to multiclass classification.
First, we derive leave-one-out bounds for multiclass classification with kernel methods
(SVMs or RLSC, for example) as the underlying binary classifiers. Then, we consider
some specific implications of the choice of RLSC as the underlying binary classi-

fiers, amassing further arguments in support of using a simple one-vs-all classification

169

Fraction of Binary Classification Errors on OVA Errors for the AVA Code Fraction of Binary Classification Errors on OVA Errors for the COMPLETE Code
T T T T T T T T T T T T T T T T T T

1 1
09F g
081 b

207t 1 0

8 8

o o

gosl 1 2

g g

@ @

5 5

Sosk g So.

g g

£ £

8 o4 4 8 0.

5 5

& &
03F g 03F g
02F g 02F g
01F b 01F b

. . . .

o

L L L o L L L L L L L L L

L
0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1 4 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1

0 X
Fraction of Points Fraction of Points
Fraction of Binary Classification Errors on OVA Errors for the DENSE Code Fraction of Binary Classification Errors on OVA Errors for the SPARSE Code
T T T T T T T T T T T T T T T T T T
1 1

09F 09F

08 08
007} 207F
s s
i i
Eo.s r Eo.s r
@ @
s 2
o5k o5k
s s
g g
804 804
5 5
& &

03F 03F

02F g 02F

01p g 01p

0 0
0 0.1 02 03 0.4 05 06 0.7 08 09 1 0 0.1 02 03 0.4 05 06 0.7 08 09 1
Fraction of Points Fraction of Points

(c) ()

Figure 4-3: An analysis of the binary errors of the classifiers induced by the error-
correcting coding schemes for the points which were OVA errors for the yeast data.
See the text for a full explanation.

170

scheme.

4.4.1 Multiclass Leave-One-Out Bounds

Model validation is of primary importance in machine learning. The choice of an
underlying binary classifier (with its associated kernel, kernel parameters and regu-
larization parameters in the case of RLSC) and a scheme for combining the outputs
of the binary classifiers into a multiclass prediction yields a multiclass classifier. We
are interested in the performance of this classifier on new data. Often, we are not
given enough data to hold out an independent validation set. In this case, a good
approach is to the use the leave-one-out error: we train ¢ different classifiers, each
on a subset of / — 1 training points, and test each classifier on the single “held out”
training point. However, this procedure is often computationally expensive, and so it
becomes useful to bound the number of errors that the leave-one-out procedure could
produce. Throughout this section, we will assume for convenience that the underlying
binary classifier is RLSC, but this is not restrictive; the family of classifiers considered
by Jaakkola and Haussler ([54], also Section 3.3) could easily be used instead, with
minor modifications to the arguments.

When the underlying classifiers are binary kernel classifiers that arise as the so-
lution to Tikhonov minimization problems, leave-one-out bounds are easy to derive
using the associated binary leave-one-bounds. Throughout this section, we will let
fi denote the ith binary classifier (corresponding to the ith column of the coding
matrix), ¢;; denote the coefficient associated with x; in f;, and fij denote the classifier
obtained when the jth example is removed from the training set. Also, we will use
[a, b] to denote the interval of numbers between min(a, b) and max(a, b), inclusive. For
RLSC, we showed in Section 3.3 that for a training point x; satisfying y; fi(x;) < 1,
that y; f/(x;) satisfies:

F(x5) € [fi(x), fi(x5) — ei K (x5, %)) (4.56)

If we look at the argument used to prove the above relation, we see that the same

171

equation holds for points for which y; f(x;) > 1.
Using these binary bounds, it is easy to derive leave-one-out bounds for multiclass
classification. Recall that, in our current notation, the final multiclass function f(x)

is the class with minimal loss over the associated row of the coding matrix:

F
£(x) = arg_min Y L(M,:;() (4.57)

Therefore, in order to see if a point x; could possibly be a leave-one-out error, we
calculate the “hypothetical” fij (x;) in order to maximize the loss of y; relative to the
other classes. The idea is that for each classifier, we try to find the possible output
(the set of possible outputs is given by the underlying binary leave-one-out bound)
that will make y; look least attractive to the multiclass system. For clarity, we will
refer to this hypothetical worst-case set of outputs as jgz-j (x;) (foriel,...,F). If we
cannot construct a vector fj(xj) that the multiclass system will put into a class other
than y;, then x; cannot be a multiclass leave-one-out error. In particular, (considering

for the time being only a single point x;), for r # y;, we define

D, = ;L(Mmﬁ?(xj))—;L(Myjiﬁ?(xj)) (4.58)
= Z(L(Mnf{(xj)) _L(Myjifij(xj))>- (4.59)

1

.
Il

A point is a possible leave-one-out error only if we can construct a vector fj (x4) so
that min, D, < 0. Looking at the second equation above, we see that we can optimize
this by adjusting each f;j (x;) individually; there are no “cross terms.”

We begin with the specific case where each binary classifier uses all the data (the
coding matrix contains no zero entries); this includes the OVA, COMPLETE, and
DENSE codes considered by Allwein et al., as well as the BCH codes considered
by Rennie and Rifkin [90], but not Allwein et al.’s AVA or SPARSE codes. For
each individual classifier f*, there are two cases to consider. If y;fi(x;) < 1, then,
by setting fg'(xj) = fi(x;5) — c;;K(x5,%;), we will decrease D, for all r for which
M,; # My, leaving D, unchanged for the remaining r. If [c;; K (xj,%;)| is small

172

and y; fi(x;) > —1, then we will have L(y;fi(x;)) < L(y;f!(x;)) and L(—y; fi(x;)) >
L(—y; f1(x3)). T |ei; K (x5,%;)| is sufficiently large or y;fi(x;) < —1, we will have
L(y;fi(x3)) < L(y; f](x3)) and L(=y; fi(x;)) > L(=y;f] (x;)), but the loss for the

“correct” labelling will always increase more than the loss for the incorrect labelling.

~

On the other hand, if y;f;(x;) > 1, we choose f/(x;) = fi(x;), leaving D, un-
changed; any other choice of f;j(xj) would cause the loss for y; to increase, but would

cause the loss for —y; to increase even more.

Proceeding in this manner, we can construct the entire vector fj (x;), calculate the
minimal D,, and decide whether x; could possibly be a leave-one-out error. Defining
D, (x;) to be the vector D, associated with leaving point x; out of the computation,

we can bound the number of leave-one-out errors by

.....

F N
x5 : n?léinDr(xj) < 0| = |x;:arg min > L(M,fi(x;)) # y;l. (4.60)
rF£Y; rel Nz':l

For the specific case of an OVA scheme, the bound can be simplified somewhat.

Recall that for the OVA scheme, we will choose

f(x) = arg max fr(xi). (4.61)

Also, recall that the possible values of the leave-one-out classifiers lie in the range

F(x5) € [fi(xy), fi(x5) — i K (x5, %3)]. (4.62)

Therefore, a point is a possible leave-one-out bound only if

max max(fr(x5), fr(x5) = & K (x5, %3)) 2 min(fy, (x5), fy; (x5) = e, (x5, %3)). (4.63)
We can also extend the technique to deal with code matrices that contain zeros,
such as the AVA or SPARSE matrices. For a given point x;, for classifiers ¢ such
that M, ; # 0, we proceed exactly as before, setting £7(x;) to maximize the difference

between the loss for class y; (and all other classes ¢ such that M,,; = M,;) and all

173

classes ¢ such that M, = —y;; the losses for classes ¢ for which M, = 0 will be
unaffected. For those machines for which M, ; = 0, we take a different approach. We
let I be the set of machines for which M, ; = 0. For each class ¢, we attempt to set

~

f;(xj) to minimize the loss for ¢ for all machines in I simultaneously. In so doing,
the loss of y; will be unaffected, since M, ; = 0 Vi € I. We perform this operation
for each class ¢ individually, and if we are able to achieve lower loss for any ¢ than

for y;, x; is a possible leave-one-out error.

Informal experiments indicate that these bounds are not especially tight. How-
ever, the bounds may be predictive, in that models that lead to lower values of the
bound may have lower actual leave-one-out error (and lower generalization error) than
models that give higher values of the bound. This is an interesting avenue for future

research.

Another possible idea for future research is to consider the use of partial compu-
tation to improve the bound. In particular, because the bounds above are not tight,
we will find that they predict many more leave-one-out errors then the number of
errors that actually occur. If we were to actually compute the leave-one-out values
for some of the binary classifiers, we would reduce the amount of uncertainty. It is
possible that with a moderate amount of computation, we could reduce the bound

on the number of leave-one-out errors substantially.

4.4.2 Multiclass Classification with RLSC

In this section, we make some simple yet powerful arguments relating to multiclass
classification with RLSC as the underlying binary classifier. The basic insight is very

simple. Recall that to solve an RLSC problem, we solve a linear system of the form

(K + MI)c =y. (4.64)

174

In particular, this is a linear system, which means that the vector c is a linear function

of the right hand side y. Suppose we define the vector y!, where

y; - 0 otherwise (465)

Now, suppose that we solve N RLSC problems of the form
(K + MI)c' =y, (4.66)
and denote the associated functions f,..., f°¥, Now, for any possible right hand

side y* for which the y; and y; are equal whenever x; and x; are in the same class,
we can calculate the associated ¢ vector from the ¢!, without solving a new RLSC
system. In particular, if we let m; (i € {1,...,my}) be the y value for points in class

i, then the associated solution vector c is given by

N
c=> Ym,. (4.67)

For any code matrix M not containing any zeros, we can define the output of the
coding system using only the entries of the coding matrix and the outputs of the
underlying one-vs-all classifiers. In particular, we do not need to actually train the
classifiers associated with the coding matrix. We can simply use the appropriate

linear combination of the “underlying” one-vs-all classifiers:

F
F) = e pin, 3 LM) (469)
= arg GI{IIII ZL MMZ (4.69)
= arg r{nn Z M,; — X:Mjifj(x))2 (4.70)

J_tv _ N N
= arg TGI{IIII Z Mrz' Z M]ij (X) + Z Z]szz f (X))(471)

ot =1 j=1 J=1 k=1

175

= argTr{lin 2} MMZ (4.72)

€Ly,
= argrer{}m’ Z: MMZMﬂf (4.73)
J#T
= arg mln —Ffr(x ZZM,«,Mﬂf (4.74)
. G
F
_ . r]
= argreq}.l.? Ffr(x Z f(x ; riMj; (4.75)
J#T
= arg mln —Ffr(x ZC’TJf (4.76)
e J#T
N N ,
= arg min_ —F Y f'(x)+ > (F—Cy)f(x) (4.77)
rel,...,N = ;;i
= arg_min_ z (F = Cop) (%), (4.78)
J#T
where in the last three equations we define C); = inl M,;Mj;. In terms of the

coding matrix M, C,; is the inner product of rows r and j of the matrix. We note
that F' — C,; is guaranteed to be positive under the basic assumption that no two

rows of the coding matrix are identical.

We define a coding matrix to be class-symmetric if it treats all classes symmet-
rically: in particular, a coding-matrix is class symmetric if, whenever it contains a
m such columns are included. The
OVA and COMPLETE schemes are class-symmetric, while the DENSE scheme is

columns containing k£ 1’s and n — k -1’s, all

not (the AVA and SPARSE schemes include zeros in the coding matrix, and are not
addressed by this analysis).

For class-symmetric schemes, C); is independent of the choice of 7 and j, and can

be denoted simply as C*. For these schemes,

flx) = argrer{unN(F C*) ij (4.79)
J#r
= arg max (%), (4.80)

.....

where the second equation follows by noting that C* < F' (assuming the matrix
contains both 1’s and -1’s), and the final equation follows by noting that the sum in
the third equation will be minimized when the largest term, arg max,c1. n f"(x), is
not included. We have shown that when RLSC is used as the underlying binary learner
for class-symmetric coding matrices containing no zeros, the predictions generated are

tdentical to those of the one-vs-all scheme.

For matrices which are not class-symmetric, we cannot use the above argument
directly. However, we believe that Equation 4.78 is still highly indicative. If the C;;
are all close to equal (which is generally the case for the matrices generated), then we
can see that if f(x) is substantially larger than f7(x) for j # 4, that i will be chosen
by the multiclass RLSC system.

Proceeding differently, we note that in the Allwein et al. framework, the coding
matrices are generated without looking at the data. Therefore, we can view the
assignment of the classes to the labels {1,..., N} as random. Suppose we consider
a single test point x, and before training, we permute the labels of the classes via
a permutation 7 (a point which was “originally” in class i is placed into class 7(i)).

Given a permutation 7, the coding scheme will now classify a point according to

N
fr(x) =arg min > (F = Crpye(y) (%), (4.81)
ok

Suppose that arg max,c1,.n f"(x) =1, and there exists a permutation 7y such that

fr(x) =7 #1, (4.82)

and the system makes a different prediction than the OVA scheme. Consider a new
permutation 7, in which the roles of classes i and j are reversed: 75(i) = 71(j), 72(j) =
71(i), and 7»(k) = 7 (k) for k # {i,j}. For convenience, we define D;; = (F — Cj;),
and define

Qrr =D Degryrin fF (%) (4.83)
k=1
k#r

177

Using this notation, and recalling that D ()7, (j) = Dry(i)r(j), Dij > 0 for all 4 and j,
and f'(x) > f/(x) (by assumption), we find that:

Qi = Qnyj— Drgyn@ [(%) + Dryiymy [(x) (4.84)
= Qj— Dran(f1(x) = (%) (4.85)
= Q= Dran(f1(x) = (%) (4.86)
< O (4.87)
< O, (4.88)
= Q= Doy [(%) + Drygyn) (%) (4.89)
= Q= Drane(f1(x) = (%) (4.90)
< Q. (4.91)

We see that if we replace 7, with 75, the scheme prefers class ¢ to class j. For every
permutation 7 that chooses a class j over class i, we can construct a corresponding
modified permutation that chooses class i over class j. It would be nice to extend
this argument and show that under 75, 7 is the chosen class, but we have not so far
been able to show this as of yet — it remains possible that there exists an example

where a third class is chosen under 7,. This is an open question for future research.

It is important to note that the above arguments only apply to schemes in which
all the data is used for every classifier, and there are no zeros in the coding matrix.
This includes the OVA, DENSE, and COMPLETE schemes of Allwein et al., but not
their AVA or SPARSE schemes. However, in practice, we have not found the addition

of zeros to the matrix to be helpful.

4.5 Computational Concerns

In this section, we briefly discuss some of the issues and tradeoffs involved in com-
paring the resource requirements of different approaches to multiclass classification.

Unfortunately, we find that it is somewhat difficult to derive hard and fast rules, as

178

the computational requirements are often dependent on the specific algorithm.

We begin by considering “naive implementations” of error-correcting coding meth-
ods in the framework of Allwein et al. [1]. We define an implementation as naive
if we consider all of the induced binary problems as being entirely separate, and do
not use the computations or results from one binary learner to help us with another
binary learner. From this naive standpoint, an OVA system will take N times as
long to train, and be N times as slow to test. An AVA system, assuming that the
underlying binary classifiers are superlinear in the training set size, will actually be
faster to train than an OVA system; although there are O(N?) classifiers as opposed
to N for the OVA system, they use only O(-) as much data on average.''. However,

the naive AVA system will be O(N) slower at test time, as we will have to test each

N(N-1
2

example on all classifiers. If N is large, even the storage of all the classifiers for
an AVA scheme may become computationally prohibitive. For example, if we tried to
run an AVA scheme on the Sector105 text classification data set discussed in Chap-
ter 3 and [90], where each classifier was a hyperplane in 55,197 dimensional space,
simply storing all the classifiers would have required approximately 1.2 Gigabytes of
memory, rather than the 23 Megabytes required by the OVA scheme. Similar analysis

for other naive schemes, depending on the number of binary classifiers desired, are

easy to perform.

Considering kernel methods in particular, in which we induce a number of binary

learners of the form

fi(x) = ;Ci]’K(Xj,X), (4.92)

there are two primary ways to improve substantially on the naive method, assuming
that the same kernel is used for all the binary learners. The first is, during training,
to cache the kernel products computed while training one binary learner for use while
computing additional binary learners. The SvmFu implementation currently includes

this strategy. If the data is high-dimensional, and the time to compute the kernel

"This fact was stated by Friedman in 1996 [39] and proved at great length by Fiirnkranz in 2002
[42]

179

products dominates the training time, this can have a substantial effect on the total
computation time. Unfortunately, because the different binary learners will in general
have very different sets of support vectors, if the data set is very large, we will likely
not be able to store the appropriate kernel products at each step, and we will perform
a large amount of recomputation, mitigating the benefit.

The second key improvement for kernel machines is at testing time, where we
find that a given kernel product is often used in many different binary learners f;(x).
This strategy is also currently used by SvmFu. By caching these values, we can avoid
recomputing them. If the data is very high-dimensional relative to the number of
classes, this will tend to have a levelling effect on the testing time requirements of
the different schemes, as the time to test a point under any of the schemes will be
dominated by the time required to compute the kernel products. It is important to
note that if the final classifiers are represented as linear hyperplanes, this advantage
does not apply; in this case, an AVA scheme will be O(N) times as expensive at test
time (in both time and memory requirements) as an OVA scheme.

Finally, for the particular case where RLSC is the underlying binary learner and
all the classifiers make use of all the data, there is a crucial additional speedup that
can be used. Recall from Chapter 3 that training an RLSC system involves solving a

system of the form

(K + (\)e = y. (4.93)

Formally, if we derive (K +/¢AI)~!, which is an O(¢?) operation, we can solve for a new
right hand side y by performing a single O(¢?) matrix multiplication. So if £ >> N,
the cost of building an OVA system is essentially equivalent to the cost of building
a single binary classifier.!? This technique was not used in the RLSC experiments
described in this chapter; for the text classification task, in which the matrix is large

and sparse, the Conjugate Gradient algorithm is the only effective method for solving

2Practically speaking, we would not invert (K + ¢AI), but would instead perform a Cholesky
decomposition on K + ¢\I, both for numerical stability and efficiency reasons. If we chose to use a
subset of the data parametrized by m as in Section 3.7.2, we would perform a Cholesky decomposition
on (KpeKpm + KpmAl). In the linear case, where (K + ¢AI) = (AAT + ¢\I), we can make use of
the Morrison-Woodbury formula.

180

RLSC, and for the tumor classification task, the algorithm ran very quickly because
the data set was so small.

In conclusion, we find that a host of factors can affect the computational perfor-
mance of a multiclass scheme, relating to the number of underlying binary classifiers
and the specific algorithm used to train those classifiers. As an example, Crammer
and Singer [24] claim that their single-machine multiclass system is faster than a
one-vs-all system. Ignoring any other difficulties with their comparison (see Section
4.2.1), they assume that the competing SVM implementation is naive, and multiply
the time required to solve a single SVM by the number of classes. The reader is

advised to approach such comparisons with caution.

181

182

Chapter 5

Stability Theory and its

Implications

In this brief, final chapter, we explore some extensions and implications of stability
theory for learning algorithms. This form of stability theory (there are, of course,
many things called “stability theory” in other fields) is a relativley recent develop-
ment, popularized by the landmark 2002 paper of Elisseef and Bousquet [13]. The
basic idea is to show that if an algorithm is stable in a certain sense — the function
generated by the algorithms cannot change very much when we modify the training
set slightly — then the algorithm will have good generalization error.

Section 5.1 presents the essential definitions and theorems. In Section 5.2, we
explore the relationship between different approaches to proving generalization error
bounds and different forms of regularization. In Section 5.3, we show that a simple
form of bagging gives rise to stable algorithms, even when the original underlying
learners are not stable. Finally, in Section 5.4, we prove stability bounds for multiclass

classification.

5.1 Definitions and Theorems

We begin by introducing the necessary background, notation and definitions, then

state the key theorems of stability theory. Given an input space x € X C IR? and

183

an output space y € Y C IR, a training set of ¢ identically distributed independent

samples

S={z1= (X1, 41), - 20 = (Xe, y0) }, (5.1)

is drawn from an unknown distribution D over (X x)). We will often need to refer

to a set

St = {Zl, ey B 1y Uy Zig 1y e v ey Zg} = (S \ Zz) U u. (52)

in which the the ¢th point z; is removed from S and replaced with an arbitrary new
point u.

An algorithm is a mapping from a training set S to a function fg : x — y. The
hope is that fg will be successful at mapping future x values to their associated y
values. We will work with a loss function V(f(x),y), which gives the cost when we
see x and predict f(x), but the actual associated value is . Abusing notation slightly,
we also write this loss as V(f, z). The empirical error of fg is defined to be

fS' = ZV fS' Xl (53)

i=1

e\l>—k

and the generalization error (or “true” error) is defined to be

R(fs) = [V{fs,2)P(2) d= = . V(fs,2) (5.4)

We now introduce the basic notion of stability.

Definition 5.1.1 (Bousquet and Elisseeff, 2002)[13] An algorithm has stability

B with respect to the loss function V if
VS, St e 28Nz € Z, |V(fs,2) — V(fsin, 2)| < B.

In words, this notion of stability states that an algorithm has a stability of f, if,
for any possible training set yielding fs, and any possible single-point modification
of that training set yielding fgi.., the difference in the losses of fs and fgi. at any

possible new point z can be no more than . Note that § will in general depend on

184

¢, so we could more precisely define stability as a function from the integers to the
reals, but the usage will be clear from context. This definition of stability is known as
uniform stability. It is a very restrictive condition, as it needs to hold on all possible
training sets, even training sets that can only occur with probability 0. For g stable

algortihms, Bousquet and Elisseef proved the following theorem:

Theorem 5.1.1 (Bousquet and Elisseeff, 2002) [13] Let A be a [-stable learning
algorithm satisfying 0 < V(fs,z) < M for all training sets S and for all z € Z. For
alle >0 and all ¢ > 1,

» 2
P {IA(fs) - R > =+ 260} < o0 (- s)

A simple manipulation of the theorem gives us that with probability 1 — 9,

1
R(fs) < R(fs) + 2B + (408 + M) h;—; (5.5)

In general we are mainly interested in the case where 8, = O (%), we will call an

algorithm that possesses this property strongly S-stable. A key result of Elisseef and

Bousquet was to show that Tikhonov regularization,

4

min = 3>V (s, £(x:)) + M f1[%, (5.6)

fer 1=
is a strongly [-stable algorithm for a large choice of loss functions V. In particular,
they define a o-admissible loss function:

Definition 5.1.2 (Bousquet and Elisseeff, 2002)[13] A loss function V is o-
admissible if it is convex with respect to its first argument and the following condition

holds:
Yy, 2 € D,VY € Y, |V (y1,Y') — V(v ¥')| < olyn — yal, (5.7)

where D = {y:3f € F,Jx € X, f(x) =y} is the domain of the first argument of V.

This definition is closely related to the standard notion of a Lipschitz constant for

a function f, which bounds how much f(x) can change for a given change in x; in

185

particular, if our loss function V' has a Lipshitz constant k, it is also o-admissible with
o = k. However, this definition allows to work with functions (such as the square loss)
that do not necessarily have a Lipschitz constant k. In simple terms, the definition
states that a loss function is o-admissible if the function has Lipshitz constant o over

all possible values of all possible functions generated by the algorithm.

Bousquet and Elisseef go on to show that Tikhonov regularization with a o-

admissible loss function is strongly [-stable with

o2 K?

5:2—M7

(5.8)

where k = sup,cy /K (x,x).

5.2 Tikhonov and Ivanov Regularization

The use of stability to prove generalization bounds for learning algorithms is a rela-
tively recent phenomenon. A much more widely used tactic is the structural approach,
which can be used to prove bounds for Ivanov regularization, also referred to as reg-

ularized empirical risk minimization:

Ij}éi,}{tl % Y VIf(xi), vs) (5.9)
subject to : fl% < C (5.10)

The constraint || f||% < C limits the norm of the function in the RKHS. Functional
analysis arguments can be used to show that the “space” || f||% < C has finite covering

number! [28]. In turn, this can be used to prove uniform convergence:

IP{ sup |R(f) = R(f)| > 6} <9 (5.11)

I <C

'Loosely speaking, this means that although there are infinitely many functions in the set || f||% <
C, there are only finitely many “effectively different” functions.

186

where, given the covering number N, we can express § as
262
d=Nec. (5.12)

In a nutshell, the structural approach tells us that, if our allowable function set
| f]|% < C has finite capacity (finite covering number), then, with high probability,
as [grows larger, every function satisfying || f||% < C behaves similarly on the training
set S and on future data. In particular, with § defined as above, for every 7 € (0, 1),

with probability 1 — 7 over the choice of training set S,

sup |R(f) ~ R(f)| < O(—) (513
Pl <C %z

The structural approaches matches very naturally with the regularized empirical risk
minimization algorithm — because we have a bound on the difference between the
empirical risk and the true risk for every function in the set, and we are interested in
minimizing true risk, it makes sense to choose the function in the set with the smallest
empirical risk. Vapnik [115, 116] also suggests the idea of structural risk minimization,
where a series of nested structures are constructed by choosing €} < Cy < For
each C;, we will have a bound on the difference between empirical risk and true risk
(the bounds will get weaker as C; increases), and we will have a (measured) empirical
risk Re, (which will decrease as C; increases), and we choose the C; that gives the
best bound (the bounds get slightly weaker when we consider multiple structures in

this fashion).

Although most of the theory of generalization bounds (prior to the use of algorith-
mic stability) was based on Ivanov regularization, both the Support Vector Machine
and the Regularized Least Squares Classifier discussed in this thesis are Tikhonov
Regularization algorithms. The algorithmic stability bounds apply directly to, and
give primacy to, the Tikhonov form. Additionally, we will see below that Ivanov

regularization is not necessarily strongly (-stable.

There exist “equivalences” between the Tikhonov and Ivanov forms [117]. In

187

particular, suppose f* is the unique solution to a Tikhonov minimization problem.
Then, it is clear that f* is also the solution to an Ivanov minimization problem
with C' = ||f*||%. Conversely, suppose that f* is the unique solution to an Ivanov
problem. Then (under some “smoothness” assumptions) there will exist a A that
makes f* the solution of an associated Tikhonov minimization problem. It is crucial
to remember that these equivalences are a posteriori — we cannot use them to solve
a Tikhonov problem by solving a single Ivanov problem or vice versa. Also extremely
important is that if the constraint is not tight in the solution to an Ivanov problem
(i.e., ||f*]|3% # C), then A = 0 in the associated Tikhonov problem, and in both sets of
problems, we simply find the function in the RKHS that minimizes the training error;
the Ivanov regularization has no effect, and therefore the associated Tikhonov problem
will have no regularization. From this perspective, even though there are equivalences
between the forms, they are fundamentally different: in the Ivanov form, less smooth
functions cost no more than smoother functions, until the limit C' is reached, whereas
in the Tikhonov form, we pay continuously as we go. This intuition is reflected in the
fact that the Tikhonov approach has much stronger algorithmic stability properties

than the Ivanov approach, as we will see below.

We note that the definition of o-admissibility above makes explicit reference to a
“space of functions” F that the algorithm works in, although it is not immediately
obvious that such a space exists. However, for Tikhonov regularization, we can found
the space, as follows. Let f* be the optimal solution to a Tikhonov regularization
problem. Let 0 denote the constant all-zero function (this function is in every RKHS

K, and has norm zero). Assuming that the loss function V(f(x;), ;) is always non-

negative,
1|2 1 g * * (]2
MNP < 3 V06w + Al (5.14)
i=1
1 ,
< 5 2 VI0Gi), i) + AlJo] [(5.15)
=1
1 l
= 52 V0w (5.16)

-
Il
_

188

SuPyey V(()? y)
A\)

= |If"k < (5.17)

which gives a bound on the RKHS norm of f*. Defining B = sup,cy, V(0,y), the

largest possible penalty we could pay when we “predict” f(x) = 0, we see that

for Tikhonov regularization, ||f*||% < £. This immediately allows us to state that
the Tikhonov minimization algorithm is working in the bounded space || f*|[5 < £,

which in turn immediately allows us to bound the covering number of the space and
obtain the associated generalization bounds in the form of 5.13. We reiterate that
bounds in the form of 5.13 depend only on the size (covering number) of the space
of functions, and not on the algorithm used to choose a function from this space. In
particular, if we consider a Tikhonov problem with regularization constant A and an
“associated” Ivanov problem with C' = %, the problems can be viewed as operating
in the same space of functions and we can obtain an identical bound of the form 5.13.
In practice, we might expect the Ivanov approach to lead to better bounds because it
would in general find a function with lower training error — for a given fized bound
on the RKHS norm, it makes more sense to find the function that minimizes the
empirical risk in the constrained space, as the Ivanov algorithm does, rather than
take a pay-as-you-go approach a la Tikonov. Using % to bound the size of the space
in this manner, and thereby prove structural bounds for Tikhonov regularization, is
obvious in retrospect, and does not seem to lead to better bounds than the Ivanov
approach; however, we were unable to find any previous mention of this approach in

the literature.

Using the notion of o-admissibility, we can derive stability results for various
instantiations of Tikhonov regularization.? For the case of the L; loss V(f(x),y) =
|f(x) —y| (Figure 5-1), or the e-insensitive loss V' (f(x),y) = (| f(x) —y| —€)+ (Figure
5-2), it is clear that they are both Lipschitz with Lipschitz constant 1, and therefore
they are both o-admissible with ¢ = 1. This implies that for both these loss functions,

2The theory as stated above holds only for regression algorithms; for classification, where the
loss is zero or one, an extension is required. This is discussed in Section 5.4, where we present this
extension and extend it further in order to prove stability bounds for multiclass classification.

189

Tikhonov regularization is strongly S-stable with

B=—. (5.18)

For the case of the square loss V(f(x),y) = (y— f(x))? (Figure 5-3), we must be care-
ful. The difficulty is that the square loss is not Lipschitz for any Lipschitz constant;
it grows steeper and steeper as (y — f(x)) increases. However, we can still derive a
o-admissibility constant, as follows. We recall that the Tikhonov algorithm can be
viewed as operating in the space ||f||% < £. However, this also implies a bound on

the Lo, norm of f (see Appendix A):

B
£l < m\/; (5.19)

This in turn implies that that n\/? is the [argest absolute value that can be generated
by any function satisfying || f||% < £. Now we can bound the loss at any point y € Y

as

B
M= (\/; + supyeylyl)® (5.20)

which in turn implies that the loss function is o-admissible with ¢ = M.> Note
that the smoothness of the loss function, and in turn the quality of the bound, now

depends on A

We now demonstrate by means of a counterexample that Ivanov regularization
does not enjoy the same strong stability properties as Tikhonov regularization. For
both examples, we consider the X and and) domains to be the closed interval [0, 1],
and we consider our RKHS to be the set of lines passing through the origin. Our

Ivanov constraint is that we consider functions with slope less than or equal to one.

We recall that an algorithm is strongly S-stable only if, for every possible training

set generating a function fg, and every possible one point modification of that set

3We note in passing that the Bousquet and Elisseef paper [13], which states that the squares loss
is 2B-admissible, is incorrect.

190

0
y-f(x)

Figure 5-1: The hinge loss V(f(x),y) = |f(x) — y|.

25

05r-

-0.5
-3 0
y = 1)

Figure 5-2: The e-insensitive loss V(f(x),y) = (|f(x) —y| —€)+

0
y=f(x)

Figure 5-3: The square loss V(f(x),y) = (y — f(x))%

191

generating a function fgi.., we can state that

1

supxex yey ||V (fs(x),5) = V(fsin (%), y)l] < O(5). (5.21)

We consider the following (admittedly pathological, but not disallowed) case. We
generate a training set S where ¢ — 1 points are placed directly at the origin, and
the /th point is placed at (1,0). We let V' be the square loss (a number of different
losses could be used in this example). Now we modify S by deleting the /th point and
replacing it with a point at (1, 1). It is clear that fg will be a line passing through the
origin with slope 0, and that fgi. will be a line passing through the origin with slope
1, independent of €. Therefore, the stability does not (necessarily) increase at all as
we increase ¢, and we can conclude that in the worst case, Ivanov regularization has
only constant stability. This highlights the difference between Tikhonov and Ivanov
regularization. Tikhonov regularization, which forces us to pay a price for the RKHS
norm “as we go”, is a stronger form of regularization than Ivanov regularization,

where we pay nothing for the RKHS norm until we reach a hard limit.

In very recent work [65, 64, 63], Kutin and Niyogi explore a number of differ-
ent probabilistic generalizations of stability. These notions of stability are somewhat
weaker than the one used by Bousquet and Elisseef, in that they assert (in various
ways) that the change when a single example is deleted is usually, but not always
small. An interesting problem that is possibly solved by this work is to characterize
the strongest form(s) of stability satisfied by Ivanov regularization. Many of these
weaker forms of stability do lead to bounds which behave asymptotically as O(%),
like the Bousquet and Elisseef bounds, but the derivations and the bounds themselves
are extremely complicated. In any case, it is clear that Tikhonov regularization does
satisfy the extremely stringent stability definition of Bousquet and Elisseef, whereas

Ivanov regularization does not, indicating that (at least in some sense) Tikhonov

regularization is a more stable form of regularization than Ivanov.

192

5.3 Bagging Regularizes
We begin by introducing a more primary notion of stability.

Definition 5.3.1 An algorithm has a-stability with respect if
VS, S € ZE Ve € X, | fs(x) — fein(x)] < o (5.22)

Whereas 3 stability refers to closeness of the functions V(fs,-) and V(f5*,-) (i.e.,
closeness of fg and fg’“ after being “passed through” the loss function V'), a stability
refers directly to the proximity of fs and f;’“.‘l It is clear that, for a o-admissibile loss
function, strong a-stability implies strong S-stability. The converse is in general false:
stability with respect to the loss function does not imply stability of the functions,
even for o-admissible loss functions. For example, we can consider the square loss,
and the case where fi(z) = y+ K and fy(r) = y — K. The loss of the two functions is
identical, but their L., norms differ by 2K. However, published proofs of -stability of
algorithms (such as the ones in the Bousquet and Elisseef paper) first prove a-stability
(not explicitly defined as such) of the algorithms then use the o-admissibility of the
loss function to obtain the [-stability result, which is the one that is necessary for
proving generalization bounds.

We now turn to the notion of bagging, or averaging, of regressors. The point of
the above discussion is that we can easily prove bounds on a simple bagging scheme
by using a-stability directly, because a-stability can be “averaged” in a way that
[-stability cannot. In particular, consider the following simple bagging scheme. The
training set of size ¢ is divided into J disjoint subsets, each of size p; for simplicity
we assume £ is a multiple of p. Each data point will appear in exactly one of the J
subsets. As we increase the size of the training set, we keep p fixed and let J increase,
which implies that

J = (5.23)

¢
-

4This notion of stability is also called “classification stability” by Bousquet and Elisseef, but they
do not give much emphasis to this form of stability, viewing it as a mathematical convenience for
extending stability arguments from regression to classification algorithms.

193

We assume that we are training an algorithm with a o-admissible loss function. For
each of the .J subsets, we obtain a function f;. Our base learning algorithm has a-
stability ay, (as it operates on a subset of the data of size p), and [-stability 8, = oa,.
Note that we do not assume that the base learning algorithm is strongly stable; the

stability «;, may be as bad as constant in p. Now, we consider the “bagged” function

) = 53 i) (5:29)

We analyze the a-stability of this scheme. When we remove a single point from the
training set and replace it, only one of the J subsets, say subset d, is affected. We
obtain a new function f) satisfying ||fs — f2'||cc < . The new combined function

N satisfies

1
=Ml = ||j(fd—fév)||oo (5.25)
< %ap (5.26)
- %a,,. (5.27)

This simple result shows that if we average together regressors which are not nec-
essarily strongly stable, we obtain a strongly stable ensemble of regressors, with the
same asymptotic rate of convergence as Tikhonov regularization. In exchange for
weaker stability, it is also possible to allow the subset size p to increase with ¢; the
details are straightforward. We must also note that although this argument indicates
that Tikhonov regularization and bagging of non-strongly stable classifiers will have
approximately the same differential between training and generalization error, this
argument tells us nothing about the training error of either scheme, and so does not
directly tell us which algorithm is better. (Intuitively, we expect training a single
Tikhonov problem on the entire dataset, which explicitly tries (as one of its goals) to
minimize the training error, will of course provide a lower training error than simply

averaging together very many classifiers trained on small fixed-size samples.)

194

It is also worth noting that if the original base regressors are already strongly
stable (for instance, they are found by solving Tikhonov regularization problems),
then bagging them in this manner does not increase the stability. This is somewhat
interesting, given that bagging (and boosting) algorithms have rarely been shown to
increase accuracy when the underlying base learners are powerful algorithms such as

Tikhonov regularization.

5.4 Stability for Multiclass Classification

In this section, we derive stability-based generalization bounds on multiclass clas-
sification where the underlying binary classifiers are themselves stable learners, for
example the solutions of Tikhonov minimization problems. The idea is a simple gen-
eralization of the approach used to prove stability bounds for binary classification,
which is itself a generalization of the approach used to prove stability bounds for
regression. The basic difficulty with using stability to prove generalization bounds
for classification is that the L loss
0 if sign(f(x)) =y

V(f(x),y) = . (5.28)
1 otherwise

is not o-admissible for any o (it is also non-convex, which is why we do not minimize
it directly in learning schemes for classification). The basic solution is to introduce a
new loss function Ly (Ly will be specified shortly) which is o-admissible and which
upper bounds the Ly loss. Stability will allow us to relate the empirical and true
“risk” under this new loss function, which we can in turn use to upper bound the

true risk under the actual Lg loss.

We now turn to an examination of multiclass classification with an error-correcting
code matrix M. For simplicity, we consider only the case where the coding matrix
M contains no zero entries, and we will as usual pay special attention to the simple

one-vs-all case. Translating the margin-based notation L(yf(x)) into the stability

195

notation V'(f(x),y), we recall that a multiclass classifier classifies according to

F
f(x) = argrérllinNZV},(fi(x), M,;) (5.29)
N

where M,; is 1 or —1 depending on whether machine ¢ places class r in the positive
or negative “metaclass”, and V, denotes the loss function that is minimized by the

underlying binary classifier. We will reserve V' to denote the multiclass 0 — 1 loss:

0 if argmin,e, v S5 Vi(fi(x), M) =y

VI(f(x),y) = | ther (5.30)
otherwise

For notational convenience, we define the total loss for a class at a given point:

L(x,r) = ;Vb(fi(x)a M), (5.31)

We can now define the following multiclass loss function (parametrized over v > 0):

0 if L(x,y) < min,», L(x,7)
V,y(f(x), y) o L(Xay)—mi’rylr y L(x,r) if 0 S L(X, y) . minr;,gy L(X, ’I“) S v (532)
1 if L(x,y) —min,,, L(x,r) > v

It is clear that for any v > 0, V,(f(x),y) > V(f(x),y). Additionally, V., will be a o-
admissible (actually a Lipshitz) loss function, where o will depend on the properties
of the coding matrix M. We begin by considering a single machine f;. When we
remove and replace a single training point, it is clear that V. (f(x),y) will change by
at most 276", where 3, is the stability of the underlying binary learner: L(x,y) might
increase by f,, and min,», L(x, y) might simultaneously decrease by ;. So a naive
bound on the stability (with respect to V) of the multiclass system is %ﬁ” This
bound can be strengthened by defining G to be the maximum number of positions in

which any two rows of the coding matrix differ:

G = max N{i : My, # My, } (5.33)

Y1,Y2€1,...,

196

It is clear that when we modify the training set by removing and replacing a data
point, at most G of the classifiers can contribute to changing V,: for each class
r # y, the remaining F' — G classifiers wil put r and y into the same metaclass, and
therefore contribute nothing to V,. We conclude that we can actually bound the
stability of V, by ﬁf” Noting that V., (f(x),y) upper bounds V(f(x),y), and also
that 0 < V,(f(x),y) < 1, we can use Equation 5.5 to derive the following bound on

multiclass classification:

In i
265 | (402550 4 q), /s (5.34)

<R <R, +2 .
R<R, <R, + S . 5/

It is also possible, using techniques developed by Bartlett [5] and used by Bousquet
and Elisseeff in the context of bounds for binary classification, to extend this to
a bound that holds simultaneously for all v in the range (0, B]; the proof in the
Appendix of [13] is valid without modifications.

We note that in the specific case of one-vs-all multiclass classification, G = 2.
For other schemes (remembering that we only consider the case where the matrix
contains no zero entries), G > 2, implying that from this perspective, stability theory
actually yields stronger bounds for one-vs-all classification than for other schemes.
We should be careful not to read very much into this; this worst-case analysis assumes
that the classifiers are complete decorrelated in the worst possible way, and as we saw
in Chapter 4, different binary classifiers for the same problem tend to be very highly
correlated.

NEED THING ABOUT UNREGULARIZED BIAS TERM!!!

197

198

Appendix A

Reproducing Kernel Hilbert Spaces

In this appendix we present and discuss key facts about Reproducing Kernel Hilbert
Spaces. More in-depth discussions can be found in a variety of sources such as |3,
120, 94, 76].

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space of real-valued!
functions on a compact domain X with the property that for all x € X" the evaluation

functional F, is a bounded linear functional:

AM stVo € X, |F[f]] = | f ()] < M| f]] (A1)

If H is an RKHS, then, by the Riesz representation theorem, for each x € X', there

exists a function K, € H satisfying the reproducing property:

Felfl = fl) =< (), K() >k V€N (A.2)

In other words, the reproducing property states that the inner product of a function

f and the function K, is f(x) in the RKHS. Defining K as a two-variable function

K(x7y) = KLL‘(Z/)? (A3)

the theory extends easily to the complex-valued case, with a little more care in the use of complex
conjugation.

199

it can be shown that K is a postive definite function. K is known as the kernel of
the RKHS. It can be shown that there is one-to-one correspondance between positive
definite kernel functions K and Reproducing Kernel Hilbert Spaces H, and we will

henceforth refer to an RKHS with its associated kernel as Hx.

Mercer’s theorem tells us that a kernel function K has the expansion

7y) = iAi¢i<x>¢i(y>, (A4)

where the A’s and ¢’s are the eigenvalues and orthonormal eigenfunctions of the

integral equation

[K@, y)o(w)dz = 2o(y). (A.5)

If there are infinitely many solutions to the above equation, the corresponding RKHS

is dense in Ly. The space Hx can also be represented as

Hie = {fIf(z deqz (A.6)

_ idi@(x), (A7)

Using this expansion, it is easy to see that

<f,g>x = (decﬁz Zd%ﬁ]) (A.8)

K

> df g9

and

% = (id{qﬁz deqb]) (A.10)

= i " (A.11)

The RKHS kernel K is often interpreted as performing a mapping of the data into

200

a high- or even infinite-dimensional feature space:

B :x— 0(x) = [y M), ata(@), .} (A.12)

Using this definition, the inner product between ®(x) and ®(y) in feature space is
K(x,y), via an application of Mercer’s Theorem.

If we consider sets of the form

SAE{fIfG%K, ||f||K§A}, (A13)

the parameter A serves to control the size of the hypothesis space. As A gets larger,
Sa gets larger: its covering number grows, and it contains functions which are less
smooth. This has well-known implications for learning theory, as discussed in Chapter
5.

There is also an important relation between the L., norm of a function and its

RKHS norm. If we restrict our input space to a set X such that

k = sup /K (x, x), (A.14)

reX

exists, then it can be shown that

sup f(2) = ||fllec < &l fllx- (A.15)

rEcalX

201

202

Appendix B

The Representer Theorem

In this appendix we discuss and prove the so-called Representer Theorem, showing

that under rather general conditions, the form of the solution f* to the regularization

problem
L1)
min ;V(yz-, f () + Al Il (B.1)
can be written as
¢
[H(x) = aK(x,x;). (B.2)

i=1
In other words, the solution to the regularization problem can be expressed as a
vector (hyperplane) in feature space corresponding to a certain linear combination of
the projections of the training examples into feature space. This theorem underlies all
the algorithms discussed in thsis paper, because it implies that instead of having to
search an entire RKHS H to find the solution to a Tikhonov regularization problem,
we need only search an /-dimensional subspace parametrized by the coefficients ¢;. In
other words, the inherently infinite-dimensional problem of finding the best function
in an RKHS is transformed into a tractable problem of finding ¢ parameters c;.

The proof we present here is due to Schélkopf et al. [97], although the proof is
“implicit” in much earlier work of Wahba [119].

Recall from Appendix A that we define ®(z;) to be the projection of z; into
a high (possibly infinite) dimensional feature space, and that all functions in the

RKHS can be viewed as “hyperplanes” in thisis feature space. From this viewpoint,

203

the Representer Theorem states that the solution to the Tikhonov problem has the

form
¢

=Y ®(x). (B.3)

i=1
The proof proceeds by contradiction. Suppose that we cannot express f* in this form.

Then we can express it as

¢
5= a®(xi) +v, (B.4)
i=1
where v is orthogonal to ®(x1), ..., ®(x,). Define
e
=) ¢®(xi)=f"—v (B.5)

Consider the application of this function f* to an arbitrary training point x;:
y g j

[(x;) = ch x;) + v, D(x3)) (B.6)

= (; i®(xi), ©(x;)) (B.7)
= fx), (B.8)

by our orthogonality condition. But this shows that f*(x;) is independent of v — for
any training point, the choice of v will not affect the value of f* at that point. (We
are not stating that f* and f* — v are the same function, only that they have the

same value at all of the training points.) In particular,

; V(" (i), 5:) = 2 V(f (i), 13- (B.9)

In addition,
I Il = ||Zcz xi) + vl (B.10)
= ||Zcz (i) [[5c + vk (B.11)

204

Y

H;QQMM% (B.12)

= |If 1%, (B.13)

and the function f has RKHS norm strictly less than f* if v # 0. Therefore, by
choosing v = 0, we can reduce the RKHS norm of f* without affecting the loss
at any of the training points, thereby obtaining a better solution to the Tikhonov
regularization problem. This contradicts the notion that f* was optimal; at any
optimal solution, v = 0, and the solution has the desired form.

The above proof is extremely general (and can easily be made even more general,
allowing for a loss function that depends on all the function values simultaneously),
but is nonconstructive: it tells us the form of the solution, but does not tell us how
to actually find the ¢;. In the specific case of the square loss, where V(f(x),y) =
(y— f(x)?), Girosi [47] includes a constructive proof of the form of the ¢;; such a proof
is very similar to the derivation of the RLSC algorithm given in Chapter 3, although
there we begin by assuming the form of the solution.

Using the above equations, it is easy to show that if we have a function in the

form:

f= Z c; P(x;3), (B.14)

then
/1% = c¢"Ke, (B.15)

where K is now the kernel matriz defined via K;; = ®(x;) - ®(x;5) = K(xi, X;).

205

206

Appendix C

The Conjugate Gradient Algorithm

The Conjugate Gradient algorithm is an algorithm for solving systems of linear equa-
tions Ax = b, where A is positive semidefinite (or, equivalently, for minimizing
unconstrained quadratic forms 1x” Ax + b’x).

Although the Conjugate Gradient algorithm is simple to state, understanding
its workings is quite difficult. For a good tutorial on the Conjugate Gradient, see
[112] or especially [101]. Here, we will restrict ourselves to stating the algorithm, and
discussing why it is especially useful in machine learning problems such as Regularized
Least Squares Classification.

Conjugate Gradient is an iterative algorithm for solving system of equations. Un-
like algorithms such as Gaussian elimination, which operate directly on the matrix
and operate in a fixed number of floating-point operations, iterative methods begin
with a candidate solution x (often the all-zero vector), and iteratively refine this es-
timate, generally through a combination of multiplying A by x and some additional
computations. Gradient descent is another (simpler) iterative algorithm for solving
Ax = b when A is positive semidefinite.

Because iterative algorithms operate primarily by forming matrix-vector products
Ax, they are especially useful in situations where these products are easy to form,
but operating directly on the matrix using row-operations is unwieldy or infeasible.
A primary example of this is if the matrix A is large and sparse. It may be fast to

form Ax, but if we begin performing Gaussian elimination, we will soon generate a

207

Let : =0
Letr =b — Ax
Letd=r
Let fpew =TT
Let (50 = 6new
while i < i, and d,ew > €26, do
Let q = Ad
Let a = ‘;“Tez
Let x=x+ad
if ¢ is divisible by 50 then

Letr =b — Ax
else

Letr=r—aq
end if

Let 601(1 = 6new
Let dpew =r'r

Letﬁz‘f;(l)—‘;:

Let d =r + 4d

Let i =7+1
end while

Figure C-1: The Conjugate Gradient algorithm.

dense matrix. Another primary example, that appears several times in this thesis, is
the case where A = M M7 + kI, where M is an (-by-d matrix. If ¢ is large, M M7
may be too large to store, so we cannot work with A directly, but we can form the
matrix-vector product Ax in O({d) operations.

Conjugate gradient has been shown empirically and theoretically to have very fast
convergence, and avoids many of the “zigzagging” and “overshooting” issues often
associated with Steepest Descent. It generally converges in a relatively small number
of iterations (compared to Steepest Descent). For solving large, positive semidefinite
systems of equations, it is often the algorithm of choice. For completeness, we present
the algorithm in Figure C-1; this algorithm, along with derivations, explanations and

intuitions, can be found in [101].

208

Bibliography

[1]

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to
binary: A unifying approach for margin classifiers. Machine Learning Research,

pages 113-141, 2000.

Mariano Alvira and Ryan Rifkin. An empirical comparison of snow and svms
for face detection. Technical Report A. I. Memo No. 2001-004, C.B.C.L. Memo
No. 193, MIT Center for Biological and Computational Learning, 2001.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68:337-404, 1950.

K. J. Arrow and L. Hurwicz. Reduction of constrained-maxima to saddle-point
problems. In J. Neyman, editor, Proceedings of the Third Berkeley Symposium
on Probability, volume V, pages 1-20, Berkeley, CA, 1956. University of Cali-

fornia Press.

Peter L. Bartlett. For valid generalization, the size of the weights is more impor-
tant than the size of the network. In Advances in Neural Information Processing
Systems 9, Proceedings of the 1996 Conference, pages 134140, London, UK,
December 1996. MIT Press.

Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear program-

ming: theory and algorithms. Wiley-Interscience, 2nd edition, 1993.

J. M. Bennet. Triangular factors of modified matrices. Numerisches Mathe-

matik, 7:217-221, 1965.

209

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

18]

M. Bertero. Regularization methods for linear inverse problems. In C. G.

Talenti, editor, Inverse Problems. Springer-Verlag, Berlin, 1986.

M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision. Pro-
ceedings of the IEEE, 76:869-889, 1988.

Dimitris Bertsimas and John Tsitsiklis. Introduction to linear optimization.

Athena Scientific, Belmont, Mass, 1997.

R. C. Bose and D. K. Ray-Chaudhuri. On a class of error-correcting binary
group codes. Inofrmation and Control, 3:68-79, 1960.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT,
pages 144-152, 1992.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of

Machine Learning Research, 2002.

Erin Bredensteiner and Kristin P. Bennett. Multicategory classification by sup-

port vector machines. In Computational Optimizations and Applications, vol-

ume 12, pages 53-79, 1999.

C. J. C. Burges and D. J. Crisp. Uniqueness of the svm solution. In Neural

Information Processing Systems, 1999.

Christopher J. C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decom-
position methods for support vector machines. In Proceedings of IJCAI99, SVM
workshop, 1999.

William W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth

International Conference on Machine Learning, 1995.

210

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Ronan Collobert and Samy Bengio. Svmtorch: Support vector machines for

large-scale regression problems. Journal of Machine Learning Research, 1, 2001.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:1-25,
1995.

Corinna Cortes. Prediction of Generalization Ability in Learning Machines.

PhD thesis, University of Rochester, Rochester, New York, 1995.

Koby Crammer and Yoram Singer. Improved output coding for classification
using continuous relaxation. In Proceedings of the thirteenth annual conference

on neural information processing systems, 2000.

Koby Crammer and Yoram Singer. On the learnability and design of output
codes for multiclass problems. In Computational Learning Theory, pages 35-46,

2000.

Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-
ticlass kernel-basd vector machines. Journal of Machine Learning Research,

2001.

Koby Crammer and Yoram Singer. On the learnability and design of output

codes for multiclass problems. Machine Learning, 2002, to appear.

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numer-

ical Mathematics, 31:377-390, 1966.

Nello Cristianini and John Shaw-Taylor. An Introduction To Support Vector
Machines. Cambridge University Press, 2000.

Felipe Cucker and Steve Smale. On the mathematical foundations of learning.

Bulletin of the American Mathematical Society, 39:1-49, 2002.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems
via error-correcting output codes. Journal of Artificial Intelligence Research,

2:263-286, 1995.

211

[30]

[31]

33]

[34]

[35]

[36]

[37]

[38]

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems
via error-correcting output codes. Journal of Artificial Intelligence Research,

2:263-286, 1995.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization
networks and support vector machines. Advanced In Computational Mathemat-

ics, 13(1):1-50, 2000.

Shai Fine and Katya Scheinberg. Efficient application of interior point methods
for quadratic problems arising in support vector machines using low-rank kernel

representation. Submitted to Mathematical Programming, 2001.

R. Fletcher. Practical Methods of Optimization, Second Edition. John Wiley &
Sons, 1987.

R. Fletcher and M. J. D. Powell. On the modification of the Idl* factorization.
Mathematics of Computation, 28(128):1067-1087, 1974.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119-139, 1997.

Thilo-Thomas Frie/3. Support vector neural networks: The kernel adatron with

bias and soft-margin. Unpublished., 1998.

Thilo-Thomas Frie, Nello Cristianini, and Colin Campbell. The kernel-adatron
algorithm: a fast and simple learning procedure for support vector machines.
In Jude Shavlik, editor, Machine Learning: Proceedings of the Fifteenth Inter-
national Conference (ICML °98), pages 188-196. Morgan Kaufman, 1998.

Thilo-Thomas Frief and Rob Harrison. The kernel adatron with bias unit:
Analysis of the algorithm. Technical Report 729, University of Sheffield, Octo-
ber 1998.

212

[39]

[40]

[41]

[42]

[45]

[46]

J. H. Friedman. Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford University, 1996.

Glenn Fung and O. L. Mangasarian. Proximal support vector classifiers. In
Provost and Srikant, editors, Proceedings of the Seventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 77-86.

ACM, 2001.

Glenn Fung and O. L. Mangasarian. Proximal support vector machine classi-

fiers. Technical report, Data Mining Institue, 2001.

Johannes Fiirnkranz. Round robin classification. Journal of Machine Learning

Research, 2:721-747, 2002.

C. F. Gauss. Theoria combinationis obsevationum erroribus minimis obnoxiae.

Werke, 1823.

T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares support vector

machine classifiers. Technical Report Internal Report 00-37, ESAS-SISTA, 2000.

T. Van Gestel, J. Suykens, B. De Moor, and J. Vandewalle. Bayesian inference
for Is-svmms on large data sets using the nstrom method. In International Joint

Conference on Neural Networks, 2002.

P. E. Gill, W. Murray, and M. A. Saunders. Methods for computing and mod-
ifying the [dv factors of a matrix. Mathematics of Computation, 29:1051-1060,
1975.

Federico Girosi. An equivalence between sparse approximation and support

vector machines. Neural Computation, 1998.

Federico Girosi and Tomaso Poggio. Networks and the best approximation
property. Technical Report A.I. Memo No. 1164, C.B.C.L Paper No. 45, Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory and Center

213

[56]

[57]

[58]

for Biological and Computational Learning, Department of Brain and Cognitive

Sciences, October 1989.

G. H. Golub and C. F. Van Loan. Matriz Computations. The Johns Hopkins
University Press, 3rd edition, 1996.

P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized
Linear Models. Number 58 in Monographs on Statistics and Applied Probability.
Chapman & Hall, 1994.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals
of Statistics, 26(2):451-471, 1998.

Bernd Heisele, Tomaso Poggio, and Massimiliano Pontil. Face detection in still
gray images. Technical Report A.I. Memo No. 2001-010, C.B.C.L. Memo No.
197, MIT Center for Biological and Computational Learning, 2000.

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, 2002.

Tommi Jaakkola and David Haussler. Probabilistic kernel regression models.

In Advances in Neural Information Processing Systems 11, 1998.

Thorsten Joachims. Making large-scale svm learning practical. Technical Report

LS VIII-Report, Universitat Dortmund, 1998.

Thorsten Joachims. Estimating the generalization performance of a sym effi-

ciently. Technical Report LS8-Report 25, Universitat Dortmund, 1999.

Thorsten Joachims. Making large-scale svm learning practical. In Bernhard
Scholkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances
in Kernel Methods — Support Vector Learning, chapter 11, pages 169-185. MIT
Press, 1999.

Thorsten Joachims. Estimating the generalization performance of a svm effi-
ciently. In Proceedings of the International Conference on Machine Learning,

2000.

214

[59]

[61]

[62]

[64]

[65]

[66]

[67]

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized smo algorithm
for svm classifier design. Technical Report CD-00-01, Control Division, Dept.
of Mechanical and Production Engineering, National University of Sinagpore,

2000.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast
iterative nearest point algorithm for support vector machine classifier design.
Technical Report TR-ISL-99-03, Intelligent System Lab, Department of Com-

puter Science & Automation, Indian Institute of Science, 1999.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Im-
provements to platt’s smo algorithm for svm classifier design. Technical Report
CD-99-14, Control Division, Department of Mechanical and Production Engi-

neering, National University of Singapore, 1999.

E. B. Kong and T. G. Dietterich. Why error-correcting output coding works
with decision trees. Technical report, Department of Computer Science, Oregon

State University, Corvallis, OS, 1995.

S. Kutin. Extensions to mcdiarmid’s inequality when differences are bounded
with high probability. Technical Report TR-2002-04, University of Chicago,
2002.

S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and general-
ization error. Technical report TR-2002-03, University of Chicago, 2001.

S. Kutin and P. Niyogi. The interaction of stability and weakness in adaboost.
Technical report TR-2001-30, University of Chicago, 2001.

Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector ma-
chines. Technical Report 1043, Department of Statistics, University of Wiscon-
sin, 2001.

Yoonkyung Lee, Yi Lin, and Grace wahba. Multicategory support vector ma-

chines. In Proceedings of the 33rd Symposium on the Interface, 2001.

215

[68]

[69]

[70]

[71]

[72]

73]

[77]

78]

[79]

Yuh-Jye Lee and Olvi Mangasarian. Rsvm: Reduced support vector machines.

In STIAM International Conference on Data Mining, 2001.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in
nonstandard situations. Technical Report TR 1016, University of Wisconsin,

Madison, March 2000.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in

nonstandard situations. Machine Learning, 46:191-202, 2002.

Yi Lin. Support vector machines and the bayes rule in classification. Technical
Report Technical Report Numberr 1014, Department of Statistics, University
of Wisconsin, 1999.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical

procedure of recognition (in russian). Technicheskaya Kibernetica, 3, 1969.

O. L. Mangasarian and David R. Musicant. Successive overrelaxation for sup-
port vector machines. Technical Report Mathematical Programming Technical
Report 98-14, Computer Sciences Department, University of Wisconsin Madi-
son, 1998.

Olvi L. Mangasarian. www.cs.wisc.edu/ olvi/.
Olvi L. Mangasarian. Nonlinear programming. McGraw-Hill, New York, 1969.

Léaszlé Maté. Hilbert Spce Methods in Science and Engineering. Adam Hilger,
1989.

C. J. Merz and P. M. Murphy. Uci repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 1998.

Dan Roth Ming-Hsuan Yang and Narendra Ahuja. A snow-based face detector.
In Advances in Neural Information Processing Systems 12 (NIPS 12), 2000.

Marvin L. Minsky and Seymour A. Papert. Perceptrons. MIT Press, 1988.

216

[80]

B. A. Murtagh and M. A. Saunders. Minos 5.4 user’s guide. Technical Report
SOL 83-20R, Systems Optimization Laboratory, Stanford University, December
1983. (revised February 1995).

[81] Yurii Nesterov and Arkadii Nemirovskii. Interior Point Polynomial Algorithms

[84]

88

in Convex Programming, volume 13 of Studies In Applied Mathematics. STAM,
1994.

Edgar Osuna. Support Vector Machines: Training and Applications. PhD thesis,
Massachusetts Institute of Technology, 1998.

Edgar Osuna, Robert Freund, and Federico Girosi. An improved training al-
gorithm for support vector machines. In J. Principe, L. Gile, N. Morgan, and
E. Wilson, editors, Neural Networks for Signal Processing VII., pages 276-285,
New York, NY, USA, 1997.

John C. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical Report MST-TR-98-14, Microsoft Research,
April 1998.

John C. Platt. Fast training of support vector machines using sequential min-
imal optimization. In Bernhard Scholkopf, Christopher J. C. Burges, and
Alexander J. Smola, editors, Advances in Kernel Methods — Support Vector
Learning, chapter 12, pages 169-185. MIT Press, 1999.

Tomaso Poggio and Federico Girosi. Networks for approximation and learning.

Proceedings of the IEEE, 78(9):1481-1497, September 1990.

Tomaso Poggio, Sayan Mukherjee, Ryan Rifkin, Alex Rakhlin, and Alessandro

Verri. b. In Uncertainty in Geometric Computations, 2001.

J. R. Quinlan. C4.5: Programs for Empirical Learning. Morgan Kaufmann,
San Francisco, CA, 1993.

217

[89]

[90]

[91]

[92]

93]

[94]

Ramaswamy, Tamayo, Rifkin, Mukherjee, Yeang, Angelo, Ladd, Reich, Lat-
ulippe, Mesirov, Poggio, Gerlad, Loda, Lander, and Golub. Multiclass cancer
diagnosis using tumor gene expression signatures. Proceedings of the National

Academy of Science, December 2001.

Rennie and Rifkin. Improving multiclass classification with the support vector
machine. Technical Report A.I. Memo 2001-026, C.B.C.L. Memo 210, MIT Ar-
tificial Intelligence Laboratory, Center for Biological and Computational Learn-

ing, 2001.

Ryan Rifkin, Massimiliano Pontil, and Theodoros Evgeniou. A note on support
vector machine degeneracy. Technical Report A.I. Memo No. 1661, C.B.C.L.
Paper No. 177, MIT, 1998.

Frank Rosenblatt. Principles of Neurodynamics. Spartan Books, 1962.

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-28,
1998.

Saburou Saitoh, Daniel Alpay, and Joseph Ball, editors. Reproducing kernels
and their applications, volume 3 of International Society for Analysis, Applica-

tions and Computation. Kluwer Academic, 1999.

R. E. Schapire, Y. Freudn, P. Bartlett, and W. S. Lee. Boosting the mar-
gin: a new explanation for the effectiveness of voting methods. The Annals of

Statistics, 26(5):1651-1686, 1998.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-

rated predictions. Machine Learning, 37(3):297-336, 1999.

Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola. A generalized represen-
ter theorem. In Proceedings of the 14th Annual Conference on Computational

Learning Theory, pages 416426, 2001.

218

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Bernhard Scholkopf and Alex Smola. Learning with Kernels. MIT Press, 2002.

I. Schonberg. Spline functions and the problem of graduation. Proceedings of

the National Academy of Science, pages 947-950, 1964.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce

english text. Journal of Complex Systems, 1(1):145-168, 1987.

J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain. http://www-2.cs.cmu.edu/ jrs/jrspapers.html, 1994.

S. Smale and D. Zhou. Estimating the approximation error in learning theory.

preprint, 2001.

Alex J. Smola and Bernhard Scholkopf. Sparse greedy matrix approximation for
machine learning. In Proceedings of the International Conference on Machine

Learning, 2000.

K. K. Sung. Learning and Example Selection for Object and Pattern Recogni-
tion. PhD thesis, MIT, 1996.

J. A. K. Suykens. Least squares support vector machines for classification and

nonlinear modelling. Neural Network World, 10(1-2):29-48, January 2000.

J. A. K. Suykens, J. De Brabanter, .. Lukas, and J. Vandewalle. Weighted
least squares support vector machine: robustness and sparse approximation.

Technical Report Internal Report 00-117, ESAT-SISTA, 2000.

J. A. K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle.
Least squares support vector machine classifiers: a large scale algorithm. In

Proceedings of the European Conference on Circuit Theory and Design, 1999.

J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse approximation using
least squares support vector machines. In Proceedings of the IEEE International

Symposium on Chircuits and Systems, 2000.

219

[109] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine

classifiers. Neural Processing Letters, 1999.

[110] J. A. K. Suykens and J. Vandewalle. Multiclass least squares support vec-
tor machines. In Proceedings of the International Joint Conference on Neural

Networks, 1999.

[111] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed problems. W. H.
Winston, Washington D.C., 1977.

[112] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, 2000.

[113] Robert J. Vanderbei. Loqo user’s manual — version 3.10. Technical Report
SOR-97-03, Princeton University, December 1997.

[114] Vladimir N. Vapnik. Estimation of Dependencies Based On Empirical Data.

Springer Verlag, 1979. (Russian. English translation in 1982.).

[115] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,
1995.

[116] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[117] V. V. Vasin. Relationship of several variational methods for the approximate

solution of ill-posed problems. Avtomatika i Telemekhanika, 7:161-166, 1970.

[118] S. Viaene, B. Baesens, T. Van Gestel, J. Suykens, D. Dedene, B. De Moor,
and J. Vanthienen. Least squares support vector machine classifiers: an empir-
ical evaluation. In Proceedings of the 12th Belgian-Dutch Artificial Intelligence
Conference, 2000.

[119] Grace Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial &
Applied Mathematics, 1990.

220

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Grace Wahba. Support vector machines, reproducing kernel hilbert spaces and
the randomized gacv. Technical Report 984rr, University of Wisconsin, Depart-

ment of Statistics, 1998.

J. Weston and C. Watkins. Multi-class support vector machines. Technical
Report CSD-TR-98-04, Royal Holloway, University of London, Department of
Computer Science, 1998.

Christopher K. I. Willams and Matthias Seeger. Using the nystrom method to

speed up kernel machines. In Neural Information Processing Systems, 2000.

Christopher K. I. Williams and Matthias Seeger. The effect of the input density
distribution on kernel-based classifiers. In Proceedings of the 17th International

Conference on Machine Learning, pages 1159-1166, 2000.

R. C. Williamson, A. J. Smola, and B. Scholkopf. Generalization perormance
of networks and support vector machines via entropy numbers of compact oper-
ators. Technical Report NeuroCOLT NC-TR-98-019, Royal Holloway College,
1998.

P. Wolfe. A duality theorem for nonlinear programming. Quarterly of applied
mathematics, 19(3):239-244, 1961.

Ming-Hsuan Yang and Narendra Ahuja. A geometric approach to train support
vector machines. In Proceedings of the 2000 IEEE Conference on Computer
Vision and Pattern Recognition, 2000.

Yeang, Ramaswamy, Tamayo, Mukherjee, Rifkin, Angelo, Reich, Lander,
Mesirov, and Golub. Molecular classification of multiple tumor types. In Intel-

ligent Systems in Molecular Biology, 2001.

221

