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Abstract

We describe the design and construction of a component based face detector for gray
scale images. We will show that including parts of the face into the negative training
sets of the component classifiers leads to improved system performance. We introduce
a method of using pairwise position statistics between component locations to more
accurately locate the parts of a face. Finally, we illustrate an application of this
technology in the creation of an accurate eye detection system.
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Chapter 1

Domain

The goal of the work presented here is to build an accurate face detection system for

still grayscale images. The mark of ultimate success would be a system which could

locate faces in images in a manner consistent with a human performing the same task.

As current systems remain well behind human performance, we limit ourselves to the

domain of faces which are not rotated in the image plane (around an axis through

the image), and are rotated a maximum of 30 degrees left or right out of the plane

(around an axis from up to down, as one looks at the image). Our system will be

developed as an extension to the component based face detection system described

in [8].
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Chapter 2

Object Detection

Finding faces in digital images, sans color or motion cues, is a pattern recognition

task. At the level of greatest abstraction, the detecting system is given an image patch

of known size (or a feature vector distilled from this patch), and is to decide whether

this vector stemmed from an face, or a non face. Literature concerning mathematical

structures to perform such tasks, and theoretical limits on performance and error are

available. The details of this branch of academia are out of the scope of this document,

but the reader is invited to study the literature of learning theory, especially [20, 3, 4],

for a background in statistical learning systems.

2.1 Learning From Examples

A few statistical learning algorithms are referenced often enough in this document to

warrant a coarse overview for the lay-person reader. The mathematical algorithms

outlined in this section include two density based classifiers [3] and the Support Vector

Machine (SVM) classifier [20, 2].

The basic problem is to learn a rule that divides a class of objects from a class

of non-objects given examples of both sets. We begin with a set of i pairs (x, y)

where (x ∈ X ⊆ Rd) and (y ∈ Y ⊆ R). For our vision task, x will represent the

feature vector stemming from an image, and y ∈ [−1, 1] will represent whether or not

this feature vector is from a target object. From the view of the pattern recognizer,
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the goal is to estimate y given a new example x. We make the assumption that our

data stems from two separate distributions; P (x|(y = 1)) and P (x|(y = −1)); the

distribution of feature vectors from images of faces, and the distribution of feature

vectors from images of everything else.

A density estimation approach to classification involves attempting to model the

two distributions using the example data and the prior probability of the two classes,

P (y = 1) and P (y = −1). Using a maximum likelihood or Baysian approach, one

can choose the most likely class of a new data point [3].

At times we will use two different types of density estimation based classifiers. In

the first approach we will assume that the positive data comes from a gaussian distri-

bution. By finding both the mean and covariance matrix of this distribution, we can

calculate the probability that a new signal comes from the face class. We will assume

for simplicity that the negative data comes from a uniform distribution, a distribution

where every x is equally probable. In the implementation of this classifier, we use

the simplifying assumption that the covariance matrix of the gaussian distribution

is diagonal. Reasons for this assumption include the sparseness of the example data

(leading to unstable models of covariance) and the speed of computation. At times

we will refer to this gaussian approach, with the positive data modelled as a gaussian

curve, and the negative data modelled as an even plane, as a Mahalanobis distance

approach, since the weighted distance to the gaussian mean is in direct proportion to

the probability density [3].

For certain classifiers, our system will use instead histograms to model proba-

bility densities. Building a histogram from the training data is a simple exercise in

discretizing our space of inputs into bins, and placing each example into its respective

bin. Care must be taken to make the bins large enough to encompass a represen-

tative number of training points from the limited training data, but not so large as

to detrimentally reduce the resolution of the resulting probability density estimate.

After normalizing the histogram to a volume of exactly one, given a new data point,

we simply index into the histogram bin corresponding to that data point to calculate

its probability. Again, because our training data is limited, in practice this histogram

11



based approach is limited strongly in histogram resolution when the dimensionality of

the distribution is high. In our system we will use these histogram based approaches

to model the 2 dimensional expected positions of facial components.

Finally, the most prevalent type of classifier we will use in this system is the SVM

classifier. An SVM is a particular regularization approach to regression and classi-

fication, and belongs to the class of margin maximizing classifiers. SVMs regularize

between empirical loss and the smoothness of the approximating function [20, 5] and

have been previously shown to work well for face detection tasks [7]. All SVM clas-

sifiers used in this work, unless otherwise noted, were trained with linear kernels and

code from [12].

2.2 Prior Work

The literature of computer vision is rich with studies of object detection. Among

these studies, perhaps the most commonly selected object is the human face. The

face is special because of its common appearance in visual scenes, and its simple,

semi-rigid structure that varies little in geometry between samples. Even though the

geometric configuration of a face is predictable, due to its 3D nature, variations in

pose, illumination, texture and shape can have strong effects on the 2D projection of

the face in the image plane, making the detection task difficult . Obvious application

(such as in tracking and surveillance systems) is also a likely motivation for the wealth

of interest in robust automatic face detection systems.

Many early face detection systems eschewed component based architectures for

a holistic approach. In [14], the distribution of faces is modelled with a mixture of

gaussian curves. Faces are detected by measuring comparing novel patterns to the

model distribution. A similar approach is taken in [12] and [15, 19], where a single

SVM and a set of neural networks, respectively, are trained to discriminate between

face and non-face patterns. In [14, 15], virtual examples, as explored in [11], are

incorporated by rotating, translating, or scaling positive face examples, and including

these new training points into the training regime in order to reduce sensitivity to
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these types of variation.

It makes sense intuitively to use a part based approach to face detection if one

believes that the parts of the face are less sensitive than the face as a whole to visual

changes from to differences in lighting or pose. Part based systems can also be less

sensitive to partial facial occlusion by interfering objects or from strong directional

lighting. Perhaps the most compelling reason to continue studying part based systems

is the empirical evidence supporting their accuracy over global approaches. In this

section we will offer a survey of a few part based attempts at face detection. This

is not to say that part based object detection schemes have been used for detecting

faces exclusively. Indeed, successful implementations of component based pedestrian

detectors and vehicle detectors are discussed in [13, 10] and [1] respectively.

All architectures of component based systems must at some point select which

parts to use. Some systems, such as those described in [9, 7], use features which seem

naturally salient to humans, such as the eyes, nose, and mouth. Other systems have

been designed to learn object parts automatically from the training images [22, 24,

8, 23]. The system described in [8] uses 14 features that were chosen automatically

using a region growing algorithm in combination with a statistical error bound [20].

In [24], an interest operator was designed to collect image patches from the training

set, which were then clustered to find salient object parts. Component based object

detection systems in the literature have been built with as few as 2 or as many as

150 component parts. The system described in this paper uses exactly the same 14

components described in [8] for ease of direct comparison.

Component based detection systems also differ in the type of features extracted

from the images. The systems described in [16] use histogram based classifiers to

judge features extracted from the wavelet decomposition of the input image. In [24],

SNoW (Sparse Network of Winnows) based detectors are used to classify grayscale

pixel value features. Similarly, grayscale pixel value features and SVM type classifiers

are used in [8]. A completely different approach is taken in [18] where image image

invariants (invariants like the bridge of the nose is brighter than the eye socket) are

used. A direct comparison of feature spaces for face detection is available in [7],
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the results of which suggest that compared to wavelet or first derivative of grayscale

features, standard grayscale features are a good choice for frontal face detection.

Once the part examples have been located within the input image, and perhaps

labelled with a confidence in each detection, each component based object detection

system will use another classifier to judge whether or not the part detections are truly

part of the target object, or they are simply doppelgangers stemming from similar

patterns in non-object image sections. The face detection system described in [16]

uses a product of probabilities, indexed from histograms, to calculate confidence in

some image patch stemming from the face class. In [24], the set of part examples

extracted from the image is searched for subsets geometrically consistent with actual

object examples. In [8] only the best example of each part is used, and an SVM is

utilized to decide whether the set of positions and confidences is likely to have come

from a face. This SVM method of judging part detections, along with a few other

top level classifiers for comparison, will be used in the system outlined in section 3.
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Chapter 3

Approach

In order to best serve the reader, the discussion of the architecture of our face detection

system begins with descriptions of a few more simple classifiers. This is in order to

convey the concept of converting an input image into what we call a result image

without the obfuscating complexity of the remainder of the component based system.

We then, in section 3.2, introduce the reader to a simplified description of a component

based classifier and describe how multiple classifiers are combined into a full face

detection system. In section 3.3 we outline, in order of processing, the detailed

internal structure of our system. Finally, at the end of section 3.3 we describe how

a geometric model is fit into the face detector’s architecture, and how the system is

generalized to work across variations in scale.

3.1 Global Classifiers for Vision

We use the term global image classifier to describe the opposite of a component-based

image classifier. These machines do not search the input image for constituent object

parts as a first step toward classification. A single SVM trained on images of faces

and non faces is an example of a global face detector. The features input to a global

classifier do not necessarily need to be pixel values; wavelet features, first derivatives

of grayscale features, and other statistics could also be used. Information such as

the existence of object parts or the outputs of other object classifiers are examples
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of inputs to a non-global classifier. What is the nature of a part of an object is a

question best left to those more erudite than the author.

To turn a classifier into an object detector, a common strategy is to use a win-

dowing technique; where every image patch is independently fed into the classifier.

When the classifier output is larger than some threshold, the corresponding part of

the image is labelled as being a member of the object class. It is possible build a

corresponding image, separate from the input image, where the value of this new im-

age at some position (i, j) is equal to the value output from the classifier if the input

to the classifier is the image patch taken from the input image, starting at position

(i, j); refer to figure 3-1 for an illustration. This new image, which we will refer to

as a result image will be precisely the size of the original input image, less the size

of the classifier, and brighter where the classifier returned large values. Figure 3-2

illustrates the result image created when a classifier tuned to respond strongly to the

bridge of the nose is run over both a face image and a non-face image. Note the strong

response over the bridge of the nose. Result images will be a critical component of

all systems described further in this paper.

Figure 3-1: A 10×10 input image when fed into an 8×5 classifier yields a 3×6 result
image. The window corresponding to result image position (2, 2) is illuminated to
illustrate the correspondence.

16



Figure 3-2: An 18 × 16 global classifier trained on images of the bridge of the nose
is run over two input images, one of a face and one of a non-face. Note the strong
response in the vicinity of the bridge of the nose. The result images on the right are
exactly 18× 16 smaller than the input, as is illustrated by the small gray box in the
lower right of each example, which is exactly the size of the classifier.
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3.2 Simplified Component Based Classifier

Illustrated in figure 3-3 in block diagram format is a pair of schematics depicting a

global face detection system and a simple part based face detection system. In this

system, which is similar to the more complicated system described in section 3.3, each

component classifier operates as if it were its own global classifier. A result image is

created for each component. For a face detector, there might be a result image for

mouths, a result image for left eyes, etc. Once all the first level result images are

created, they are used as the input to some further system which will detect faces.

Here, for each window in the original image, the corresponding window in each result

image is extracted. The x and y position of maximization in each of these result

image patches is recorded, along with the values at the points of maximization. This

process yields a set of triplets of the form ((x0, y0, v0), (x1, y1, v1), ..., (xn−1, yn−1, vn−1))

where n is the number of facial components used by the system. This ordered set of

triplets will be referred to as a constellation. For each window in the original image

we extract this constellation of points where the components, or parts, fit best. This

constellation is then input to another classifier, which decides between constellations

stemming from faces and constellations from non-faces. The output of this upper-

level classifier is recorded in the final result image. The top level classifier can be

of any number of types (SVMs and Baysian approaches are commonly used) and is

constrained only in that it must be a function mapping valid constellations to real

values.

3.3 Detailed Part Based Classifier

Figure 3-4 shows a detailed block structure diagram of our face detection system.

Each sub-section will be described separately in order of data processing. The way

the system searches for faces at different scales is not illustrated in figure 3-4 and

will be discussed at the end of this section. The biasing, or model step between the

creation of the component result images and the construction of the constellations is
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Figure 3-3: Top: A very simple block schematic illustrating how a global face detect-
ing system might be laid out. Bottom: A schematic for a component based classifier.
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optional, and will also be described at the end.

Figure 3-4: A block diagram schematic of the major components of our face detection
system.

Component Classifiers.

The component classifiers are the systems, trained on different parts of the face, which

compute the first set of result images from the original image. Our face detector uses

the 14 parts illustrated in figure 3-5 and described in more detail in table 1. All of the

parts, when situated over a frontal face, lie completely within the frame of the face and

include no hairline, jawline, or ear structure. These parts were chosen in particular to

match the component classifiers used in [8], which were in turn selected automatically

using a statistical error bound. It would be difficult to discuss the interesting design

points of the component classifiers without first discussing the training data.

3.3.1 Training Data

The training data, which was used to train the component classifiers as well as the

top-level classifier, is a set of images divided into positive and negative examples of

faces. The negative training data consists of 13,654 grayscale images in PPM format.

Each of these images is a 58 × 58 pixel crop from a larger set of images known not
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Figure 3-5: The 14 components used in our component based face detection system
arranged in a geometrically salient and vaguely disturbing pattern.

to contain any faces. A few random selections from this set are shown in figure 3-6.

Many, but not all of these images are difficult examples of non faces, selected by using

a simple face detector to bootstrap examples out of larger images. The two rightmost

negative training examples in figure 3-6 are bootstrapped examples.

Figure 3-6: Five examples from the negative training set. The two rightmost examples
were drawn from larger images by bootstrapping with a weaker face detector.

The positive training data consists of 1,323 100×100 color PPM images of artificial

head models provided through the work in [21]. A few of these are illustrated in figure

3-7. The images are of 21 different heads, which are morphs between 6 different head

models. These 21 artificial heads are viewed at 7 angles of rotation between head-on

and 30 degrees to the right in 5 degree increments. At each position each head is

viewed with 9 different illuminations. Copying the system described in [8], the size

of the face was decided to be 58 × 58 pixels because in the 100 × 100 images of the

head, the facial part of interest is about 58 pixels square. These color images were

preprocessed before using them to train the component classifiers.

Since the system described in this paper operates on grayscale images, the training

21



Figure 3-7: Five examples from the positive training set. Note that the heads only
turn to the right. Mirror images were used to train the full rotation between -30 and
30 degrees.

data needed to be flattened into a single channel before it could be used. Also, since

the background around the head was an artificial uniform field of bright blue, and a

58 × 58 box around the face at times included a bit background in rotated images,

it was decided to replace the background with the artificial patterns shown in figure

3-8. It should be noted that few of the positive examples included any of this artificial

background.

Figure 3-8: 100 × 100 artificial backgrounds were used to replace the uniform blue
background in the training data.

The component classifiers must be trained on feature vectors extracted from their

part of interest. In order to create the component training set, it was necessary to

crop all 14 target parts out of each training image. This process was made much easier

with the correspondence between images available from the artificial head data. Along

with the images of the heads are included the pixel positions of 25 sentinel points on

the head. Figure 3-9 illustrates the positions of some these points on a typical head

model. Each of our components is defined as a sentinel point and extensions up,

down, left and right. From the table of component definitions and figure 3-9 we can
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see for instance that the first classifier is an 18 by 16 rectangle around a point centered

at the bridge of the nose. Figure 3-10 shows a few examples of extracted training

data for this classifier. When we extract the components we also extract components

from the left-right mirror images of the training data. It is worth noting that when

extracting a component around the left corner of the mouth in the mirror image, we

must use the position of the right corner of the mouth as our sentinel point. This

corpus of 2,646 images for every component comprises the positive training data of

the component classifiers.

Figure 3-9: The 58× 58 region around the face in three training images, with the 14
utilized sentinel points highlighted.

Table 3.1: Component Definitions

Index Component Description Sentinal Index Extensions

left right up down

0 Bridge of the Nose 11 8 9 10 5

1 Left Eyebrow 0 3 15 8 6

2 Left Cheek 21 3 17 8 11

3 Left Corner of the Mouth 15 3 14 6 4

4 Left Eye 6 8 8 8 8

5 Upper Lip 18 6 6 6 9

6 Left Nostril 13 9 12 3 8

7 Lower Lip 16 15 15 7 7

8 Tip of the Nose 12 7 7 10 9
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Table 3.1: Component Definitions

Index Component Description Sentinal Index Extensions

left right up down

9 Right Eyebrow 1 15 3 8 6

10 Right Cheek 23 17 3 8 11

11 Right Corner of the Mouth 17 14 3 6 4

12 Right Eye 9 8 8 8 8

13 Right Nostril 14 12 9 3 8

Figure 3-10: Selected examples of the positive training set for component 0, the bridge
of the nose component

While exploring different avenues of improvement for this face detector, several

different negative component training sets were extracted from our training data, a

pair of which deserve particular mention. The first set was created in the following

way. For each component classifier, a random rectangle, the size determined by the

classifier, was extracted from each of the 13,654 negative training images. This will

be referred to as the non-facial non-component training set, examples of which can

be seen in figure 3-11. The second training set was created in the same way, but

using extractions from the positive data. Care was taken so that the extractions did

not overlap the canonical positions (as dictated by the sentinel position) by more

than 50% of the area of the classifier. From each of the 1,323 training images 4

such rectangles were cropped out, and 4 again from the mirror image of the training

image. This body of 10,584 images per classifier will be referred to as the facial
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non-component training set, examples of which are shown in figure 3-12.

Figure 3-11: Selected examples of the non-face non-component training set for com-
ponent 0, the bridge of the nose component.

Figure 3-12: Selected examples of the facial non-component training set for compo-
nent 0, the bridge of the nose component

It is important to note here that before training any of the component classifiers

described in this section, each datapoint was histogram equalized.

3.3.2 Classifier Types

Both the SVM and Mahalobonis classifier require as their input a feature vector of

predefined size. For our feature space we use the grayscale values of the pixels in each

training image. Grayscale pixel values have been shown to be a good feature space

for frontal face detection in comparison to derivative or wavelet type features [7]. The

SVMs were trained using code described in [12], but all testing was implemented in

C++ for speed.

After designing and training the classifiers, they were tested individually on com-

ponents and non-components extracted from more artificial head data. Some real

data were also labelled by hand and the data extracted so the component classifiers

could be tested without the obfuscating level of the remainder of the face detection

engine. The results are elaborated in the results and conclusions section (section 4).
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Construction of Constellations

For each 58× 58 window in the original image a constellation is created, as described

in section 3.2. This is done by cropping the result image for each classifier to include

only positions where the center of the classifier would lie within said 58× 58 box in

the original window, and recording the position of the global maximum of that crop,

relative to the 58× 58 box. Classifiers are considered to be within the window even if

their area reaches beyond the edge of the window, so long as the center is still inside.

Judgement of Constellations

Once the constellation has been calculated for every 58 × 58 window in the input

image, a higher level classifier is employed to judge the constellations. In the system

described in [8], an SVM is trained on constellations from face images and non face

images. This approach, and others, are compared for accuracy in section 4

Our first constellation judging algorithm uses histogram based classifiers. In this

approach, we collected data from the artificial head models to produce a model of

P (xn, yn|n) for each component, n. Figure 3-13 illustrates this position histogram for

the bridge of the nose classifier, the left cheek classifier, and the mouth classifier. If

we assume that the position of facial components are independent random variables,

we can calculate the probability of a constellation stemming from a face by simply

multiplying all the probabilities indexed from the histograms. We further assume,

in this approach, that constellations arising from non-face samples are completely

random, leading to a uniform probability distribution over all constellations. The

position histograms were convolved with a gaussian bump of σ = 2.5 pixels in order

to smooth out numerical noise and make the models more tolerant to face structures

unseen in our training data.

The position based histogram approach ignores the value data stored in the con-

stellations, using only the position data. It is possible that discriminating information

is contained in these values of maximization. Indeed, constellation classifiers using

only the values were tested. Simply computing the sum of the constellation values
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Figure 3-13: Position Histograms for components 0, 2, and 5. Darker pixels indicate
areas of likely location for these components

was a constellation classifier tested and compared along side the histogram approach.

A few classification schemes involving simultaneously the position and the value in-

formation were also designed and tested. For instance, an SVM with a second degree

polynomial kernel was trained on the constellations output from faces and from non-

faces. Results for these constellation classification algorithms are elaborated upon in

section 4.

After every constellation is judged, we have available the result image for face

detection, as in the more simple face detectors described above. Finding the faces

in any image is now a simple task of thresholding, finding local maxima, and local

suppression.

Greedy Optimization, Biasing, or Model step

One common error of the system outlined in [8] is that the classifiers don’t always

maximize at the correct location. For instance the result image from the mouth clas-

sifier might have a local maximum at the center of the mouth, but the peak over the

eyebrow might be higher, leading to a completely wrong position in the constellation.

Using only the position of the maximum stimulation unfortunately ignores that there

was a strong local maximum over the correct position of the component.

We aim to assuage said problem by allowing classifiers to pass contextual informa-

tion to each other. Using classifiers that have maximized in the correct position, we

can guess more likely positions for classifiers that were wrong. Since we don’t know
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which classifiers were correct a priori, we propose the following algorithm to improve

the accuracy of the constellations.

First we collect the constellation, or the set of maxima from the result images, but

globally instead of individually for each window. One constellation is determined for

the entire image. As a side note, it is possible to collect a new constellation for every

58× 58 window, but the biasing algorithm we will describe becomes computationally

complex (slow) and doesn’t seem aid performance. In an image containing multiple

faces, it might be a bad idea to collect a single constellation for the entire image.

In order for the biasing step to work it is necessary that the part examples are all

coming from the same face. An overlapping window technique (where the image is

fragmented into sections which include at most one face) can be used to allow this

type of biasing step in images with more than one face.

Once the global constellation has been determined, for every classifier i, and for

every other classifier j 6= i, we multiply every position in the result image of j by a

value representative of how likely j is to maximize at that location, given the location

of i. These representative values are drawn from a histogram of pairwise position

statistics. That is to say, given the position of classifier i, we change the result of

classifier j to more closely model the expected position of classifier j.

In figure 3-14 is illustrated the expected position of the right eye, the left eye, and

the mouth given the position of the bridge of the nose. These values are collected from

our 1,323 positive artificial training images. Again, because our data was sparse and

prone to defined incremental changes in position, we convolved these pairwise position

images with a small gaussian bump of σ = 2.5 pixels before their use. Finally, these

histograms were renormalized to values between 0 and 1.

When running this greedy optimization algorithm we would be remiss to multiply

any position in the result image by 0, or even values very close to zero, lest some

classifier, perhaps one that maximized in an incorrect position, decimates the result

image of another classifier in a perfectly valid position. What is needed is a type of

balance between the information contained in the result images, and the contextual

information shared between the classifiers. This is implemented by linearly normal-
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Figure 3-14: Pairwise position images indicate the expected position of the right eye,
the left eye, and the mouth in comparison to the position of the bridge of the nose.
The inner rectangle is exactly 58× 58 for comparison.

izing the values in the pair-wise position images to [(α)
1

n−1 , 1], where n is the number

of component classifiers, and alpha is in [0, 1]. This way, the most any value in any

result image can be reduced is by a factor of α, which happens only if the (n − 1)

other classifiers had a value of 0 in their pairwise position histogram at this particular

point.

The intuition behind this optimization step is that often, many of the component

classifiers will maximize in the correct locations, and the others will be stuck in

global maxima that are far from the correct position. Assume that classifier i is one

such incorrect classifier. Using our models of pairwise expected positions, the biasing

areas from the set of correct classifiers will all converge at the expected position of

classifier i, creating a constructive interference type effect (see figure 3-15). Ideally,

after biasing the position of maximization will be under the expected position of

component i if and only if there was a suitable local maximum at this position. The

danger behind this type of optimization is the possibility of constellations from non-

face images performing a type of automatic self assembly and being persuaded into

constellations resembling those of faces. While a valid concern, as will be detailed

later in the results section, section 4, empirical results show that this either does not

happen, or it happens so rarely that it is irrelevant.

The greedy optimization step fits between the generation of the result images,

and the generation of the constellations. Biasing takes the result images as input and
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produces a new set of result images. Since the biasing step inputs result images and

outputs result images, it is possible to chain biasing steps with interesting effects.

Figure 3-15: Illustration of biasing Left: 11 components have correctly located, while
the right eye, the tip of the nose, and the mouth have incorrectly located. Right: The
bias image for the tip of the nose classifier. Notice that the biasing area from the
11 correct components constructively interfere at the expected position of the nose,
while the two other incorrect classifiers weakly influence elsewhere in the image.

N-Level Biasing

Since the individual classifiers are weak, the global maximum of some classifier i is

very often not at the correct position. Indeed, for images that are not much like

our training images, it is often the 3rd or 4th ranked local maximum that is at the

correct position. As a generalization of the biasing step outlined above we present an

algorithm that uses several local maxima for biasing the result images, instead of just

the global maximum. The values used in the biasing step, the multipliers indexed

from the pairwise position images, are retained from the previous definition.

In brief, we record the N strongest local maxima whose corresponding windows

of support in the original window do not overlap at all. We then bias as before from

each of these points. The collection of the local maxima is performed in a greedy

iterative manner, sequentially recording the global maximum from the result image,

decimating the neighborhood of this maximum, and repeating until N such local

maxima are recorded.
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Figure 3-16: Top: Result images for the bridge of the nose, the nose, and the right
eye. Bottom: The same result images after biasing. α was set to .5.

Abstracting Across Scale

So far in the description of this system, we have been ignoring how the system detects

faces at multiple scales. As it is defined right now, it will only detect faces which are

exactly 58 pixels wide in the original image.

It is possible to first re-scale the input image into an image pyramid (an image

pyramid is a data structure which contains multiple copies of the same image at

multiple resolutions), and then run the system independently on every level of the

pyramid. While simple and powerful, this method also erases one of the advantages of

a component based system, the ability to detect faces where the features are slightly

out of scale with each other when compared to the training images.

That said, most of the system is carried out in such a manner, one thread for each

level of the pyramid. The only truly complex step is how the N -Level biasing step

handles multiple scales. Rather than taking N local maxima from each level of the

pyramid, N local maxima are extracted from the image pyramid as a whole. The

result image multiplication step also takes place across the scale dimension. When a
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Figure 3-17: Top: Result images for the bridge of the nose, the nose, and the right
eye when run over an image with no face . Bottom: The same result images after
biasing. α was set to .5. Notice that without the constructive interference effects of
several classifiers being in face-like geometric correspondence, the result images do
not change much.
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particular local maximum is selected for biasing from level 4 in a pyramid, the result

pyramids for the other classifiers are biased at not only level 4, but at corresponding

positions in levels 4 ± ν where ν is an integer adjustable parameter of the biasing

step. The effect is that a small right eye can bias a largish nose, etc.

During the constellation step, the result pyramids are handled in a in a scale-

independent manner. The final output of the system, then, is actually not a result

image containing bright areas where windows contain faces, but a result pyramid with

similar properties.
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Chapter 4

Results

The results section is arranged as follows. First we will report and compare the results

from different component classifier structures and training procedures. Second we will

discuss the merits of the various constellation classifiers. Finally we will illustrate

the performance of our full face detection system and compare to a few other face

detection systems.

4.1 Component Classifiers

In order to build a robust system, it seems intuitive that we should want the com-

ponent classifiers to be as accurate as possible. Independent of the biasing and con-

stellation classification step, more discrimiating component classifiers should lead to

uniform system improvement.

It was decided, then, to construct test sets for the individual classifiers by extract-

ing components from more artificial data. These new head models, of which there

were 1,536 images including the mirrors, were under slightly more difficult angles of

rotation and more intense lighting conditions than the training data. The exact same

extraction process was used to extract this data as was used to extract the training

data for the component classifiers. Negative test examples were extracted as random

crops from images which contained no face images. A second set of negative test

examples were also drawn in a way similar to the creation of facial non-component
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training set above.

It has been noted that acquiring more data to test sub-units of our system is much

like assimilating additional training data. Perhaps to set a portion of our training

data aside to test the component classifiers that would have been a more acceptable

solution. I would argue that this situation is more like testing separate architectures

than tuning model parameters.

For each component, two separate classifiers were tested. Each was trained with

the SVM algorithm described above, one trained with the facial non-component train-

ing set (B), and the other with the non-facial non-component training set (C). Both of

these classifiers were tested on both test sets. 4 separate ROC curves were generated

for each component, and are illustrated in figure 4-1 and 4-2.

It is expected that the classifier trained with facial negatives will outperform its

counterpart on the test set with facial negatives, and vice versa. In figures 4-1 and 4-2

however, we do not see any evidence to support this trend. Instead it appears that the

classifiers trained with facial non-components are slightly worse than those without,

but for the most part about on par. This difference in performance can be attributed

either to more variability in the negative data stemming from patterns outside of

the face, or simply the larger number of data points in that set (10,584 vs. 13,654).

We will see later, however, that even though the facial negative component classifiers

perform more poorly by themselves, they lead to a more robust face classifier overall.

Before moving away from the component classifiers we should elaborate one key

point learned while conducting these tests. The component classifiers are weak in-

dividually and prone to false detections, especially within the face boundary. For

instance, eyebrows look like mouths, nostrils look like eyes, and the corner of the nos-

tril looks like the corner of the eye. These types of confusing patterns are present in

nearly every face example. Component classifiers which do not include facial negatives

in their training sets are more likely to repeatedly make such mistakes.

In addition to SVM type component classifiers, Mahalanobis classifiers were also

trained. Little attention has been given to them in this paper because of their poor

performance. It can be seen in figure 4-3 that the SVM systems outperformed the
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Figure 4-1: ROC curves from 14 Component classifiers tested individually on com-
ponent versus non-facial non-component data. The components are in order, with
component 0 on the top left, and component 3 in the top right. The solid line is the
curve from the classifier trained with facial negative examples. The dotted line is the
curve from the classifier trained with non-facial negative examples.

36



0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 4-2: ROC curves from 14 Component classifiers tested individually on compo-
nent versus facial non-component data. The components are in order, with component
0 on the top left, and component 3 in the top right. The solid line is the curve from
the classifier trained with facial negative examples. The dotted line is the curve from
the classifier trained with non-facial negative examples.
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slower Mahalanobis type classifier.
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Figure 4-3: ROC curves from 14 Component classifiers tested individually on com-
ponent versus facial non-component data. The components are in order, with com-
ponent 0 on the top left, and component 3 in the top right. The dotted line is the
curve from the classifier trained with non-facial negative examples. The solid line is
the curve from the Mahalanobis classifier. Except for components 9 and 11, the SVM
outperformed the Mahalanobis classifier.

4.2 Face Detection

Although the system was trained on artificial data, it was decided that for face de-

tection it should be tested on real images of faces. The positive test data were drawn

from the CMU PIE database available at [17]. In order to save time computationally,

the heads were cropped out by hand before testing. The CMU PIE database includes

pictures of faces in the profile as well as frontal and at rotations in between. After
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removing from the data all heads at rotations out of the plane more than 30 degrees,

we were left with a positive test set of 1,834 images, examples of which are illustrated

in figure 4-4.

Figure 4-4: 5 example images from our positive test set, extracted from the CMU PIE
database. The full size images are all between 200 and 300 pixels wide and roughly
square

The negative test data, like the negative training data, were extracted from images

containing no faces. This data was also bootstrapped out of the image set using a

simple face classifier and choosing examples which look like faces, in order to make

the test difficult. The classifier used to extract these test examples was not the

same classifier used to extract the difficult training examples. In total, 8,848 images

comprised the negative test set.

When each image is passed through the face detection system outlined in section

3, we are left with a corresponding result pyramid. This pyramid should contain

strong values at locations corresponding to subwindows that look, to the system, like

faces. For each image in the test data, we recorded only the strongest response in the

result pyramid, and used this to build an ROC curve.

The ROC curve in figure 4-5 is the curve gleaned from running our system using

the component classifiers trained with negative examples drawn from the rest of the

face. The images were tested for faces at every scale from 60× 60 to 110× 110 in 11

geometric increments. Biasing was performed using 5 local maxima per component

and then again once globally . The dashed line below, for comparison, is the result

from a linear kernel SVM trained on the full 58× 58 facial extractions from the exact

same training data.

In figure 4-6 we again see the same solid curve. The dashed line is now the

exact same system as above, with the component classifiers replaced with component
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Figure 4-5: ROC curve illustrating comparative performance between a 58×58 linear
kernel SVM (dashed line) and the full 14 component system with 5 level biasing (solid
line)

classifiers trained on non-facial negatives. The two systems are about on par in this

performance measure, however, in the graph on the right, it can be seen that in the

region of interest, the classifier with the facial negative trained component classifiers

is outperforming its peer by about 5% to 10%. The face detector performs better with

the facial non-component trained component classifiers, which individually performed

worse.
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Figure 4-6: Left: ROC curve illustrating comparative performance between the 14
component system using facial negatives in the training set (solid line) and using
non-facial negatives in the training set (dashed line). Right: Rescaled view of the
graph on the left

In figure 4-7 are ROC curves for three systems which differ only in the biasing
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step. The solid curve near the bottom is from a system which is using no biasing at

all; the results from the component classifiers are directly converted into constellation

maps, which are then classified by our position histogram based constellation clas-

sifier. Performance is increased greatly (as much as 50%) by using a 5-level biasing

routine on the result images before collecting the constellations. Earlier a suggestion

was made that biasing steps can be chained together. The system which genereated

the dotted curve uses first a 5-level biasing step and second a 1-level biasing step

before the constellations are created. The reduction in performance is perhaps due

to forcing the negative examples into constellations which look like they came from

faces.
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Figure 4-7: Left: ROC curve illustrating comparative performance between three
systems which differ only in the biasing step. These systems were built which all
included the facial negative component classifiers, and the histogram based constel-
lation classifier. 5 level biasing dashed line, 5 level biasing followed by 1 level biasing
dotted line, and no biasing solid line were all tested. Right: Zoomed in view of the
region between 0 and 6% of false detections.

Figure 4-8 illustrates the results from a direct comparison of systems which differ

only in the constellation classifier. This figure shows performance on the test described

above for 4 different face detection systems, each of which use the same component

classifiers, biasing scheme, and scaling. In order to save time, only every third image

in the negative test set was used, leaving the same 1,834 positive test points, but only

2,949 negative test images. The dashed curve at the top was created by a system using

the position histogram constellation classifier. Moving downward in performance,
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the solid curve underneath was created by recording the sum of the values in the

constellation which performed best in the histogram measure. This means that every

constellation from the input image was judged by the histogram measure. The sum

of the values in this constellation was recorded instead of the value returned by the

histogram classifier. The system which created the dotted line recorded the sum of

values from the constellation with the largest sum of values. Finally, the solid curve

at the bottom was created by training a second degree polynomial kernel SVM on

the constellations created by running the component classifiers back over the training

data. The unexpectedly weak performance from this classifier might be due to the

limited training data used to collect the constellations.
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Figure 4-8: Left: ROC curves illustrating comparative performance between the sys-
tems which differ only in the constellation classifier. 4 systems were built, each of
which included the facial negative component classifiers, and 5-level biasing. Dashed
line: maximum value returned by position histogram measure. Solid line at top: sum
of values of constellation which performed best in position histogram measure. Dotted
line: maximum value of sum of values. Solid line at bottom maximum value returned
by polynomial kernel SVM. Right: Zoomed in view of the region between 0 and 10%
of false detections.
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Chapter 5

Application: Eye Detection

As an illustration of the classifier training and biasing techniques described above, it

was decided to apply the technology to the domain of eye detection. The goal of this

project was to construct an algorithm such that when input an image of a face the

system would pinpoint the location of the center of the eyes, as in figure 5-1.

Figure 5-1: Left: Yes Right: No.

5.1 Architecture

The eye detection system was built using the component based face detection system

described above in section 3. Five level biasing was used as described, as were the

facial-negative trained component classifiers. The only major difference between the

eye detection system and the face detection system was the parameter balancing

between the strength of the pairwise position model and the strength of the result

images. For the eye-detection system, the strength of the biasing was turned up to
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90% from 50%. This design choice was made because we are no longer concerned

about the possibility of contorting the constellation found in a non-face object into

a constellation more like a face. Increasing the strength of the model also causes

some failures in images with in-plane rotations (see figure 5-2). The model expects

the eye positions to be roughly in horizontal alignment, and will push them to be so

even if the image does not warrant it. All input images were scanned at resolutions

from 80 pixels wide to 150 pixels wide, while maintaining an aspect ratio consistent

with the input. The system only outputs the position of the left and right eye, in

pixel coordinates, along with a measure of confidence drawn from the distance to the

hyperplane in both eye component classifiers.

Figure 5-2: In plane rotation of the image leads to incorrect eye detection due to the
model of expected pairwise positions expecting near-horizontal alignment of the eyes.

In order to bench-mark the system, it was necessary to construct another, more

simple eye detection scheme to compare against. Two such benchmarking systems

were built. The first system was based on a convolution model for eye detection

described in [6]. The system ran two classifiers, one for the left and right eye. It then

extracted a list of the ten best local maxima across the scale space. These lists were

then checked pairwise for good matches using the pairwise position statistics drawn

from our artificial training data. Each pair was given a rating based on both the

ordinal position of each position in the maxima list, and how well the pair matched

the pairwise position heuristic. The pair with the best rating was output by the

system as the position of the eyes.

The second benchmark system started by searching the image for the position
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of the face. This was done by searching the image with a 19 × 19 polynomial face

classifier trained on real images of frontal faces, as described in [7]. Once the best

example of the face was found, a window around the expected position of the eyes

was searched for the best example of the eyes. This pair of positions was reported by

the system as the correct position of the eyes.

5.2 Performance

It was decided to use a subset of the labelled CMU PIE database [17], removing all

heads turned more than 30 degrees out of the plane, leaving a total of 476 images.

After correcting a very small number of mislabelled images, we benchmarked the

system by recording the difference between where the three systems marked the eyes,

and where the human-defined ground truth was. The scatter plots in figure 5-3

illustrate this error. The center of these 400×400 images is the ground truth position

of the eye. The darker a pixel is in any of these images, the more commonly the

system found an eye there. Granularity of the scatter plots of the left eye is due to

the search taking place at a resolution lower than the full resolution of the image;

since the test images were cropped in a manner such that the left eye was very often

at position (100, 100), certain errors became very likely in comparison to others. The

right eye images do not have this granularity due to the more random location of the

ground truth within the test images.

In figure 5-4 are listed the standard deviations of the euclidian distances of the

errors. We see that the 14 component classifier is on average twice as close to the

expected position of the eye as the classifier which searches first for the face. Both of

these classifiers out perform the system which only searches for the eyes and chooses

examples based on the geometrical constraint.

Although it might seem obvious, it is worth mentioning that the eye finder archi-

tecture is made more robust by searching for objects we normally find near the eye.

As we add or remove component classifiers for the nose, mouth, etc. we can strike a

balance between the desired accuracy and the required speed of the system.
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Figure 5-3: Top: Error scatter plots for the left and right eye for the 2 component
with geometric constraint eye-detector. Middle: Error scatter plots for the left and
right eye for eye detection system which finds the full face first. Bottom: Error scatter
plots for the left and right eye for the 14 component eye detection system.

Left Right

Convolution and Constraint System 57.8 70.0
19× 19 Face Detecting System 27.0 27.6

14 Component System with 5 Level Biasing 11.6 16.9

Figure 5-4: Table of standard deviation of error in euclidian pixel distance for each
eye detector. The mean of each detector’s error was near 0.
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Chapter 6

Conclusions

While working with the component based face detection system in [8] we found that

often component classifiers would maximize in the incorrect locations. By training

component classifiers using negative examples drawn from the rest of the face, we

were able to lessen the occurrence of such mistakes, and thereby make the system

more robust. While these component classifiers performed more poorly individually,

both on tests involving discriminating component from non-facial non-components

and tests involving facial non-components, they led to significant improvements in

the full system. This is probably due to the facial non-component negative training

data teaching the component classifiers not to make very common errors within the

face itself.

Often when finding the best examples of the components in an image of a face,

several of the components would classify in the correct positions while others would

maximize elsewhere. This led to the idea of contextual information sharing, where

classifiers would report their position to each other in order to find a set of positions

which more closely match the geometrical relationships we expect from a face. We

described two different techniques of using the pairwise position statistics for every

pair of components as an implementation of such an idea. It was shown that us-

ing the pairwise position statistics to bias the result images before calculating the

constellations led to much improved face detection.

Finally we outlined the implementation of a robust eye detection scheme which
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used all 14 component classifiers in an attempt to both locate the face in an image,

and pinpoint the center of the eye. It was shown that by using the the remainder of

the face in a component based manner we were able to more accurately locate the

center of the eye.
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Chapter 7

Future Work

Several minor improvements are proposed that may aid system performance. First

we would like to add a measure of confidence to modulate the strength of the biasing

scheme. This type of architecture would enable classifiers that are more their confident

in their position to more strongly influence the system.

It is the interest of the author to try and construct component based component

classifiers. I believe that we will not be able to accurately locate positions within

the components, such as the center of the eye, until the system is able to differen-

tiate between the eyebrow, eyelid, pupil, white, and iris of the eye. I believe that

component based component classifiers, using primitives such as shape, texture, and

edge features, would enable the system to achieve levels of accuracy and robustness

impossible with the current architecture.

While it is possible that we might be able to significantly improve the face detector

module described in this paper by increasing the size and variation of the training

data, or by adjusting system parameters, it is the author’s opinion that we will not

be able to approach human levels of accuracy and tolerance without both an increase

in internal complexity of the face detector architecture, and in the complexity of the

architecture running the detector. What is meant by this is that given an image,

which might not contain any faces, it is a simple matter to search textured regions

and crop out areas which are very difficult to differentiate from faces. Without the

contextual information gleaned from knowing that an image patch came from right
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above a human body, as opposed to somewhere in the sky or in the texture of a rock,

it might not be possible to differentiate a pattern as face or non face at the resolution

available.
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