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Abstract
In the theoretical framework described in this thesis, attention is part of the inference pro-
cess that solves the visual recognition problem of what is where. The theory proposes a
computational role for attention and leads to a model that predicts some of its main prop-
erties at the level of psychophysics and physiology. In our approach, the main goal of
the visual system is to infer the identity and the position of objects in visual scenes: spa-
tial attention emerges as a strategy to reduce the uncertainty in shape information while
feature-based attention reduces the uncertainty in spatial information. Featural and spatial
attention represent two distinct modes of a computational process solving the problem of
recognizing and localizing objects, especially in difficult recognition tasks such as in clut-
tered natural scenes. We describe a specific computational model and relate it to the known
functional anatomy of attention. We show that several well-known attentional phenom-
ena – including bottom-up pop-out effects, multiplicative modulation of neuronal tuning
curves and shift in contrast responses – emerge naturally as predictions of the model. We
also show that the bayesian model predicts well human eye fixations (considered as a proxy
for shifts of attention) in natural scenes. Finally, we demonstrate that the same model, used
to modulate information in an existing feedforward model of the ventral stream, improves
its object recognition performance in clutter.
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1.1 Motivation

Much of the recent work in visual recognition both in computer vision and physiology

focused on the ‘what’ problem: which object is in the image. Face detection and identi-

fication are typical examples. Recognition is, however, more than the mere detection of

a specific object or object class: everyday vision solves routinely the problem of what is

where. In fact, David Marr defined vision as “knowing what is where by seeing” (Marr,

1982).

In somewhat of an oversimplification, it has been customary to describe processing of

visual information in the brain along two parallel and concurrent streams. The ventral

(’what’) stream processes visual shape appearance and is largely responsible for object

recognition. The dorsal (’where’) stream encodes spatial locations and processes motion

information. In an extreme version of this view, the two streams underlie the perception of

‘what‘ and ‘where‘ concurrently and relatively independently of each other (Ungerleider

and Mishkin, 1982; Ungerleider and Haxby, 1994). Lesions in a key area of the ventral

(’what’) stream (the inferior temporal cortex) cause severe deficits in visual discrimination

tasks without affecting performance on visuospatial tasks such as visually guided reaching

tasks or tasks that involve judgments of proximity. In contrast, parietal lesions in the dorsal

(’where’) stream cause severe deficits on visuospatial performance tasks while sparing vi-

sual discrimination ability. In everyday life, the identity and location of objects must some-

how be integrated to enable us to direct appropriate actions to objects. Thus a hypothetical

segregation of the two streams raises the question of how the visual system combines in-

formation about the identities of objects and their locations. The central thesis of this work

is that visual attention performs this computation (see also (Van Der Velde and De Kamps,

2001; Deco and Rolls, 2004a)).

However, explaining the role of attention is but a small part of understanding visual atten-

tion in the brain. The past four decades of research in visual neuroscience have generated a

large and disparate body of literature on attention. Several theoretical proposals and compu-

tational models have been described to try to explain the main functional and computational

role of visual attention. One important proposal by Tsotsos (1997) is that attention reflects
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evolution’s attempt to fix the processing bottleneck in the visual system (Broadbent, 1958)

by directing the finite computational capacity of the visual system preferentially to relevant

stimuli within the visual field while ignoring everything else. Treisman and Gelade (1980)

suggested that attention is used to bind different features (e.g. color and form) of an object

during visual perception. Duncan (1995) suggested that the goal of attention is to bias the

choice between competing stimuli within the visual field. These proposals however remain

agnostic about how attention should be implemented in the visual cortex and do not yield

any prediction about the various behavioral and physiological effects of attention.

On the other hand, computational models attempt to model specific behavioral and physio-

logical effects of attention. Behavioral effects include pop-out of salient objects (Itti et al.,

1998; Zhang et al., 2008; Rosenholtz and Mansfield, 2005), top-down bias of target fea-

tures (Wolfe, 2007; Navalpakkam and Itti, 2006), influence from scene context (Torralba,

2003b), serial vs. parallel-search effect (Wolfe, 2007) etc. Physiological effects include

multiplicative modulation of neuron response under spatial attention (Rao, 2005) and fea-

ture based attention (Bichot et al., 2005). A unifying framework that provides a computa-

tional goal for attention and at the same time accounts for the disparate effects listed above

is missing.

1.2 Our contributions

We present a theory where attention is part of the inference process that determines ”what”

is ”where” in the visual scene. Based on the theory and a few assumptions, we derive a

computational model that can be mapped to the anatomy of attentional processing in the

brain. Finally, we validate the model experimentally and show that it is consistent with

physiological effects and human behavior. In the following, we list our specific contribu-

tions.

1.2.1 Theory

• Recently, it has been suggested that visual perception can be interpreted as a bayesian

inference process where top-down signals are used to disambiguate noisy bottom-up
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sensory input signals (Mumford, 1992; Dayan et al., 1995; Knill and Richards, 1996;

Dayan and Zemel, 1999; Weiss et al., 2002; Rao et al., 2002a; Rao, 2004; Lee and Mum-

ford, 2003; Kersten and Yuille, 2003a; Kersten et al., 2004; Friston, 2003; George and

Hawkins, 2005; Dean, 2005; Murray and Kreutz-Delgado, 2007; Hinton, 2007; Epshtein

et al., 2008). Extending this idea, we propose that attention can also be regarded as

an inference process that disambiguates form and location information (Yu and Dayan,

2005; Rao, 2005).

• In the theoretical framework proposed here, we suggest that attention is part of the visual

inference process that solves the problem of what is where. Spatial attention emerges as

a strategy to reduce the uncertainty in shape information while feature-based attention

reduces the uncertainty in spatial information. Feature-based and spatial attention repre-

sent two distinct modes of a computational process solving the problem of recognizing

and localizing objects, especially in difficult recognition tasks such as in cluttered natu-

ral scenes. The theory explains attention not as a primary mechanism (or a visual routine

(Ullman, 1984)), but as an effect of interaction between the ’what’ and ’where’ streams

within this inference framework.

• Conceptual models or theories of attention proposed so far explain the role of attention,

but not how it is implemented in the brain. Computational models, on the other hand are

far removed from how attention works in the brain. Phenomenological models explain

individual physiological phenomena in the brain but do not explain the role of attention

in the broader scheme of visual perception. The proposed work bridges the gap between

conceptual, computational and phenomenological models of attention. The theory pro-

poses a computational role for attention and leads to a model that predicts some of its

main properties at the level of psychophysics and physiology.

1.2.2 Computational model of attention

• Starting from a bayesian view of visual perception and assumptions motivated by sam-

ple complexity and biology, we derive a specific computational model and relate it to

the known anatomy of attention. In the model, visual perception is viewed as infer-
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ence of object location and identity given an image. Top-down spatial and feature-based

attention can be interpreted as priors/biases that are set before the image is presented.

The posterior probability of location serves as a saliency map that predicts where the

attentional spotlight is shifted next.

• The model mimics attentional processing in the brain both in terms of structure as well as

behaviour. Within this generative model, the object’s identity and location are modelled

as being marginally independent. This mimics the separation of ’what’ (ventral) and

’where’ (dorsal) streams in the human visual system. This segregation raises the question

of how object location and identity are tied together during perception. In the proposed

model, the interaction between location and identity information occurs through hidden

variables that encode positions of individual features. This is similar to regions in the

brain (such as V4) that mediate interactions between ventral and dorsal streams.

• The computational model is closely related to the bayesian model of spatial attention pro-

posed by Rao (2005). Here, we significantly extend the model to include feature-based

attention in addition to spatial attention. Prior work modelled a single feature dimension

with mutually exclusive features. On the other hand, we model conjunction of features

that share a common spatial modulation allowing us to model complex search tasks. In

addition to reproducing classical results on simple stimuli, we show applications of the

model on complex real-world stimuli.

• We show that the bayesian model is also consistent (and in fact equivalent) with phe-

nomenological models such as the normalization model of attention (Reynolds and Heeger,

2009) that can explain several (even conflicting) physiological effects of attention. In

contrast to phenomenological models that are designed to mimic biological phenomena,

we show that the same phenomena emerge naturally as ’predictions’ of the model.

• We show that the model exhibits properties consistent with experimental evidence from

physiology such as:

1. Spatial invariance: The response of the model units that encode features are invari-

ant to position of the feature within the image. This property is consistent with
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position invariant neurons found in region IT of the ventral stream.

2. Multiplicative modulation: The response of the model units that jointly encode

position and feature are modulated under spatial and feature-based attention. This

is consistent with region V4 where neuron activities are modulated under attention

(McAdams and Maunsell, 1999; Reynolds et al., 1999, 2000; Bichot et al., 2005).

3. Shift in contrast response: It was shown that attention can shift the contrast re-

sponse curve of neurons (Martınez-Trujillo and Treue, 2002; Reynolds et al., 2000).

Other experiments (McAdams and Maunsell, 1999; Treue and Trujillo, 1999a) re-

ported a mulitiplicative gain. Reynolds and Heeger (2009) reconciled these contra-

dictory observations using a normalization model of attention. We show that our

model is consistent with both of these experiments.

4. Visual pop-out effect: Psychophysics has shown that parts of an image that are

distinct from rest of the image in any feature dimension ’pops-out’ and attracts

attention independent of the search task. Computational models proposed so far

compute an explicit measure of this difference to simulate pop-out (Itti et al., 1998;

Gao and Vasconcelos, 2007; Zhang et al., 2008; Rosenholtz, 1985). In contrast,

pop-out effect emerges as a natural consequence (’prediction’) of our model.

• The model we propose is general in the choice of features used. Using oriented features,

the model can reproduce attentional effects found in area V4 as discussed before. When

extended to motion features, the model can reproduce attentional effects found in area

MT (a region in the dorsal stream that processes motion information) (Treue and Trujillo,

1999b; Beauchamp et al., 1997). Using a combination of color and motion features, we

can also explain the interaction between these features (Womelsdorf et al., 2006) that

has not been modelled before. Finally, when we use complex shape-based features, we

show that the model can predict human eye movements on complex real world images.

1.2.3 Experimental validation of the model

• We test the model on complex real world images through two specific experiments: (i)

We show that the model predicts well human eye fixations in natural scenes. (ii) We
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demonstrate that the same model, used to modulate information in an existing feedfor-

ward model of the ventral stream, improves its object recognition performance in clutter.

• Modeling eye movements: Human eye movements can be considered as a proxy for

shifts of attention. Also, modeling eye movements has been shown to be useful in

priming object detection (Navalpakkam and Itti, 2006; Torralba, 2003a), pruning in-

terest points (Rutishauser et al., 2004) and quantifying visual clutter (Rosenholtz and

Mansfield, 2005). Previous work in attention and eye movements has focused on free

viewing conditions (Itti and Koch, 2001a; Parkhurst et al., 2002; Peters et al., 2005;

Bruce and Tsotsos, 2006) where attention is driven by purely bottom-up information.

In reality, top-down effects from the search task can heavily influence attention and eye

movements(Yarbus, 1967). In this work, we outline a visual attention model where spa-

tial priors imposed by the scene and the feature priors imposed by the target object are

combined in a Bayesian framework to generate a task-dependent saliency map. In the

absence of task-dependent priors, the model operates in a purely bottom-up fashion.

• Object recognition in clutter: The human visual system can recognize several thou-

sand object categories irrespective of their position and size (over some finite range).

This combination of selectivity and invariance is achieved by pooling responses from

afferents in the previous stage. The cost of this tolerance to position and scale transfor-

mations is susceptibility to crowding and clutter. When multiple objects or background

clutter are present simultaneously within the receptive field of a neuron, the stimuli com-

pete with each other for representation at a higher layer. This effect has been observed

in all stages of the visual processing (Reynolds et al., 1999; Zoccolan et al., 2007), hu-

man psychophysics as well as computational models (Serre et al., 2007a). A natural

hypothesis – that we adopt here – is that an attentional spotlight may be used to suppress

responses from distracting stimulus while enhancing those of the target stimulus.
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1.3 Outline

The rest of this thesis is organized as follows. In chapter 2, we provide details about our

computational model and describe a tentative mapping to biology. In addition, we illustrate

the properties of the model, both designed and emergent. In chapter 3, we show that the

model can ”predict” physiological effects of attention. In chapter 4, we use the model

to predict human eye movements on complex real world images. In chapter 5, we show

that feature-based and spatial attention can be used in conjunction to recognize objects in

cluttered visual scenes. We demonstrate that the model can explain improvement in object

recognition performance under the influence of attention. Finally in chapter 6, we discuss

the limitations of the model and future directions of research.
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Chapter 2

Computational framework
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2.1 Model preliminaries

A generative model S → I specifies how an image I (represented as either raw pixel inten-

sities or as a collection of topographic feature maps) is determined by the scene description

S (e.g., vectorial description of properties such as global illumination, scene identity, ob-

jects present etc.). The product of the likelihood P (I|S) and the prior probability of the

scene description P (S) determines the generative model (Kersten et al., 2004):

P (S, I) = P (I|S)P (S). (2.1)

The generative model also specifies the probabilistic relationship between observed vari-

ables (object, image) and unobserved (latent) variables such as lighting, depth, viewpoint

etc. that influence the observed data. Following recent work (Kersten and Yuille, 2003b),

we decompose the description of a scene in n components which in our case are just objects

(including the background) {O1, O2, · · · , On} and their locations {L1, L2, · · · , Ln} in the

scene1 .

Thus, S = {O1, O2, · · · , On, L1, L2, · · · , Ln}. In the most general case, every random

variable influences every other one. We show how a few key assumptions lead to a simple

factorization of the generally complex joint probability – corresponding to simplifications

of the original graphical model. As we mentioned, one of the main tasks of vision is to

recognize and localize objects in the scene. Here we assume that

(a) to achieve this goal, the visual system selects and localizes objects, one object at a time.

Since the requirements of the task split S into those variables that are important to es-

timate accurately for the task and those that are not, we write in this case P (S, I) =

P (O1, L1, O2, L2, · · · , On, Ln, I). We can then integrate out the confounding variables

(i.e., all objects except one – labeled, without loss in generality, O1):

P (O1, L1, I) =
∑

O2···On,L2···Ln

P (O1, L1, O2 · · · , On, L2, · · · , Ln, I). (2.2)

We further assume that

1The probabilistic model can be extended to generalize to scenes with an arbitrary number of objects.
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(b) the object location and object identity are independent, leading to the following factor-

ization:

P (O,L, I) = P (O)P (L)P (I|L,O). (2.3)

In Eq. 2.3 and in following equations, we replace, for simplicity the single object O1 with

O and its location L1 with L.

Remarks

• Attention, as described later, emerges as the inference process implied by Eq. 2.3.

In a sense, our framework with the key assumption (a), “predicts” attention and –

with the approximations to Eq. 2.3 described in the rest of the section – several of its

properties.

• Bayesian models of object recognition – but, emphatically, not of attention – assume

different (wrt Eq.2.3) factorizations of P (S, I), such as P (S, I) = P (O1, L1, · · · , On, Ln, I)

(Sudderth et al., 2005) or P (S, I) = P (O,L, I) = P (O,L|I)P (I) (Torralba, 2003a),

in which location and identity of an object are modeled jointly. In Eq. 2.3, I corre-

sponds to an entire array of measurements (every feature at every location). Eq. 2.3,

dictated by the generative model and the requirements of the task, leads to a simpler

approximation with P (O,L, I) = P (O)P (L)P (I|O,L) – as a model of attention.

• The key assumption (a) characterizes the task of attention as selecting a single ob-

ject – for recognition and localization – in the scene. This is a formalization of the

standard spotlight hypothesis of attention, in which attention focuses processing to a

region of the image. One can speculate about the reasons for this constraint. Previ-

ous proposals based on the bottleneck and salience hypotheses (Tsotsos, 1997; Bruce

and Tsotsos, 2006; Itti et al., 1998) postulate that the role of attention is to priori-

tize the visual scene, where limited visual processing resources are directed towards

’relevant’ regions. These hypotheses correspond to the assumption that the visual

system needs attention in order to reduce the computational complexity of recogni-

tion. We prefer a related hypothesis to justify attention and our factorization. Our

hypothesis is that attention is needed to reduce the sample complexity of learning the
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relevant probability distributions over objects, features and locations . We believe

that it would take too much data, and therefore an unreasonably long time, unless

one makes assumptions about the parametric form of the distributions – assumptions

that are arguably as strong as ours.

Let us assume that ε is the error with which the non-parameteric distribution is

learned, s is a measure of smoothness of the density being approximated, N is the

number of objects, O is the number of object classes and L is the dimensionality

of the location grid. As an example to give a feeling for the issue, we consider the

joint probabilities: Learning joint probabilities of all the N objects and their locations

would take in the order of ε−NOL/s examples where learning a single object and its

location would take in the order of ε−OL/s examples whereas it would take in the

order of ε−O/s + ε−L/s examples for our factorization. There can be many orders of

magnitude difference between the required examples (for instance take ε = 0.1)!

• Eq. 2.3 is not a strong generative model (Kersten et al., 2004) because it takes into

account a generative model and the assumed constraints of the task of attention. It

cannot produce images containing many objects, such as typical scenes used in our

experiments (see for instance Fig 2-5). It can synthesize images containing either no

object or one object such as a single car. It corresponds to visual scenes ’illuminated

by a spotlight of attention’. Notice that from the inference point of view, if the task

is to find a car in the image, there will always be either no car or one car which is

more car-like than other ones (because of image “noise”).

• Although, assumption (a) posits that the core model of attention should find a single

object in the image, the process can be iterated, looking for other objects in other

locations, one at a time. This assumption motivates most (extended) models of atten-

tion (Miau and Itti, 2001; Rutishauser et al., 2004; Walther and Koch, 2007) and also

motivates mechanisms such as “inhibiton of return” (Itti and Koch, 2001a). The full

strategy of calling multiple times the core attention module to recognize and localize

one object at a time is not bayesian. It is an interesting question for future work how

to model in a fully bayesian framework the sequential process of recognizing and
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localizing objects (Monahan, 1982; Smallwood and Sondik, 1973; Lovejoy, 1991).

2.1.1 Model

Consider the generative model specified in Eq. 2.3. We assume that the image of an ob-

ject is generated through a set of relatively complex object features. In particular, (c) we

assume that each of N features is either present or absent and that they are condition-

ally independent, given the object and its location. A similar approach can be found in

other part-based object recognition frameworks (Crandall et al., 2005; Felzenszwalb and

Huttenlocher, 2005; Fergus et al., 2003).

We use intermediate latent variables {X1, X2, · · · , XN} to encode the position of the N

object features; if feature i is not present, thenX i = 0. These intermediate variables can be

considered as feature maps which depend on the object and its location. We model the joint

probability of the object identity O, its location L, the feature maps {X i, i = 1, 2, · · · , N}

and the image I . Eq. 2.3 takes the form

P (O,L,X1, · · · , XN , I)

= P (O)P (L)P (X1, · · · , XN |L,O)P (I|X1, · · · , XN) (2.4)

We then take the variables to be discrete, because of computational considerations and

because images (and arrays of neurons) can be represented on discrete grids. Because

of the assumed conditional independence P (X1, · · · , XN |L,O) is given by the following

factorization:

P (X1, · · · , XN |L,O) =
i=N∏
i=1

{
P (X i|L,O)

}
(2.5)

Applying Eq. 2.5, Eq. 2.4 leads to our final probabilistic model
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Figure 2-1: The figure illustrates the progression of graphical models corresponding to the se-
quence of factorizations given in Eq. 2.1 to Eq. 2.5 induced by the three main assumptions.

P (O,L,X1, · · · , XN , I)

= P (O)P (L)

{
i=N∏
i=1

{
P (X i|L,O)

}}
P (I|X1, · · · , XN) (2.6)

The model consists of a location encoding variable L, object encoding variable O, and

feature-map variables {X i, i = 1, · · · , N}, that encode position-feature combinations. The

object variableO is modeled as a multinomial random variable with |O| values correspond-

ing to objects known by the model. The location variable L is modeled as a multinomial

random variable with |L| distinct values that enumerate all possible location and scale com-

binations. The variable X i is a multinomial variable with |L|+ 1 values (0, 1, · · · , L).

As we discuss later (Sec. 2.3), it is easier to map the model onto the functional corti-

cal anatomy (see Fig. 2-4) of attention by introducing the (dummy) variables (F i)i=1...N ,

which are not strictly needed but can be interpreted directly in a biological perspective.

Each feature-encoding unit F i is modeled as a binary random variable that represents the

presence or absence of a feature irrespective of location and scale. The location (X i) of

feature i depends on the feature variable F i and on the location variable L. This relation,

and the defintion of F i, can be written as P (X i|L,O) = P (X i|F i, L)P (F i|O). With the

auxiliary variables (F i)i=1...N the factorization of Eq. 2.6 can be rewritten as
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P (O,L,X1, · · · , XN , F 1, · · · , FN , I)

= P (O)P (L)

{
i=N∏
i=1

{
P (X i|L, F i)P (F i|O)

}}
P (I|X1, · · · , XN) (2.7)

The model assumes the following generative process

1. Choose O ∼ multinomial(P (O))

2. Choose L ∼ multinomial(P (L))

3. For each of the N features

• Choose F i ∼ Bernoulli(P (F i|O))

• Choose X i ∼ multinomial (P (X i|L, F )) (see text for details).

The conditional probability P (X i|F i, L) is such that when feature F i is present (F i = 1),

and L = l∗, the feature-map is activated at either X i = l∗ or a nearby location with high

probability (decreasing in a gaussian manner). However, when the feature F i is absent

(F i = 0), only the ’null’ state of X i, (X i = 0) is active. Thus, when location L = l∗ is

active, the object features are either near location l∗ or absent from the image. In addition

to this top-down generative constraint, bottom-up evidence P (I|X1 · · ·XN) is computed

from the input image 2.The conditional probabilities are specified in Table A1. Visual per-

ception here corresponds to estimating posterior probabilities of visual features (F i)i=1...N ,

object O and location L following the presentation of a new stimulus. In particular, P (L|I)

can be interpreted as a saliency map (Koch and Ullman, 1985), that gives the saliency of

each location in a feature-independent manner. P (F i|I) and P (O|I) can be thought of as

location independent readout of object features and object identity respectively.

Remarks: The probabilistic model of Eq. 2.7 encodes several constraints resulting from

our three assumptions:

2P (I|X1 · · ·XN ) obtained from the image is not a normalized probability. In practice, it is proportional
to the output of a feature detector. However, this does not adversely affect the inference process.
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• Each feature F i occurs at a single location/scale in the feature map. This apparently

strong constraint follows from assumption (a) and (c). Assumption (c) is suggested

directly by the assumption that the features are relatively complex (such as V4-like

features). Our model implements the constraint above through the automatically

enforced mutual exclusion of different states of X i. We emphasize that there is no

mutual exclusion among the different features – multiple features can be active at the

same location. This is in contrast to earlier probabilistic models (Rao, 2005) where

features were mutually exclusive as well.

• Objects can be represented in terms of a single set of universal features (F 1, · · · , F n).

Although some objects may have diagnostic features, a large variety of objects can

be represented using a shared set of primitive shape features (Ranzato et al., 2007;

Mutch and Lowe, 2006; Serre et al., 2007c; Torralba et al., 2004).

These assumptions limit the range and kind of “images” that can be generated by this

model. The relevant question, however, is whether such a simplified model of the visual

world, imposed by the objective constraint of sample complexity, actually describes what

is used by the visual system.

2.1.2 Comparison to prior work

The model is closely related to the bayesian model of spatial attention proposed by Rao

(2005). The previous model was modified to include the following significant extensions:

(i) The model includes both feature and object priors. This allows us to implement top-

down feature-based attention in addition to spatial attention. (ii) The model allows con-

junction of features that share common spatial modulation, while prior work modeled a

single feature dimension (e.g., orientation) with mutually exclusive features. (iii) Spatial

attention is extended to include scale/size information in addition to just location informa-

tion. Our new model can account not only for visual searches in artificial search arrays

but also for searches in real-world natural images for which it predicts well human eye-

movements under bottom-up and top-down attention (see Section 4).
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2.2 Model properties

2.2.1 Translation invariance

The F i units encode the presence or absence of individual features in a translation/scale

invariant manner. The invariance is achieved by pooling responses from all locations. The

posterior probability of the feature F i is given by:

P (F i|I) ∝ P (F i)
∑
L,Xi

P (X i|F i, L)P (L)P (I|X i) (2.8)

Note that the factor P (F i) is obtained by marginalizing over all objects (P (F i) =
∑

O P (F i|O)P (O)).

Spatial invariance is achieved by marginalizing (summing over) the L variables (see Fig.

2-2).

2.2.2 Spatial attention

As sketched in Fig. 2-5 (panel b), a key limitation of the feedforward (max) pooling mech-

anisms arises when performing recognition in the presence of clutter (see (Serre et al.,

2007b)), because of integration of visual information over relatively large receptive fields

that makes the models prone to interference from distractors in the background. A natu-

ral way to solve this problem is to rely on spatial attentional mechanisms whereby priors

P (L) are concentrated around a region of interest. This may solve the problem of clutter

by suppressing the background responses outside the spotlight (see 2-5, panel c).

In our model, spatial attention follows from setting a prior P (L) concentrated around the

location/scale of interest (see Fig. 2-2b). Consider the posterior estimate of the feature unit

F i. Ignoring the feature prior, the estimate is given by:

P (F i|I) ∝
∑
L,Xi

P (X i|F i, L)P (L)P (I|X i). (2.9)

The corresponding unit response can be considered as a weighted sum of the evidence
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P (I|X i). Under spatial attention, regions inside the spotlight of attention are weighed

more, while those outside the spotlight are suppressed. As a consequence, the receptive

fields of the non-retinotopic F i units at the next stage are effectively shrunk.

2.2.3 Feature-based attention

As illustrated in Fig. 2-5 (panel d), when a single isolated object/feature is present, it is

possible to read out its location from the posterior probability P (L|I). However when

multiple objects/features are present (see Fig. 2-5, panel e), it is no longer possible to

readout this information. To solve this problem, parallel feature-based attention results

from concentrating the priors P (F i) (P (F i|O) for an object search) around the features of

interest (e.g., red and square features when searching for a red square). The value of the

saliency map is given by:

P (L|I) ∝ P (L)
∏
i

∑
F i,Xi

P (X i|F i, L)P (F i)P (I|X i)

 (2.10)

Increasing the concentration of the prior around the target feature F i enhances the preferred

feature at all locations while low priors on other features suppress activity from distracting

objects. After this, the location of the preferred feature can be read out from the posterior

probability P (L|I), which can be interpreted as a saliency map.

2.2.4 Feature pop-out

Since theX i units are mutually exclusive (∀i,
∑

Xi P (X i|F i, L) = 1), increasing the activ-

ity (probability) at one location in an image typically reduces the likelihood of the stimulus

being present at other locations (see Fig. 2-2d). In a sense, this is similar to the extra-

classical receptive field effects observed throughout the visual cortex (see (Carandini et al.,

1997) for instance). As a result, a unique feature that is active at only one location tends

to induce a higher likelihood, concentrated at that location, than a common feature, present

at multiple locations, for each of the corresponding locations . This predicts a ’pop-out’

effect, whereby a salient items immediately draw attention (the model shows a strong bias
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(b) Spatial attention.
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(c) Feature attention.
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(d) Feature popout.

Figure 2-2: An illustration of some of the key model properties. Here P (L), P (F ) represent the
prior that is set before the image is seen. P (F |I),P (L|I) represent the posterior probabilities after
the image is observed. (a) Spatial invariance: The posterior probability P (F |I) is independent of
the stimulus position. (b) Illustration of how spatial attention contributes to solving the ’clutter’
problem associated with the presentation of multiple stimuli. (c) Illustration of how feature-based
attention contributes to solving the ’clutter’ problem associated with the presentation of multiple
stimuli. (d) The feature pop-out effect: The relative strength of the saliency map P (L|I) increases
as more and more identical distractors are being added increasing the conspicuity of the unique
stimulus with its surround.
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Figure 2-3: Left: Efficient vs. inefficient searches: When a stimulus differs from the background
in a single dimension (first and second column) search is easy (indicated by a high contrast saliency
map) and independent of the number of distractors. However, when features are shared between the
target and distractors (third column), search is more difficult (indicated by a low contrast saliency
map). Right: Object recognition in clutter consists of feature-based attention followed by spatial
attention. The most likely location of the target is found by feature-based attention by setting ap-
propriately the feature priors (middle column). The hypothesis is then verified by deploying spatial
attention around the location of the highest saliency (the spatial priors are changed in the right col-
umn). The value of the feature units P (F |I) indicate the presence or absence of an object feature.

of the saliency map towards the location of the salient or ’surprising’ item (see Fig. 2-2d).

In contrast to our model, traditional approach to pop-out has been based on image saliency.

In (Itti et al., 1998), center-surround difference across color, intensity and orientation di-

mensions is used as measure of saliency. In (Gao and Vasconcelos, 2007), self infor-

mation of the stimuli (− log(P (I))) is used as measure of distinctiveness (Zhang et al.,

2008). In (Rosenholtz, 1985), the normalized deviation from mean response is used in-

stead.These models, however, cannot account for the task-dependency of eye movements

(Yarbus, 1967).

Li and Snowden (2006) proposed a computational model based on V1-like orientation fea-
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tures showing that they are sufficient to reproduce attentional effects such as pop-out and

search asymmetries. In addition, this model can reproduce effects such as contour com-

pletion and cross-orientation inhibition that is currently not possible with the proposed

model. However, recent evidence seems to show V1 to be relatively unaffected by top-

down attentional modulation (Hegde and Felleman, 2003), thus moving the locus of at-

tention away from V1 and towards higher regions such as V4. Experiments on spatial

attention (McAdams and Maunsell, 1999) and feature-based attention (Bichot et al., 2005)

have shown attentional modulation in V4.

2.2.5 Efficient vs. inefficient search tasks

The maximum value of the saliency map (or the posterior probability of location P (L|I))

can be viewed as a proxy for the efficiency of search. From this point of view, the bayesian

model can predict the relative difficulty of a search task, at least in artificial arrays (see Fig.

2-3a).

2.3 Neural interpretation

Prior work has shown that perception under uncertainty can be modeled well using Bayesian

inference (Knill and Richards, 1996; Rao et al., 2002a; Kersten et al., 2004). However, how

the brain represents and combines probabilities at the level of neurons is unclear. Computa-

tional models have attempted to model probabilities using populations codes (Pouget et al.,

2000), spiking models of neurons (Deneve, 2008; Pouget et al., 2000), recurrent networks

(Rao, 2004) etc. The properties of the model of attention described so far do not depend on

how probabilities are mapped to neural activities. In the following neural interpretation of

the model we assume, however, that probabilities are represented as firing rates of popula-

tions of neurons (the physiology experiments typically measure firing rates averaged across

“identical” neurons over a series of recordings).
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Figure 2-4: Left: Proposed bayesian model. Right: A model illustrating the interaction between the
parietal and ventral streams mediated by feedforward and feedback connections. The main addition
to the original feedforward model (Serre et al., 2005b) (see also Supplementary Online Information)
is (i) the cortical feedback within the ventral stream (providing feature-based attention); (ii) the
cortical feedback from areas of the parietal cortex onto areas of the ventral stream (providing spatial
attention) and, (iii) feedforward connections to the parietal cortex that serves as a ’saliency map’
encoding the visual relevance of image locations (Koch and Ullman, 1985).

2.3.1 Tentative mapping to brain areas

The graphical model can be tentatively mapped – in a way which is likely to be an oversim-

plification – into the basic functional anatomy of attention, involving areas of the ventral

stream such as V4 and areas of the dorsal stream such as LIP (and/or FEF), known to show

attentional effects (see Table 2.1, Fig. 2-4). Thus, following the organization of the visual

system (Ungerleider and Haxby, 1994), the proposed model consists of two separate visual

processing streams: a ’where’ stream, responsible for encoding spatial coordinates and a

’what’ stream for encoding the identity of object categories. Our model describes a pos-

sible interaction between intermediate areas of the ventral (’what’) stream such as V4/PIT

(modeled asX i variables) where neurons are tuned to shape-like features of moderate com-

plexity (Kobatake and Tanaka, 1994; Tanaka, 1996; Logothetis and Sheinberg, 1996) and
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higher visual areas such as AIT where retinotopy is almost completely lost (Oram and Per-

rett, 1992; Logothetis et al., 1995) (modeled as F i units). Prior (non-bayesian) attempts to

model this interaction can be found in (Grossberg, 1999; Van Der Velde and De Kamps,

2001).

In our interpretation, the L variable, which encodes position and scale independently of

features, may correspond to the LIP area in the parietal cortex. In the model, the L variable

is represented as a multinomial variable. EachX i variable corresponds to a collection of V4

neurons, where each neuron can be interpreted as encoding one of the mutually exclusive

state of X i. The posterior probability P (X i = x|I) is then interpreted as the response

of a V4 neuron encoding feature i and at location x. Thus, in the neural interpretation,

P (X i = 1|I), P (X i = 2|I) · · ·P (X i = |L||I) can be mapped to the firing rates of the

neuron encoding feature F i at location 1, 2..|L| respectively.

The F i units correspond to non-retinotopic, spatial and scale invariant cells found in higher

layers of the ventral stream such as AIT and IT. In feedforward models (Riesenhuber and

Poggio, 1999b; Serre et al., 2005b), such invariance (over a limited range) is obtained

via a max pooling operation. The original motivation for a max operation was that the

max is a natural selection operation: when a feature is active at multiple locations within

the receptive field of a unit, the max operation selects the strongest active location while

ignoring other locations. Within the bayesian framework, the individual locations within a

feature map are mutually exclusive and thus a strong activation at one location suppresses

the likelihood of activation at other locations. Interestingly, the bayesian model of attention

is also performing a selection akin to the max operation – by using the ’sum-product’

algorithm for belief propagation.
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Model Representation
(Brain) (Biological evidence)

L (LIP/FEF) This variable encodes the location and scale of a target object. It is modeled as a
discrete multinomial variable with |L| distinct values.
Prior studies (Colby and Goldberg, 1999) have shown that the parietal cortex main-
tains several spatial maps of the visual environment (eye-centered, head-centered etc.)
Studies also show that response of LIP neurons is correlated with the likelihood ratio
of a target object (Bisley and Goldberg, 2003). In this paper, we hypothesize that the
saliency map (corresponding to the variable L) is represented in the parietal cortex.

O (PFC) This variable encodes the identity of the object. It is modeled as a discrete multinomial
variable that can take |O| distinct values.
The preferred stimulus of neurons tend to increase in complexity along the ventral
stream: from simple oriented bars in area V1 (Hubel and Wiesel, 1959) to combina-
tions of orientations and features of moderate complexity in intermediate visual areas
V2 (Hegde and Van Essen, 2000; Ito and Komatsu, 2004) and V4 (Pasupathy and Con-
nor, 2001; Desimone and Schein, 1987; Gallant et al., 1996), to parts and objects in
area IT (Tanaka, 1996; Logothetis and Sheinberg, 1996). It has been shown that object
category information is represented in higher areas such as the prefrontal cortex (PFC)
(Freedman et al., 2001).

F i (IT) Each feature variable F i encodes the presence of a specific shape feature. Each such
unit is modeled as a discrete binary variable that can be either on or off. The pres-
ence/absence of a given feature is computed in a position/scale invariant manner (see
(Serre et al., 2005b) for details). In practice, for the visual tasks described in this paper,
we have used a dictionary of features of about 10 ∼ 100 such features.
Neurons in the inferotemporal (IT) cortex are typically tuned to objects and parts
(Tanaka, 1996) and exhibit some tolerance with respect to the exact position and scale
of stimulus over within their receptive fields (typically on the order of a few degrees
for position and on the order of one octave for size (Logothetis et al., 1995).

Xi (V4) This variable can be thought of as a feature map that encodes the joint occurrence of
the feature (F i) at location L = l. It is modeled as a discrete multinomial variable
with |L|+1 distinct values (0, 1 · · ·L). Values (1 · · ·L) correspond to valid locations
while Xi = 0 indicates that the feature is completely absent from the input.
Feature-based attention is found to modulate the response of V4 neurons at all loca-
tions (Bichot et al., 2005). Under spatial attention, V4 neurons that have receptive
fields overlapping with the locus of attention are enhanced (McAdams and Maunsell,
1999). Thus V4 neurons are involved in feature-based attention as well as spatial atten-
tion marking V4 as the likely area of interaction between ventral and parietal cortices.

I (V2) This is the feed-forward evidence obtained from the lower areas of ventral stream
model. Given the image I, for each orientation and location, P (I|Xi) is set propor-
tional to the output of the filter.
The neurons in area V2 are found to be sensitive to conjunction of orientations, curva-
ture and grating-like stimulus (Hegde and Van Essen, 2000; Ito and Komatsu, 2004).
We use the computational model of the ventral stream (Serre et al., 2007c) to derive
V2-like features from the image.

Table 2.1: Bayesian model units and tentative mapping to brain areas.
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Conditional Probability Modeling
P (L) Each scene, with its associated view-point, places constraints

on the location and sizes of objects in the image. Such con-
straints can be specified explicitly (e.g., during spatial atten-
tion) or learned using a set of training examples (Torralba,
2003b).

P (F i|O) The probability of each feature being present or absent given
the object; it is learned from the training data.

P (X i|F i, L) When the feature F i is present and location L = l∗ is
active, the X i units that are nearby unit L = l∗ are most
likely to be activated. When the feature F i is absent,
only the X i = 0 location in the feature map is activated.
This conditional probability is given by the following table

F i = 1, L = l F i = 0, L = l
X i = 0 P (X i|F i, L) = δ1 P (X i|F i, L) = 1− δ2
X i 6= 0 P (X i|F i, L) ∼ Gaus-

sian centered around
L = l

P (X i|F i, L) = δ2

δ1 and δ2 are small values (∼ 0.01), chosen to ensure that∑
P (X i|F i, L) = 1.

P (I|X i) For each location within the feature map, P (I|X i) provides
the likelihood that X i is active. In the model, this likelihood
is set to be proportional to the activations of the shape-based
units (see (Serre et al., 2007c)).

Table 2.2: Description of the model conditional probabilities.
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2.3.2 Inference using belief propagation

Within the bayesian network, inference can be performed using any of several inference al-

gorithms such as junction tree, variable elimination, MCMC (Markov-chain Monte carlo)

and belief propagation (Wainwright and Jordan, 2008; Gilks and Spiegelhalter, 1996).

Sampling-based approaches such as MCMC and belief propagation lend themselves more

easily to biological interpretations. In the simulations of this paper, the inference mecha-

nism used is the ‘belief propagation‘ algorithm (Pearl, 1988), which aims at propagating

new evidence and/or priors from one node of the graphical model to all other nodes. We

can regard some of the messages passed between the variables during belief propagation as

interactions between the ventral and dorsal streams. Spatial attention and feature attention

can then be interpreted within this message passing framework. A formal mathematical

treatment of the messages passed between nodes is sketched below. For simplicity we con-

sider the case of a model based on a single feature F and adopt the notation used in (Rao,

2005), where the top-down messages, π() and bottom-up messages λ() are replaced by a

uniform m() term.

mO→F i = P (O) (2.11)

mF i→Xi =
∑
O

P (F i|O)P (O) (2.12)

mL→Xi = P (L) (2.13)

mI→Xi = P (I|X i) (2.14)

mXi→F i =
∑
L

∑
Xi

P (X i|F i, L)(mL→Xi)(mI→Xi) (2.15)

mXi→L =
∑
F i

∑
Xi

P (X i|F i, L)(mF i→Xi)(mI→Xi) (2.16)

The first three messages correspond to the priors imposed by the task. The rest correspond

to bottom-up evidence propagated upwards within the model. The posterior probability of

location (saliency map) is given by

P (L|I) ∝ (mL→Xi)(mXi→L) (2.17)
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The constant of proportionality can be resolved after computing marginals over all values

of the random variable. Thus, the saliency map is influenced by task dependent prior on

location P (L), prior on features P (F i|O) as well as the evidence from the ventral stream

mXi→L. Note that the summations in the message passing equations are performed over all

the discrete states of the variable. Thus, L is summed over its states, {1, 2 · · · |L|}, F i is

summed over {0, 1} and X i, over states {0, 1, · · · |L|}. Notice that the belief propagation

inference converges (to the posterior) after one bottom-up and one top-down cycle.

Multiple features When considering multiple features, the bayesian inference proceeds

as in a general polytree (Pearl, 1988). Most messages remain identical. However, the

message mL→Xi is influenced by the presence of other features and is now given by:

mL→Xi = P (L)
∏
j 6=i

mXj→L (2.18)

(2.19)

Remarks:

• The mapping between the multinomial nodes/units in the model and neurons in the

cortex is neither obvious nor unique. Consider a multinomial variable Y that takes

states y1, y2..yS . A possible mapping is to S individual binary indicator variables

I1, I2 · · · IS , with the constraint that (I1 + I2 · · · IS) = 1. Then we would map each

variable Ii to an individual neuron whose firing rate is proportional to the its posterior

probability of being on. The constraint that only a single neuron is active may be

implemented through lateral inhibition in terms of a form of divisive normalization.

In this interpretation, a multinomial random variable Y corresponds to a collection

of S laterally inhibited neurons such that the firing rate of neuron i represents a value

proportional to its posterior probability. For binary random variables, the mapping is

more direct. Each binary variable can be interpreted as a single neuron with its firing

rate proportional to the posterior probability of the variable being on.
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Chapter 3

”Predicting” physiological effects
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3.1 “Predicting” the physiological effects of attention

Here we show that the proposed model is consistent with neurophysiology experiments

about the effects of feature-based and spatial attention (McAdams and Maunsell, 1999;

Bichot et al., 2005; Reynolds and Heeger, 2009). We also find that, surprisingly, several

key attentional phenomena such such as pop-out, multiplicative modulation and change in

contrast response emerge directly, without any further assumptions or parameter tuning, as

properties of the bayesian model.

3.1.1 Attentional effects in V4

Within our model, V4 neurons are represented with variables {X1, X2 · · ·XN}. For anal-

ysis, we assume a single feature for simplicity. Now, consider the response of the model

unit X i given a stimulus I , which is given by

P (X i|I) =
P (I|X i)

∑
F i,L P (X i|F i, L)P (L)P (F i)∑

Xi

{
P (I|X i)

∑
F i,L P (X i|F i, L)P (L)P (F i)

} (3.1)

Here, the term P (I|X i) represents the excitatory component–the bottom-up evidence from

the input I . For example, assume that when features F i correspond to different orientations,

given the image I, for each orientation and location, P (I|X i) is set proportional to the

output of an oriented Gabor filter. P (L) and P (F i) serve as the attentional modulation.

We make the assumption that features and location priors can be set independently based

on the search task. The conditional probabilities P (X i|F i, L) may then be interpreted as

synaptic strengths, indicating how strongly locations on the feature map are affected by

attentional modulation. The sum over all X i (used to generate normalized probabilities) in

the denominator can be regarded as a divisive normalization factor.

Thus, Eq. 3.1 may be re-written in terms of three components: (i) an excitatory component

E(X i) = P (I|X i) (image I is observed and fixed); (ii) an attentional modulation com-

ponent A(L, F i) = P (L)P (F i); (iii) a divisive normalization factor S(L, F i). With this
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notation, Eq. 3.1 can be rewritten as:

P (X i|I) =
E(X i)A(F i, L)

S(F i, L)
(3.2)

Equation 3.2 turns out to be closely related to a phenomenological model of attention re-

cently proposed by Reynolds and Heeger (2009). In this model, the response of a neuron

at location x and tuned to orientation θ is given by:

R(x, θ) =
A(x, θ)E(x, θ)

S(x, θ) + σ
(3.3)

Here, E(x, θ) represents the excitatory component of the neuron response. S(x, θ) repre-

sents the suppressive component of the neuron response derived by pooling activity over

a larger area. A(x, θ) represents the attentional modulation that enhances specific orienta-

tions and locations, based on the search task. Reynolds & Heeger showed that the model of

Eq.3.3 can reproduce key physiological effects of attention such as contrast gain behavior

under different stimulus conditions. A comparison of Eq. 3.2 with Eq. 3.3 suggests that the

normalization model of Reynolds & Heeger model is a special case of our model e.g. Eq.

3.2. Normalization in our model emerges directly from the bayesian formulation, instead

of being an ad hoc assumption1.

3.1.2 Multiplicative modulation

Spatial attention In (McAdams and Maunsell, 1999), it was observed that the tuning

curve of a V4 neuron is enhanced (multiplicatively) when attention is directed to its recep-

tive field. We observe that this effect occurs in the model. Recall that the response of a

simulated neuron encoding feature i and at location x, is given by

P (X i = x|I) ∝
∑
F i,L

P (X i = x|F i, L)P (I|X i)P (F i)P (L). (3.4)

1It is to be noted that the normalization model (as described in (Reynolds and Heeger, 2009)) explains the
individual phenomenon of change in contrast response due to attention. The bayesian model described here
can explain and predict several additional phenomena discussed in this section that are not addressed by the
normalization model.
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Figure 3-1: Effect of spatial attention on tuning response. The tuning curve shows a multiplicative
modulation under attention. The inset shows the replotted data from (McAdams and Maunsell,
1999).

Under normal conditions, P (L) and P (F i) can be assumed to have a uniform distribu-

tion and thus the response of the neuron is largely determined by the underlying stimulus

(P (I|X i)). Under spatial attention, the location priors are concentrated around L = x.

This leads to a multiplicative change (from P (L = x) = 1/|L| to P (L = x) ≈ 1) that

enhance the response, even under the same stimulus condition (see Fig. 3-3).

Reinterpreting in terms of the message passing algorithm, spatial attention corresponds to

concentrating the prior P (L) around the location/scale of interest (see Fig. 2-2b). Such a

change in the prior is propagated from L toX i (through messages in the bayesian network).

This results in a selective enhancement of all feature maps X i for i = 1 . . . n at locations

l1 . . . lm that overlap with the attentional spotlight P (L) and in suppression everywhere

else. The message passing is initiated at the level of the L units assumed to be in parietal

cortex) and should manifest itself after a short delay in the F i units (in the ventral stream),

in agreement with physiological data (Buschman and Miller, 2007).

Feature based attention Recent findings in physiology (Bichot et al., 2005) show mul-

tiplicative modulation of neuronal response under attention. Units in the PFC and higher
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areas seem to modulate arrays of “feature detectors” cells in intermediate areas of the ven-

tral stream (PIT and V4) according to how diagnostic they are for the specific categorization

task at hand. The data suggest that this modulation is effective at all locations within the

receptive field. An equivalent effect is also observed in the model. Under normal condi-

tions, P (L) and P (F i) have a uniform distribution and thus the response of the neuron is

largely determined by the underlying stimulus (P (I|X i)). Under feature-based attention,

the feature priors are modified to P (F i = 1) ≈ 1. This leads to a multiplicative change

(from P (F i = 1) = 1/2 to P (F i = 1) ≈ 1) enhancing the response at all locations. The

response is more pronounced when the stimulus is preferred (P (I|X i) is high).

In terms of message passing, objects priors are first concentrated around the object(s) of

interest (e.g., (see Fig. 2-2c). ‘pedestrian’ when asked to search for pedestrians in street

scenes). The change in object prior is propagated to the feature units, through the mes-

sage O → F i. This results in a selective enhancement of the features that are typically

associated with the target object (e.g., vertical features when searching for pedestrians) and

suppression of others. This preference propagates to all feature-map locations through the

message mF i→Xi =
∑

O P (F i|O)P (O).

The L unit pools across all features Xj for j = 1 . . . n at a specific location l. However,

because of the feature-based modulation, only the locations that contain features associated

with the object are selectively enhanced. Thus, priors on objects in the ventral stream

activates units in the parietal cortex at locations that are most likely to contain the object of

interest. The message passing is thus initiated in the ventral stream first and is manifested

in the parietal cortex (L units) later, in agreement with the recent data by Buschman &

Miller (Buschman and Miller, 2007)( see Fig.2-2).
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Figure 3-2: (a) Effect of feature attention on neuron response (Replotted from (Bichot et al.,
2005)). (b) The time course of the neuron response is sampled at 150ms. (c) The model predicts
multiplicative modulation of the response of Xi units under attention.

52



3.1.3 Contrast response

The influence of spatial attention on contrast response of V4 neurons have been studied

extensively. Prior work showed two major, apparently contradictory, effects: in (Martınez-

Trujillo and Treue, 2002; Reynolds et al., 2000) attention was shown to shift the contrast

response of neurons, while in (McAdams and Maunsell, 1999; Treue and Trujillo, 1999a)

attention was shown to induce a multiplicative gain in the contrast response of neurons.

Reynolds and Heeger (2009) reconciled these differences by observing that these two ex-

periments were performed under different stimulus conditions. In the experiments in which

a contrast gain was observed, the spotlight of attention was larger than the stimulus. In the

experiments in which a response gain was seen, the stimulus was observed to be larger

than the spotlight of attention. Reynolds & Heeger showed that their normalization model

of attention(see Sec.2.3) produces the observed effects under these different conditions.

In Fig.3-3c and Fig.3-3d we show that our bayesian model, as expected given its close

relation with Reynolds & Heeger’s model, is also consistent with the observed dependency

of contrast on attention. In this simulation, the response without attention is assumed to

depend on contrast (the bottom-up evidence P (I|X1 · · ·Xn) is directly derived from the

outputs of oriented Gabor filters operating on images of varying contrast). The bayesian

model ”predicts” how the contrast response changes with attention.
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Figure 3-3: The model (a) exhibits shift in contrast response when the attentional spotlight is larger
than the stimulus and (b) exhibits response gain modulations when the spotlight is smaller than the
stimulus.
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3.2 Attentional effects in MT

3.2.1 Multiplicative modulation

So far we have restricted our analysis and to interaction of the ventral stream and parietal

regions (and consequently to static images alone). However, motion serves as a powerful

cue for visual attention. In the brain, the dorsal stream comprising of regions V1, MT, MST,

STS (Ungerleider and Pasternak, 2004) processes motion information. Similar to properties

of the hierarchical ventral stream, the specificity of stimulus is found to increase as we

progress higher in the hierarchy. Physiological studies have shown attention can modulate

neurons in region MT in the dorsal stream, similar to the modulation found in V4 region

in the ventral stream (Treue and Trujillo, 1999b; Beauchamp et al., 1997; Womelsdorf

et al., 2006). We propose to incorporate motion based features in addition to existing

shape and color features within the attentional framework. Retaining its parallel to biology,

we proposed to use motion features derived from the computational model of the dorsal

stream (Jhuang et al., 2007) and specifically that of region MT (Simoncelli and Heeger,

1998; Rust et al., 2006). The extended model comprising shape and motion features will

be demonstrated using real world video sequences.

Preliminary results: The Bayesian model of attention is agnostic to the origin of the

features and only requires a spatially organized feature map for its functioning. We use

the computational model of the area MT proposed by Simoncelli (Simoncelli and Heeger,

1998; Rust et al., 2006) to compute the motion features. Thus, in addition to the shape-

based features we introduce motion based feature maps (corresponding to four orientations

and two speeds). The message passing equations remain unaltered. In the following, we

shall present preliminary results illustrating spatial and feature-based attention operating

on moving stimuli.

The stimulus consists of three horizontal sections of moving dot patterns (see Fig.3-4).

Each section can have a separate direction and speed of motion in addition to its color.

The arrows indicate the direction of motion of the dot pattern and is not a part of the

stimulus. P (L) and P (F ) correspond to the spatial and feature prior respectively. These
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indicate the location and features of interest before the stimulus is presented. P (L|I) and

P (F |I) are the posterior probabilities obtained after the sitmulus is observed. Thus, these

values account for the bottom-up evidence from the stimulus as well as top-down task-

based priors.

Pop-out: The region of the stimulus where the direction differs from rest of the stimuls

has the highest saliency. This may be attributed to lateral inhibition within each feature

dimension (implied by the mutual exclusion of the different states of variable X i). The

absolute direction of motion does not affect the result. In the example (see Fig.3-4a), the

central band region has the highest saliency because its direction differs from rest of the

stimulus.

Spatial attention: A specific region within the stimulus can be attended while ignoring the

rest by altering the spatial prior P (L). In the example, the ’read-out’ from the feature units

indicate the speed and direction of the dots in the attended region. We observed that the

feature in the attended region is enhanced while the others are supressed (see Fig.3-4b).

Feature-based attention: Instead of attending to a location, attention can be directed to a

specific feature. The ’read-out’ from the location unit indicates the area where the attended

feature is likely to be found. In the example, the feature to be attended is specified by

altering P (F ). The most likely location can then be ’read-out’ from P (L|I) (see Fig.3-4c).

Multi-modal interaction: In this example, we illustrate the interaction of color and motion

features, a question explored ealier in (Wannig et al., 2007). We use a simpler stimulus,

where dots moving in different directions are non-overlapping. Furthermore, the color of

the dots can vary independently of its direction. In the example (see Fig. 3-4d), attending

to a specific color results in the ’read out’ of its corresponding direction of motion. Alter-

natively, attending to a specific direction allows us to ’read out’ its color. This effect may

be explained as a two stage process in which, attending to a specific motion or color feature

biases attention towards the locations where this feature is present. This in turn, enhances

other features also present within the attended region (see Fig.3-4d).
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Figure 3-4: Attention applied to motion features.
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3.3 ”Predicting” effects of spatial attention in IT

3.3.1 Experimental evidence

In their seminal study, Moran and Desimone (1985) showed that the response of neurons in

the extrastriate cortex is modulated by spatial attention while neurons in the striate cortex

are not. Specifically, when multiple objects were presented within the receptive field of a

V4/IT neuron, it was found that the response of the neuron depended only on the proper-

ties of the attended stimulus. The response of the neuron to the unattended stimulus was

reduced even when it was the preferred stimulus of the neuron. The study measured the

effects of attention at the level of individual neurons. However, physiological studies have

shown that objects are encoded using a population of neurons in IT (Kobatake and Tanaka,

1994; Tanaka, 1996). Thus, in order to study the effect of attention on object perception, it

is essential to study the phenomena at the population level. A recent (and ongoing) study

in Poggio and Desimone labs attempts to quantify the effect of attention on IT neurons at

a population level. Specifically, the study attempts to measure how the information 2 about

objects in the receptive field is affected by spatial attention. In the following, we briefly

describe the original experiment followed by simulations using the model.

Data The stimuli used in the experiment consists of images composed using one (isolated

condition) or three (cluttered condition) out of a pool of 16 objects. The individual objects

used are shown in Fig. A3. Each object was placed at one of three possible positions

on the contralateral hemifield. Overall the experiment used 912 images consisting of 48

images containing isolated objects (16 objects presented at one of the three positions) and

768 images containing three objects (see Fig 3-5)3.

Experiment The stimuli was presented to two alert monkeys. The monkey fixated on a

spot at the center of the stimulus. The stimulus consisted of one or three objects. In case

of a stimulus with a single object, it was always considered as the target object. When the

2as measured by neural decoding performance
3Note that this is less than the total number(16× 15× 14) of possible combinations of 16 objects present

at three location
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Figure 3-5: Illustration of some of the stimuli presented during the experiment. (Top):
Stimuli where a single object was present. (Bottom): Stimuli where three objects were
present. In both cases, the fixation point was placed at the center of the image.

Figure 3-6: Experimental protocol used for recording neurons from IT. Notice the spatial
cue in the form of a small bar directed at the target object. (image,courtesy Ethan Meyers)
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stimulus consisted of three objects, one of the objects was designated as the target and the

other two objects were considered as distracters. Between 518-528 ms after the objects

appeared, a cue was presented in the form of a short line (see Fig. 3-6). The monkey

was rewarded for saccading to the cued object when it changed in color, which happened

between 518-2160ms after the objects appeared on screen. A total of 98 and 139 cells were

recorded from the first and second monkey respectively.

Population decoding Using the neural responses obtained during isolated object presen-

tation, a statistical classifier is trained to associate the neural responses to the identity of

the object. A classifier is trained for each of the 16 objects (one vs. all paradigm). The pre-

diction score obtained from the classifier represents the extent of information present about

the target object. The decoding performance is measured in terms of the area under ROC

curve. This kind of neural decoding paradigm has been used in interpretation of neural data

before (Hung et al., 2005).

Results The study showed that when multiple objects are present within the receptive

field of an IT neuron, the response consists of a mixture of information about objects

present in the stimuli. However, once an attentional cue is provided, information about

the cued object is enhanced relative to the other objects in the display (see Fig. 3-7 a).

This effect could be explained as (i) attention restoring activities of neurons similar to that

of an isolated object or (ii) attention changing the representation of object by inclusion of

additional information. The study showed that the former hypothesis is better supported by

the evidence. In the presence of attention, the pattern of neural activities reverts to activ-

ity similar to the condition when the cued object was present in isolation. The study also

showed that bottom-up cues such as change of color can temporarily override top-down

effects of spatial attention.

3.3.2 Bayesian model

Simulation We study the effects of spatial attention in the model and test if the predic-

tions of the proposed model are consistent with the experimental evidence. We presented
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Figure 3-7: Comparison between IT neurons and model simulation before parameter fitting.

the same set of 912 stimuli to the model. The prior on object identity was set to be uniform.

In the case where no spatial cue was provided in the original experiment, the spatial prior

was set to be uniform. If a cue was provided, spatial prior is set to be a gaussian around the

object location. The size of the gaussian is chosen to be such that the probability mass is

concentrated within the spatial support of the cued object. The posterior probability of the

object provides a quantity that is similar to prediction score given by the classifier in the

original experiment. The prediction is assumed to be correct if the object with the highest

probability was the designated target. The performance of the model is measured in terms

of the area under ROC.

Results The results (see Fig. 3-7 b) show that similar to the original experiment, the

decoding performance is the highest in the isolated condition and decreases under clutter

when no attentional cue is provided. However, under spatial attention, the performance

is restored and is similar to the condition when only isolated objects are presented. The

absolute decoding performance of the model is much higher than obtained from neural

data. During the simulation, the features are assumed to be noise free. Furthermore, the

size of the spotlight of attention is fixed.
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Figure 3-8: Effect of noise and size of the attentional spotlight on decoding performance.

Parameter fitting We studied the effects of these parameters on the decoding perfor-

mance (see Fig 3-8). We observed that increasing the noise (probability of error) decreases

the absolute decoding performance in both the isolated and attended condition. On the

other hand, increasing the size of the attentional spotlight decreases the performance for

the attended condition while not affecting the decoding performance for the isolated con-

dition. When the size of the attentional spotlight is enlarged, features from the other object

interfere causing a drop in performance. With a proper choice of the noise level and the

size of the attentional spotlight, the performance of the model can be made to be close to

the performance obtained from IT neurons. This can be considered a crude form of fitting

model parameters (See Sec. A1.4 for implementation details).
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Figure 3-9: Comparison between IT neurons and model simulation.

3.3.3 Discussion

The effect of attention on IT can be summarized eliminating interference of clutter and

restoring information of the target object. This is similar to the attentional spotlight metaphor

(Crick and Koch, 1990b,a), where attention ”illuminates” area/features of interest while

suppressing the distracters. The prediction of the model is consistent with this explana-

tion. In this study, we fit the model parameters such that the decoding performance was

similar to that of IT neurons. Conversely, it can be speculated that the model parameters is

predictive of the level of noise and the size of the attentional spotlight in the brain.
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Chapter 4

Predicting eye-movements
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4.1 Predicting human eye movements

Human and animal studies (see (Wolfe, 2007) for a recent review) have isolated at least

three main components used to guide the deployment of an eye movements. First, studies

have shown that image-based bottom-up cues can capture attention, particularly during

free viewing conditions1. Second, task dependence also plays a significant role in visual

search (Wolfe, 2007; Yarbus, 1967)2. Third, structural associations between objects and

their locations within a scene (contextual cues have been shown to play a significant role in

visual search and object recognition (Torralba, 2003b).

How the visual system combines these cues and what the underlying neural circuits are,

remain largely unknown. Here we show that our model, which combines bottom-up as

well as top-down cues within a probabilistic bayesian framework, can predict well human

eye movements in complex visual search tasks as well as in free viewing conditions.

4.1.1 Free-viewing

Here we evaluate the performance of the model in a task-free scenario where attention

is purely bottom-up and driven by image salience. We used images and eye-movement

data provided by Bruce and Tsotsos (Bruce and Tsotsos, 2006). The dataset consists of

120 images containing indoor and outdoor scenes with at least one salient object in each

image. The images were presented to 20 human subjects in random order and all the

eye movements made within the first four seconds of presentation were recorded using an

infrared eye tracker. In their work, Bruce and Tsostos used low level filters derived by

performing ICA (Bell and Sejnowski, 1995) on color image patches to generate feature

maps. The visual salience of each position is derived from self information. In contrast to

low level filters, our approach uses higher level shape-tuned features and color information

(see Sec. A1).

1A measure that has been shown to be particularly relevant is the local image salience (i.e., the local
feature contrast), which corresponds to the degree of conspicuity between that location and its surround (Itti
and Koch, 2001a).

2Evidence for top-down feature-based attention comes from both imaging studies in humans (Kanwisher
and Wojciulik, 2000) as well as monkey electrophysiology studies (Maunsell and Treue, 2006).
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Figure 4-1: Predicting human eye movements: (a) Agreement between the model and human eye
fixations during free viewing (left) and a complex visual search for either cars or pedestrians. Sam-
ple images overlaid with most salient (top 20%) regions predicted by the model (green) along with
human eye movements (yellow: agree with prediction, red: not predicted by model) and corre-
sponding model posteriors (i.e., predicted image saliency). (b) Model performance at predicting
human eye fixations during visual searches.
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There are at least two measures that have been used to compare models of attention to

human fixations: normalized scan path saliency (NSS) from (Peters and Itti, 2007) and

fixations in the most salient region (FMSR) from (Bruce and Tsotsos, 2006; Torralba

et al., 2006). For brevity, we only report results using the FMSR measure, but qualita-

tively similar results were obtained for NSS. For each stimulus and task, we calculated

an FMSR value by first thresholding the computed saliency map, retaining only the most

salient pixels (see Fig. 4-1). The FMSR index corresponds to the percentage of human

fixations that fall within this most salient region. A higher value indicates better agreement

with human fixations. We generated an ROC curve by continuously varying the threshold.

The area under the ROC curve provides a summary measure of the agreement with human

observers. We compare our bayesian approach with two baseline algorithms (see Table

4.1).3 The results show that the bayesian attention model using shape-based features can

predict human eye movements better than approaches based on low level features.

Models Agreement with humans (ROC area)
Bruce and Tsotsos (Bruce and Tsotsos, 2006) 0.728

Itti and Koch (Itti et al., 1998) 0.727
Proposed model 0.779

Table 4.1: Comparison of the proposed bayesian model with shape-based features with prior work
that relies on low level features.

4.1.2 Search for cars and pedestrians

We manually selected 100 images (containing cars and pedestrians) from the CBCL Street-

scene database (Bileschi, 2006), while an additional 20 images that did not contain cars

or pedestrians were selected from LabelMe (Russell et al., 2008). These 120 images were

excluded from the training set of the model. On average, images contained 4.6 cars and 2.1

pedestrians. The images (640× 480 pixels) were presented at a distance of about 70 cm,

roughly corresponding to 16◦ × 12◦ of visual angle.

We recruited 8 human subjects (age 18− 35) with normal or corrected-to-normal vision.

Subjects were paid and gave informed consent. Using a block design (120 trials per block),
3Since the fixation data were pooled from all subjects, it is not possible to compare inter-subject consis-

tency or provide error intervals for this data.
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participants were asked to either count the number of cars or the number of pedestrians.

Task and presentation order were randomized for each subject. Every image was presented

twice: once for pedestrians and once for cars. No instructions regarding eye movements

were given, except to maintain fixation on a central cross in order to start each trial. Each

image was then presented for a maximum of 5 seconds, and within this time observers had

to count the number of targets (cars or pedestrians) and press a key to indicate completion.

Subjects then verbally reported the number of targets present, and this was recorded by

the experimenter. We verified that reported counts agreed well with the actual number of

targets. We used an ETL 400 ISCAN table-mounted, video-based eye tracking system to

record eye position during the course of the experiment. Eye position was sampled at a rate

of 240 Hz with an accuracy of about 0.5◦ of visual angle.

Training the model to attend to specific objects or object classes corresponds to estimating

the probability distribution P (F i|O)). In practice, this is done by computing feature maps

for a set of training images. The corresponding feature maps are discretized to maximize

classification accuracy following (Fleuret, 2004). The feature F i is said to be present if its

detected at any location in the feature map. P (F i|O) is determined by simply counting the

frequency of occurrence of each feature. Since scenes of streets obey strong constraints on

where the objects of interest may be found, it is important to use not only feature priors but

also priors over object location. We follow a procedure outlined in (Torralba, 2003a) for

this purpose. Given the image, we compute the ’gist’ (or global summary) of the scene in

a deterministic manner. We use a mixture-of-regressors as in Murphy et al. (2003) to learn

the mapping between the context features and location/scale priors for each object. Details

about how the model was trained for the task is provided in Sec. A1.

As assumed in several previous psychophysical studies (Itti and Koch, 2001a; Rao et al.,

2002a; Torralba et al., 2006), we treat eye movements as a proxy for shifts of attention.

To calculate inter-subject consistency, we generated a saliency map by pooling fixations

from all but one subject in a manner similar to (Torralba et al., 2006), and then tested the

left-out subject on this map. Thus, inter-subject consistency measures performance by a

model constructed from human fixations, which is regarded here as an “ideal model”.

Fig. 4-1(b) shows the agreement between the model (and how the location and feature
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priors influence performance) and human observers for the first fixation. Table A2 and

A3 provide comparisons for additional number of fixations and against other models of

eye movements (Itti and Koch, 2001a; Torralba et al., 2006). Our results suggest that our

bayesian model of attention accounts relatively well for the very first fixations (especially

for cars, see Fig. 4-1(b)). Beyond the first saccade, the agreement between model and

human fixations decreases while the inter subject agreement increases (see Table A2 and

A3). The higher relative contribution of the context (i.e., learned location priors) to the

overall prediction is not surprising, since street scenes have strong spatial constraints re-

garding the locations of cars and pedestrians. We found that using image based saliency

cues, corresponding to setting all the priors to be uniform (see also the bottom-up saliency

model (Itti and Koch, 2001a) in Table A2 and A3), does worse than chance. Learning either

spatial priors or feature priors improve the agreement between models and humans signif-

icantly. In addition, learning priors for both cues does better than either in isolation. The

model agrees at the 92% level with human eye fixations on both pedestrian and car search

tasks (measured in terms of the overlap between ROC areas for the first three fixations).

Recently, Ehinger et al. (2009) used a combination of feature bias, gist and bottom-up

saliency to achieve similar predictive performance. The inconsistency between human sub-

jects and the model may be due to higher-level abstract information available to humans

but not to the model. Humans routinely utilize higher level visual cues (e.g., location of

ground-plane) as well non-visual information (e.g., pedestrians are found on pavements

and cross walks) while examining a visual scene.

Previous work has shown that attention is useful in priming object detection (Navalpakkam

and Itti, 2006; Torralba, 2003a), pruning interest points (Rutishauser et al., 2004), quantify-

ing visual clutter (Rosenholtz and Mansfield, 2005) and predicting human eye movements

(Oliva et al., 2003). Here we provide a quantitative evaluation of the proposed model of

attention for detecting objects in images as opposed to predicting human eye movement.

Table 4.2 shows the percentage of object locations that are correctly predicted using differ-

ent cues and models. An object was considered to be correctly detected if its center lied

in the thresholded saliency map. An ROC curve can be obtained by varying the threshold

on the saliency measure. The area under the ROC curve provides an effective measure of
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Car Pedestrian
Bottom up (Itti and Koch, 2001a) 0.437 0.390
Context (Torralba et al., 2006) 0.800 0.763
Model / uniform priors 0.667 0.689
Model / learned spatial priors 0.813 0.793
Model / learned feature priors 0.688 0.753
Model / full 0.818 0.807

Table 4.2: Comparison between the performance of the various models to localize objects.
The values indicate the area under the ROC.

the predictive ability of the individual models. The context (gist) representation derived

from shape-based units (Serre et al., 2005b) performs better than the representation based

on simple oriented features (Torralba et al., 2006). As expected, bottom-up cues derived

using shape-based features performs better than bottom-up saliency obtained using simple

oriented features (Itti and Koch, 2001a).
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Chapter 5

Beyond attention: a non-bayesian
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5.1 Beyond attention: a non bayesian extension

5.1.1 Recognition in clutter

In previous work, we have shown that feedforward hierarchical models of object recogni-

tion work relatively well for the recognition of objects presented in isolation and/or with

limited (up to 3-5 objects) background clutter (Serre et al., 2005a, 2007c) but that their level

of performance is affected by the presence of clutter (see (Serre et al., 2007a,b)). Other

clutter effects have been well documented in the context of human psychophysics for the

recognition of artificial letter stimuli (Pelli and Tillman, 2008) as well as objects in natural

images (Serre et al., 2007a). The detrimental effect of clutter has also been reported at the

single cell electrophysiology level whereby the selectivity of neurons is reduced when mul-

tiple stimuli fall within their receptive fields (Zoccolan et al., 2007; Reynolds et al., 1999;

Riesenhuber and Poggio, 1999a; Missal et al., 1997). A natural solution to this problem is

a spotlight of attention – a mechanism to suppress regions of the image that are unlikely to

contain objects to be recognized (Walther and Koch, 2007). We propose that this mecha-

nism – and the algorithms to support its function, in particular the choice of the regions to

be suppressed – is in fact visual attention.

During a visual search for a specific feature or object, the top-down feature-based atten-

tional mechanisms first bias the saliency map towards locations that share features with the

target. The sequence of messages are identical with feature-based attention (O → F i → X i → L).

The saliency map (P (L|I)) then provides the most likely location containing the target.

The region around the location with the maximum saliency (P (L|I)) can be chosen as the

center of the spotlight of attention.

The search now proceeds with the deployment of the spatial attention around the region of

interest. It is to be noted that this step is outside the bayesian framework. Thus searching for

an object involves several iterations of the core bayesian model and thus several inference

cycles.

To locate subsequent objects, the attentional spotlight is shifted (possibly via the PFC

and/or FEF onto LIP) to the next location (Posner and Cohen, 1984). In subsequent ex-

periments we have set the spotlight to correspond to a fixed size grid of X i units (i.e., 3×3
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spatial arrangements). It is interesting to note that because of the multi-scale representation

of these features in the original model (Serre et al., 2005b) this translates into a spotlight in

retinotopic coordinates with a variable size and capable of attending to objects at multiple

scales.

In the following, we consider two realistic visual tasks involving object recognition in

clutter and provide evidence suggesting that the strategy described above does work for the

recognition of objects in complex cluttered visual scenes.

5.1.2 Artificial search arrays

We created search arrays of artificial stimuli and evaluated the performance of the model

operating in two distinct modes to detect the presence/absence of an object: (a) a pre-

attentive mode characterized by a single feedforward sweep through the system (corre-

sponding to processing by the original feedforward hierarchical model with no attentional

mechanisms) and (b) an attentive mode whereby cortical loops are active. Examples of

stimulus display used is provided on Fig. 5-1 (see also Fig. A1). Here we used the same

set of stimuli as in (Hung et al., 2005) (see Fig. A2). The dataset consists of 76 images

belonging to 8 image categories (food, faces, monkey faces, hands, vehicles, lines and

toys). Search arrays were generated with 1, 2, 4 and 8 items placed at random locations.

We generated 50 images containing the target and 50 images where the target was absent.

We repeated this process for each target category and cardinality thus generating 800 × 4

images in all.

Because the positions of items in these artificial search arrays are selected at random, the

location priors P (L) were set to be uniform. Fig. 5-1 shows how switching the identity of

the object to be detected influences the computation of the posterior probabilities for the lo-

cation variable P (L|I). Details about the learning of object and feature priors is described

in Sec. A1. Fig. 5-1 shows that the detection performance of the model operating in pre-

attentive feedforward mode degrades with increasing number of distractors (performance

reaching chance level around eight objects). This is similar to previously reported results

(Serre et al., 2007b). Conversely, in the attentive mode, the effect of clutter is much less
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Figure 5-1: Performance measure for feature-based attention during search and recognition in arti-
ficial search arrays. (a) Top-down modulation and biasing of the image saliency towards the search
target with feature-based attentional mechanisms. (b) (Left) Object recognition performance in an
array of distractors: In the absence of attentional mechanisms, the performance of the feedforward
hierarchical model of object recognition (red) degrades with the number of items. Extending the
model to incorporate top-down feature-based attention (black) improves recognition performance
at a level higher than obtained with an alternative bottom-up saliency model (Itti and Koch, 2001a).
(Right) Search efficiency: The average number of attentional shifts required to find the target in-
creases with the number of distractors. For a given number of distractors, top-down feature-based
attention using shape features is the most efficient (on average) for locating the target.

pronounced. Fig. 5-1 provides a comparison between the number of shifts of attention re-

quired to correctly localize a target image by (a) the top-down feature-based approach, (b)

the same model setting the object and feature priors to be uniform (effectively approximat-

ing simple bottom-up saliency computations) and a classical bottom-up saliency algorithm

by Itti & Koch (Itti and Koch, 2001a). On average, top-down feature based attention can

locate objects of interest much faster than the bottom-up saliency version (2.6 shifts of

attention vs. 3.6 for 8 item search arrays).

5.1.3 Complex Natural Scenes

In previous work, a feedforward computational model of the ventral stream of the visual

cortex (Serre et al., 2005b) was shown to account for the level of performance of human

observers during a rapid (masked) animal vs. non-animal recognition task (Serre et al.,

76



2007a). This finding suggested that under rapid masked presentation conditions, a hierar-

chical feedforward model may provide a satisfactory description of information processing

in the ventral stream of the visual cortex. Additionally, we had also found that even for

rapid but unmasked presentation, the agreement between the model and human observers

decreased and in particular, human observers started to significantly outperform the model.

Here we show the addition of cortical feedback and attentional mechanisms improves the

recognition capability of the original hierarchical recognition architecture. We emphasize

that the overall model considered here is not bayesian – only the attentional part is.

The dataset consists of 600 images containing one or more animals and 600 distractor

images comprising of natural and artificial objects (see Fig. A5 and ref. (Serre et al., 2007a)

for examples). Image are organized into four categories based on the amount of clutter and

relative size of the animal with respect to background (The categories are “head”, “near

body”, “medium body” and “far-body”). We trained the model of attention to localize

animals (details are provided in Sec. A1.5). Fig. 5-2 (a) shows how the combination of

top-down spatial priors together with top-down feature-based priors about animals bias the

saliency map (P (L|I)) towards locations which are likely to contain an animal.

A comparison between the performance of human observers vs. the models is shown in

Fig. 5-2 (b). The bayesian model of attention combines top-down feature and spatial priors

with evidence from the image to generate a saliency map which is then used to gener-

ate spotlights of attention around the likely locations of animals. Examples of attentional

spotlights generated by the model are provided in Fig. 5-2(a) (see also Fig. A6).

The detection accuracy of the model increases from 82.5± 2.75 under purely feedforward

condition to 86.5 ± 1.6 when attentive processing is added to the feedforward network.

Human performance with the same stimuli increases from 80.12± 2.5 when the SOA (cor-

responding to the delay between stimuls onset and the mask) is 50ms to 85.375 ± 2.125

when the SOA is 80ms. When the mask is removed entirely, human performance improves

further to 89.875 ± 1.625. Our results show that the performance of the extended model

increases in a manner similar to the performance of human subjects who were given ad-

ditional time to process the images. This suggests that attention may play an important

role in recognition in clutter. However, the performance for the no-mask condition is not
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fully accounted by the attentive processing considered here. The human visual system may

rely upon higher level information that is not available to the model. It is to be noted that

attention in general is not guaranteed to improve recognition performance. In fact, in an

early filtering scheme such as the one described, an object is not detected (no matter how

good the classifier is) if it is not selected by the attention mechanism. Our empirical stud-

ies show that attention can improve recognition only in situations where the features used

for the attentional mechanism are sufficiently decorrelated from those used for recognition.

However, attentional mechanisms always improve the speed of recognition.
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(b) Human vs. model on the animals vs. non-animal
task.

Figure 5-2: Animal vs. non-animal categorization task: comparison of the model with human
performance. Typical posterior maps produced by the model for spatial (P (L|I)) and feature-
based (

∑
i P (Xi|I)) attention as well as their combination (organized by scale from left to right:

0.23×, 0.36×, 0.55× and 0.85× the size of the image). (b) Performance of the model with and
without attention and comparison against human observers with and without mask (see (Serre et al.,
2007a) for details).
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Chapter 6

Discussion
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6.1 Relation to prior work

A few theories and several specific models (see Table A4 and A5 for an overview and

comparison with our approach) have been proposed to explain the main functional roles

of visual attention and some of its properties. An influential proposal by Tsotos (Tsotsos,

1997) maintains that attention reflects evolution’s attempt to fix the processing bottleneck

in the visual system (Broadbent, 1958) by directing the finite computational capacity of the

visual cortex preferentially to relevant stimuli within the visual field while ignoring every-

thing else. Treisman and Gelade (1980) suggested that attention is used to bind different

features (e.g., color and form) of an object during visual perception. Desimone (1998)

suggested that the goal of attention is to bias the choice between competing stimuli within

the visual field. These general proposals, though correct and groundbreaking, do not yield

detailed insights on how attention should be implemented in the visual cortex and do not

yield direct predictions about the various behavioral and physiological effects of attention.

Other, more specific models exist, each capable of modeling a different effect of attention.

Behavioral effects include pop-out of salient objects (Itti et al., 1998; Zhang et al., 2008;

Rosenholtz and Mansfield, 2005), top-down bias of target features (Wolfe, 2007; Naval-

pakkam and Itti, 2006), influence from scene context (Torralba, 2003b), serial vs. parallel-

search effect (Wolfe, 2007) etc. Physiological effects include multiplicative modulation

of neuron response under spatial attention (Rao, 2005) and feature based attention (Bichot

et al., 2005). This paper describes a possible unifying framework that defines a compu-

tational goal for attention, derives possible algorithmic implementations and predicts its

disparate effects listed above.

6.2 Our theory

The theoretical framework of this paper assumes that one goal of vision is to solve the

problem of what is where. Attention follows from the assumption that this is done se-

quentially, one object at a time. It is a reasonable conjecture that the sequential strategy is

dictated by the intrinsic sample complexity of the problem. Solving the ’what’ and ’where’
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problem is especially critical for recognizing and finding objects in clutter. In a proba-

bilistic framework, the bayesian graphical model that emerges from the theory maps into

the basic functional anatomy of attention involving the ventral stream (V4 and PIT) and

the dorsal stream (LIP and FEF). In this view, attention is not a visual routine, but is the

inference process implemented by the interaction between ventral and dorsal areas within

this bayesian framework. This description integrates bottom-up, feature-based and context-

based attentional mechanisms. The first test for the theory is computational, i.e., whether

it indeed “solves” the basic recognition problem. For this we checked that the attentional

model helps a feedforward model to improve recognition performance in the case of nat-

ural, complex images. We also checked that the theory and the associated model predicts

well human psychophysics of eye-movements (which we consider a proxy for attention) in

a task-free as well as in a search task scenario. In a task-free scenario the model, tested

on real world images, outperforms existing ’saliency” models based on low-level visual

features. In a search task, we found that our model predicts human eye movements better

than other, simpler models. Finally the same model predicts – suprisingly – a number of

psychophysical and physiological properties of attention that were so far explained using

different, and somewhat ad hoc mechanisms.
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Appendix A

Implementation details
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A1 Methods

In this work, we extend the feedforward model of the ventral stream to include position

information and attentional feedback. The main addition to the original feedforward model

(Serre et al., 2005b) is (i) the cortical feedback within the ventral stream (providing feature-

based attention); (ii) the cortical feedback from areas of the parietal cortex onto areas of the

ventral stream (providing spatial attention) and, (iii) feedforward connections to the parietal

cortex that serve as a ’saliency map’ encoding the visual relevance of individual locations

(Koch and Ullman, 1985). The feedforward and feedback information are combined using

a bayesian framework. In the following, we describe the model of the ventral stream as

well as the bayesian extension.

A1.1 Ventral (’what’) stream model

The ’what’ stream corresponds to the model described in (Serre et al., 2005b). This model

is representative of the class of feedforward hierarchical models of object recognition. It

builds on previous models (Wallis and Rolls, 1997; Mel, 1997; Riesenhuber and Poggio,

1999b; Ullman et al., 2002; Thorpe, 2002; Amit and Mascaro, 2003; Wersing and Koerner,

2003), conceptual proposals (Hubel and Wiesel, 1968; Perrett and Oram, 1993; Hochstein

and Ahissar, 2002; Biederman, 1987) and computer vision systems (Fukushima, 1975;

LeCun et al., 1998). It was showed (Serre et al., 2005b) to be consistent with experimental

data in V4 (Cadieu et al., 2007) and IT (Hung et al., 2005) (see (Serre et al., 2005b) for

reviews). The model was also shown to be able to fit the performance of human observers

during a rapid animal vs. non-animal categorization task (Serre et al., 2007a), a task which

may likely to rely on bottom-up feedforward processing (VanRullen and Koch, 2003).

Here for simplicity we focused on the part of the model called the ‘bypass route’, model-

ing the ventral stream in a 4-layer hierarchy corresponding to V1/V2 → V4/PIT → AIT

(layers S1/C1 → S2b → C2b). Details about the model can be found elsewhere (Serre

et al., 2005b). In the following we provide a short description of its implementation. The

ventral stream model is built up using a hierarchy of simple (S) and complex (C) units

(here the term unit is used instead of cell to distinguish the entities in the model from their
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counterpart in biology). The S units provide selectivity to specific stimulus while the C

units provide invariance by aggregating information from the afferent S units. Both the

selectivity and invariance exhibited by individual units increases as we go higher up in the

hierarchy. At the highest level we find units that respond to individual object categories at

any location or scale. In this paper, we make use of layers S1, C1, S2 and C2 as outlined in

Serre et al. (2007c). Several other variations of this model exists ( Mutch and Lowe (2006);

Ranzato et al. (2007)).

S1 Units: The S1 units are tuned to bars of specific size and orientation. S1 unit response

S1(s,d)(x, y) at scale s and direction d is computed using a normalized convolution opera-

tion

S1(s,d)(x, y) =
Ĝ(x, y, θ) ∗ I(x, y)√
I2(x, y) ∗H(x, y)

(A1)

Here Ĝ(x, y, θ) is the zero mean,unit normal Gabor filters tuned to orientation θ andH(x, y)

a filter with all ones and the same size as the Gabor filter. The Gabor filters are given by

G(x, y) = exp

(
−u

2 + γv2

2σ2

)
× cos

(
2π

λ

)
(A2)

and

 u

v

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 x

y

 (A3)

Here γ represents the eccentricity/anisotropy of the filter, θ is the orientation and λ is the

wavelength of the filter. In the current implementation, we compute the S1 response at

sixteen different scales and four orientations.

C1 Units: The C1 units pool afferents from several S1 units within its receptive field and

also across adjacent scales using a max operation. This operation done by the C units is

the key to the invariance exhibited by the model, since the C unit responds to the afferent

pattern occurring anywhere within its receptive field and at any scale.

S2 Units: The S2 units respond to simple shapes and have a gaussian-like tuning function
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to their preferred stimulus. The response of an individual S2 unit is given by

S2i = exp

(
−||C1 − Pi||2

2σ2
i

.

)
(A4)

Here, Pi represents the preferred stimulus (dictionary elements) that was learnt during

training. The sharpness of the tuning is determined by σi and is designed to provide low

response for blank input.

C2 Units: The C2 cells again pool responses S2 units across 3 × 3 locations and adjacent

scales. The C2 features are used as the bottom-up input data in our attentional model.

A1.2 Bayesian model

We implemented the bayesian network using Kevin Murphy’s bayesian toolbox available

at http://bnt.sourceforge.net.

Integrated model of attention and recognition The bayesian model takes as input, the

V4-like (C2) feature maps of the feedforward model of the ventral stream (Serre et al.,

2005b). These are mapped to the X i units in the bayesian model. The Xi units receives

bottom-up evidence P (I|X i). For instance, if features F i correspond to orientations, the

feature map is computed using oriented Gabor filters (Daugman, 1980). Given the image

I, for each orientation and location, P (I|X i) is set proportional to the output of the filter.

The response can be passed through a sigmoid or even discretized without affecting the

model. The original ventral stream (Serre et al., 2005b) model used several thousands of

continuous valued shape-based features. In practice, in order to minimize the computa-

tional complexity of the attentional component, a subset of the shape-based features that

are discriminative for the target object category was selected using a mutual information

driven process (Fleuret, 2004). Given the desired number of features, the feature selec-

tion algorithm provides the most discriminatory and mutually independent features to use

and also the corresponding thresholds that maximize the mutual information between the

features and the objects. Using these thresholds, we discretize all the feature maps (Thus,

P (I|X i) can be 0 or 1). The next stage in the computation proceeds using message passing
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algorithm and is agnostic to the origin of the individual features.

Conditional Probability Modeling
P (L) Each scene or view-point places constraints on the location

and sizes of objects that can be encountered in the image.
Such constraints can be specified explicitly (e.g. during spa-
tial attention) or learned using a set of training examples
(Torralba, 2003b).

P (F i|O) The probability of each feature being present or absent given
the object and is directly learned from the training data.

P (X i|F i, L) When the feature F i is present and location L = l∗ is active,
the X i units that are nearby unit L = l∗ are most likely to
be activated. When the feature F i is absent, only the X i = 0
location in the feature map is activated. This conditional
probability can be captured succinctly by the following table

F i = 1, L = l F i = 0, L = l
X i = 0 P (X i|F i, L) = δ1 P (X i|F i, L) = 1− δ2
X i 6= 0 P (X i|F i, L) ∼ Gaus-

sian centered around
L = l

P (X i|F i, L) = δ2

δ1 and δ2 are small values. They are chosen to ensure that∑
P (X i|F i, L) = 1.

P (I|X i) For each location within the feature map, P (I|X i) provides
the likelihood that X i is active. In the model, this bottom-up
evidence or likelihood is set proportional to the activations
of the shape-based units (see (Serre et al., 2007c)).

Table A1: Description of the model conditional probabilities.

A1.3 Search and recognition of objects in artificial search arrays

The feedforward recognition component was trained with images of isolated objects. Ad-

ditional (virtual) training examples were generated using translation and scaling of the

original images. Here we used ≈ 100 shape-tuned features and a linear SVM for readout

analysis as done in (Hung et al., 2005). A separate classifier was trained for each category

(using the ’one vs. all’ strategy).

In the pre-attentive mode, i.e., for recognition in the absence of attention, the entire image

was analyzed by the hierarchical feedforward model. A target was considered detected if

the classifier output for the corresponding object category was positive. To evaluate the
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performance of the integrated model of recognition and attention, the attentional compo-

nent was first used to generate attentional spotlights based on local maxima in the saliency

map (corresponding to P (L|I), the posterior probability of location). Processing by the

feedforward model was limited to this region of interest. The corresponding region (and

its immediate surrounding) was then inhibited and the process was repeated until the tar-

get was found or the maximal image saliency fell below a fixed threshold (10% of the

maximum value).

Figure A1: Example stimuli with one, two, four and eight items.
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Figure A2: 77 stimuli used to create the artificial search array.
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A1.4 Predicting effects of attention in IT

Data The 16 objects used to create the stimuli are shown in Fig. A3. The stimuli was

generated by placing one or three of these objects in the image. The objects can occupy

only three possible positions in the image that subtended an angle 0◦,−60◦ or 60◦ to the

horizontal. The objects appear at a distance of 5.5◦ of visual angle from the center of the

image.

Features The objects consist of fruits, couches, face and cars. To extract features that

are responsive to these objects, we used the CSAIL Labelme (Russell et al., 2008) dataset

(855 cars,63 couch,120 face, 51 fruit images) to derive the feature dictionary. Starting from

a large pool of randomly sampled features, a mutual information driven feature selection

(Fleuret, 2004) was performed to select 60 most informative features. The selection al-

Figure A3: The set of 16 objects used to create the stimulus.
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Figure A4: The arrays represents the conditional probability table P (F i|O) before and
after the sparsification procedure. Each pixel in the array represents the value of P (F i =
1|O = o), for a specific {i, o} combination.

gorithm also provides the thresholds to optimally detect these features. Although this is

far fewer than the number of IT neurons recorded in the original experiment, they respond

more selectively to the set of 16 objects.

Training To estimate the probabilities P (F i|O) for each object, we used scaled versions

of the 16 objects (corresponding to 16 logarithmically spaced scales between 0.8 and 1.25

times the original size). A feature was assumed to be presented if the value of the feature

map at any location exceeded the threshold obtained during feature selection. P (F i|O) was

then estimated using the counts. An undesirable effect of having to share all the features

among the objects is that the number of features whose presence indicates the object is far

fewer than the number of features that are usually absent in the object. The absence of

these features provide evidence for the presence of objects. Furthermore, when the target

object is present among other distracters, the desirable features are still present. However,
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the presence of distracter features artificially decrease the likelihood of the object being

present. In order to prevent this, we set P (F i|O) = min(0.5, P (F i|O)) such that when

features are likely to be absent in an objects, the probability is modified such that they are

non-informative. The conditional probability matrices before and after this procedure is

shown in Fig. A4.

A1.5 Attention helps object recognition in complex natural scenes

Feature priors (P (F i|O)) Here we used a dictionary of ≈ 100 shape-tuned features.

The features are computed at four different scales corresponding to 0.85×, 0.55×, 0.36×

and 0.23× the size of the image. Accordingly, the location units span multiple scales (cor-

responding directly with that of X i). Having multi-scale features allows us to determine

the location as well as the size of the animals. Using a set of 600 training images, the oc-

currence probability of these individual features (P (F i|O)) within animal and non-animal

images was learned.

Location priors (P (L)) Computer vision systems that are based on scanning (Bileschi,

2006; Dalal et al., 2006) do not make any assumption about the scene in which the objects

are found. However, in the natural world, the scene and the objects within it share contex-

tual relationships. Based on this observation, Torralba et al. (Torralba, 2003b) proposed

that a computational model of scene gist could similarly be used to reason about object

probability and position prior to object detection in computer vision applications. Previous

approaches have used gist representations based on spatial distribution of oriented filter re-

sponses (Torralba, 2003b; Itti et al., 2005). In this work, we use biologically inspired shape

descriptors (Serre et al., 2007c) to describe the ’shape’ of the scene.

The association between the image and the location (and scale) of animals was learned

using a mixture of regressors (Murphy et al., 2003). Contextual priors were learned in a

way similar to described by Torralba (Torralba and Oliva, 2003). Given a vectorial scene-

gist representation G, the probability of x-location, y-location and scale (X = x, y, σ) is
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Figure A5: The animals vs. non-animals dataset used in (Serre et al., 2007a).The images in
the dataset are divided into four categories with the depth of view and the amount of clutter
increasing along the rows. The distractor non-animal images are matched for depth.
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given by

P (X|G) =
∑
k

P (K|G)P (X|K,G) (A5)

P (X|K,G) ∼ N(µK + AT
kG,ΣK) (A6)

P (K|G) ∼ softmax(K;W T
k G) (A7)

K represents the canonical view, each of which imposes a different distribution on the ob-

ject location and size. Ak, µK represent the parameters of the individual regressors. The

weights Wk and the softmax function provide a smooth transition between different con-

straints. P (X|K) specifies the individual regressor for view K. To decrease the learning

time and to avoid over fitting, we reduce the dimension of the individual representations

using PCA. We retain only the top 32 principal components. The number of regressors was

fixed at K = 5 for all representations. Our informal study on the selection of K did not

show any difference for higher values of K. Once P (X|G) is obtained, it is transformed

to its discrete counterpart P (L). Admittedly, this procedure is done outside of the bayesian

framework before inference is done.

Recognition Given a test image, a multi-scale saliency map (corresponding to the poste-

rior probability of location, P (L|I)) was generated using the bayesian model of attention

(see Fig. A6). The most salient location and scale was then used to generate a spotlight

of attention (the size of the spotlight being determined by the scale of the saliency map

for the corresponding local max). The region within the spotlight was isolated and further

processed by the feedforward hierarchical model for final animal vs. non-animal catego-

rization. Here we only allowed the model to make one shift of attention.

A1.6 Predicting eye movements

Free viewing

Here we used set of 500 randomly chosen images of outdoor and indoor scenes from the

CSAIL LabelMe dataset (Russell et al., 2008) for training the attention model. These im-
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Figure A6: The figure illustrates the attentional windows computed using the bayesian
model on several images. Note that the size of the attention is not fixed. Instead it is
determined by the scale corresponding to the most salient location.

ages are visually similar to the images used in the actual psychophysics experiment. Sev-

eral hundred shape-tuned features were first extracted via random sampling in these images

(see (Serre et al., 2005b) for details). To speed up the system at run-time, we selected a

small subset of 32 features with the largest variance (which we assume to be the most in-

formative). Here for a fair comparison with the approach by Bruce & Tsotsos, in addition

to the shape features, we included 6 color features corresponding to normalized (z-score)

and half rectified intensities in the LAB color space. Training consisted in determining the

threshold for both color and shape features. We estimated the distribution of each feature

by exhaustively sampling the responses from all the training images. The threshold was

then chosen such that only 20% of the responses would be active (i.e., above threshold)

on average across images. This is equivalent to the 80th percentile value in the estimated

distribution. Choosing a higher threshold produces a sparser saliency map and does not

seriously affect the results.

97



Search in natural images

Feature priors (P (F i|O)) To train the model, we used part of the CBCL Street scene

database (Bileschi, 2006) and part of LabelMe (Russell et al., 2008). We used about 32, 000

training examples (crops) total, which included both cars and pedestrians (about 3, 000 ex-

amples of each). The negative examples were randomly extracted from the database, and

then pruned to exclude regions that overlapped with cars or pedestrians. To train the model,

we started by extracting 1, 000 shape-tuned features randomly sampled from training data

(see (Serre et al., 2005b). Using this data, 200 features were selected using a feature se-

lection process based on mutual information (Fleuret, 2004). Probabilities P (Fi|O) were

obtained via maximum-likelihood estimation.

Location priors (P (L)) Here, we consider ∼ 500 shape-based units to represent the

scene gist. These units have a larger receptive field compared to the ones used for rep-

resenting objects, but are derived using the same computation (Serre et al., 2007c). The

responses are pooled in a 3 × 3 overlapping grid (each grid corresponding half the width

of the original image) using a max operation. This permits the detection of local image

configurations in a translation invariant manner (Serre et al., 2007c). The resulting 4500

dimensional vector is further reduced to 32 dimensions using PCA. This 32 dimensional

vector represents the “context” of the objects in the scene that can be used to determine

likely locations of objects in the scene. We use a mixture-of-regressors as in (Murphy

et al., 2003) to learn the mapping between the context features and location/scale priors for

each object.

Fig. A7 shows the result of a manifold-learning analysis (Roweis and Saul, 2000) directly

on the output of the |K| = 5 experts trained on the street scenes (each image point is as-

signed to an expert – one color for each expert – by soft-assignment on the corresponding

probability distributions). Visual inspection suggests that the mixture of experts learned

canonical views of the street scenes (e.g. dark blue centers being “side views with build-

ing” while light blue centers represent far views). Overall the analysis reveals that the

shape-based features are able to capture the smooth variations going from one canonical

view to another, thus providing a good representation for the scene.
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Figure A7: Visual inspection suggests that centers in the mixture of experts correspond to
canonical street scenes (see text for details).
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First First two First three
Bottom up (Itti and Koch, 2001a) 0.44± 0.03 0.43± 0.03 0.42± 0.02
Context (Torralba et al., 2006) 0.80± 0.04 0.80± 0.05 0.79± 0.05
Model / uniform priors 0.69± 0.02 0.68± 0.01 0.68± 0.01
Model / learned spatial priors 0.82± 0.05 0.81± 0.05 0.80± 0.04
Model / learned feature priors 0.76± 0.02 0.74± 0.03 0.73± 0.03
Model / full 0.83± 0.03 0.81± 0.03 0.80± 0.03
Humans 0.83± 0.06 0.88± 0.04 0.88± 0.03

Table A2: Search for cars in street scene images. Values indicate the area under the ROC.
For each object, the ability of the models to predict the first, two and three fixations is
indicated. The saliency model by Itti & Koch (Itti and Koch, 2001a) corresponds to the
implementation available at (http://saliencytoolbox.net).

First First two First three
Bottom up (Itti and Koch, 2001a) 0.44± 0.03 0.42± 0.03 0.42± 0.02
Context (Torralba et al., 2006) 0.780± 0.07 0.79± 0.07 0.77± 0.07
Model / uniform priors 0.70± 0.026 0.71± 0.02 0.70± 0.01
Model / learned spatial priors 0.80± 0.08 0.79± 0.08 0.78± 0.07
Model / learned feature priors 0.71± 0.02 0.71± 0.02 0.69± 0.02
Model / full 0.82± 0.05 0.81± 0.05 0.80± 0.05
Humans 0.85± 0.08 0.85± 0.08 0.87± 0.03

Table A3: Search for pedestrians in street scene images. Values indicate the area under the
ROC. For each object, the ability of the models to predict the first, two and three fixations
is indicated.
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A2 Discussion

A2.1 The neuroscience of visual attention

In this section, we identify the primary regions of the brain involved in attention and their

interconnections. Koch and Ullman (1985) postulated the existence of a saliency map in

the visual system. The saliency map combines information from several abstract feature

maps (e.g., local contrast, orientations, color) into a global saliency measure that indicates

the relevance of each position in the image. Consistent with this hypothesis, models of

attention have assumed that there exist two stages of visual processing. In a pre-attentive

parallel processing mode, the entire visual field is processed at once to generate a saliency

map which is then used to guide a slow serial attentive processing stage, in which a region

of interest (attentional spotlight) is selected for “specialized” analysis. The attentional

spotlight may be guided in several ways. It can be driven by a spatial cue (e.g. ”what

object is at the center of the image?”) or can be feature/object based (e.g. ”where is the

red square?”). Further, attention can be classified as being bottom-up (stimulus driven)

or top-down (task driven). In bottom-up attention, the attentional shifts are purely image

driven and is independent of any task. (e.g. a bright red sign on the street attracts our

attention irrespective of whether we were looking for it). However, the neural correlate of

the saliency map remains to be found.

Prior studies (Colby and Goldberg, 1999) have shown that the parietal cortex maintains

a spatial map of the visual environment and in fact maintains several frames of reference

(eye-centered, head-centered etc) making it a likely candidate for the saliency computation.

Studies show that response of LIP neurons within the parietal are correlated with likelihood

ratio of the target object (Bisley and Goldberg, 2003). In this paper, our hypothesis – which

is not critical for the theory and is mainly dictated by simplicity – is that the saliency map

is represented in LIP. In addition to computing saliency, circuits are also needed to plan the

shifts of attention, that is, to plan and serialize the search by prioritizing candidate shifts

of attention and holding them in working-memory until the saccade has been initiated.

Because of its overlap with the prefrontal cortex (PFC), the frontal eye field (FEF) is a good

candidate for shifting the focus of attention. Recent evidence (Buschman and Miller, 2007)
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further supports the role of FEF in spatial and feature based attention. We speculate that

the FEF stimulation effect reported by Moore and Armstrong (2003) (i.e., an enhancement

observed in V4 receptive field locations that match the region of the visual field represented

at the FEF stimulation site) is indirect, mediated through LIP.

In addition to the parietal region, the ventral stream is also intimately involved in attention.

Li and Snowden (2006); Itti et al. (1998) have proposed computational models based on

V1-like features showing that they are sufficient to reproduce attentional effects such as

pop-out and search asymmetries. However, recent evidence shows V1 to be relatively un-

affected by top-down attentional modulation (Hegde and Felleman, 2003), thus moving the

locus of attention away from V1 and towards higher regions such as V4. Experiments on

spatial attention (McAdams and Maunsell, 1999) and feature-based attention (Bichot et al.,

2005) have shown attentional modulation in V4. In particular, feature-based attention is

found to modulate the response of V4 neurons at all locations–the activities are increased if

the preferred stimulus of the neurons is the same as the target stimulus and suppressed oth-

erwise. Under spatial attention, V4 neurons that have receptive fields overlapping with the

locus of attention are found to be enhanced. Thus V4 neurons are involved in feature-based

attention as well as spatial attention suggesting that V4 serves as the area of interaction

between ventral and parietal cortices.

In this work, we explicitly model the interaction between the ventral and parietal cortical

regions (Rao, 2005; Van Der Velde and De Kamps, 2001) and integrate these interactions

within a feedforward model of the ventral stream (Serre et al., 2007c). The main addition

to the feedforward model is (1) the inclusion of cortical feedback within the ventral stream

(providing feature-based attention) and (2) from areas of the parietal cortex onto areas of

the ventral stream (providing spatial attention) and, (3) feedforward connections to the

parietal cortex that serve as a ’saliency map’ encoding the visual relevance of individual

locations (Koch and Ullman, 1985). The model is directly inspired by the physiology of

attention and extends a bayesian model of spatial attention proposed by Rao (2005).
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A2.2 Computational models of attention

Several theoretical proposals and computational models have been described to try to ex-

plain the main functional and computational role of visual attention. One important pro-

posal by Tsotsos (1997) is that attention reflects evolution’s attempt to fix the processing

bottleneck in the visual system (Broadbent, 1958) by directing the finite computational ca-

pacity of the visual system preferentially to relevant stimuli within the visual field while

ignoring everything else. Treisman and Gelade (1980) suggested that attention is used to

bind different features (e.g. color and form) of an object during visual perception. Dun-

can (1995) suggested that the goal of attention is to bias the choice between competing

stimuli within the visual field. These proposals however remain agnostic about how atten-

tion should be implemented in the visual cortex and do not yield any prediction about the

various behavioral and physiological effects of attention.

On the other hand, several computational models have attempted to account for specific be-

havioral and physiological effects of attention. Behavioral effects include pop-out of salient

objects (Itti et al., 1998; Zhang et al., 2008; Rosenholtz and Mansfield, 2005), top-down

bias of target features (Wolfe, 2007; Navalpakkam and Itti, 2006), influence from scene

context (Torralba, 2003b), serial vs. parallel-search effect (Wolfe, 2007) etc. Physiological

effects include multiplicative modulation of neuron response under spatial attention (Rao,

2005) and feature based attention (Bichot et al., 2005). Table A4 provides a comparison of

our approach with existing work in literature.

A2.3 Other approaches for modeling human eye movements

Our work builds on a number of computational (Tsotsos et al., 1995; Itti and Koch, 2001a;

Rao et al., 2002b; Torralba et al., 2006; Walther and Koch, 2007) and conceptual proposals

(Wolfe, 2007) that have been suggested over the years to explain visual search tasks (see

(Walther and Koch, 2007) for a recent review). Work on modeling visual attention most

related to our approach can be characterized based on the type of cues that are used and

how they are combined

Studies have shown that image-based bottom-up cues can capture attention, particularly
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Biologically plausible X X X X × X × × X X X X X X
Real world stimuli X X X × X × X X X × X X × ×
Pop-out X X X × X × X X X × X X × ×
Feature-based attention X × × X X X × × × × X × X X
Spatial attention X × × × X × × × × X X X × X
Parallel vs. serial search X × × × × × × × × × × × X ×
Models ventral/parietal X × × X × × × × × X × × × ×

Table A4: The matrix compares the features of prior computational models.

during free viewing conditions. Locations where stimulus differs significantly from rest

of the image is said to ’pop-out’. In (Itti et al., 1998), center-surround difference across

color, intensity and orientation dimensions is used as measure of saliency. In (Gao and

Vasconcelos, 2007), self information of the stimuli (− log(P (I))) is used as measure of

distinctiveness (Zhang et al., 2008). In (Rosenholtz, 1985), the normalized deviation from

mean response is used instead. Spectral methods for computing bottom-up saliency have

also been proposed (Hou and Zhang, 2007). These models, however, cannot account for

the task-dependency of eye movements (Yarbus, 1967). Depending on the search tasks,

human eye movements may differ substantially–even when the stimuli are identical

A seminal proposal to explain how top-down visual search may operate is the Guided

Search model proposed by Wolfe (Wolfe, 2007) according to which the various feature

maps are weighted according to their relevance for the task at hand to compute a solitary

saliency map. Building on Wolfe’s model, several approaches have been suggested (Naval-

pakkam and Itti, 2006; Gao and Vasconcelos, 2005; Zhang et al., 2008). Computational

models that use feature-based cues have relied upon low-level features such as color, con-

trast, orientation (Peters and Itti, 2007; Navalpakkam and Itti, 2006) that are too simple

for real-world object-based visual searches. These models also ignore the role of spatial

attention. In situations where the location of the target is explicitly cued, the role of spa-

tial attention cannot be overlooked. In (Desimone, 1998), it was shown that activity of V4
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BU Loc Sc Feat R-W Comb
Fukushima et al. (Fukushima, 1986) × × × X × N/A

(Itti and Koch, 2001a) X × × × X N/A
(Zhang et al., 2008) X × × × X Bayes

(Gao and Vasconcelos, 2007) X × × × X N/A
(Hou and Zhang, 2007) X × × × X N/A

(Navalpakkam and Itti, 2006) × × × X X Lin
(Gao and Vasconcelos, 2005) × × × X X N/A

(Torralba, 2003b) X X X × X Bayes
(Bruce and Tsotsos, 2006) X × × × X N/A
(Walther and Koch, 2007) X X × X X N/A

Proposed X X X X X Bayes

Table A5: A summary of the differences between different approaches to model attention
and eye movements. The various approaches are compared based on the type of cues that
are used to derive a saliency map, how those cues are combined and whether the work was
evaluated on real-world images. ’BU’ column indicates if bottom-up cues are used, ’Loc’
(location) and ’Sc’ (scale) columns indicate if contextual cues are used to predict object
location and scale respectively. The ’Feat’ (feature) column indicates if the model relies on
top-down feature cues. ’RW’ (real-world) shows if the model has been evaluated on real
world images. In cases where multiple cues are combined, ’Comb’ (combination) indicates
if the combination is bayesian (’Bayes’) or linear (’Lin’).

neurons are reduced when multiple stimuli are present within its receptive field. However,

when a specific location is cued and subsequently attended, the neurons at the attended

locations are selectively enhanced. The neuron responds as if there is a single stimulus

within the receptive field. In (Rao, 2005), a bayesian model of spatial attention is proposed

that reproduces this effect. Our work can be viewed as an extension of this approach. In

addition to direct cueing, spatial cues may also be derived indirectly, by context, in natu-

ral scenes. Spatial relations between objects and their locations within a scene have been

shown to play a significant role in visual search and object recognition (Biederman et al.,

1982). In (Oliva et al., 2003), Oliva, Torralba and colleagues showed that a combination of

spatial context and bottom-up attention could predict a large fraction of human eye move-

ments during real-world visual search tasks in complex natural images. With the exception

of (Ehinger et al., 2009), computational models have not considered the interaction be-

tween spatial, bottom-up and top-down attentional effects. Table A5 provides a succinct

comparison of our approach with existing work in literature.
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