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Object recognition requires both selectivity among different objects and tolerance to vastly different retinal images of the same object,
resulting from natural variation in (e.g.) position, size, illumination, and clutter. Thus, discovering neuronal responses that have object
selectivity and tolerance to identity-preserving transformations is fundamental to understanding object recognition. Although selectivity
and tolerance are found at the highest level of the primate ventral visual stream [the inferotemporal cortex (IT)], both properties are
highly varied and poorly understood. If an IT neuron has very sharp selectivity for a unique combination of object features (“diagnostic
features”), this might automatically endow it with high tolerance. However, this relationship cannot be taken as given; although some IT
neurons are highly object selective and some are highly tolerant, the empirical connection of these key properties is unknown. In this
study, we systematically measured both object selectivity and tolerance to different identity-preserving image transformations in the
spiking responses of a population of monkey IT neurons. We found that IT neurons with high object selectivity typically have low
tolerance (and vice versa), regardless of how object selectivity was quantified and the type of tolerance examined. The discovery of this
trade-off illuminates object selectivity and tolerance in IT and unifies a range of previous, seemingly disparate results. This finding also
argues against the idea that diagnostic conjunctions of features guarantee tolerance. Instead, it is naturally explained by object recogni-
tion models in which object selectivity is built through AND-like tuning mechanisms.
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Introduction
The key computational problem of object recognition is attaining
both selectivity among different visual objects and tolerance to
variation in each object’s appearance (e.g., as a result of changes
in position, size, illumination, clutter, etc.). The primate visual
system has solved this problem: primates robustly and effortlessly
discriminate among visual objects over the wide range of images
that each object produces during natural vision (Potter, 1976;
Intraub, 1980; Rubin and Turano, 1992; Logothetis and Shein-
berg, 1996; Thorpe et al., 1996; Edelman, 1999; Rousselet et al.,
2004). What neuronal architecture and computations create such
a selective and tolerant representation of visual objects? Because
previous work indicates that these properties are built by a hier-
archy of cortical stages (the ventral visual stream) (Logothetis
and Sheinberg, 1996; Tanaka, 1996; Rolls, 2000; Rousselet et al.,
2004), experimental studies can shed light on this question by

examining the strength, variation, and relationship of object se-
lectivity and tolerance across the ventral visual stream.

Here we focus on the culmination of the ventral visual stream,
the anterior portion of the inferotemporal cortex (IT). Although
object selectivity and tolerance are found in IT, these properties
are highly varied both within and across studies (Logothetis and
Sheinberg, 1996; Tanaka, 1996; Rolls, 2000; Rousselet et al.,
2004), and their connection at the level of single IT neurons is not
understood. One possibility is that, as signals propagate through
the visual system, neurons become highly selective for unique
combinations of features that also guarantee high tolerance to
identity-preserving transformations of those features. This no-
tion derives from the grandmother or gnostic cell concept of
Lettvin and Konorski (Gross, 2002), and has been recently invig-
orated by the observation that some neurons in the human me-
dial temporal lobe (Quiroga et al., 2005) respond only to specific
visual objects regardless of size, pose, and visual clutter. This
notion also seems consistent with previous physiological results:
sharpness of object selectivity and tolerance (e.g., to position or
size changes) both increase along the ventral visual stream (Ko-
batake and Tanaka, 1994; Logothetis and Sheinberg, 1996;
Tanaka, 1996; Edelman, 1999; Rolls, 2000; Rousselet et al., 2004).
Nevertheless, however appealing, this notion cannot be taken as
given; we do not yet know whether individual IT neurons attain
high values of both selectivity and tolerance. More generally, we
do not even know whether these properties are connected in any
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way, because no study has systematically measured both proper-
ties in the same IT neuronal population.

To address this issue, we systematically measured both object
selectivity and tolerance to different identity-preserving image
transformations within the same IT neuronal population in two
monkey subjects engaged in a simple object detection task. For
each neuron, we measured (1) how selectively it responded across
a large object set (object selectivity) (see Fig. 1A, top); and (2)
how well preserved its response was to a very effective reference
object that underwent different transformations: position, size,
and contrast changes and addition of visual clutter (absolute tol-
erance) (see Fig. 1A, bottom). Although another way to measure
tolerance is to check how well relative object preference is pre-
served across transformations (relative tolerance) (Tovee et al.,
1994; Ito et al., 1995), we focused here on absolute tolerance of
neuronal responses because it provides a bound on other toler-
ance metrics and measures the ability of individual neurons to
support recognition without further processing (see Discussion).
Contrary to the appealing idea that IT contains neurons that are
both highly shape selective and highly tolerant, we discovered
that selectivity and tolerance trade off across the IT population:
neurons with high object selectivity typically have relatively low
tolerance, and vice versa.

Materials and Methods
We used standard procedures for surgical preparation, behavioral task
and training, eye position monitoring, and single-unit electrophysiolog-
ical recording in awake monkeys, and details are described by Zoccolan et
al. (2005). Here we briefly describe those methods that are most relevant
to the present study. All animal procedures were performed in accord
with National Institute of Health guidelines and the Massachusetts Insti-
tute of Technology Committee on Animal Care.

Visual stimuli and behavioral task
All recorded neurons were probed with a fixed set of 213 grayscale pic-
tures of isolated real-world objects, mostly modified from the Caltech
101 database (Fei-Fei et al., 2004), but including also (1) five fixed object
prototypes from each of three spaces of parameterized objects (see be-
low); (2) five patches of texture; (3) four low-contrast images of one of
the objects; and (4) a blank frame (used to measure neuronal background
rate). The full set is shown in supplemental Figure 1 (available at www.
jneurosci.org as supplemental material). Some neurons were also tested
using additional objects drawn from the three spaces [cars, faces, and
two-dimensional (2-D) silhouettes] with parametrically controllable
shape similarity within each space. Each object space consisted of 14
morph axes (for a total of 42 morph axes), and each morph axis was
composed of five shapes resulting from blending two object prototypes
(e.g., two car brands) in different proportions (see examples in Fig. 2 B)
(for details, see Zoccolan et al., 2005). All objects subtended �2°.

During recordings, both monkeys were engaged in a simple recogni-
tion task that required the detection of a fixed, red target shape (a red
triangle) that was presented at the end of a temporal sequence of object
conditions drawn from our stimulus set (see Fig. 1 B). The total number
of stimulus conditions presented on each behavioral trial ranged from 3
to 20. The target was always the last in the sequence, and each monkey
was rewarded for maintaining fixation (�1.5° fixation window) until the
appearance of the target and then making a saccade to a fixed visual field
location (7° eccentricity) within 800 ms after the appearance of the target.

The size of the fixation window was chosen to be small enough to
guarantee that the monkeys could not make a saccade to any of the
eccentric positions that were tested during the mapping of the receptive
field (RF) (see below) without leaving the fixation window and, there-
fore, aborting the trial. This was guaranteed by the fact that the closest
positions to fixation were �2.5° from the fixation spot (see below), i.e.,
�1° beyond the edge of the fixation window.

Single objects from the fixed stimulus set and identity-preserving
transformations of a very effective reference object (see Fig. 1 A) were

pseudorandomly interleaved. Visual stimuli were presented at a rate of 5
per second; i.e., each stimulus condition was shown for 100 ms, followed
by 100 ms of a gray screen (no stimulus), followed by another stimulus
condition for 100 ms, etc. (see Fig. 1 B). This task was meant to obtain a
large amount of data, while still engaging the animal in a recognition task.
We have previously shown that clutter suppression during such tasks is
not simply explained by variation in spatial attention (Zoccolan et al.,
2005).

Neuronal recordings
During each recording session, a single extracellular metal electrode was
advanced into IT. Over �6 months of daily recording sessions in the two
monkeys, we sampled neurons over an �5 � 4 mm area of the ventral
superior temporal sulcus and ventral surface lateral to the anterior mid-
dle temporal sulcus (Horsey-Clark coordinates: anteroposterior, 13–17
mm; 18 –21 mm mediolateral at recording depth).

Screening procedures. Each isolated neuron was tested for responsive-
ness across the fixed set of 213 stimuli plus 30 additional object proto-
types belonging to the parameterized morphed spaces (Zoccolan et al.,
2005) using a very inclusive criterion: a neuron was considered respon-
sive if its mean firing rate was significantly higher than background rate
for at least one of these stimuli (t test, p � 0.005, which implies p � 0.7
corrected for multiple tests). All stimuli were presented at the center of
gaze. Two to four presentation repetitions were collected for each stim-
ulus. This screening procedure was used to identify a very effective ref-
erence object (the object that produced the strongest neuronal response,
higher than background rate according to the t test) and six poorly effec-
tive flanking objects (the objects that produced the smallest response, not
significantly higher than background rate according to the t test). Note,
however, that, because of trial-by-trial noise, in the final testing in which
more repetitions were used (see below), the chosen objects did not always
turn out to be the most effective (and ineffective) objects. Only respon-
sive neurons for which these reference and flanking objects could be
found were selected for further testing and recordings. The screening
procedure was also used to decide whether the neuron was responsive to
any of the object prototypes belonging to the parameterized morphed
spaces (a total of 45 prototypes were used, 15 of which belonged to the
fixed set of 213 visual stimuli; see above).

If selected for recordings (see above), a neuron was further screened to
identify its preferred receptive field location (RF center) within a narrow
span of visual angle around the center of gaze. Our goal was not to map
each neuron RF over the whole visual field, but rather to optimize the
location in which to present our single object conditions during the main
testing session (see below). To achieve this, the most effective (reference)
object and the least effective object were presented over a span of 2°
around the fixation spot (8 –10 repetitions). More specifically, six visual
field locations (in addition to fixation) were tested. Four of these loca-
tions were the extremes of a “cross” centered on fixation (i.e., 2° above
and below fixation and 2° left and right to fixation). The other two
locations were �2° in elevation and 2° in azimuth, in the contralateral
hemifield with respect to the recording chamber. The visual field location
in which the response produced by the reference was higher was chosen
as RF center of the neuron. Within this 2° span, most neurons (75/94)
had their RF center at the center of gaze.

Recording session. Complete recordings were obtained from each neu-
ron using pseudorandomly interleaved stimuli from our entire battery of
stimulus conditions: (1) single objects belonging to the fixed object set
and presented in the neuron’s RF center (see Fig. 1 A, broad sampling);
(2) identity-preserving transformations of the reference object to test
clutter tolerance (CT), position tolerance (PT), size tolerance (ST), and
contrast tolerance (CrT) (see Fig. 1 A). If the neuron was responsive to
any of the 45 morphed object prototypes that were probed during screen-
ing (see above), it was also tested with five objects belonging to the morph
axis that included the effective object prototype (see Fig. 1 A, local
sampling).

Tolerance to position changes was assessed by mapping the response
to the reference object across a vertical �12° span of visual field (see Fig.
3A). The reference object was presented in the RF center (see above) and
in eight additional positions: (1) �2.5° below the RF center; and (2) 2.5,
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3.5, 4.5, 5.5, 7.5, 9.5, and either 11 (73/94 cells) or 12° (21/94 cells) above
the RF center. Position tolerance was not mapped in full 2-D space be-
cause it would have been too time consuming (see below). Based on
results in the literature (Tovee et al., 1994; Ito et al., 1995; Op De Beeck
and Vogels, 2000), our testing should provide a reasonable estimate of
position tolerance, and we have no reason to believe that a full 2-D map
of the RF field would lead to qualitatively different results.

Tolerance to size changes was measured by presenting the reference
object at four different sizes (1, 2, 4, and 6°) at the RF center (see Fig. 3B).
Object conditions to measure ST were tested for all neurons from mon-
key 2 (n � 34) but only for a subset of neurons from monkey 1 (18/60).

Tolerance to contrast changes was assessed by presenting the reference
object at three low contrasts (1.5, 2, and 3%), in addition to its default
contrast (mean default contrast across reference objects � SD � 33 �
12%), at 2.5° above the RF center (see Fig. 3C). The reason that contrast
tolerance was not measured at the RF center is that the data presented in
this study are part of a larger experimental design, in which, among other
things, the relationship between clutter tolerance and the contrast of the
flanker objects was tested. To measure such a relationship, flankers at
different low contrasts were presented 2.5° above the RF center. To save
time (see below), the same low-contrast conditions were not presented
also at the RF center. Stimulus contrast was defined as follows: [med
(pix � Lbackground) � med(pix � Lbackground)]/[med(pix � Lbackground)
� med (pix � Lbackground)], where med indicates the median taken over
the pixel values either above or below the monitor background lumi-
nance level (Lbackground).

To test clutter tolerance, the reference object was presented both in
isolation and along with each of the six, poorly effective flanking objects
(see above) (see Fig. 3D). Objects in the pairs used to test clutter tolerance
were 2.5° apart (center to center), with the effective reference object in
the neuron RF center and the flanking object located 2.5° either above or
below the RF center.

As described above, given the time limitations of awake recording,
only a limited amount of object conditions could be used to measure each
tolerance property. Therefore, our goal was not to obtain the best possi-
ble estimate of each tolerance property per se, but rather to collect
enough data to understand how these properties covaried with object
selectivity and with each other.

The transformations of the reference object described above allow
measuring the absolute tolerance of each neuron, i.e., how well preserved
the response to the effective reference object across each transformation
(see below for a definition of the tolerance metrics) is. Alternatively,
tolerance can be defined in terms of how well preserved the rank order of
object selectivity across the tested transformations (relative tolerance) is.
Although our study was not meant to provide an accurate estimate of
relative tolerance (see Introduction and Discussion), in addition to mea-
suring how the response to the effective reference object changed by
varying its position, size, and contrast, we also measured how these same
transformations affected the response to a very ineffective object (one of
the flanking objects). This allows a first-order assessment of relative tol-
erance across the recorded population (see below).

Five to thirty presentation repetitions were collected for each object
condition (see supplemental material 1.B for details, available at
www.jneurosci.org).

Data analysis
Choice of the spike count window. To get the most statistical power from
the data, average firing rates were computed over a time window (relative
to stimulus onset) whose extremes were optimally chosen for each neu-
ron by an apposite algorithm. Briefly, epochs of the neuronal response
were identified in which the background corrected response was at least
20% of its peak value. If multiple such epochs existed, they were merged
to the epoch containing the response peak if they were within 25 ms from
it. This algorithm is completely described in supplemental material 1.A
and supplemental Figure 2 (available at www.jneurosci.org as supple-
mental material). Analyses performed using either such neuron-specific
spike count windows (mean onset across neurons � SD � 101 � 18 ms;
mean offset � 236 � 48 ms) or count windows that were held fixed across
the recorded neuronal population yielded very similar results (supple-

mental Tables 1, 2, available at www.jneurosci.org as supplemental ma-
terial). The neuron-specific spike count windows were used to estimate
latency and duration of the neuronal responses in the analysis shown in
supplemental Table 6 (available at www.jneurosci.org as supplemental
material). For such analysis, onset and offset of the response were com-
puted considering epochs in which the background corrected response
was at least either 20% (as for our standard spike count window) or 10%
(for a better comparison with previous studies) (Brincat and Connor,
2006) of its peak value.

To assess the dependency of the selectivity and tolerance properties
(see below) from the time course of the neuronal response, firing rates
were also computed in overlapping time windows of 50 ms shifted in
time steps of 25 ms (see Fig. 6).

Analyses were performed using absolute firing rates, but very similar
results were obtained when driven (i.e., “background subtracted”) rates
were used (supplemental Tables 1, 2, available at www.jneurosci.org as
supplemental material).

Selectivity and tolerance metrics. The selectivity of each neuron across
the fixed set of 213 stimuli was quantified by the sparseness of its response
(Rolls and Tovee, 1995a; Vinje and Gallant, 2000; Olshausen and Field,
2004): S � {1 � [(	Ri/n) 2/	(Ri

2/n)]}/[1 � (1/n)], where Ri is the neu-
ron response to the ith stimulus and n is the number of stimuli in the set.
S ranges from 0 (no object selectivity) to 1 (maximal object selectivity).
Neuronal selectivity within each morphed set was quantified by the fol-
lowing morph tuning index (Rainer et al., 1998): MT � [n � (	Ri/
Rmax)]/(n � 1), where Ri is the neuron response to the ith morphed
object, Rmax is the maximal response within the morphed set, and n is the
number of objects in the set. As sparseness, MT ranges from 0 (no shape
selectivity) to 1 (maximal shape selectivity).

For each neuron, PT was defined as two times the SD of the Gaussian
function that best fitted the normalized driven rates across the tested RF
positions. Operationally, we subtracted the background activity from the
neuron responses across the tested RF positions, and we normalized (1.0)
the resulting RF profile. Then, we fit a Gaussian function to the RF
profile, with the peak of the Gaussian centered on the peak of the RF. As
a goodness-of-fit measure, we used the sum of the absolute residuals SR.
Only neurons such that SR � 1.5 were included in the analyses presented
throughout the paper. For the analysis shown in Figure 5C (top left), only
neurons such that SR � 0.8 were included in the population-averaged RF
profiles, to guarantee that only RFs with homogeneous shapes (i.e., all
strictly Gaussian) contributed to the average. Note that in Figure 5C (see
legend), before being averaged, the receptive field profiles were aligned to
the position (elevation) of their peak values. Because the tested elevations
were not located in an equally spaced grid (see above), aligning the peaks
produces a misalignment of the elevations at which each neuron was
tested. Thus the RF profiles in Figure 5C were averaged in overlapping
windows of �3°, shifted in steps of �1°. Depending on what elevations
fell in a given averaging window, the average elevation in that window
may be different between subpopulations.

ST was quantified by normalizing (1.0) the size tuning curves to their
maximal values (see Fig. 3B, bottom) and then averaging the resulting
tuning curve values that were �1, i.e., ST � �Rtest size/max(Rtest size)�,
where Rtest size is the mean response to a given tested size of the
reference object, and ��� is the average over the sizes such that
Rtest size � max(Rtest size). Contrast tolerance (CrT) was similarly mea-
sured, but after normalizing each contrast tuning curve to the original
contrast of the reference object (see Fig. 3C, bottom, leftmost point), i.e.,
CrT � �Rtest contrast/Rref contrast�, where Rtest contrast is the mean response to
a given tested contrast of the reference object, Rref contrast is the mean
response to the reference object presented at its original contrast, and ��� is
the average over the tested contrasts (3, 2, and 1.5%) (see Fig. 3D). ST and
CrT measure the amount of response that is preserved, on average, when
the reference object is transformed by changing, respectively, its optimal
size or its reference contrast. Both metrics range between 0 (no tolerance)
and 1 (complete invariance).

We quantified the clutter tolerance of each neuron with the following
clutter tolerance (CT) metric: CT � �(Rref & flanker � Rflanker)/(Rref �
Rflanker)�, where Rref & flanker is the mean response to a given pair refer-
ence/flanker, Rref and Rflanker are the mean responses to the constituent
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objects of that pair (i.e., the reference and flanker objects presented
alone), and ��� is the average over the included flanker conditions (for
most analyses, only flankers such that Rflanker � 50% Rref or less were
considered) (but see Fig. 7A). CT values near 0 indicate very poor clutter
tolerance (strong suppression by flanker objects), whereas values near 1
indicate complete clutter invariance (CCI; no effect of flanker objects).
CT � 1 indicates facilitation by clutter. It is important to note that,
because the response to the isolated flanker objects is subtracted from
both Rref & flanker and Rref in the definition of CT, the metric is unbiased
with respect to either a CCI or a clutter averaging rule (Zoccolan et al.,
2005) (see Fig. 7A for details).

Significance and SE of the correlation coefficients reported through
this manuscript were computed, respectively, using a one-tailed permu-
tation test (5000 samples) and bootstrap analysis (500 samples).

Presentation repetitions of the reference object were split to guarantee
complete independence of the datasets over which selectivity and toler-
ance metrics were computed (see supplemental material 1.B, available at
www.jneurosci.org). The number of neurons included in the different
analyses presented throughout the paper (see Figs. 4 –7; supplemental
Tables 1–3, available at www.jneurosci.org as supplemental material)
was selected according to specific criteria that are fully described in sup-
plemental material 1.C (available at www.jneurosci.org).

To obtain a measure of the relative tolerance of object selectivity across
the tested transformations, for each of the position, size, and contrast
changes, we computed the difference between the response (average fir-
ing rate) to the effective reference object (Rref) and the response to one of
the poorly effective flanker objects (Rflanker), normalized by the mean of
the standard deviations (�ref and �flanker) of the two response rates. In
other words, we computed a d
 index, defined as follows: d
 � (Rref �
Rflanker)/�, with � � (�ref � �flanker)/2. This index tells how far apart the
responses to the effective and ineffective objects are. Negative values
indicate that, for a given transformation, the tuning of the neuron has
reversed (i.e., the ineffective flanker produced a response larger than the
effective reference).

Spike waveform analysis. Putative inhibitory and excitatory neurons
were identified across the recorded neuronal population based on the
waveform of the action potentials collected for each cell. Previous studies

performed in cortical slices and anesthetized
animals (McCormick et al., 1985; Connors and
Gutnick, 1990; Nowak et al., 2003) and addi-
tional studies based on cross-correlation analy-
sis of spike trains (Bartho et al., 2004; Tamura et
al., 2004) have shown the reliability of such an
approach in identifying neuronal typing. As a
consequence, many authors have distinguished
between putative excitatory and inhibitory neu-
rons recorded in different brain areas of awake
animals (such as hippocampus, somatosensory
cortex, lower and higher visual cortical areas,
and rat barrel cortex) using only the temporal
features of the spike waveforms (Mountcastle et
al., 1969; Gur et al., 1999; Frank et al., 2001;
Bruno and Simons, 2002; Andermann et al.,
2004; Mitchell et al., 2007). In this study, fol-
lowing Bruno and Simons (2002), two compo-
nents of the waveform were taken as distinctive
features of the neuron type: (1) the duration
(width) of the central peak (negative or posi-
tive); and (2) the width of the following trough
(corresponding to the spike afterhyperpolariza-
tion). Figure 5A shows a scatter plot with the
mean width of the peak and trough for our pop-
ulation of 94 neurons. The cluster of neurons
with shorter mean widths (empty circles) was
identified as putative inhibitory. The cluster
with longer mean widths (filled circles) was des-
ignated as excitatory. Waveforms of one exam-
ple neuron from each cluster are shown in
Figure 5A (top).

Monte Carlo simulations to check that the
sparseness and clutter tolerance metrics are not implicitly correlated. Monte
Carlo simulations were run to check that the inverse relationship be-
tween S and CT (see above) could not arise by chance as the result of an
implicit correlation between these metrics computed over a population
of noisy neuronal responses (see Fig. 7B). For any given neuron, re-
sponses to the single object conditions were simulated using Poisson
spike generators with mean rate equal to the actual mean firing rate that
was recorded for each single object condition (the same number of rep-
etitions collected for each object condition were simulated). The selec-
tivity (sparseness, S) of each neuron was computed based on these Pois-
son simulated responses to single objects. A simulated response to clutter
(i.e., to the tested object pairs) was implemented either assuming an
averaging rule or assuming CCI. Two versions of the averaging rule were
implemented: (1) one exact, i.e., Rref & flanker � 0.5 (Rref � Rflanker); (2)
the other approximate, i.e., with Rref & flanker randomly sampled between
Rflanker and Rref (in both cases, Poisson statistics of spike trains were
assumed). The CT of each neuron was computed based on these Poisson
simulated responses to object pairs. Each Monte Carlo simulation was
repeated 500 times, yielding the null distributions of regression lines and
correlation coefficients shown in Figure 7B.

Model simulations
The hierarchical object recognition model used to generate Figure 9E is
fully described in previous reports (Riesenhuber and Poggio, 1999; Serre
et al., 2005, 2007a,b). See supplemental material 2 and supplemental
Figure 7 (available at www.jneurosci.org as supplemental material) for
details about model simulations and additional modeling results.

Results
To examine the relationship between object selectivity and toler-
ance in IT, we performed extracellular microelectrode recordings
in two monkeys that viewed grayscale images of real-world ob-
jects presented at a rate of 5 images/s, while the animals were
engaged in a simple object detection task (Fig. 1B) (see Materials
and Methods). Well isolated neurons were randomly sampled

Figure 1. Rationale of the experimental design and behavioral task. A, For each neuron, we measured (1) its object selectivity,
i.e., its sensitivity to changes in object identity (measured both across a large set of real-world objects, and, when possible, across
local, parameterized sets of morphed shapes); and (2) its tolerance to different identity-preserving image transformations of an
effective reference object. B, During recordings, monkeys were presented with rapid sequences of pseudorandomly interleaved
grayscale objects used to measure selectivity and tolerance (see above). The monkey’s task was to respond to the red triangle at
the end of each sequence. The number of objects presented before the triangle was random (between 3 and 20).

Zoccolan et al. • Selectivity and Tolerance Trade off in Monkey IT J. Neurosci., November 7, 2007 • 27(45):12292–12307 • 12295



throughout anterior IT and tested for responsiveness across a
fixed, large set of visual objects (see Materials and Methods). Each
responsive neuron was then tested with a battery of object con-
ditions to measure (1) its object selectivity, i.e., its sensitivity to
changes in object identity (Fig. 1A, top); and (2) its tolerance to
different identity-preserving transformations of a reference ob-
ject, including position, size and contrast changes, and presence
of clutter (Fig. 1A, bottom). Complete recordings were obtained
from 94 IT neurons (60 in monkey 1, 34 in monkey 2). We took
special care to obtain independent data and design independent
metrics for selectivity and tolerance so as to guarantee no implicit
relationship among these properties (see Materials and Methods
and supplemental material 1B, available at www.jneurosci.org).

Broad range of object selectivity across the IT
neuronal population
To get a first-order measure of each neuron’s object selectivity,
we estimated the fraction of objects in a large, fixed set of 213
stimuli (see supplemental Fig. 1, available at www.jneurosci.org
as supplemental material, Fig. 2A) that produced a response
(sparseness, described immediately below). For most neurons
(see Materials and Methods), we also measured shape selectivity
within several predefined parameterized object shape spaces (Fig.
2B, morph tuning, described in detail later in Results) (see also

Zoccolan et al., 2005). Both methods uncovered a remarkably
broad spectrum of sensitivity to shape changes within IT. For
example, although many neurons responded strongly to their
preferred object within the fixed shape set (population mean �
SD � 49.5 � 21.2 spikes/s) (see supplemental Fig. 5, available at
www.jneurosci.org as supplemental material), the population
was highly varied in the number of objects that elicited a strong
response. This can be visually appreciated by ranking, for each
neuron, the 213 test stimuli based on the response they evoked
(Fig. 2A, bottom). For example, some neurons were weakly se-
lective in that they showed a strong response to many objects [Fig.
2A, blue curve and peristimulus time histograms (PSTHs)].
Other neurons were highly selective in that they responded well
to only a handful of objects (Fig. 2A, red curve and PSTHs).
These example neurons illustrate the broad range of selectivity
seen across the IT population (Fig. 2A, gray lines). Note however,
that even the least-selective neurons within our IT population
typically showed some (nonzero) object selectivity in that some
objects elicited little or no response (Fig. 2A). In fact, all neurons
that fired at least 10 spikes/s to the effective reference object (see
Materials and Methods) and were included in further analyses
(91/94 cells), responded significantly more to the reference object
than to one of the weakly effective flanker objects chosen during

Figure 2. Broadness of object selectivity in IT. A, Normalized firing rate profiles (bottom) across a fixed set of 213 objects for a population of 94 neurons. For each neuron, objects in abscissa are
ranked based on the mean response they evoked. The figure highlights data from two example neurons (blue and red curves) and their responses (blue and red PSTHs) to five objects chosen at equally
spaced intervals along the abscissa (dashed lines). Gray boxes indicate the spike count window. B, Normalized tuning profiles (bottom) across five parametrically morphed objects (49 cells; each cell
was tested using one of 42 possible morphed object sets). The same example neurons and color code are used as in A. S and MT values are indicated for the example cells.
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the screening procedure (see Materials and Methods; one-tailed t
test, p � 0.05).

We quantified each neuron’s selectivity across the stimulus set
by the sparseness (Rolls and Tovee, 1995a; Vinje and Gallant,
2000; Olshausen and Field, 2004) of its response (0 � S � 1; see
Materials and Methods), which is a well established metric to
quantify the fraction of stimuli in a given stimulus set that pro-
duce a response. A value of S near 0 indicates that a neuron
responds nearly equally to many objects in the stimulus set (low
object selectivity), whereas a value near 1 indicates that a neuron
responds well to only a few objects (high object selectivity). The
sparseness distribution across the neuronal population extended
over a very broad range of values (from 0.05 to 0.94; mean �
SD � 0.4 � 0.22, n � 94) (see Fig. 5B). This systematic quantifi-
cation of the object selectivity of each IT neuron allowed us to
look across the population for any relationship between object
selectivity and tolerance to identity-preserving transformations.

Broad ranges of tolerance properties across the IT
neuronal population
To quantify each neuron’s tolerance to identity-preserving image
transformations of its highly preferred objects, we measured its
change in firing rate in response to identity-preserving transfor-
mations of a reference object. This reference object was chosen
for each neuron from among the objects that most effectively
drove the cell during a screening procedure preceding the record-
ing session (see Materials and Methods). The tested image trans-
formations of the reference object were pseudorandomly inter-
leaved with the testing of selectivity (Fig. 1B), and they included
changes in object position and size (position and size tolerance),

changes in object contrast (contrast tolerance), and the addition
of other objects (a test of tolerance to visual clutter) (Fig. 1A).

Tolerance to position changes was assessed by mapping the
response to the reference object across a vertical 12° span of visual
field (Fig. 3A). Tolerance to size changes was measured by pre-
senting the reference object at four different sizes (1, 2, 4, and 6°)
at the RF center (Fig. 3B). Tolerance to contrast changes was
assessed by presenting the reference object at three low contrasts
(1.5, 2, and 3%), in addition to its default contrast (mean default
contrast across reference objects � SD � 33 � 12%), at 2.5°
above the RF center (Fig. 3C). As a first-order test of clutter
tolerance, the reference object was presented both in isolation
and along with a single, poorly effective flanker (clutter) object
(Fig. 3D). Six such flanker objects were tested for each neuron.
They were chosen, from the fixed set of 213 stimuli, among those
objects that least effectively drove the neuron (see Materials and
Methods). Only those flankers that produced little or no response
(� 50% of the response to the reference object) were included in
further analysis (but see also Fig. 7A).

Like object selectivity (Fig. 2), we found that IT neurons var-
ied greatly in their amount of tolerance to identity-preserving
image transformations. This can be visually appreciated in Figure
3 (bottom panels), which plots the normalized responses of each
neuron across each set of transformations of the reference object.
For some IT neurons, the response to the reference object was
only minimally altered when its position or size were varied, its
contrast was lowered, or flanker objects were added, resulting in
broad, slow-varying response profiles across the transformation
axes (Fig. 3A–D, blue curves and PSTHs). Other neurons were
much less tolerant to these same image transformations; their

Figure 3. Broad ranges of tolerance properties in IT. Normalized tuning curves produced by four different identity-preserving transformations of neuron-specific reference objects are shown for
the recorded neuronal population (gray) and for two example neurons (red and blue; same neurons and color code as in Fig. 2). Image transformations include changes in object position (A), size (B),
and contrast (C), as well as addition of clutter (D). For the two example neurons, some raw neuronal responses (PSTHs) to the tested transformations of the reference object (a soccer ball and car,
respectively) are also shown in matching colors. The contrast in C is for display purpose only and does not match the actual contrast of stimuli used during recordings.
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response was drastically reduced by altering the position, size,
and contrast of the reference object and by adding clutter shapes
(Fig. 3A–D, red curves and PSTHs). These two example neurons
(Fig. 3, blue and red) illustrate the broad ranges of tolerances seen
across the IT population (Fig. 3, bottom panels, spread of gray
lines).

We quantified the tolerance to position changes of a neuron
(PT) by computing the size (in degrees) of its RF. This was done
by fitting a Gaussian function to the RF profile and by taking
twice the SD of the fitted Gaussian as a measure of the diameter of
the neuron’s RF (see Materials and Methods for details). To
quantify the tolerance to the other identity-preserving transfor-
mations, we used a different approach. Under the premise that
the neuron’s response signals the presence of a preferred object,
the mean decrease in neuronal response caused by size or contrast
changes or by addition of clutter objects was taken to be an in-
verse measure of the neuron’s tolerance to each of these transfor-
mations. Equations defining the ST, CrT, and CT metrics are
provided in Materials and Methods, and important controls are
provided for the clutter tolerance metric later in the Results. For
each of these metrics, values near 0 indicate very poor tolerance
(i.e., strong response reduction caused by the corresponding im-

age transformation), whereas values near 1 indicate maximal tol-
erance (i.e., “invariance”; the corresponding image transforma-
tion does not reduce the response to the reference object). ST and
CrT ranges between 0 and 1, whereas CT can assume values �1 if
the response to some of the object pairs (reference and flanker
objects shown together) is higher than the response to the iso-
lated reference object (see Materials and Methods). We found
that all four tolerance metrics spanned a broad range of values
across the population (see the spread of points along the ordinate
axes in Fig. 4A).

Trade-off between object selectivity and tolerance to identity-
preserving image transformations
By obtaining independent, quantitative measures of both object
selectivity and tolerance to identity-preserving transformations
for each IT neuron (above), we could examine their relationship.
We found that object selectivity and tolerance were negatively
correlated across the anterior IT population (Fig. 4A). That is,
whereas high tolerance values were typically found in weakly
shape-selective neurons (left-hand side of the sparseness axis),
tolerance became proportionally lower for more sharply shape-
selective neurons, dropping to very small values for some of the

Figure 4. Trade-off between object selectivity and tolerance to identity-preserving transformations in IT. A, The scatter plots show the inverse relationship between sparseness (as a measure of
object selectivity; see Fig. 2 A) and each of the tested tolerance properties. Open and filled circles refer, respectively, to putative inhibitory and excitatory neurons, according to the analysis shown in
Figure 5A. Regression lines through all data points (solid) and only putative excitatory neurons (dashed) are also shown. B, The scatter plots show the inverse relationship between shape selectivity
measured within a set of parametrically morphed objects (see Fig. 2 B) and each of the tested tolerance properties. The same symbols as in A are used. Neurons that fired at least 10 spikes/s to the
reference object were included in the plots shown in A and B. C, Correlation coefficients � SE between object selectivity (either sparseness or morph tuning) and each of the tolerance properties
(*p � 0.05; **p � 0.01; ***p � 0.001; one-tailed permutation test; SE computed by bootstrap). Subsets of neurons with different levels of minimal response to the effective reference object (Rref)
are considered. Only flanker object conditions in which Rflanker � 0.5 Rref contributed to the clutter tolerance metric. The number of neurons contributing to each correlation is reported in
parentheses.
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most shape-selective neurons (right-hand side of the sparseness
axis). The correlations between sparseness (shape selectivity) and
each of the tolerance properties were all negative (range: �0.3 to
�0.46) and significant (Fig. 4C, first two rows) (one-tailed per-
mutation test). These negative relationships did not depend on
how well the neurons responded to the reference objects used to
measure their tolerance properties (two neuronal subpopula-
tions with response to the reference object Rref �10 or 30 spikes/s
were considered in Fig. 4C). In sum, the highest levels of shape
selectivity and tolerance observed in IT neurons are not both
found in individual IT neurons. Instead, selectivity and tolerance
trade off across the IT population, suggesting that individual IT
neurons gain object selectivity only at the expense of tolerance,
and vice versa.

This trade-off result cannot be explained by differences in
background firing rate across the population. First, the trade-off
did not crucially depend on whether raw or driven firing rates
(i.e., background corrected rates) were used to compute the tol-
erance metrics (supplemental Tables 1, 2, available at www.
jneurosci.org as supplemental material). Second, when both the
sparseness and the tolerance metrics were computed after sub-
tracting the minimal response across the 213 stimuli (which in-
cludes the “background” blank image; see Materials and Meth-
ods), we found inverse correlations nearly identical to those
obtained using raw rates (see supplemental Table 4 and supple-
mental Fig. 6, available at www.jneurosci.org as supplemental
material).

As expected, given the negative correlation between selectivity
and tolerance, the pairwise correlations between each tolerance
property were positive, although not large and not always signif-
icant (see supplemental Table 5, available at www.jneurosci.org
as supplemental material). This weaker correlation may reflect a
poor estimate of each tolerance property, given the relative small
number of object conditions that were tested to estimate each
property (see Materials and Methods), or, instead, may indicate
that tolerance properties are built, at least at some extent, inde-
pendently from one another along the ventral stream (Riesenhu-
ber and Poggio, 1999; Serre et al., 2005, 2007b).

Does the trade-off depend on how object selectivity
is determined?
Because object selectivity might be defined in many ways, we
wanted to see whether the trade-off result depended on our par-
ticular choice of object selectivity metric or object test set. First, in
addition to sparseness (above), we considered a number of dif-
ferent selectivity metrics computed on the responses to the set of
213 stimuli. In each case, we found the same result: a negative
correlation between the object selectivity metric and all four types
of tolerance (see supplemental Table 3, available at www.
jneurosci.org as supplemental material).

We also considered the possibility that the inverse relationship
between sparseness and some of the tolerance properties was the
result of measuring selectivity over a set of objects that differed in
low-level visual properties (i.e., nonshape properties), such as
area and contrast. To test whether the trade-off between selectiv-
ity and size (contrast) tolerance was an artifact of highly selective
neurons being more sensitive to area (contrast) variations over
the stimulus set, we measured how well each neuronal response
profile correlated with variation in these low-level properties
across the object test set. We considered the neuronal subpopu-
lations within the first third (38 poorly selective cells) and the last
third (17 highly selective cells) of the sparseness range (for addi-
tional details, see Fig. 5) and we compared the average sensitivity

of each neuronal response to stimulus area and contrast (i.e., the
average correlation between the property and the neuronal re-
sponse). On average, the responses of poorly selective neurons
were positively (but very weakly) correlated with stimulus area
(average correlation � 0.05 � 0.04 SE) and contrast (average
correlation � 0.08 � 0.02 SE). A still weaker and negative corre-
lation was observed between the responses of highly selective
neurons and stimulus area (average correlation � �0.02 � 0.05
SE) and contrast (average correlation � �0.03 � 0.01 SE). Thus,
IT neuronal responses are only minimally affected by area and
contrast of the tested objects. Even more importantly, poorly
selective neurons are more sensitive than highly selective neurons
to these low-level properties over the object set, which would
tend to make poorly selective neurons less tolerant to object size
and contrast (by definition), the opposite of the trade-off we
observed. This conclusion was confirmed by comparing the
squares of the correlation coefficients (r 2, explained variance)
between neuronal responses and low-level stimulus properties
for the two populations of highly and weakly selective cells. On
average, the amount of variance of the neuronal response ex-
plained by variations of stimulus contrast and area was small and
larger for weakly than highly selective cells (weakly selective cells:
r 2

area � 0.075 � 0.015 SE; r 2
contrast � 0.023 � 0.005 SE; highly

selective cells: r 2
area � 0.039 � 0.022 SE; r 2

contrast � 0.003 �
0.001). Overall, this rules out the possibility that the trade-off
between object selectivity and size/contrast tolerance is produced
by variations in neuronal sensitivity to these low-level properties
(also see next).

Finally, we also tested a subpopulation of 49 IT neurons using
additional sets of test objects and an associated selectivity metric.
Specifically, each of these neurons showed a response to any of 45
objects belonging to three sets of parameterized shapes [cars,
faces, and two-dimensional silhouettes; see Materials and Meth-
ods and Zoccolan et al. (2005)] and could therefore be tested for
tuning along a continuous shape dimension (morph axis) that
included the effective object (see Materials and Methods). Each of
the 49 neurons fired at least 10 spikes/s to the most effective
object within the tested morph axis. Selectivity within each
morph axis (five continuously morphed shapes per morph axis)
(see examples in Fig. 2B) was quantified by a morph tuning index
[MT; see Materials and Methods and Rainer et al. (1998)]. MT
ranges from 0 (the neuron responds equally to every shape along
the morph axis) to 1 (the neuron responds only to one shape).
Morph tuning and sparseness (S, above) provide two comple-
mentary measures of neuronal selectivity for visual objects.
Whereas sparseness quantifies neuronal responsiveness across a
broad set of natural objects (that may vary in global shape, num-
ber and complexity of features and textures, and low-level visual
properties such as area, luminance, and contrast), morph tuning
quantifies neuronal sensitivity to small, controlled shape trans-
formations of an effective object (Fig. 1A). Therefore, the morph
tuning allowed us to assess the relationship between almost
“pure” shape selectivity and tolerance properties, independent of
potential confounds of low-level stimulus properties such as area
and contrast.

As shown in the top of Figure 2B (same example cells and
color code as in Fig. 2A), the sensitivity to small shape changes of
the preferred prototype (a face and a car, respectively, for the two
example neurons) can be widely different for neurons within
anterior IT. In fact, like sparseness, morph tuning spanned a large
range of values across the recorded neuronal population (from
0.06 to 0.66; mean � 0.31 � 0.17 SD, n � 49), and it was well
correlated with sparseness (r � 0.51 � 0.12 SEM, p � 0.0002, n �
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49, one-tailed permutation test), suggest-
ing that both measures tap into each neu-
ron’s underlying shape selectivity. More-
over, like the sparseness metric, the morph
tuning reveals a broad range of variation
across the recorded IT population and al-
lows an assessment of its correlation with
the tolerance properties. Similar to what
we found for sparseness, we also observed
a trade-off between morph tuning and
each of the four tolerance properties (Fig.
4B): morph tuning was negatively and sig-
nificantly correlated with all the tolerance
metrics (Fig. 4C, last two rows).

Although these results do not allow us
to claim that we have precisely measured
the shape tuning of any individual IT neu-
ron, they show that the uncovered trade-
off between object selectivity and tolerance
across the IT population is highly robust to
the metric and stimulus set used to quan-
tify object selectivity and holds also when
selectivity to almost pure shape changes is
considered. Together, the results shown in
Figure 4 and supplemental Table 3 (avail-
able at www.jneurosci.org as supplemental
material) show the existence of a trade-off
between object selectivity and a wide range
of tolerances to identity-preserving image
transformations in IT.

Contribution of putative inhibitory and
excitatory neurons to the observed
trade-off between selectivity
and tolerance
We considered the possibility that the ob-
served trade-off between object selectivity
and clutter tolerance was caused by a mix-
ture of excitatory and inhibitory neurons
in the population (e.g., perhaps with in-
hibitory neurons being less shape selec-
tive). To examine this, the recorded neu-
ronal population was divided into putative
inhibitory and excitatory neurons based
on extracellular measures of excitatory
and inhibitory neuronal typing suggested
previously (Mountcastle et al., 1969; Gur
et al., 1999; Frank et al., 2001; Bruno and
Simons, 2002; Constantinidis and
Goldman-Rakic, 2002; Swadlow, 2003;
Andermann et al., 2004; Hasenstaub et al.,
2005; Mitchell et al., 2007) (Fig. 5A). As
indicated in the scatter plots of Figure 4, A
and B, inhibitory neurons had a marked
tendency to be both less shape selective
than excitatory neurons (lower sparseness
and morph tuning values) (see also Fig. 5B,
black bars) and more tolerant to identity-
preserving image transformations. Al-
though the putative inhibitory population
is small, it showed a trend consistent with
the trade-off between selectivity and toler-
ance observed over the whole neuronal

Figure 5. Population-averaged tolerance profiles for inhibitory and for highly and weakly shape-selective excitatory neurons.
A, Two components of the action potentials produced by a given cell were taken as distinctive features of the neuron type (top): (1)
the duration (width) of the central peak; and (2) the width of the trailing trough. Across the recorded population, the cluster of
neurons with shorter mean widths (open circles) was designated as putative inhibitory. The cluster with longer mean widths
(filled circles) was designated as excitatory. B, Distribution of sparseness values observed across the neuronal population. Blue and
red bars show, respectively, putative excitatory neurons in the first and last third of the sparseness range. Black bars show putative
inhibitory neurons. C, Population-averaged tolerance profiles for excitatory weakly shape-selective (in blue) and highly shape-
selective (in red) neurons and inhibitory neurons (in black), as defined in B. Before averaging, position and size tuning curves were
aligned to the location of their peak values. For position, neuronal responses were averaged in overlapping windows of �3°,
shifted in steps of �1° (only curves that were best fitted by Gaussian functions were averaged; see Materials and Methods). Size
tuning curves were plotted as a function of the percentage of size change with respect to the most effective object size (100%) and
then averaged in four nonoverlapping windows (approximately equally spaced on a logarithmic scale). For clutter tolerance, CT
values in the first (in blue) and last (in red) third of the sparseness range were averaged. The small displacement of back curves in
the bottom panels is for display purpose only.
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population. More importantly, the full spectrum of selectivity
and tolerance values was observed even among only putative ex-
citatory neurons (see the spread of filled circles in Fig. 4A,B), as
well as a significant negative correlation between selectivity and
each tolerance (Fig. 4A,B) (correlation values computed using
only excitatory neurons are reported in supplemental Tables 1, 2,
available at www.jneurosci.org as supplemental material). In
summary, the observed trade-off between selectivity and toler-
ance does not depend on the putative subtype of the neurons
whose responses were recorded (see also Fig. 5C, population
average plots).

Population-averaged tolerance profiles for highly and weakly
shape-selective IT neurons
To further examine the dependence of the amount of tolerance
on each neuron’s object selectivity, we considered the least shape-
selective neurons and the most shape selective neurons in our
population. Specifically, we focused on the neuronal subpopula-
tion within the first third (0.05 � S � 0.35) (Fig. 5B, blue bars)
and the last third (0.64 � S � 0.94) (Fig. 5B, red bars) of the
observed sparseness range. For clarity, putative inhibitory neu-
rons were excluded from both subpopulations and analyzed as a
third, separate subpopulation (Fig. 5B, black bars), but results
were nearly identical if this was not done (see below). The nor-
malized neuronal responses across each set of transformations of
the reference object (Fig. 3, bottom) were aligned according to
their peak values (see legend for details) and averaged within each
of the three neuronal subpopulations, yielding the population-
averaged tolerance profiles shown in Figure 5C for weakly shape-
selective (in blue), highly shape-selective (in red), and inhibitory
neurons (in black).

This analysis confirmed that weakly shape-selective excitatory
neurons were, on average, more tolerant than highly shape-
selective excitatory neurons to each of the four identity-
preserving transformations (Fig. 5C, compare blue and red
curves). It also shows that the amount of tolerance of putative
inhibitory neurons was nearly identical to that of the weakly
shape-selective excitatory neurons (Fig. 5C, compare black and
blue). This means that the difference in the amount of tolerance
between the populations of weakly and highly selective neurons is
not affected by whether the putative inhibitory neurons are
treated as a separate population or not.

Figure 5 also allows estimating the difference in the average
amount of tolerance in weakly versus highly shape-selective neu-
rons. For example, the average RF width (measured at one-half
the peak response) (Fig. 5C, top left, dashed lines) was more than
twice as large for weakly shape-selective neurons (relative to
highly shape-selective neurons). Similarly, whereas weakly
shape-selective neurons showed, on average, almost no effect of

clutter (CCI; CT � 1), highly shape-selective neurons showed
strong suppression by clutter (CT � 0.5). This CT value means
that, for more highly shape-selective IT neurons, the response to
a pair of simultaneously presented reference and flanker objects
(R

ref & flanker
) is close to the average of the responses to the reference

(Rref) and flanker (Rflanker) objects presented in isolation, which is
consistent with the averaging rule reported in some recent studies
(Zoccolan et al., 2005; De Baene et al., 2007) (described further
below).

Latency of neuronal responses and time course of selectivity
and tolerance properties
We asked whether the subpopulations of weakly and highly se-
lective IT neurons show any significant difference in the latency
and duration of their responses. In agreement with previous find-
ings (Brincat and Connor, 2006), we found a weak but significant
positive correlation between object selectivity (i.e., sparseness)
and (1) latency of response onset and (2) response duration (see
supplemental Table 6A, available at www.jneurosci.org as sup-
plemental material). On average, weakly selective neurons fired
�10 ms before highly selective cells, and their responses were
�30 ms shorter (see supplemental Table 6B, available at www.
jneurosci.org as supplemental material). Although the latency of
the peak of the response had a tendency to be longer for highly
selective neurons than weakly selective neurons, this difference
was not significant (see supplemental Table 6B, available at
www.jneurosci.org as supplemental material), and no significant
correlation was found between peak latency and sparseness (see
supplemental Table 6A, available at www.jneurosci.org as sup-
plemental material).

Previous studies reported that object selectivity can substan-
tially change (e.g., increase) as a function of time during the
response epoch (Sugase et al., 1999; Matsumoto et al., 2005; Brin-
cat and Connor, 2006). A detailed analysis of the information
about object identity conveyed by different temporal epochs of
the neuronal response was not the primary goal of this study.
However, by measuring the time course of object selectivity as a
function of time (using spike count windows of 50 ms that over-
lapped of 25 ms) for the two subpopulations of weakly and highly
selective neurons defined in Figure 5B, we found that sparseness
was remarkably stable for the duration of the IT responses (Fig.
6A). That is, IT neurons that are very object selective in their
initial response tend to remain very object selective, and vice
versa. A similar analysis of the time course of the tolerance met-
rics showed that, despite some modulations as a function of time,
highly selective neurons were consistently less tolerant than
weakly selective cells for the whole duration of the neuronal re-
sponse (Fig. 6B). Overall, these analyses show that selectivity and
tolerance metrics are largely independent of the spike count win-

Figure 6. Time course of object selectivity (sparseness) and tolerance properties for the two populations of weakly and highly selective neurons. A, B, Sparseness and tolerance properties were
computed in spike count windows (time slices) of 50 ms, shifted in steps of 25 ms. In each time slice, the average value (solid line) and the SE (shaded regions) of the sparseness and tolerance
properties were computed for the weakly selective neurons (blue; n � 38) and the highly selective neurons (red; n � 17) defined in Figure 5 (putative inhibitory neurons were included in the two
sets). For each time slice, outliers were removed before averaging (i.e., tolerance metric values larger than 95th percentile in the time slice).
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dow (see also supplemental Tables 1, 2, available at www.
jneurosci.org as supplemental material) and that the trade-off
between selectivity and tolerance holds for the duration of the
response.

Relative tolerance of object selectivity
Above, we measured tolerance in absolute terms. Although not
the goal of our study, we also collected data that partially address
the issue of how well preserved the rank order of object selectivity
across different transformations (positions, sizes, and contrasts)
is, independent of absolute response rate (i.e., relative tolerance).
In particular, for each neuron, we asked how many times the
response to the poorly effective object became higher than the
response to the effective object, i.e., how many times the object
preference of any given neuron reversed over our range of tested
identity-preserving transformations (position, size, and con-
trast). This was quantified by computing a d
 index (see Materials
and Methods) that measures, for each transformation (e.g., a
given position or size), how far apart the responses to the two
objects are. A negative d
 indicates that a given transformation
produced a reversal in the object preference of the neuronal re-
sponse. Such reversal happened rarely: (1) for position changes, it
happened 15% (7%) of the times for the subpopulation of highly
(weakly) selective neurons; (2) for size changes, it happened 0%
(4%) of the times for the subpopulation of highly (weakly) selec-
tive neurons; (3) for contrast changes, the reversal happened 23%
(14%) of the times for the subpopulation of highly (weakly) se-
lective neurons. Interestingly, even when reversals occurred, they
were typically small: the average of the reversed d
 for highly
selective cells was (1) �0.60 � 0.33 (SD) for position changes;
and (2) �0.64 � 0.50 for contrast changes. The average of the
reversed d
 for weakly selective cells was (1) �0.31 � 0.28 for
position changes; (2) �0.24 � 0.17 for size changes; and (3)
�0.40 � 0.27 for contrast changes (for comparison, the average
d
 in the reference position was 3.97). This suggests that the re-
versal of object preference typically happened when the response
to the effective object became as small as the response to the
poorly effective object (e.g., at the edges of the receptive fields or
for the lowest contrasts), suggesting that the reversal was driven
by the variability of two nearly identical neuronal responses,
rather than by a true change of object preference. As expected
based on our measurements of absolute tolerance (above), such
reversals happened more often for the subset of very selective
neurons, given the smaller size of their receptive fields and their
lower contrast tolerance, compared with the poorly selective
cells.

A deeper look into clutter tolerance
Clutter tolerance differs from the other three tolerances tested
here because the image changes that one might expect IT neurons
to be tolerant to are less well defined. For example, size change has
only one degree of freedom, but there is an unlimited number of
distractor (clutter) objects that one might add to the visual scene.
Considering the overarching goal of the present study (examin-
ing the relationship of shape selectivity and tolerance), the most
important consideration was to be sure that our choices of flanker
(clutter) objects did not produce artifactual dependency between
shape selectivity and clutter tolerance.

First, we asked whether the observed strong tendency for
weakly shape-selective IT neurons to be less suppressed by flanker
objects could be explained by a tendency of those neurons to be
more driven by the tested flanker objects when presented in iso-
lation. Indeed, this tendency was found in our data (Fig. 7A,

leftmost data points, described further below). However, our
clutter tolerance metric (CT; see Materials and Methods) was
designed to account for these differences in flanker effectiveness,
because the response to the flanker (chosen to be poorly effective
in isolation) is subtracted in both the CT numerator and denom-
inator (see Materials and Methods). That is, CT is 1.0 when Rref &

flanker � Rref (CCI), and CT is 0.5 when Rref & flanker � 0.5 (Rref �
Rflanker) (averaging rule), independent of the effectiveness of the
isolated flanker (Rflanker). To show this lack of bias directly, we
performed Monte Carlo simulations with populations of the
same size and response rate distribution as our neuronal data (see
Materials and Methods for details). These simulations (Fig. 7B)
showed that the observed inverse relationship between sparse-
ness and clutter tolerance could not arise ( p � 0.002, one-tailed
test) from an implicit correlation between these metrics com-
puted over a population of noisy neuronal responses that were all
equally tolerant to clutter [i.e., either all completely clutter invari-
ant (CCI rule) or all equally suppressed by clutter (averaging
rule); see Materials and Methods for details].

Thus, despite possible variations in flanker effectiveness, our
CT metric remains unbiased with respect to either a CCI or an
averaging rule in clutter. This can be directly appreciated by com-
paring the amount of clutter tolerance in the two subpopulations
of weakly and highly selective IT neurons (Fig. 5B) as we gradu-
ally restricted our analysis to flanker objects with increasingly
lower effectiveness (Fig. 7A). As already indicated for our stan-
dard analysis (above), flanker objects were, on average, slightly
more effective for weakly shape-selective than for highly shape-
selective neurons (Fig. 7A, bottom, compare blue and red

Figure 7. Additional controls on the relationship between clutter tolerance and object se-
lectivity. A, Average CT (top plot) and average effectiveness of the flanker objects relative to the
reference objects (bottom plot) for the two subpopulations of weakly (in blue) and highly (in
red) shape-selective neurons (as defined in Fig. 5B) as a function of the maximal response
evoked by flanker objects (Rflanker) used to compute CT (Rflanker ranges from 50 to 5% of the
response evoked by the reference object, Rref). Rref � 10 spikes/s for the four leftmost points in
the plot. The two rightmost points refer to subsets of neurons with lower (10 � Rref � 30
spikes/s) and higher (Rref � 30 spikes/s) effectiveness of the reference object and Rflanker �
20% Rref. B, Relationship between sparseness and clutter tolerance obtained from Monte Carlo
simulations of two populations of neurons following different clutter rules: CCI and averaging.
Each simulation produced a regression line and the regression lines from 500 such simulations
are shown in black (CCI) and gray (averaging) in the top panel, together with the regression line
through the observed data (dashed). The distributions of correlation coefficients obtained from
those simulations are shown at the bottom, together with the correlation coefficient observed
in the neuronal data (thick arrow). Two different versions of the averaging rule were imple-
mented (see Material and Methods).
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curves). Of course, by construction this difference in flanker ef-
fectiveness disappeared as the analysis was restricted to flanker
objects that were less and less effective (Fig. 7A, bottom, right-
most points). Nevertheless, the difference in the amount of clut-
ter tolerance in the two neuronal subpopulations was largely un-
affected by this manipulation (Fig. 7A, top, compare blue and red
curves). That is, regardless of flanker effectiveness, the weakly
selective IT neurons tended to show high flanker (clutter) toler-
ance (CT � 1), whereas the highly shape-selective IT neurons
showed stronger clutter suppression (CT � 0.5). Furthermore,
we also checked that this result did not depend on the effective-
ness of the reference object (Fig. 7A, rightmost points).

Finally, we also verified that the inverse relationship between
object selectivity and clutter tolerance did not arise from any bias
in the low-level visual properties of flanker objects (such as con-
trast) (see supplemental Fig. 3, available at www.jneurosci.org as
supplemental material) or flanker object identity (see supple-
mental Fig. 4, available at www.jneurosci.org as supplemental
material) used to test weakly versus highly shape selective neu-
rons. In summary, IT neurons that are intrinsically the most
selective for object shape are typically the least tolerant to the
addition of other poorly effective (clutter) objects in the visual
field, and this result is not simply attributable to the choice of
clutter objects.

The observed trade-off between selectivity and clutter toler-
ance implies that the clutter tolerance observed in a recorded
population of IT neurons depend on the underlying distribution
of object selectivity in that population. For example, most CT
values in this study (Fig. 8, black bars) ranged between 0.5 (aver-
aging) and 1 (CCI), with a mean CT � 0.74 (top black arrow). In
a previous study (Zoccolan et al., 2005), we reported that most IT
neurons (�67%) had clutter tolerance that was consistent with
an averaging rule (whereas only �12% were closer to CCI, and
another �20% in between CCI and averaging rule). Although the

distributions of clutter tolerance are broad in both of these stud-
ies (Fig. 8A, compare black to gray and white bars) [but see also
Zoccolan et al. (2005), Fig. 4B], they are significantly different
(Kolmogorov–Smirnov test, p � 0.01), with the previous study
distribution skewed toward an average rule (mean CT � 0.57)
(Fig. 8, bottom black arrow). This difference in the distribution of
clutter tolerance is likely explained by a difference in the distri-
bution of object selectivity resulting from a difference in neuronal
selection criteria. Specifically, in the present study, neurons were
collected with very inclusive criteria (see Materials and Methods).
In our previous study, approximately one-half of the analyzed
neurons were recorded with similarly inclusive criteria [Zoccolan
et al. (2005), Experiment 1] (Fig. 8, gray bars), but the other half
were recorded only if very shape selective [Zoccolan et al. (2005),
Experiment 2] (Fig. 8, white bars), resulting in an overall neuro-
nal population that was enriched in shape-selective neurons. In
fact, when only neurons of Experiment 1 in Zoccolan et al. (2005)
were considered (gray bars), no significant difference was ob-
served between the clutter tolerance distributions in the two
studies (Fig. 8, compare gray to black bars) (Kolmogorov–Smir-
nov tests, p � 0.7; mean CT � 0.67 shown by the bottom gray
arrow), showing the consistency between the studies. It should
also be noted that, although both studies required focusing on
neurons in which noneffective “clutter” objects could be found,
the fact that we had many more objects available in the current
study allowed us to examine clutter tolerance in weakly shape-
selective neurons that would have been overlooked in our previ-
ous study. In sum, our current study confirms a tendency of
ventral visual stream neurons to be suppressed by clutter (Sato,
1989; Miller et al., 1993; Rolls and Tovee, 1995b; Chelazzi et al.,
1998; Missal et al., 1999; Reynolds et al., 1999; Sheinberg and
Logothetis, 2001; Reynolds and Chelazzi, 2004; Zoccolan et al.,
2005; De Baene et al., 2007), but it points to variation in object
selectivity as a key factor that can explain a range of clutter toler-
ance found within and across studies.

Possible neuronal mechanisms underlying the trade-off
The experimental results presented above show that object selec-
tivity and tolerance are related in a potentially nonintuitive way:
high object selectivity does not guarantee tolerance, but comes at
the expense of tolerance. What family of neuronal mechanisms
and architectures are consistent with the observed trade-off? Al-
though a resolution of this issue is beyond the scope of a single
study, as a first step toward understanding the neuronal compu-
tations underlying this trade-off, we considered basic computa-
tional mechanisms that might be at work. Our goal was not to
obtain a quantitative comparison or a fit with neuronal data, but
rather testing the consistency of class of tuning mechanisms and
hierarchical architectures with the main trend observed in the
data (i.e., the trade-off between selectivity and tolerance).

To do this, we used two computational models that employ a
key tuning mechanism assumed by some object recognition
models (Fukushima, 1980; Perrett and Oram, 1993; Wallis and
Rolls, 1997; Riesenhuber and Poggio, 1999, 2000). The basic
computational idea is that neurons are thought to attain selectiv-
ity for increasingly complex visual patterns by combining
feature-conveying afferents in an AND-like manner. A conve-
nient implementation of this is provided by a multidimensional
Gaussian tuning function (Riesenhuber and Poggio, 1999) over a
space of continuous-value inputs (i.e., activation values of affer-
ent neurons). Each neuron is thus tuned to give its maximal
response only when all of its inputs approximately match the
neuron’s preferred input pattern (i.e., the center of the Gaussian).

Figure 8. Distributions of clutter tolerance values obtained in this and a previous study
(Zoccolan et al., 2005). Distributions of CT values obtained for the neuronal populations re-
corded in the present study (black bars) and from Experiments 1 (gray bars) and 2 (white bars)
of Zoccolan et al. (2005). The arrows show the mean CT for the neuronal populations recorded in
(1) the present study (top black); (2) the previous study (bottom black); and (3) Experiment 1 of
the previous study (bottom gray). The big black and white arrow (bottom) shows the mean CT
for the very selective neurons that were analyzed in Figure 4 of Zoccolan et al. (2005).
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We simulated responses of such toy model
neurons over abstract input spaces of dif-
ferent dimensionality (see examples in Fig.
9A,B). When the sensitivity to each input
dimension (i.e., the standard deviation �
of the Gaussian function) is held constant,
the volume of total input space covered by
the Gaussian (Fig. 9A,B, dashed gray
areas) shrinks approximately exponen-
tially with increasing number of inputs
(i.e., input dimensionality) (Fig. 9C). Be-
cause this volume represents the chance
that a random input pattern will drive the
simulated neuron, the number of input
patterns (i.e., arbitrary shapes) that drive
the neuron decreases with the number of
inputs, and thus object selectivity (sparse-
ness) increases (Fig. 9D). To model toler-
ance, we assumed that any image transfor-
mation causes each input to have an equal,
independent chance of being perturbed
from its preferred value. Consistent with
our experimental findings, this simple toy
model results in the poorest tolerance for
neurons with the highest object selectivity
(Fig. 9D) because, on average, there is
greater net perturbation of the input pat-
tern from its optimum (Fig. 9B). This
trade-off is also obtained when the number of inputs is held
constant, but the SD of the Gaussian is allowed to vary.

The toy model likely captures the essence of the mechanisms
underlying the observed trade-off of selectivity and tolerance.
However, the ventral stream leading up to IT is clearly more
complex than this toy model, and it is far from clear that mech-
anisms that try to build both selectivity and tolerance would still
lead to the same predictions in IT. Thus, to go beyond the toy
model, we also applied an existing object recognition model
(Serre et al., 2005, 2007b), which reflects the basic architecture
and physiology of the ventral visual stream, supports tolerant
identification and categorization of visual objects and can make
predictions over the exact same visual images tested experimen-
tally. This model uses layers of neural units in a feedforward
hierarchy, tuned to produce a gradual buildup of selectivity
(AND-like operations) and tolerance (OR-like operations)
(Fukushima, 1980; Perrett and Oram, 1993; Wallis and Rolls,
1997; Riesenhuber and Poggio, 1999, 2000). To compare any
relationship between object selectivity and tolerance in this
model with our experimental results, we used the same experi-
mental stimuli as model input, recorded from model IT neurons,
and analyzed responses using the same metrics (see supplemental
Fig. 6, available at www.jneurosci.org as supplemental material).
We found that variation in the number of afferents to the model
IT neurons resulted in a clear trade-off between selectivity and
tolerance within the model IT neuronal population, similar to
both the toy model (Fig. 9D) and the experimental results (Fig.
4). This is shown in Figure 9E for the relationship between selec-
tivity (sparseness) and clutter tolerance. The trade-off between
selectivity and the other tolerance properties observed for the
model units is shown in supplemental Figure 7 (available at
www.jneurosci.org as supplemental material). This trade-off was
also obtained when the number of afferents was kept constant
within the population of simulated IT units, but the sensitivity to
each input dimension (i.e., the width of the Gaussian functions)

was allowed to vary, in such a way to obtain a range of broadness
of tuning functions.

In summary, the observed trade-off between object selectivity
and tolerance across the IT population can be naturally explained
by hierarchical neuronal architectures in which (1) AND-like
tuning operations are used to build object selectivity; and (2) the
amount of object selectivity varies across the population, as a
consequence of either a variable number of afferents (inputs)
from earlier levels and/or variable sensitivity to each input
dimension.

Discussion
Some of the most remarkable findings about anterior IT concern
the highly selective neuronal tuning for complex visual patterns
reported by some authors (Desimone et al., 1984; Logothetis et
al., 1995; Op de Beeck et al., 2001; Brincat and Connor, 2004;
Freedman et al., 2005; Brincat and Connor, 2006) and the very
high tolerance to stimulus transformations reported by others
(Gross et al., 1972; Desimone and Gross, 1979; Perrett et al., 1982;
Rolls and Baylis, 1986; Tovee et al., 1994; Rolls, 2000). Remark-
ably however, to our knowledge, no previous study has investi-
gated the possible connection between these properties in IT. In
this study, by systematically measuring both object selectivity and
tolerance to different identity-preserving image transformations
in the same IT neuronal population, we showed that IT neurons
that attained the highest object selectivity were, on average, the
least tolerant to identity-preserving image transformations and
vice versa. That is, selectivity and tolerance trade off within IT.

The observed trade-off is not a trivial consequence of the def-
initions of object selectivity and tolerance; these are two very
distinct types of image changes, and they have very different per-
ceptual consequences. The result is also not an artifact of analysis
methods; independent data were always used for each measure
and extensive control analyses were conducted (Figs. 4 – 8; see
supplemental material 1 and supplemental Figs. 3–5, available at

Figure 9. Modeling of the trade-off between selectivity and tolerance. A, B, Examples of toy model neurons with AND-like
Gaussian tuning over 1-D (A) and 2-D (B) input spaces. Within the input space (in orange), the volume (a length in the 1-D case)
occupied by the region within 2� from the Gaussian center (dashed gray; effective input volume) is much smaller for a simulated
neuron with two afferents than for a neuron with only one afferent (compare dashed gray bars in A and B, right). B also shows how
independent and identical perturbations of each inputs (green arrows) sum to produce a resulting net perturbation (red arrow)
that reaches beyond the 2� radius around the center of the Gaussian. C, The effective volume shrinks as function of the number of
inputs. D, For a toy model neuron, sparseness increases and tolerance decreases with the number of inputs, resulting in an inverse
relationship between the two metrics. E, Model units at the last stage of a hierarchical model of object recognition (Serre et al.,
2005) show a trade-off between sparseness and clutter tolerance, as the number of inputs is varied.
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www.jneurosci.org as supplemental material). The trade-off can-
not be accounted for by a differential sensitivity of highly versus
weakly selective neurons to variations in low-level properties of
the tested objects (see Results). We also showed that the result is
robust to the way in which object selectivity and tolerance are
measured, and it holds for all types of tolerance we tested (posi-
tion, size, contrast, and clutter) (Figs. 4 – 6; supplemental Tables
1– 4, available at www.jneurosci.org as supplemental material).
In addition, we found that object selectivity, tolerance, and their
inverse relationship are largely independent of the temporal ep-
och of the neuronal response (Fig. 6), suggesting that they are
largely established as feedforward properties of the processing of
visual objects (at least for the behavioral task and stimulus pre-
sentation rate tested here).

Comparison with previous findings
This trade-off between selectivity and tolerance is consistent with
previous work showing that selectivity and tolerance both grow
along the ventral visual stream, to reach peak values in anterior IT
(Kobatake and Tanaka, 1994; Logothetis and Sheinberg, 1996;
Tanaka, 1996; Edelman, 1999; Rolls, 2000; Rousselet et al., 2004).
Indeed, we suspect that the mean level of object selectivity and the
mean level of tolerance are higher in IT than in lower ventral
visual areas. However, our experiments indicate that, although
single IT neurons are capable of achieving either very high selec-
tivity or very high tolerance, they do not manage to attain both at
once. This empirical discovery has several important implica-
tions and connections with previous work.

The present result helps unify a body of previous IT work by
explaining why the amount of tolerance is highly varied within
and across those studies (Gross et al., 1972; Desimone and Gross,
1979; Perrett et al., 1982; Desimone et al., 1984; Rolls and Baylis,
1986; Sato, 1989; Lueschow et al., 1994; Tovee et al., 1994; Ito et
al., 1995; Logothetis et al., 1995; Logothetis and Sheinberg, 1996;
Tanaka, 1996; Chelazzi et al., 1998; Edelman, 1999; Op De Beeck
and Vogels, 2000; Rolls, 2000; Sheinberg and Logothetis, 2001;
DiCarlo and Maunsell, 2003; Rousselet et al., 2004). Specifically,
our results show that, because each IT neuron’s tolerance de-
pends on its object selectivity, the wide variation in object selec-
tivity across the IT population (Fig. 5B) might explain the wide
variation in tolerance. For instance, the amount of clutter toler-
ance of neuronal responses along the ventral visual stream is the
subject of debate. Although many studies found that neuronal
responses in IT and earlier visual areas (V4 and V2) are often
strongly suppressed by clutter (Sato, 1989; Miller et al., 1993;
Rolls and Tovee, 1995b; Chelazzi et al., 1998; Missal et al., 1999;
Reynolds et al., 1999; Sheinberg and Logothetis, 2001; Reynolds
and Chelazzi, 2004; Zoccolan et al., 2005; De Baene et al., 2007),
most of these studies found that some fraction of neurons were
much more tolerant to clutter (Chelazzi et al., 1998; Reynolds et
al., 1999; Zoccolan et al., 2005), sometimes a large fraction (Sato,
1989; Sheinberg and Logothetis, 2001) or a majority (Gawne and
Martin, 2002) of neurons. Our results suggest that, because the
amount of clutter tolerance of any given IT neuron depends
strongly on its object selectivity, all of these answers are correct;
there is no single amount of clutter tolerance for all ventral
stream neurons.

Possible neuronal mechanisms underlying the trade-off
An exhaustive examination of the neuronal mechanisms under-
lying the observed trade-off is beyond the scope of the present
work. However, using both a toy model and a hierarchical model
of object recognition (Fig. 9), we showed the consistency between

the observed trade-off and neuronal tuning mechanisms (AND-
like or Gaussian tuning) that are often assumed to be at the base
of neuronal selectivity for visual objects (Fukushima, 1980;
Perrett and Oram, 1993; Wallis and Rolls, 1997; Riesenhuber
and Poggio, 1999, 2000). Because AND-like, approximately
Gaussian tuning functions can be implemented through divi-
sive normalization (Poggio and Bizzi, 2004), these simulations
show the consistency between the observed trade-off and di-
visive normalization models (Heeger, 1992; Carandini et al.,
1997; Recanzone et al., 1997; Britten and Heuer, 1999; Reyn-
olds et al., 1999; Schwartz and Simoncelli, 2001; Reynolds and
Chelazzi, 2004). Interestingly, although the hierarchical rec-
ognition model also employs OR-like (MAX) pooling opera-
tions to build tolerance to position and size changes, it still
reveals an IT trade-off between object selectivity and tolerance
to position and size variation. Future computational work
may illuminate the family of mechanisms and architectures
that lead to the observed trade-off.

Generality and limitations of the present study
The main strength of our results is that a significant inverse
relationship between object selectivity and tolerance was con-
sistently observed between each tolerance property and each
selectivity metric (Fig. 4). Importantly, we did not attempt to
uncover what combination of visual features each neuron re-
sponded to. Rather, we aimed to estimate the sensitivity of
each IT neuron to object identity changes (object selectivity)
by measuring what fraction of objects, in two complementary
sets, evoked a response in any neuron. Admittedly, however,
object selectivity as measured here is not a perfect predictor of
tolerance at the level of individual neurons (Fig. 4). This might
reflect a failure to perfectly measure object selectivity and tol-
erance for each neuron, rather than a weak link between these
properties. Another, nonexclusive possibility is that the trade-
off produced by AND-like tuning mechanisms is partially op-
posed by OR-like pooling mechanisms used by ventral stream
neurons to build tolerance to specific transformations (e.g.,
position and size). The interaction between such mechanisms
would likely affect the strength of the correlation between
selectivity and some tolerance properties.

When considering the possible mechanisms underlying the
observed trade-off, we note that the lower retinal sampling in the
periphery could contribute to limit position and size tolerance
(Op De Beeck and Vogels, 2000). This might be especially true for
highly selective neurons. Nevertheless, because we found that
selectivity trades off with clutter and contrast tolerance, our ex-
periments already provide evidence that retinal sampling cannot
be the only underlying mechanism. In this regard, the AND-like
tuning operation simulated in the computational models pro-
vides a more general mechanism that can explain the inverse
relationship between object selectivity and every type of toler-
ance. The extent to which this relationship is affected by the
balance between AND-like and OR-like operations (see above),
as well as other properties/mechanisms (such as retinal sam-
pling), may be revealed by further simulations of biologically
grounded object recognition models.

The interaction between different tuning and tolerance mech-
anisms and retinal sampling could also explain why other trends,
beside the trade-off between selectivity and each tolerance, seem
to be present in some of the scatter plots of Figure 4. For instance,
the range of variation of position tolerance seems to be wider for
weakly selective than highly selective neurons. We do not yet
know whether these other trends only reflect a failure to perfectly
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measure object selectivity and tolerance for each neuron (see
discussion above). Future studies could explore this further by
measuring object selectivity and just one tolerance property using
many more stimuli.

Possible functional consequences of the trade-off
In discussing the functional implications of the observed trade-
off, it should be noticed that tolerance to identity-preserving
transformations can be conceptualized and measured in different
ways. In this study, we focused on absolute tolerance. That is, we
asked each IT neuron the same question one can ask of behavioral
performance: How well preserved is its response to a very effec-
tive object when this object undergoes different identity-
preserving transformations? However, this is not the only poten-
tially relevant measure of neuronal tolerance. A related question
is how well IT neurons maintain the rank order of their object
preference across positions, sizes, etc. (relative tolerance). These
measures are related. In particular, the results presented here on
absolute tolerance provide a bound on relative tolerance: when
the response to an effective object falls to near zero (the response
to ineffective objects), no relative tolerance can remain. Similarly,
when the absolute response is reduced, signal-to-noise in relative
tolerance will also be reduced.

Which tolerance measure is most appropriate remains an im-
portant open question and ultimately requires an understanding
of how IT neuronal activity is “read out” to guide behavior (Hung
et al., 2005). IT neurons with absolutely tolerant selectivity could
directly support tolerant object recognition behavior. If IT neu-
rons have only relative tolerance, this would require further pro-
cessing beyond IT to support that behavior. For example, appro-
priate combinations of IT neurons with only relative position and
size tolerance can likely support position and size tolerant object
recognition (Dicarlo and Cox, 2007). However, given the virtu-
ally infinite number of clutter conditions that can be encountered
in natural vision, it is less obvious that populations of neurons
with limited clutter tolerance can support recognition in clutter.
Indeed, there is some empirical evidence that the brain aims to
achieve absolute clutter tolerance at the level of individual ventral
stream neurons. Specifically, when an animal is precued with the
identity or position of a target object, existing studies (Moran and
Desimone, 1985; Chelazzi et al., 1998; Reynolds et al., 1999; Reyn-
olds and Chelazzi, 2004) suggest that ventral stream neurons
move their absolute responses toward levels seen without clutter
(i.e., as if no clutter stimuli were present). This suggests that,
when possible, the brain employs resources to actively compen-
sate for the interference produced by clutter and to achieve com-
plete clutter tolerance (in absolute terms) at the level of individ-
ual neurons.

Our finding of broad ranges of selectivity and tolerance prop-
erties within IT and the trade-off of those properties suggests that
the ventral visual stream is not striving to create a representation
containing only cells with very sharp object selectivity (Kobatake
and Tanaka, 1994). Rather, its goal may be to maximize the
amount of tolerance given the constraint of achieving a spectrum
of shape selectivity. Such a spectrum might provide a flexible
basis in IT to support recognition tasks ranging from fine-grained
identification to coarse categorization (Hung et al., 2005; Serre et
al., 2005). In this regard, highly selective IT neurons, although
capable of supporting very fine shape discriminations, likely re-
quire further feedforward stages of processing or top-down mod-
ulation (such as attentional feedback to filter out clutter interfer-
ence). On the contrary, weakly selective IT neurons may quickly
and reliably report the presence of some coarse classes of objects,

without clutter interference and over a large span of visual field,
even without attentional control and the need of further process-
ing stages.
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