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Abstract—We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We

describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant

feature representation by alternating between a template matching and a maximum pooling operation. We demonstrate the strength of

the approach on a range of recognition tasks: From invariant single object recognition in clutter to multiclass categorization problems

and complex scene understanding tasks that rely on the recognition of both shape-based as well as texture-based objects. Given the

biological constraints that the system had to satisfy, the approach performs surprisingly well: It has the capability of learning from only a

few training examples and competes with state-of-the-art systems. We also discuss the existence of a universal, redundant dictionary

of features that could handle the recognition of most object categories. In addition to its relevance for computer vision, the success of

this approach suggests a plausibility proof for a class of feedforward models of object recognition in cortex.

Index Terms—Object recognition, model, visual cortex, scene understanding, neural network.
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1 INTRODUCTION

UNDERSTANDING how visual cortex recognizes objects is a
critical question for neuroscience. Because humans and

primates outperform the best machine vision systems with
respect to almost any measure, building a system that
emulates object recognition in cortex has always been an
attractive but elusive goal. For the most part, the use of
visual neuroscience in computer vision has been limited to
early vision for deriving stereo algorithms (e.g., [1]) and to
justify the use of DoG (derivative-of-Gaussian) filters and
more recently of Gabor filters [2], [3]. No real attention has
been given to biologically plausible features of higher
complexity. While mainstream computer vision has always
been inspired and challenged by human vision, it seems to
never have advanced past the very first stages of processing
in the simple (and binocular) cells in V 1 and V 2. Although
some of the systems inspired—to various degrees—by
neuroscience [4], [5], [6], [7], [8], [9], [10] have been tested
on at least some natural images, neurobiological models of

object recognition in cortex have not yet been extended to
deal with real-world image databases [11], [12], [13], [14].

We present a system that is based on a quantitative theory
of the ventral stream of visual cortex [14], [15]. A key element
in the approach is a new set of scale and position-tolerant
feature detectors, which agree quantitatively with the tuning
properties of cells along the ventral stream of visual cortex.
These features are adaptive to the training set, though we also
show that a universal feature set, learned from a set of natural
imagesunrelated to any categorization task, likewise achieves
good performance. To exemplify the strength of this feature-
based representation, we demonstrate classification results
with simple linear classifiers. We show that the approach
performs well on the recognition of isolated objects in clutter
for both binary and multiclass classification problems on
publicly available data sets. Our approach also demonstrates
good classification results on a challenging (street) scene
understanding application that requires the recognition of
both shape-based as well as texture-based objects.

Both the source code of our system and the StreetScenes
data set used in our experiments are readily available [16].

1.1 Related Work

Hierarchical architectures have been shown to outperform
single-template (flat) object recognition systems on a variety
of object recognition tasks (e.g., face detection [17] and car
detection [18]). In particular, constellation models [19], [20],
[21] have been shown to be able to learn to recognize many
objects (one at a time) using an unsegmented training set
from just a few examples [20], [21]. Multilayered convolu-
tional networks were shown to perform extremely well in
the domain of digit recognition [4], [5] and, more recently,
generic object recognition [10] and face identification [22].

The simplest and one of the most popular appearance-
based feature descriptors corresponds to a small gray value
patch [23] of an image, also called component [17], [24], part
[19], [25], or fragment [26]. Such patch-based descriptors are,
however, limited in their ability to capture variations in the
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object appearance: They are very selective for a target shape
but lack invariance with respect to object transformations.

At the other extreme, histogram-based descriptors [27],
[28], [29] have been shown to be very robust with respect to
object transformations. Perhaps the most popular features
are the SIFT features [27], which excel in the redetection of a
previously seen object under new image transformations
and have been shown to outperform other descriptors [30].
However, as we confirmed experimentally (see Sec-
tion 3.1.2), with such a degree of invariance, it is very
unlikely that these features could perform well on a generic
object recognition task.

The new appearance-based feature descriptors described
here exhibit a balanced trade-off between invariance and
selectivity. They are more flexible than image patches and
more selective than local histogram-based descriptors.
Though they are not strictly invariant to rotation, invariance
to rotation could, in principle, be introduced via the training
set (e.g., by introducing rotated versions of the original input).

1.2 The Standard Model of Visual Cortex

Our system follows a recent theory of the feedforward
path of object recognition in cortex that accounts for the
first 100-200 milliseconds of processing in the ventral
stream of primate visual cortex [14], [15]. The model itself
attempts to summarize—in a quantitative way—a core of
well-accepted facts about the ventral stream in the visual
cortex (see [15] for a review):

1. Visual processing is hierarchical, aiming to build
invariance to position and scale first and then to
viewpoint and other transformations.

2. Alongthe hierarchy, the receptive fields of the neurons
(i.e., the part of the visual field that could potentially
elicit a response from the neuron) as well as the
complexity of their optimal stimuli (i.e., the set of
stimuli that elicit a response of the neuron) increases.

3. The initial processing of information is feedforward
(for immediate recognition tasks, i.e., when the image
presentation is rapid and there is no time for eye
movements or shifts of attention).

4. Plasticity and learning probably occurs at all stages
and certainly at the level of inferotemporal (IT)
cortex and prefrontal cortex (PFC), the top-most
layers of the hierarchy.

In its simplest form, the model consists of four layers of
computational units, where simple S units alternate with
complex C units. The S units combine their inputs with a
bell-shaped tuning function to increase selectivity. The
C units pool their inputs through a maximum (MAX)
operation, thereby increasing invariance.1 Evidence for the
two key operations as well as biophysically plausible
circuits can be found in [15]. The model is qualitatively
and quantitatively consistent with (and, in some cases,
actually predicts) several properties of cells along the
ventral stream of visual cortex (see [15] for an overview).
For instance, the model predicts, at the C1 and C2 levels (see
Fig. 1), respectively, the max-like behavior of a subclass of
complex cells in V1 [31] and cells in V4 [32]. Read-out from

units similar to the C2 units in Fig. 1 predicted recent read-
out experiments in monkey IT cortex [33], showing very
similar selectivity and invariance for the same set of stimuli.

The model in its initial version [14] used a very simple
static dictionary of handcrafted features. It was suggested
that features from intermediate and higher layers in the
model should instead be learned from visual experience.
Here, we extend the model by showing how to learn a
vocabulary of visual features from images and applying it
to the recognition of real-world object-categories. Prelimin-
ary results previously appeared in several conference
proceedings [34], [35], [36].

2 DETAILED IMPLEMENTATION

S1 units: Our system is summarized in Fig. 1. A gray-value
input image is first analyzed by a multidimensional array of
simple S1 units which correspond to the classical simple cells
of Hubel and Wiesel found in the primary visual cortex (V1)
[11].S1 units take the form of Gabor functions [2], which have
been shown to provide a good model of cortical simple cell
receptive fields [3] and are described by the following
equation:

F ðx; yÞ ¼ exp �ðx
2
o þ �2y2

oÞ
2�2

� �
� cos

2�

�
xo

� �
; s:t: ð1Þ

xo ¼ x cos �þ y sin � and yo ¼ �x sin �þ y cos �: ð2Þ

All filter parameters, i.e., the aspect ratio, � ¼ 0:3, the
orientation �, the effective width �, the wavelength � as well
as the filter sizes s were adjusted so that the tuning
properties of the corresponding S1 units match the bulk of
V1 parafoveal simple cells based on data from two groups
[37], [38], [39], [40]. This was done by sampling the
parameter space, applying the corresponding filters to
stimuli commonly used to probe cortical cells (i.e., gratings,
bars, and edges) and selecting the parameter values that
capture the tuning properties of the bulk of V1 simple cells
(see Table 1 and [41] for details). We arranged the S1 filters
to form a pyramid of scales, spanning a range of sizes from
7� 7 to 37� 37 pixels in steps of two pixels. To keep the
number of units tractable, we considered four orientations
(0�, 45�, 90�, and 135�), thus leading to 64 different S1

receptive field types total (16 scales � 4 orientations).
C1 units: The next, C1, stage corresponds to cortical

complex cells which show some tolerance to shift and size:
Complex cells tend to have larger receptive fields (twice as
large as simple cells), respond to oriented bars or edges
anywhere within their receptive fields (tolerance to posi-
tion), and tend to be more broadly tuned than simple cells
(tolerance to size) [11]. C1 units pool over retinotopically
organized afferent S1 units from the previous layer with the
same orientation and from the same scale band (see Table 1).
Each scale band contains two adjacent filter sizes (there are
eight scale bands for a total of 16 S1 filter sizes). For
instance, scale band 1 contains S1 filters with sizes 7� 7 and
9� 9. The scale band index of the S1 units also determines
the size of the S1 neighborhood NS �NS over which the
C1 units pool. Again, this process is done for each of the
four orientations and each scale band independently.

This pooling increases the tolerance to 2D transformations
from layer S1 toC1. The corresponding pooling operation is a
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1. In this paper, we used a Gaussian function but, as discussed in [15], a
bell-shaped tuning function could also be approximated via a normalized
dot-product.



MAX operation. That is, the response r of a complex unit

corresponds to the response of the strongest of itsm afferents

ðx1; . . . ; xmÞ from the previous S1 layer such that:

r ¼ max
j¼1...m

xj: ð3Þ

Consider, for instance, the first band: S ¼ 1. For each

orientation, it contains twoS1 maps: The one obtained using a

filter of size 7� 7 and the one obtained using a filter of size

9� 9 (see Table 1). The maps have the same dimensionality

but they are the outputs of different filters. The C1 unit

responses are computed by subsampling these maps using a

cell grid of size NS �NS ¼ 8� 8. From each grid cell, one

single measurement is obtained by taking the maximum of all

64 elements. As a last stage, we take a max over the two scales

from within the same spatial neighborhood, by recording
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Fig. 1. System overview: A gray-value input image is first analyzed by an array of S1 units at four different orientations and 16 scales. At the next
C1 layer, the image is subsampled through a local MAX ðMÞ pooling operation over a neighborhood of S1 units in both space and scale, but with the
same preferred orientation. In the next stage, S2 units are essentially RBF units, each having a different preferred stimulus. Note that S2 units are tiled
across all positions and scales. A MAX pooling operation is performed over S2 units with the same selectivity to yield the C2 unit responses.



only the maximum value from the two maps. Note that
C1 responses are not computed at every possible locations
and that C1 units only overlap by an amount �S . This makes
the computations at the next stage more efficient. Again,
parameters (see Table 1) governing this pooling operation
were adjusted such that the tuning of the C1 units match the
tuning of complex cells as measured experimentally (see [41]
for details).
S2 units: In the S2 layer, units pool over afferent C1 units

from a local spatial neighborhood across all four orienta-
tions. S2 units behave as radial basis function (RBF) units.2

Each S2 unit response depends in a Gaussian-like way on
the Euclidean distance between a new input and a stored
prototype. That is, for an image patch X from the previous
C1 layer at a particular scale S, the response r of the
corresponding S2 unit is given by:

r ¼ exp ��kX�Pik2
� �

; ð4Þ

where � defines the sharpness of the TUNING and Pi is one
of the N features (center of the RBF units) learned during
training (see below). At runtime, S2 maps are computed
across all positions for each of the eight scale bands. One
such multiple scale map is computed for each one of the
ðN � 1; 000Þ prototypes Pi.
C2 units: Our final set of shift- and scale-invariant C2

responses is computed by taking a global maximum ((3))
over all scales and positions for each S2 type over the entire
S2 lattice, i.e., the S2 measures the match between a stored
prototype Pi and the input image at every position and
scale; we only keep the value of the best match and discard
the rest. The result is a vector of N C2 values, where N
corresponds to the number of prototypes extracted during
the learning stage.

The learning stage: The learning process corresponds to
selecting a set ofN prototypes Pi (or features) for theS2 units.
This is done using a simple sampling process such that,
during training, a large pool of prototypes of various sizes
and at random positions are extracted from a target set of

images. These prototypes are extracted at the level of the C1

layer across all four orientations, i.e., a patch Po of size n� n
contains n� n� 4 elements. In the following, we extracted
patches of four different sizes ðn ¼ 4; 8; 12; 16Þ. An important
question for both neuroscience and computer vision regards
the choice of the unlabeled target set from which to learn—in
an unsupervised way—this vocabulary of visual features. In
the following, features are learned from the positive training
set for each object independently, but, in Section 3.1.2, we
show how a universal dictionary of features can be learned
from a random set of natural images and shared between
multiple object classes.

The Classification Stage: At runtime, each image is propa-
gated through the architecture described in Fig. 1. TheC1 and
C2 standard model features (SMFs) are then extracted and
further passed to a simple linear classifier (we experimented
with both SVM and boosting).

3 EMPIRICAL EVALUATION

We evaluate the performance of the SMFs in several object
detection tasks. In Section 3.1, we show results for detection in
clutter (sometimes referred to as weakly supervised) for
which the target object in both the training and test sets
appears at variable scales and positions within an unseg-
mented image, such as in the CalTech101 object database [21].
For such applications, because 1) the size of the image to be
classified may vary and 2) because of the large variations in
appearance, we use the scale and position-invariantC2 SMFs
(the numberN of which is independent of the image size and
only depends on the number of prototypes learned during
training) that we pass to a linear classifier trained to perform a
simple object present/absent recognition task.

In Section 3.2, we evaluate the performance of the SMFs in
conjunction with a windowing approach. That is, we extract a
large number of fixed-size image windows from an input
image at various scales and positions, which each have to be
classified for a target object to be present or absent. In this task,
the target object in both the training and test images exhibits a
limited variability to scale and position (lighting and within-
class appearance variability remain) which is accounted for
by the scanning process. For this task, the presence of clutter
within each image window to be classified is also limited.
Because the size of the image windows is fixed, both C1 and
C2 SMFs can be used for classification. We show that, for such
an application, due to the limited variability of the target
object in position and scale and the absence of clutter,C1 SMFs
appear quite competitive.

In Section 3.3, we show results using the SMFs for the
recognition of texture-based objects like trees and roads. For
this application, the performance of the SMFs is evaluated at
every pixel locations from images containing the target
object which is appropriate for detecting amorphous objects
in a scene, where drawing a closely cropped bounding box
is often impossible. For this task, the C2 SMFs outperform
the C1 SMFs.

3.1 Object Recognition in Clutter

Because of their invariance to scale and position, the
C2 SMFs can be used for weakly supervised learning tasks
for which a labeled training set is available but for which the
training set is not normalized or segmented. That is, the
target object is presented in clutter and may undergo large
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TABLE 1
Summary of the S1 and C1 SMFs Parameters

2. This is consistent with well-known response properties of neurons in
primate inferotemporal cortex and seems to be the key property for learning
to generalize in the visual and motor systems [42].



changes in position and scales. Importantly, the number of
C2 features depends only on the number of patches extracted
during training and is independent of the size of the input
image. Here, to perform different categorization tasks, the
C2 responses computed over a new input image are simply
passed to a linear classifier (linear SVM or boosting).3

Below, we compare the performance of the scale and
translation-invariant C2 features when used as inputs to
simple linear classifiers with other benchmark systems for
the recognition of objects in clutter (i.e., both training and
testing are performed on unsegmented images). We
consider three data sets, denoted CalTech5, CalTech101,
and MIT-CBCL, to evaluate our system performance.

3.1.1 Image Data Sets

CalTech5: We consider five of the databases,4 i.e., the frontal-
face, motorcycle, rear-car, and airplane data sets from [20],
as well as the leaf data set from [19]. On these data sets, we
used the same fixed splits as in the corresponding studies
whenever applicable and otherwise generated random
splits. All images were rescaled to be 140 pixels in height
(width was rescaled accordingly so that the image aspect
ratio was preserved) and converted to gray scale.

CalTech101: It contains 101 object classes plus a back-
ground class (see [21] for details). All results reported were
generated with 10 random splits. In the binary experiments,
we used 50 negative training examples and a variable number
of positive training examples (1, 3, 15, 30, and 40). For testing,
we selected 50 negative examples and 50 positive examples
from the remaining images (or as many left if less than 50 were
available). In the multiclass experiment, we used 15 or
30 training images per class. This includes the background
class and the “faces” and “faces-easy” as three of the classes.
We used as many as 50 testing examples per class, less if there
were not enough examples left after training. If less than
50 examples were used, the results were normalized to reflect
equal contributions for each class. We report the mean and
standard deviation of the performance across all classes. All
images were rescaled to be 140 pixels in height (width was
rescaled accordingly so that the image aspect ratio was
preserved) and converted to gray scale.

MIT-CBCL: This includes a near-frontal ð�30�Þ face data
set [17] and a multiview car data set from [18] (see Fig. 2). The
face data set contains about 6,900 positive and 13,700 negative

images for training and 427 positive and 5,000 negative
images for testing. The car data set contains 4,000 positive and
1,600 negative training examples and 1,700 test examples
(both positive and negative). Although the benchmark algo-
rithms were trained on the full sets and the results reported
accordingly, our system only used a subset of the training sets
(500 examples of each class only).

These two MIT-CBCL data sets are challenging: The face
patterns used for testing are a subset of the CMU PIE database
[44], which contains a large variety of faces under extreme
illumination conditions (see [17]). The test nonface patterns
were selected by a low-resolution LDA classifier as the most
similar to faces (the LDA classifier was trained on an
independent 19� 19 low-resolution training set). The car
database includes a wide variety of vehicles, including SUVs,
trucks, buses, etc., under wide pose and lighting variations.
Randomimagepatterns atvariousscales thatwerenot labeled
as vehicles were extracted and used as a negative test set.

3.1.2 Results

Comparison with benchmark systems: Table 2 summarizes the
performance of the C2 SMFs compared with other published
results from benchmark systems: the constellation models by
Perona et al. [19], [20], the hierarchical SVM-based face-
detection system by Heisele et al. [17] and a standard system
[18] that uses Ullman et al.’s fragments [26] and gentleBoost
as in [45]. The performance measure reported is the accuracy
at the equilibrium point, i.e., the accuracy point such that the
false positive rate equals the miss rate. Results obtained with
theC2 SMFs are superior to previous approaches [17], [18] on
the MIT-CBCL data sets and comparable to the best systems
[46], [47] on the CalTech5 data sets.5

Comparison with SIFT features: We also compared the C2

SMFs to a system based on Lowe’s SIFT features [27]. To
perform this comparison at the feature level and ensure a fair
comparison between the two systems, we neglected all
position information recovered by Lowe’s algorithm. It was
recently suggested in [47] that structural information does not
seem to help improve recognition performance. We selected
1,000 random reference key-points from the training set.
Given a new image, we measured the minimum distance
between all its key-points and the 1,000 reference key-points,
thus obtaining a feature vector of size 1,000.6
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3. More biologically plausible classifiers are described in [43]. Such
classifiers are likely to correspond to the task-specific circuits in the cortex
from IT to PFC (see [15], [43]).

4. Available at http://www.robots.ox.ac.uk/vgg/data3.html.

5. Experimental procedures may vary from one group to another (e.g.,
splits used, preprocessing, scale normalization, etc.). Comparisons should
therefore be taken cautiously.

6. Lowe recommends using the ratio of the distances between the nearest
and the second closest key-point as a similarity measure. We found instead
that the minimum distance leads to better performance than the ratio.

Fig. 2. Sample images from the MIT-CBCL multiview car [18] and face

[17] data sets.

TABLE 2
Results Obtained with 1,000 C2 Features Combined with
SVM or GentleBoost (boost) Classifiers and Comparison

with Existing Systems (Benchmark)



Fig. 3 shows a comparison between the performance of the
SIFT and the C2 SMFs (both with gentleBoost; similar results
were obtained with a linear SVM). Fig. 3a shows a comparison
on the CalTech5 database for different numbers of features
(obtained by selecting a random number of them from the
1,000 available) and Fig. 3b on the CalTech101 database for
different number of training examples. In both cases, the
C2 features outperform the SIFT features significantly. SIFT

features excel in the redetection of a transformed version of a
previously seen example, but may lack selectivity for a more
general categorization task at the basic level.

Number of features and training examples: To investigate
the contribution of the number of features on performance,
we first created a set of 10,000 C2 SMFs and then randomly
selected subsets of various sizes. The results reported are
averaged over 10 independent runs. As Fig. 4a shows,
while the performance of the system can be improved with
more features (e.g., the whole set of 10,000 features),
reasonable performance can already be obtained with 50-
100 features. Features needed to reach the plateau (about

1,000-5,000 features) is much larger than the number used
by current systems (on the order of 10-100 for [17], [26], [45]
and 4-8 for constellation approaches [19], [20], [21]). This
may come from the fact that we only sample the space of
features and do not perform any clustering step like other
approaches (including an earlier version of this system
[34]). We found clustering to be sensitive to the choice of
parameters and initializations, leading to poorer results.

We also studied the influence of the number of training
examples on the performance of the system on the
CalTech101 database. For each object category, we generated
different positive training sets of size 1, 3, 6, 15, and 30 as in
[21] (see Section 3.1.1). As shown in Fig. 4b, the system
achieves error rates comparable to [21] on a few training
examples (less than 15), but its performance still improves
with more examples (where the system by Fei-Fei et al.
seems to be reaching a plateau, see [21]). Results with an
SVM (not shown) are similar, although the performance
tended to be higher on very few training examples (as SVM

seems to avoid overfitting even for one example).
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Fig. 3. Comparison between the SIFT and the C2 features on the CalTech5 for (a) different numbers of features and on the (b) CalTech101 for a
different number of training examples.

Fig. 4. Performance obtained with gentleBoost and different numbers of C2 features on the (a) CalTech5 and on sample categories from the
(b) CalTech101 for a different number of training examples.



However, since SVM does not select the relevant features,
its performance tends to be lower than gentleBoost as the
number of training examples increases. Fig. 5 shows the
performance of the gentleBoost and SVM classifiers used with
the C2 SMFs on all categories and for various numbers of
training examples (each result is an average of 10 different
random splits). Each plot is a single histogram of all
101 scores, obtained using a fixed number of training
examples, e.g., with 40 examples, the gentleBoost-based
system gets around 95 percent ROC area for 42 percent of the
object categories.

Toward a universal dictionary of features: We here describe
experiments that suggest that it is possible to perform robust
object recognition withC2 SMFs learned from a separate set of
randomly selected natural images. In Fig. 6, we compare the
performance of two sets of features on the CalTech101
database: 1) a standard set of object-specific features that were
learned from a training set of images from the target object
category (200 features per training image) and 2) a universal
set of 10,000 features learned independently from a set of

random natural images (downloaded from the Web). While
the object-specific set performs significantly better with
enough training examples, the universal set appears to be
competitive for smaller training sets.

Indeed the universal feature set is less prone to overfitting
with few training examples (both the learning of the features
and the training of the final classifier are performed on the
same set with the object-specific set). In addition, contrary to the
object-specific set, the size of the universal set is constant
regardless of the number of training examples (10,000). As a
result,with small trainingdatasets, fewer features canbeused
with the object-specific set (we found that extracting more
than 200 features per training image had very little effect on
performance). This may constitute a relevant and intriguing
result on its own. Our results also suggest that it should be
possible for biological organisms to acquire a basic vocabulary
of features early in development while refining it with more specific
features later on. The latter point is consistent with reports of
plasticity in inferotemporal cortex from adult monkey (the
complexity and sizes of the largest C2 features are consistent
with the receptive fields of posterior IT neurons).

Multiclass results on the CalTech101: Finally, we report
results on multiclass classification on the CalTech101 data-
base. To conduct this experiment, we use the universal
dictionary of 1,000 features similar to the one described
earlier. This offers a significant gain in speed in a multiclass
setting compared to the standard object-specific set. The
classifier is a multiclass linear SVM that applied the all-pairs
method and is trained on 102 labels (101 categories plus the
background category). The performance of the system
reaches above 44 � 1.14 percent correct classification rate
when using 15 training examples per class averaged over
10 repetitions (see Section 3.1.1). Using only five training
images per class, the performance degrades to � 30 percent.

By considering gestalt-like features (e.g., good-continuity
detectors, circularity detectors, and symmetry detectors)
within the same framework in addition to the C2 SMFs,
Wolf et al. obtained 51.2 percent � 1.2 percent correct [48],
[49] and recently incorporated some changes with Sharat
Chikkerur to get 55.0 percent � 0.9 percent (all these results
are for 15 training images). At press time, some of the best
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Fig. 5. Histogram of the C2 features performance for all 101-object categories with (a) linear SVM and (b) gentleBoost for different numbers of positive

training examples.

Fig. 6. Object-specific versus universal C2 features.



systems include the system in [50] (� 44 percent correct)
and in [51] (45 percent correct).

3.2 Object Recognition without Clutter

3.2.1 The StreetScenes Database

In order to test the SMFs on a challenging real-world object
detection problem, we have built training and test data from
the StreetScenes scene-understanding data set. This database
consists of more than 3,000 labeled images of the streets
around Boston and Cambridge. Sample images and their
hand labelings are illustrated in Fig. 10; some statistics of the
content of the data set are given in Table 3. The accurate
detection of many of these object categories is made difficult
by the wide internal variability in their appearance. For
example, the object class cars includes examples of many
diverse models, at many poses, and in various types of
occlusion and lighting, trees appear very different in
summer and winter, and the class of buildings includes
skyscrapers as well as suburban houses. Capturing this wide
variability while maintaining high accuracy is part of the
challenge of the scene-understanding problem. The data-
base is available online at [16].

3.2.2 Training the SMFs-Based Systems

Using data extracted from our StreetScenes database, we
trained object detectors for the classes car, pedestrian, and
bicycle. This data was extracted by cropping out labeled
examples of these object classes. Negative examples were
extracted similarly by finding locations and scales which
matched the positive data, but did not overlap the labeled
positives. Each example, positive and negative, was resized
to 128� 128 pixels and converted to gray scale. This image
was then converted into C1 space using the method of
Section 2. For a 128� 128 gray-scale image and our
parameter values, this resulted in a feature vector of
13,362 features that provided the input to the C1-based
classifier. The C2 representation was built as in Section 3.1
for the recognition in clutter. Classifiers for these objects
were trained using gentleBoost For these experiments, all
labeled positive examples and 10 times as many negative
examples were extracted. The systems evaluation was
performed using randomized training (1/3) and testing
(2/3) splits..

3.2.3 Benchmark Systems

For comparison, we also implemented four other benchmark
systems. Our most simple baseline detector is a single-
template Grayscale system: Each image is normalized in size
and histogram equalized before the gray-values are passed to
a linear classifier (gentleBoost). Another baseline detector,
Local Patch Correlation, is built using patch-based features
similar to [45]. Each feature fi is associated with a particular
image patch pi, extracted randomly from the training set.
Each feature fi is calculated in a test image as the maximum
normalized cross correlation of pi within a subwindow of the

image. This window of support is equal to a rectangle three
times the size of pi and centered in the image at the same
relative location from which pi was originally extracted. The
advantage of the patch-based features over the single-
template approach is that local patches can be highly selective
while maintaining a degree of position invariance. The
system was implemented with N ¼ 1; 024 features and with
patches of size 12� 12 in images of size 128� 128. The third
benchmark system is a Part-based system as described in [25].
Briefly, both object parts and a geometric model are learned
via image patch clustering. The detection stage is performed
by redetecting these parts and allowing them to vote for
objects-at-poses in a generalized Hough transform frame-
work. Finally, we compare to an implementation of the
Histogram of Gradients (HoG) feature of [52], which has
shown excellent performance on these types of objects. All
benchmark systems were trained and tested on the same data
sets as the SMFs-based system. They all use gentleBoost
except [25].

3.2.4 Results

The ROC results of this experiment are illustrated in Fig. 7.
For the two (C1 and C2) SMFs-based systems, the Grayscale
as well as the Local Patch Correlation system, the classifier is
gentleBoost, but we found very similar results with both a
linear and a polynomial-kernel SVM. Overall, for all three
object categories tested, the SMFs-based system performs
best on cars and bicycles and second behind HoG on
pedestrians (the HoG system was parameter-tuned in [52]
to achieve maximal performance on this one class). Finally,
for this recognition task, i.e., with a windowing framework,
the C1 SMFs seem to be superior to the C2 SMFs. Indeed, the
C1 SMFs are adept at representing the object boundaries of
these shape-based objects, which have strong interexample
correspondence.

3.3 Object Recognition of Texture-Based Objects

Here, we demonstrate the utility of the SMFs in a texture-
based object recognition task. Performance is measured by
considering each pixel, rather than each instance of an
object, to be a separate example. We consider four texture-
based objects: buildings, trees, roads, and skies.

3.3.1 Training the SMFs-Based Systems

In building a database of labeled texture examples, we were
careful to avoid errors due to overlap and loose polygonal
labeling in the StreetScenes database. Because of object
occlusions, some pixels in the database are labeled as one
object, i.e., building, but their actual appearance is due to
another object, i.e., tree. We addressed this by removing
pixels with either multiple labels or no labe, from the test.
Additionally, training samples were never drawn from
within 15 pixels of any object’s border. The same training
and test locations were used for both the SMFs-based and
the benchmark systems.

To build the C1 SMFs-based system, C1 maps were
computed for each image and, for each sample point, feature
vector elements were collected by sampling the resulting C1

maps at a set of relative locations and scale-bands. AC2 SMF-
based system was also built as in Section 3.1 except for the
maximum over position at the S2 level that was taken over a
local neighborhood instead of the whole image. This local
area corresponded to a 60� 60 pixel window in the original
960� 1; 280 pixel image.
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3.3.2 Benchmark Systems

We implemented four benchmark texture classification
systems. The Blobworld (BW) system was constructed as
described in [53]. Briefly, the Blobworld feature, originally
designed for image segmentation, is a six-dimensional vector
at each pixel location; three dimensions encode color in the
Lab color space and three dimensions encode texture using
the local spectrum of gradient responses. We did not include
the color information for a fair comparison between all the
various texture detection methods.

The systems labeled T1 and T2 are based on [29]. In these
systems, the test image is first processed with a number of
predefined filters. T1 uses 36 oriented edge-filters arranged
in five degrees increments from 0 degrees to 180 degrees. T2
follows [29] exactly by using 36 Gabor filters at six
orientations, three scales, and two phases. For both systems
independently, a large number of random samples of the
36-dimensional edge response images were taken and
subsequently clustered using k-means to find 100 cluster
centroids (i.e., the textons). The texton image was then
calculated by finding the index of the nearest texton to the
filter response vector at each pixel in the response images. A
100-dimensional texton feature vector was then built by
calculating the local 10� 10 histogram of nearest texton
indexes.

Finally, the Histogram of edges (HoE) system was built
by simply using the same type of histogram framework, but
over the local 36-dimensional directional filter responses
(using the filters of T1) rather than the texton identity. Here,
as well, learning was done using the gentleBoost algorithm
(again a linear SVM produced very similar results). The
within-class variability of the texture-objects in this test is
considerably larger than that of the texture classes usually
used to test texture-detection systems, making this task
somewhat different. This may explain the relatively poor
performance of some of these systems on certain objects.

3.3.3 Results

As shown in Fig. 8, the SMFs-based texture system seems to
consistently outperform the benchmarks (BW, T1, T2, and
HoE). C2 compared to C1 SMFs may be better suited to this
task because of their increased invariance properties and
complexity.

3.4 Toward a Full System for Scene Understanding

The SMFs-based object detection systems described pre-
viously were combined into a complete system for scene
understanding. The objects to be detected are divided into
two distinct categories, texture-based objects and shape-based
objects, which are handled using different recognition
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Fig. 7. ROC curves illustrating the performance of the standard-model object-detectors compared to four baseline systems (see Section 3.2). Note

that, in this test, the amount of clutter is limited by the windowing process, creating better interexample correspondence and thereby allowing the

direct application of the C1 SMFs.



strategies. Fig. 9 illustrates the architecture of the data flow

diagram, specifically highlighting the two pathways for the

detection of the texture-based and shape-based objects.

3.4.1 Shape-Based Object Detection in StreetScenes

Shape-based objects are those objects for which there exists

a strong part-to-part correspondence between examples,
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Fig. 8. Performance (ROC curves) of five texture classification algorithms for the detection of buildings, trees, skies, and roads. This texture

classification task requires reliable recognition of texture classes with wide intraclass variability. This difficult test may in part explain the inferior

performance of the benchmark algorithms, which have been previously used to detect object boundaries and classify materials, but not for object

recognition.

Fig. 9. Data flow diagram of the scene-understanding system (see text for details).



including pedestrians, cars, and bicycles. In order to detect
shape-based objects, a standard windowing technique is
used. This contrasts with the approach presented in
Section 3.1, wherein objects in clutter are detected using
scale and translation-invariant C2 SMFs, rather than testing
for object presence at each position and scale indepen-
dently. While the C2 approach is appropriate for fast
decisions of object presence or absence, it would be
impractical for this scene-understanding application as the
locations of individual objects would be lost.

In conjunction with this windowing approach, we use
the C1 SMFs. Since the window crops away much of the
clutter, leaving the potential object nearly centered, the
additional invariance from the C2 features is not necessary.
It is important to note that the good performance of the C1

SMFs is dependent upon training data with accurate
descriptions of the position and scale of the target object.
Performance metrics for both C1 and C2 SMFs were shown
in Section 3.2, as well as those for a number of benchmark
systems. In the final system, the classifiers output is
thresholded and a standard local neighborhood suppres-
sion technique is used in which the maximum detection is
recorded and the response within a neighborhood in scale
space is suppressed. In Fig. 10, we present some sample
results obtained with the system.

3.4.2 Pixel-Wise Detection of Texture-Based Objects

Texture-based objects are those objects for which, unlike
shape-based objects, there is no obvious visible interobject
part-wise correspondence. These objects are better de-
scribed by their texture rather than the geometric structure
of reliably detectable parts. For the StreetScenes database,
these currently include buildings, roads, trees, and skies.

Using the models trained in Section 3.3 and applying them
to each pixel within the image, one obtains a detection
confidence map of the size of the original image for each
object. This map is used to judge which pixel belongs to
which texture-object category. Simply taking the value with
maximum response strength results in unsatisfactory results,
as it was found that, when the receptive field of a unit
overlaps a texture-boundary, the response becomes unreli-
able. This was addressed by smoothing the anomalous

responses by segmenting the input image and averaging
the responses of the detectors over each segment. As a result,
uncertain responses at the object borders are compensated for
by the more numerous responses within the object bound-
aries. This was accomplished using the segmentation soft-
ware Edison [54]. Sample results of our texture recognition
system can be seen in the bottom row of Fig. 10.

4 DISCUSSION

4.1 A Computer Vision Perspective on the Model

The computer vision system described in this work was
constructed from a neuroscience model of the primate visual
cortex which is a rather unusual approach. The model itself is
based on a consensus among neuroscientists and on fitting
available experimental data. Still, one may wonder about the
relationships between the SMFs and other computer vision
algorithms: Because of the hierarchical and nonlinear nature
of the architecture described in Fig. 1, there is little hope in
finding a simple general cost function that the system would
minimize. These types of functions are seldom available for
hierarchical systems which are not probabilistic in nature or
explicitly set out to minimize an energy function. Instead, we
next study each layer of the system separately.

The first layer ðS1Þ consists of applying Gabor filters to the
input image, which mimics the processing by simple cells in
the primary visual cortex (V1). Gabor filters have been
around in computer vision for decades, starting with
Gabor’s demonstration [2] that these elementary functions
minimize the uncertainty of their product and Daugman’s
extension [55] to 2D. They are also very similar to DoG filters
used since the 1960s to model receptive fields in the retina
and primary visual cortex and to perform edge detection in
computer vision (see [56], [57]). Bovik et al. [58] used Gabor
filters for texture segmentation and Sanger [59] for the
computation of disparity in stereovision. In biometrics, it has
been used for face recognition (e.g., [60]), iris recognition as
well as fingerprint recognition. Olshausen and Fields
demonstrated that optimizing a sparse coding scheme over
a set of natural images produces a set of edge filters similar
to Gabor filters [61]. Hence, it was expected that the output
of Gabor filters on natural images would be sparse. This
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Fig. 10. Top row: Sample StreetScenes examples. Middle row: True hand-labeling; color overlay indicates texture-based objects and bounding

rectangles indicate shape-based objects. Note that pixels may have multiple labels due to overlapping objects or no label at all (indicated in white).

Bottom row: Results obtained with a system trained on examples like (but not including) those in the second row.



result comes from the fact that Gabor filters, as edge
detecting filters, are activated only near image edges. Any
further analysis step done on top of Gabor filters should take
this sparseness property into account.

The next layer (C1) does something which is unorthodox
for computer vision systems—it maximizes the output of
the filters locally. Each C1 unit computes the maximum over
a small pool of S1 outputs. While many systems maximize
the output of a detector over the entire image, local
maximization has only been done recently. For part-based
object detection [17], [26], [45], local detectors of each part
are learned independently, and are then applied to local
regions where the parts are expected to appear.

Our work seems novel in that general purpose filters are
being maximized over uniformly distributed local regions
in the image. In order to understand this stage, we can
invoke some scale space terminology (see [62] for an
overview). Scale space theory was mostly concerned at first
with the Gaussian scale space. This scale space has many
desirable properties such as separability, linearity, shift
invariance, isotropy, homogeneity, and causality. The last
property is an important one: Causality means that no new
level sets are created by going into coarser scales. A related
property is to demand the noncreation of local extrema in
coarser scales. In our application, a local maximization
(instead of Gaussian blurring) is used to go from a fine to a
coarser scale in order to make the C1 layer invariant to small
local translations. As a pseudoscale space, local maximiza-
tion has some desirable properties: It is separable (one can
apply it over the rows and then over the columns), it is shift
invariant, and it is homogeneous (it can be applied in the
same way to each scale; applying it repeatedly corresponds
to moving into coarser and coarser scales). However, in

general it is not an appropriate scale space— among other
problems, when applying it to an image, new local extrema
are being created. This can be seen in the top row of Fig. 11,
where applying the max scale space to the Lena image
creates block-like structures, which are new level sets, and
where the corners are new local maxima.

However, our application of the local maximum operator
is on the Gabor filtered image, which is a sparse representa-
tion of the original image. For such an input, the Gaussian
scale space results in a diluted image (see bottom row of
Fig. 12). The max scale space, on the other hand, is successful
in keeping the sparse inputs through the consecutive
applications of the max filter. Put differently, for the analysis
of gray-level images, it is important not to create new
structures while moving to coarser scales: In this, a Gaussian
scale space is appropriate and a local maximum type of
analysis is not. For the analysis of sparse coding, it is
important to conserve the local maxima, which is precisely
what the maximum operator does (the Gaussian scale space
on the other hand flattens the input).

The next two levels in our system involve the combina-
tion of C1 outputs using a template matching approach.
Prototype templates (patches) are extracted from the training
images and the best match with these serves as an image
representation. The first template-based stage (S2) measures
the “correlation” (Euclidean distance) of the C1 maps with
many small crops obtained from such maps.

The correlation is measured for the four orientations
together, thus making our algorithm sensitive to large
rotations of the image. Small rotations can be approximated
by small translations, which are handled by the maximiza-
tion at the C1 level. Note that this stage is done at multiple
scales such that a given template taken from a C1 map at a
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Fig. 11. Max scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image gets distorted,

the information in the sparse edge image is enhanced.

Fig. 12. Gaussian scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image degrades

gracefully, revealing structures at different scales, the sparse edge image fades away.



certain scale during the prototype templates collection
stage of training is matched across all C1 maps when
constructing the C2 feature vector. The last stage of our
system (C2) is a standard maximization over the entire
image (in principle and more biologically, this would be
over an area of the size of the fovea but not the whole
visual field, see [15]). This is equivalent to scanning over all
locations and scales for the maximum correlation with each
C1 template selected in training.

4.2 What SMFs to Use for Which Tasks?

To summarize our main results: In Section 3.1, we have shown
an application to the C2 SMFs to the semisupervised
recognition of objects in clutter. For such tasks, the training
images are unsegmented: The target object is embedded in
clutter and undergo changes in scale and position. Addition-
ally,because thetraining imagescomeindifferentsizes,onlya
global representation based on a fixed-length scale and
position-invariant feature vector such as the C2 SMFs is
suitable.

As described in Section 3.2 for the recognition of shape-
based objects in conjunction with a scanning approach (the
images to be classified are segmented and normalized), a
more “holistic” representation based on C1 SMFs which are
adept at detecting object boundaries tend to be superior. For
such tasks, the variations in scale and position are limited
and clutter is almost completely absent. As a result, the
scale and position-invariance of the C2 SMFs does not bring
any extra computational benefit.

Finally, in Section 3.3, we showed that the C2 SMFs excel
at the recognition of texture-based objects which lack a
geometric structure of reliably detectable parts in compar-
ison to the C1 SMFs as well as other benchmark systems.

4.3 Object Recognition in Cortex: Remarks

Our system belongs to a family of feedforward models of
object recognition in the cortex that have been shown to be
able to duplicate the tuning properties of neurons in several
visual cortical areas [14]. In particular, Riesenhuber and
Poggio showed that such a class of models accounts
quantitatively for the tuning properties of view-tuned units
in IT cortex which respond to images of the learned object
more strongly than to distractor objects, despite significant
changes in position and size [63]. Model performance was
so far only reported for simple artificial stimuli such as
paperclips on a uniform background [14], with no real-
world image degradations such as change in illumination,
clutter, etc. The success of our extension of the original
model on a variety of large-scale real-world’s object
recognition databases provides a compelling plausibility
proof for this class of feed-forward models.

A long-time goal for computer vision has been to build a
system that achieves human-level recognition performance.
Until now, biology had not suggested a good solution. In fact,
the superiority of human performance over the best artificial
recognition systems has continuously lacked a satisfactory
explanation. The computer vision approaches had also
diverged from biology: For instance, some of the best existing
computer vision systems use geometrical information about
objects’ constitutive parts (the constellation approaches [19],
[20], [21] rely on a probabilistic shape model; in [17], the
position of the facial components is passed to a combination
classifier (along with their associated detection values)

whereas biology is unlikely to be able to use it—at least in
the cortical stream dedicated to shape processing and object
recognition). The system described in this paper may be the
first counterexample to this situation: It is based on a model
of object recognition in cortex [14], [15], it respects the
properties of cortical processing (including the absence of
geometrical information) while showing performance at least
comparable to the best computer vision systems.

It has been suggested that “immediate recognition” during
scene categorization tasks may rely on partial processing by
the visual system based on a rapid and parallel detection of
disjunctive sets of unbound features of the target category
[64], [65]. Interestingly a recent psychophysical experiment
[66] suggested that spatial information about the objects
location may be absent during “immediate recognition.” That
is, even though human observers correctly detect a target
object within a frame embedded in a rapid sequence of
images, they are, however, not able to recover even its
approximate location [66]. Such an observation is in good
agreement with the experiment described in Section 3.1 in
which the recognition of objects in clutter is based on a bag of
translation and scale-invariantC2 features computed over the
entire image for which spatial information is lost. Indeed, we
recently showed that an extension of the model described in
this paper accounts for the level and the pattern of
performance of human observers [43] on a rapid animal
versus nonanimal categorization task [67]. This may be the
first time that a neurobiological model, faithful to the
physiology and the anatomy of the visual cortex, provides a
realistic alternative to engineered artificial vision systems.

4.4 Open Questions, Limitations, and Possible
Improvements

4.4.1 Have We Reached the Limit of What a/this

Feedforward Architecture Can Achieve in Terms

of Performance?

There seem to be at least three directions that could be
followed to further improve the performance of the
architecture described here: First, very recent experiments
[43] suggests that the addition of extra layers (e.g., S3, C3,
S4, etc.), in agreement with the anatomy and physiology of
the visual cortex, may provide a significant gain in
performance. Additionally, we also found that loosening
the hierarchy described in Fig. 1 may also provide some
significant computational benefits. As already suggested by
the results of our experimental simulations in Section 3, not
all tasks are equal. Depending on the amount of clutter and
2D transformations involved, it is sometimes beneficial to
use the fine information from low-level SMFs and some
other times to use more invariant high-level SMFs. We
found that passing different types of SMFs to the final
classifier and letting the classifier choose for the optimal
features may further improve performance (for instance,
passing both C1 and C2 SMFs) [43], [48].

Second, the sampling procedure we used here to learn
features is very simple. It is likely that not all features are
useful for recognition. Applying a standard feature selection
technique may give further improvement in performance.
Indeed, a very recent study showed that selecting the subset
of theC2 SMFs that are highly weighted by the SVM classifier
provide a substantial increase in performance [68].
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Third, for all the tests reported here, we did not tune a
single parameter to get optimal performance. Instead,
model parameters were set to match what is known about
the primate visual system. Further improvements could
likely be obtained by tuning some of the model parameters
[69] (see Table 1)—perhaps through learning.

4.4.2 Beyond Feedforward Architectures

As a feedforward model of the ventral stream pathway, the
architecture of Fig. 1 cannot account for all aspects of our
everyday vision which involve eye movements and top-
down effects, which are mediated by higher brain centers
and the extensive anatomical back-projections found
throughout the visual cortex and are not implemented in
the present feedforward model. While our system exhibits
competitive performance compared to other benchmark
systems, it remains limited compared to biological visual
systems: The model seems to be able to account for the level
of performance of human observers on a rapid categoriza-
tion task [67] when the stimulus presentation times are
short and back-projections are inactive [43]. Yet the
performance of the model remains far behind the perfor-
mance of human observers for long presentation times.

It is important to point out that this recognition with a
glimpse only constitutes the initial processing step in natural
vision. In particular, the model—in its present form—does
not capture Gestalt-like properties such as continuity and
parallelism or figure-ground segmentation, which probably
involves lateral and feedback connections, yet to be inserted
in the model. A feedforward system (like the one we
presented here) could, in principle, be used as the front-end
of a visual system as part of a prediction-verification loop
[70]. The feedforward path would provide an initial
hypothesis about what object is presented in the visual
field, yet to be verified through feedback loops.

4.4.3 Future Work

Perhaps the major limitation of our system in a real-world
applications setting remains its processing speed (limited by
the S1 and C1 stages)—typically, tens of seconds, depending
on the size of the input image—which is too slow for a real-
time application. Another important question, yet to be
addressed, is whether the recognition results obtained with
bags of C2 features could be extended to other tasks, such as
face and gesture recognition or the analysis of video.

4.5 Conclusion

In this paper, we have described a new framework for robust
object recognition, which we have applied to two different
recognition scenarios: First, we have shown an application to
the problem of semisupervised recognition of objects in
clutter that does not involve image scanning. The system first
computes a set of scale and translation-invariant C2 features
from a training set of images, which is then passed to a
standard classifier on the vector of features obtained from the
input image. The system was tested on several object
databases and shown to outperform several more complex
benchmark systems (e.g., the systems in [19], [20], [21] involve
the estimation of probability distributions; [17] uses a
hierarchy of SVMs and requires accurate correspondences
between positive training images, i.e., 3D head models).
Interestingly, the approach was shown to be able to learn

from a few examples and could compete with generative
models that use prior category information [21].

Second, we have described a new approach to scene
understanding with an application to a StreetScenes database
involving different types of rigid objects as well as texture-
based objects. We found that the Standard Model Features
(SMFs) constitute a flexible framework that can be used in
conjunction with standard computer vision techniques, i.e.,
image scanning for the detection and localization of several
target objects at multiple scales and image segmentation for
the recognition of nonrigid texture-based objects.
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Supérieure des Télécommunications de Bre-
tagne, Brest, France, in 2000, the DEA (MSc)
degree from the University of Rennes, France, in
2000 and, in 2005, the PhD degree in neu-
roscience from the Massachusetts Institute of
Technology (MIT). He is currently a postdoctoral
associate in Professor Poggio’s lab at MIT in
Cambridge. His main research focuses on object

recognition with both brains and machines.

Lior Wolf graduated from the Hebrew Univer-
sity, Jerusalem, where he worked under the
supervision of Professor Shashua. He is a
postdoctoral associate in Professor Poggio’s
lab at Massachusetts Institute of Technology
(MIT). He won the Max Shlumiuk award for 2004
and the Rothchild fellowship for 2004. His joint
work with Professor Shashua for ECCV 2000
received the best paper award, and their work
for ICCV 2001 received the Marr prize honorable

mention. His reseach interests include object-recognition, video-analy-
sis, and structure-from-motion. In Spring 2006, he is expected to join the
faculty of the Computer Science Department at Tel-Aviv University.

Stanley Bileschi is a postdoctoral associate in
Professor Poggio’s lab at Massachusetts Insti-
tute of Technology (MIT), where he received the
graduate degree in 2006. Previously, he at-
tended the State University of New York at
Buffalo and earned degrees in computer science
and electrical engineering. His graduate work
was sponsored in part through a US National
Science Foundation fellowship. His research
interests include computer vision, contextual

semantic understanding of video streams, and neurocomputation.

Maximilian Riesenhuber received the Diplom in
physics from the University of Frankfurt, Ger-
many, in 1995, and the PhD degree in computa-
tional neuroscience from the Massachusetts
Institute of Technology in 2000. He is currently
an assistant professor of neuroscience at Geor-
getown University Medical Center in Washington,
D.C. His main research foci are the neural
mechanisms underlying object recognition and
plasticity in the normal brain and the translation to

neural disorders, brain-machine interfaces, and machine vision. Dr.
Riesenhuber has received several awards, including a McDonnell-Pew
Award in Cognitive Neuroscience, Technology Review’s TR100, and an
US National Science Foundation CAREER Award.

Tomaso Poggio is the Eugene McDermott
Professor in the Department of Brain and
Cognitive Sciences, the Codirector, Center for
Biological and Computational Learning, a mem-
ber for the last 25 years of the Computer
Science and Artificial Intelligence Laboratory at
MIT, and, since 2000, a member of the faculty of
the McGovern Institute for Brain Research. He is
the author or coauthor of more than 400 papers
in the fields of learning theory, computer

science, computational neuroscience, and nonlinear systems theory
and he belongs to the editorial board of several scientific journals. He is
an honorary member of the Neuroscience Research Program, a
member of the American Academy of Arts and Sciences, and a
Founding Fellow of the AAAI. He received several awards such as the
Otto-Hahn-Medaille Award of the Max-Planck-Society, the Max Planck
Research Award (with M. Fahle), from the Alexander von Humboldt
Foundation, the MIT 50K Entrepreneurship Competition Award, the
Laurea Honoris Causa in Ingegneria Informatica for the Bicentenario
dell’Invenzione della Pila from the University of Pavia, and the 2003
Gabor Award. His current research is focused on the development of the
theory and on the application of novel learning techniques to computer
vision, bioinformatics, computer graphics, and especially neuroscience.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

426 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


