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Abstract

We introduce a novel set of features for robust object
recognition. Each element of this set is a complex feature
obtained by combining position- and scale-tolerant edge-
detectors over neighboring positions and multiple orienta-
tions. Our system’s architecture is motivated by a quantita-
tive model of visual cortex.

We show that our approach exhibits excellent recogni-
tion performance and outperforms several state-of-the-art
systems on a variety of image datasets including many dif-
ferent object categories. We also demonstrate that our sys-
tem is able to learn from very few examples. The perfor-
mance of the approach constitutes a suggestive plausibility
proof for a class of feedforward models of object recogni-
tion in cortex.

1 Introduction

Hierarchical approaches to generic object recognition
have become increasingly popular over the years. These are
in some cases inspired by the hierarchical nature of primate
visual cortex [10, 25], but, most importantly, hierarchical
approaches have been shown to consistently outperform flat
single-template (holistic) object recognition systems on a
variety of object recognition tasks [7, 10]. Recognition typ-
ically involves the computation of a set of target features
(also called components [7], parts [24] or fragments [22])
at one step and their combination in the next step. Fea-
tures usually fall in one of two categories: template-based
or histogram-based. Several template-based methods ex-
hibit excellent performance in the detection of a single ob-
ject category, e.g., faces [17, 23], cars [17] or pedestri-
ans [14]. Constellation models based on generative meth-
ods perform well in the recognition of several object cate-

gories [24, 4], particularly when trained with very few train-
ing examples [3]. One limitation of these rigid template-
based features is that they might not adequately capture
variations in object appearance: they are very selective for a
target shape but lack invariance with respect to object trans-
formations. At the other extreme, histogram-based descrip-
tors [12, 2] are very robust with respect to object transfor-
mations. The SIFT-based features [12], for instance, have
been shown to excel in the re-detection of a previously seen
object under new image transformations. However, as we
confirm experimentally (see section 4), with such degree of
invariance, it is unlikely that the SIFT-based features could
perform well on a generic object recognition task.

In this paper, we introduce a new set of biologically-
inspired features that exhibit a better trade-off between in-
variance and selectivity than template-based or histogram-
based approaches. Each element of this set is a feature ob-
tained by combining the response of local edge-detectors
that are slightly position- and scale-tolerant over neighbor-
ing positions and multiple orientations (like complex cells
in primary visual cortex). Our features are more flexible
than template-based approaches [7, 22] because they allow
for small distortions of the input; they are more selective
than histogram-based descriptors as they preserve local fea-
ture geometry. Our approach is as follows: for an input im-
age, we first compute a set of features learned from the posi-
tive training set (see section 2). We then run a standard clas-
sifier on the vector of features obtained from the input im-
age. The resulting approach is simpler than the aforemen-
tioned hierarchical approaches: it does not involve scanning
over all positions and scales, it uses discriminative methods
and it does not explicitly model object geometry. Yet it is
able to learn from very few examples and it performs sig-
nificantly better than all the systems we have compared it
with thus far.
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Band Σ 1 2 3 4 5 6 7 8

filt. sizes s 7 & 9 11 & 13 15 & 17 19 & 21 23 & 25 27 & 29 31 & 33 35 & 37
σ 2.8 & 3.6 4.5 & 5.4 6.3 & 7.3 8.2 & 9.2 10.2 & 11.3 12.3 & 13.4 14.6 & 15.8 17.0 & 18.2
λ 3.5 & 4.6 5.6 & 6.8 7.9 & 9.1 10.3 & 11.5 12.7 & 14.1 15.4 & 16.8 18.2 & 19.7 21.2 & 22.8

grid size NΣ 8 10 12 14 16 18 20 22
orient. θ 0; π

4 ; π
2 ; 3π

4

patch sizes ni 4 × 4; 8 × 8; 12 × 12; 16× 16 (×4 orientations)

Table 1. Summary of parameters used in our implementation (see Fig. 1 and accompanying text).

Biological visual systems as guides. Because humans
and primates outperform the best machine vision systems
by almost any measure, building a system that emulates
object recognition in cortex has always been an attractive
idea. However, for the most part, the use of visual neuro-
science in computer vision has been limited to a justifica-
tion of Gabor filters. No real attention has been given to
biologically plausible features of higher complexity. While
mainstream computer vision has always been inspired and
challenged by human vision, it seems to never have ad-
vanced past the first stage of processing in the simple cells
of primary visual cortex V1. Models of biological vi-
sion [5, 13, 16, 1] have not been extended to deal with
real-world object recognition tasks (e.g., large scale natu-
ral image databases) while computer vision systems that are
closer to biology like LeNet [10] are still lacking agreement
with physiology (e.g., mapping from network layers to cor-
tical visual areas). This work is an attempt to bridge the gap
between computer vision and neuroscience.

Our system follows the standard model of object recog-
nition in primate cortex [16], which summarizes in a quan-
titative way what most visual neuroscientists agree on: the
first few hundreds milliseconds of visual processing in pri-
mate cortex follows a mostly feedforward hierarchy. At
each stage, the receptive fields of neurons (i.e., the part of
the visual field that could potentially elicit a neuron’s re-
sponse) tend to get larger along with the complexity of their
optimal stimuli (i.e., the set of stimuli that elicit a neuron’s
response). In its simplest version, the standard model con-
sists of four layers of computational units where simple S
units, which combine their inputs with Gaussian-like tun-
ing to increase object selectivity, alternate with complex C
units, which pool their inputs through a maximum oper-
ation, thereby introducing gradual invariance to scale and
translation. The model has been able to quantitatively du-
plicate the generalization properties exhibited by neurons
in inferotemporal monkey cortex (the so-called view-tuned
units) that remain highly selective for particular objects (a
face, a hand, a toilet brush) while being invariant to ranges
of scales and positions. The model originally used a very
simple static dictionary of features (for the recognition of
segmented objects) although it was suggested in [16] that
features in intermediate layers should instead be learned
from visual experience.

We extend the standard model and show how it
can learn a vocabulary of visual features from natu-
ral images. We prove that the extended model can
robustly handle the recognition of many object cate-
gories and compete with state-of-the-art object recogni-
tion systems. This work appeared in a very prelim-
inary form in [18]. Our source code as well as an
extended version of this paper [20] can be found at
http://cbcl.mit.edu/software-datasets.

2 The C2 features

Our approach is summarized in Fig. 1: the first two lay-
ers correspond to primate primary visual cortex, V1, i.e., the
first visual cortical stage, which contains simple (S1) and
complex (C1) cells [8]. The S1 responses are obtained by
applying to the input image a battery of Gabor filters, which
can be described by the following equation:

G(x, y) = exp
(
− (X2 + γ2Y 2)

2σ2

)
× cos

(
2π

λ
X

)
,

where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ.
We adjusted the filter parameters, i.e., orientation θ, ef-

fective width σ, and wavelength λ, so that the tuning pro-
files of S1 units match those of V1 parafoveal simple cells.
This was done by first sampling the space of parameters and
then generating a large number of filters. We applied those
filters to stimuli commonly used to probe V1 neurons [8]
(i.e., gratings, bars and edges). After removing filters that
were incompatible with biological cells [8], we were left
with a final set of 16 filters at 4 orientations (see Table 1
and [19] for a full description of how those filters were ob-
tained).

The next stage – C1 – corresponds to complex cells
which show some tolerance to shift and size: complex cells
tend to have larger receptive fields (twice as large as simple
cells), respond to oriented bars or edges anywhere within
their receptive field [8] (shift invariance) and are in gen-
eral more broadly tuned to spatial frequency than simple
cells [8] (scale invariance). Modifying the original Hubel
& Wiesel proposal for building complex cells from simple
cells through pooling [8], Riesenhuber & Poggio proposed a
max-like pooling operation for building position- and scale-
tolerant C1 units. In the meantime, experimental evidence
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Given an input image I , perform the following steps:.

S1: Apply a battery of Gabor filters to the input image.
The filters come in 4 orientations θ and 16 scales s (see
Table 1). Obtain 16×4 = 64 maps (S1)s

θ that are arranged
in 8 bands (e.g., band 1 contains filter outputs of size 7 and
9, in all four orientations, band 2 contains filter outputs of
size 11 and 13, etc).

C1: For each band, take the max over scales and po-
sitions: each band member is sub-sampled by taking the
max over a grid with cells of size NΣ first and the max
between the two scale members second, e.g., for band 1, a
spatial max is taken over an 8×8 grid first and then across
the two scales (size 7 and 9). Note that we do not take a
max over different orientations, hence, each band (C1)Σ

contains 4 maps.

During training only: Extract K patches Pi=1,...K of
various sizes ni × ni and all four orientations (thus
containing ni × ni × 4 elements) at random from the
(C1)Σ maps from all training images.

S2: For each C1 image (C1)Σ, compute:
Y = exp(−γ||X − Pi||2) for all image patches X (at all
positions) and each patch P learned during training for
each band independently. Obtain S2 maps (S2)Σi .

C2: Compute the max over all positions and scales for
each S2 map type (S2)i (i.e., corresponding to a particular
patch Pi) and obtain shift- and scale-invariant C2 features
(C2)i , for i = 1 . . .K .

Figure 1. Computation of C2 features.

in favor of the max operation has appeared [6, 9]. Again
pooling parameters were set so that C1 units match the tun-
ing properties of complex cells as measured experimentally
(see Table 1 and [19] for a full description of how those
filters were obtained).

Fig. 2 illustrates how pooling from S1 to C1 is done. S1
units come in 16 scales s arranged in 8 bands Σ. For in-
stance, consider the first band Σ = 1. For each orientation,
it contains two S1 maps: one obtained using a filter of size
7, and one obtained using a filter of size 9. Note that both of
these S1 maps have the same dimensions. In order to obtain
the C1 responses, these maps are sub-sampled using a grid
cell of size NΣ × NΣ = 8 × 8. From each grid cell we
obtain one measurement by taking the maximum of all 64
elements. As a last stage we take a max over the two scales,
by considering for each cell the maximum value from the
two maps. This process is repeated independently for each
of the four orientations and each scale band.

In our new version of the standard model the subse-
quent S2 stage is where learning occurs. A large pool of K

Figure 2. Scale- and position-tolerance at the complex cells (C1)
level: Each C1 unit receives inputs from S1 units at the same pre-
ferred orientation arranged in bands Σ, i.e., S1 units in two differ-
ent sizes and neighboring positions (grid cell of size NΣ × NΣ).
From each grid cell (left) we obtain one measurement by taking
the max over all positions allowing the C1 unit to respond to an
horizontal edge anywhere within the grid (tolerance to shift). Sim-
ilarly, by taking a max over the two sizes (right) the C1 unit be-
comes tolerant to slight changes in scale.

patches of various sizes at random positions are extracted
from a target set of images at the C1 level for all orienta-
tions, i.e., a patch Pi of size ni ×ni contains ni ×ni×4 el-
ements, where the 4 factor corresponds to the four possible
S1 and C1 orientations. In our simulations we used patches
of size ni = 4, 8, 12 and 16 but in practice any size can
be considered. The training process ends by setting each of
those patches as prototypes or centers of the S2 units which
behave as radial basis function (RBF) units during recog-
nition, i.e., each S2 unit response depends in a Gaussian-
like way on the Euclidean distance between a new input
patch (at a particular location and scale) and the stored pro-
totype. This is consistent with well-known neuron response
properties in primate inferotemporal cortex and seems to be
the key property for learning to generalize in the visual and
motor systems [15]. When a new input is presented, each
stored S2 unit is convolved with the new (C1)Σ input im-
age at all scales (this leads to K × 8 (S2)Σi images, where
the K factor corresponds to the K patches extracted during
learning and the 8 factor, to the 8 scale bands). After taking
a final max for each (S2)i map across all scales and posi-
tions, we get the final set of K shift- and scale-invariant C2
units. The size of our final C2 feature vector thus depends
only on the number of patches extracted during learning and
not on the input image size. This C2 feature vector is passed
to a classifier for final analysis.1

An important question for both neuroscience and com-
puter vision regards the choice of the unlabeled target set
from which to learn – in an unsupervised way – this vocab-
ulary of visual features. In this paper, features are learned
from the positive training set for each object category (but
see [20] for a discussion on how features could be learned
from random natural images).

1It is likely that our (non-biological) final classifier could correspond
to the task-specific circuits found in prefrontal cortex (PFC) and C2 units
with neurons in inferotemporal (IT) cortex [16]. The S2 units could be
located in V4 and/or in posterior inferotemporal (PIT) cortex.
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Figure 3. Examples from the MIT face and car datasets.

3. Experimental Setup

We tested our system on various object categorization
tasks for comparison with benchmark computer vision sys-
tems. All datasets we used are made up of images that either
contain or do not contain a single instance of the target ob-
ject; The system has to decide whether the target object is
present or absent.

MIT-CBCL datasets: These include a near-frontal
(±30◦) face dataset for comparison with the component-
based system of Heisele et al. [7] and a multi-view car
dataset for comparison with [11]. These two datasets are
very challenging (see typical examples in Fig. 3). The face
patterns used for testing constitute a subset of the CMU
PIE database which contains a large variety of faces un-
der extreme illumination conditions (see [7]). The test non-
face patterns were selected by a low-resolution LDA clas-
sifier as the most similar to faces (the LDA classifier was
trained on an independent 19 × 19 low-resolution training
set). The full set used in [7] contains 6,900 positive and
13,700 negative 70×70 images for training and 427 positive
and 5,000 negative images for testing. The car database on
the other hand was created by taking street scene pictures in
the Boston city area. Numerous vehicles (including SUVs,
trucks, buses, etc) photographed from different view-points
were manually labeled from those images to form a positive
set. Random image patterns at various scales that were not
labeled as vehicles were extracted and used as the negative
set. The car dataset used in [11] contains 4,000 positive and
1,600 negative 120 × 120 training examples and 3,400 test
examples (half positive, half negative). While we tested our
system on the full test sets, we considered a random sub-
set of the positive and negative training sets containing only
500 images each for both the face and the car database.

The Caltech datasets: The Caltech datasets
contain 101 objects plus a background category
(used as the negative set) and are available at
http://www.vision.caltech.edu. For each ob-
ject category, the system was trained with n = 1, 3, 6, 15, 30
or 40 positive examples from the target object class (as
in [3]) and 50 negative examples from the background
class. From the remaining images, we extracted 50 images

Datasets Bench. C2 features
boost SVM

Leaves (Calt.) [24] 84.0 97.0 95.9
Cars (Calt.) [4] 84.8 99.7 99.8
Faces (Calt.) [4] 96.4 98.2 98.1
Airplanes (Calt.) [4] 94.0 96.7 94.9
Moto. (Calt.) [4] 95.0 98.0 97.4
Faces (MIT) [7] 90.4 95.9 95.3
Cars (MIT) [11] 75.4 95.1 93.3

Table 2. C2 features vs. other recognition systems (Bench.).

from the positive and 50 images from the negative set to
test the system’s performance. As in [3], the system’s
performance was averaged over 10 random splits for each
object category. All images were normalized to 140 pixels
in height (width was rescaled accordingly so that the image
aspect ratio was preserved) and converted to gray values
before processing. These datasets contain the target object
embedded in a large amount of clutter and the challenge is
to learn from unsegmented images and discover the target
object class automatically. For a close comparison with
the system by Fergus et al. we also tested our approach
on a subset of the 101-object dataset using the exact same
split as in [4] (the results are reported in Table 2) and an
additional leaf database as in [24] for a total of five datasets
that we refer to as the Caltech datasets in the following.

4 Results

Table 2 contains a summary of the performnace of the
C2 features when used as input to a linear SVM and to
gentle Ada Boost (denoted boost) on various datasets. For
both our system and the benchmarks, we report the error
rate at the equilibrium point, i.e., the error rate at which
the false positive rate equals the miss rate. Results ob-
tained with the C2 features are consistently higher than
those previously reported on the Caltech datasets. Our sys-
tem seems to outperform the component-based system pre-
sented in [7] (also using SVM) on the MIT-CBCL face
database as well as a fragment-based system implemented
by [11] that uses template-based features with gentle Ada
Boost (similar to [21]).

Fig. 4 summarizes the system performance on the 101-
object database. On the left we show the results obtained
using our system with gentle Ada Boost (we found qual-
itatively similar results with a linear SVM) over all 101
categories for 1, 3, 6, 15, 30 and 40 positive training ex-
amples (each result is an average of 10 different random
splits). Each plot is a single histogram of all 101 scores, ob-
tained using a fixed number of training examples (e.g., with
40 examples the system gets 95% correct for 42% of the
object categories). On the right we focus on some of the
same object categories as the ones used by Fei-Fei et al. for
illustration in [3]: the C2 features achieve error rates very
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Figure 4. C2 features performance on the 101-object database for different numbers of positive training examples: (left) histogram across
the 101 categories and (right) performance on sample categories, see accompanying text.
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Figure 5. Superiority of the C2 vs. SIFT-based features on the Caltech datasets for different number of features (left) and on the 101-object
database for different number of training examples(right).

similar to the ones reported in [3] with very few training
examples.

We also compared our C2 features to SIFT-based fea-
tures [12]. We selected 1000 random reference key-points
from the training set. Given a new image, we measured the
minimum distance between all its key-points and the 1000
reference key-points, thus obtaining a feature vector of size
1000 (for this comparison we did not use the position in-
formation recovered by the algorithm). While Lowe recom-
mends using the ratio of the distances between the nearest
and the second closest key-point as a similarity measure,
we found that the minimum distance leads to better per-
formance than the ratio on these datasets. A comparison
between the C2 features and the SIFT-based features (both
passed to a Gentle Ada boost classifier) is shown in Fig. 5
(left) for the Caltech datasets. The gain in performance ob-
tained by using the C2 features relative to the SIFT-based
features is obvious. This is true with gentle Ada Boost –
used for classification on Fig. 5 (left) – but we also found

very similar results with SVM. Also, as one can see in Fig. 5
(right), the performance of the C2 features (error at equilib-
rium point) for each category from the 101-object database
is well above that of the SIFT-based features for any number
of training examples.

Finally, we conducted initial experiments on the multiple
classes case. For this task we used the 101-object dataset.
We split each category into a training set of size 15 or 30
and a test set containing the rest of the images. We used a
simple multiple-class linear SVM as classifier. The SVM
applied the all-pairs method for multiple label classifica-
tion, and was trained on 102 labels (101 categories plus the
background category, i.e., 102 AFC). The number of C2
features used in these experiments was 4075. We obtained
above 35% correct classification rate when using 15 training
examples per class averaged over 10 repetitions, and 42%
correct classification rate when using 30 training examples
(chance below 1%).
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5 Discussion

This paper describes a new biologically-motivated
framework for robust object recognition: Our system first
computes a set of scale- and translation-invariant C2 fea-
tures from a training set of images and then runs a standard
discriminative classifier on the vector of features obtained
from the input image. Our approach exhibits excellent per-
formance on a variety of image datasets and compete with
some of the best existing systems.

This system belongs to a family of feedforward models
of object recognition in cortex that have been shown to be
able to duplicate the tuning properties of neurons in several
visual cortical areas. In particular, Riesenhuber & Poggio
showed that such a class of models accounts quantitatively
for the tuning properties of view-tuned units in inferotem-
poral cortex (tested with idealized object stimuli on uniform
backgrounds), which respond to images of the learned ob-
ject more strongly than to distractor objects, despite signif-
icant changes in position and size [16]. The performance
of this architecture on a variety of real-world object recog-
nition tasks (presence of clutter and changes in appearance,
illumination, etc) provides another compelling plausibility
proof for this class of models.

While a long-time goal for computer vision has been
to build a system that achieves human-level recognition
performance, state-of-the-art algorithms have been diverg-
ing from biology: for instance, some of the best existing
systems use geometrical information about the constitu-
tive parts of objects (constellation approaches rely on both
appearance-based and shape-based models and component-
based system use the relative position of the detected com-
ponents along with their associated detection values). Biol-

ogy is however unlikely to be able to use geometrical infor-
mation – at least in the cortical stream dedicated to shape
processing and object recognition. The system described in
this paper is respects the properties of cortical processing
(including the absence of geometrical information) while
showing performance at least comparable to the best com-
puter vision systems.

The fact that this biologically-motivated model outper-
forms more complex computer vision systems might at first
appear puzzling. The architecture performs only two major
kinds of computations (template matching and max pool-
ing) while some of the other systems we have discussed
involve complex computations like the estimation of prob-
ability distributions [24, 4, 3] or the selection of facial-
components for use by an SVM [7]. Perhaps part of the
model’s strength comes from its built-in gradual shift- and
scale-tolerance that closely mimics visual cortical process-
ing, which has been finely tuned by evolution over thou-
sands of years. It is also very likely that such hierarchical
architectures ease the recognition problem by decomposing
the task into several simpler ones at each layer. Finally it is
worth pointing out that the set of C2 features that is passed
to the final classifier is very redundant, probably more re-
dundant than for other approaches. While we showed that a
relatively small number of features (about 50) is sufficient
to achieve good error rates, performance can be increased
significantly by adding many more features. Interestingly,
the number of features needed to reach the ceiling (about
5,000 features) is much larger than the number used by cur-
rent systems (on the order of 10-100 for [22, 7, 21] and 4-8
for constellation approaches [24, 4, 3]).
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