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Are Cortical Models Really Bound Review
by the “Binding Problem”?

They recorded from simple and complex cells in the
primary visual cortices of cats and monkeys and found
that while both types preferentially responded to bars
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Department of Brain and Cognitive Sciences
Center for Biological and Computational Learning and
Artificial Intelligence Laboratory of a certain orientation, the former had small receptive
Massachusetts Institute of Technology fields with a phase-dependent response while the latter
Cambridge, Massachusetts 02142 had bigger receptive fields and showed no phase depen-

dence. This observation led them to hypothesize that
complex cells receive input from several simple cells.
Extending this model in a straightforward fashion, they

Processing of visual information in cortex is usually de-
suggested (Hubel and Wiesel, 1962) that the visual sys-

scribed in terms of an extension of the simple-to-com-
tem is composed of a hierarchy of visual areas, from

plex hierarchy postulated by Hubel and Wiesel—a feed
simple cells all the way up to higher-order “hypercom-forward sequence of more and more complex and invari-
plex” cells.ant neuronal representations. The capability of this class

Later studies (Bruce et al., 1981) of macaque infero-of models to perform higher-level visual processing such
temporal cortex (IT) described neurons tuned to views ofas viewpoint-invariant object recognition in cluttered
complex objects such as faces; i.e., the cells dischargedscenes has been questioned in recent years by several
strongly to a face seen from a specific viewpoint butresearchers, who in turn proposed an alternative class
very little or not at all to other objects. A key propertyof models based on the synchronization of large assem-
of these cells was their scale and translation invariance,blies of cells, within and across cortical areas. The main
i.e., the robustness of their firing to stimulus transforma-implicit argument for this novel and controversial view
tions such as changes in size or position in the visualwas the assumption that hierarchical models cannot
field.deal with the computational requirements of high-level

These findings inspired various models of visual ob-vision and suffer from the so-called “binding problem.”
ject recognition such as Fukushima’s NeocognitronHere, we review the present situation and discuss theo-
(1980) or, later, Perrett and Oram’s (1993) outline of aretical and experimental evidence showing that the per-
model of shape processing and Wallis and Rolls’ VisNetceived weaknesses of hierarchical models are unsub-
(1997), all of which share the basic idea of the visualstantiated. In particular, we show here that recognition
system as a feedforward processing hierarchy whereof multiple objects in cluttered scenes, arguably among
invariance ranges and complexity of preferred featuresthe most difficult tasks in vision, can be done in a hierar-
grow as one ascends through the levels.chical feedforward model. Two problems in particular

Models of this type prompted von der Malsburg (1981)make object recognition difficult:
to formulate the binding problem. His claim was that1. The segmentation problem. Visual scenes normally
visual representations based on spatially invariant fea-contain multiple objects. To recognize individual ob-
ture detectors (to achieve invariant recognition) werejects, features must be isolated from the surrounding
ambiguous: “As generalizations are performed indepen-clutter and extracted from the image, and the feature
dently for each feature, information about neighborhoodset must be parsed so that the different features are
relations and relative position, size, and orientation isassigned to the correct object. The latter problem is
lost. This lack of information can lead to the inability tocommonly referred to as the “binding problem” (von der
distinguish between patterns that are composed of theMalsburg, 1995).
same set of invariant features” (von der Malsburg, 1995).2. The invariance problem. Objects have to be recog-
Moreover, as a visual scene containing multiple objectsnized under varying viewpoints, lighting conditions, etc.
is represented by a set of feature activations, a secondInterestingly, the human brain can solve these prob-
problem lies in “singling out appropriate groups fromlems with ease and quickly. Thorpe et al. (1996) report
the large background of possible combinations of activethat visual processing in an object detection task in
neurons” (von der Malsburg, 1995). These problemscomplex visual scenes can be achieved in under 150
would manifest themselves in various phenomena suchms, which is on the order of the latency of the signal
as hallucinations (the feature sets activated by objectstransmission from the retina to inferotemporal cortex
actually present in the visual scene combine to yield the(IT), the highest area in the ventral visual stream thought
activation pattern characteristic of another object) andto have a key role in object recognition (Ungerleider and
the figure–ground problem (the inability to correctly as-Haxby, 1994; see also Potter, 1975). This impressive
sign image features to foreground object and back-processing speed presents a strong constraint for any
ground). These difficulties led von der Malsburg tomodel of object recognition.
postulate the necessity of a special mechanism, the
synchronous oscillatory firing of ensembles of neurons,Models of Visual Object Recognition
to bind features belonging to one object together.and the Binding Problem

One approach to avoid these problems was presentedHubel and Wiesel (1965) were the first to postulate a
by Olshausen et al. (1993): instead of trying to processmodel of visual object representation and recognition.
all objects simultaneously, processing is limited to one
object in a certain part of space at a time, for example* To whom correspondence should be addressed (e-mail: tp@

ai.mit.edu). by “focusing attention” on a region of interest in the
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visual field and routing that information through to higher position, occlusion, and overlap pose additional prob-
visual areas, while ignoring the remainder of the visual lems not found in an idealized text environment. In par-
field. The control signal for the input selection in this ticular, unlike in the text domain where the input consists
model is thought to be in the form of the output of a of letter strings, and the extraction of features (letter
“blob search” system, one that identifies possible candi- combinations) from the input is therefore trivial, the cru-
dates in the visual scene for closer examination. While cial task of invariant feature extraction from the image
this top-down approach to circumvent the binding prob- is nontrivial for scenes containing complex shapes, es-
lem has intuitive appeal and is compatible with physio- pecially when multiple objects are present.
logical studies that report top-down attentional modula- We have developed a hierarchical feedforward model
tion of receptive field properties (see the review by of object recognition in cortex (Riesenhuber and Poggio,
Reynolds and Desimone, 1999 [this issue of Neuron], or 1999b) as a plausibility proof that such a model can
the recent study by Connor et al., 1997), such a sequen- account for several properties of IT cells, in particular
tial approach seems difficult to reconcile with the appar- the invariance properties of IT cells found by Logothetis
ent speed with which object recognition can proceed et al. (1995). In the following section, we will show that
even in very complex scenes containing many objects such a simple model can perform invariant recognition
(Potter, 1975; Thorpe et al., 1996), and it is also incom- of complex objects in cluttered scenes and is compati-
patible with reports of parallel processing of visual ble with recent physiological studies. Thus, this plausi-
scenes, as observed in pop-out experiments (Treisman bility proof demonstrates that complex oscillation-
and Gelade, 1980). These and other data suggest that based mechanisms are not necessarily required for
object recognition does not seem to depend only on these tasks, and that the binding problem seems to be
explicit top-down selection in all situations. a problem for only some models of object recognition.

A more head-on approach to the binding problem was
taken in other studies that have called into question A Hierarchical Model of Object Recognition
the assumption that representations based on sets of in Cortex
spatially invariant feature detectors are inevitably am- Studies of receptive field properties along the ventral
biguous. Starting with Wickelgren (1969) in the context visual stream in the macaque, from primary visual cortex
of speech recognition, several studies (Fukushima, V1 to anterior IT, report an overall trend of an increase
1980; Perrett and Oram, 1993; Wallis and Rolls, 1997) of average feature complexity and receptive field size
have proposed that coding an object through a set of throughout the stream (Kobatake and Tanaka, 1994).
intermediate features made up of local arrangements of While simple cells in V1 have small localized receptive
simpler features can sufficiently constrain the represen-

fields and respond preferentially to simple shapes like
tation to uniquely code complex objects without re-

bars, cells in anterior IT have been found to respond to
taining global positional information. Thus, rather than

views of complex objects while showing great tolerance
using individual letters to code words, letter pairs or

to scale and position changes. Moreover, some IT cells
higher-order combinations of letters can be used—i.e.,

seem to respond to objects in a view-invariant manner
although the word “tomaso” might be confused with the

(Perrett et al., 1991; Logothetis et al., 1995; Booth andword “somato” if both were coded by the sets of letters
Rolls, 1998).they are made up of, this ambiguity is resolved if both

Our model follows this general framework. Previously,are represented through letter pairs (see Mozer, 1991,
Poggio and Edelman (1990) presented a model of howfor an elaboration of this idea). The capabilities of inter-
view-invariant cells could arise from view-tuned cellsmediate-level representations based on spatially invari-
(Figure 1). However, they did not describe any model ofant receptive fields were recently analyzed in detail by
how the view-tuned units (VTUs) could come about.Mel and Fiser (1999) for the example domain of English
We have recently developed a hierarchical model thattext.
closes this gap and shows how VTUs tuned to complexIn the visual domain, Mel (1997) presented a model
features can arise from simple cell–like inputs. A detailedto perform invariant recognition of a high number (100)
description of our model can be found in Riesenhuberof objects of different types, using a representation
and Poggio (1999b; for preliminary accounts, refer to Ries-based on a large number of feature channels. While
enhuber and Poggio, 1998a, 1998b, and also to Kochthe model performed surprisingly well for a variety of
and Poggio, 1999). We briefly review here some of thetransformations, recognition performance depended
model’s main properties. The central idea of the modelstrongly on color cues and did not seem as robust to
is that invariance to scaling and translation, and ro-scale changes as experimental neurons (Logothetis et
bustness to clutter on the one hand and feature com-al., 1995). Perrett and Oram (1998) have recently outlined
plexity on the other hand, require different transfer func-a conceptual model, based on very similar ideas, of how
tions, i.e., mechanisms by which a neuron combines itsa representation based on feature combinations could
inputs to arrive at an output value. While for featurein theory avoid the binding problem, for example, by
complexity a weighted sum of different features, whichcoding a face through a set of detectors for combina-
makes the neuron respond preferentially to a specifictions of face parts such as eye–nose or eyebrow–
activity pattern over its afferents, is a suitable transferhairline. What has been lacking so far, however, is a
function, increasing invariance requires a different trans-computational implementation quantitatively demon-
fer function that pools over different afferents tuned tostrating that such a model can actually perform “real-
the same feature but transformed to different degreesworld” subordinate visual object recognition to the extent
(for example, at different scales to achieve scale invari-observed in behavioral and physiological experiments
ance). A suitable pooling function is a so-called MAX(Sato, 1989; Logothetis et al., 1994, 1995; Missal et al.,

1997), where effects such as variations in scale and function, where the output of the neuron is determined
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Figure 1. Poggio and Edelman (1990) Model
of 3D Rotation-Invariant Object Recognition
from Individual Views

(a) Cartoon of the model. The gray ovals cor-
respond to view-tuned units that feed into a
view-invariant unit (white circle).
(b) Tuning curves of the view-tuned (gray) and
the view-invariant (black) units.

by the strongest afferent, and it thus performs a “selec- (C1) each pool S1 cells of the same orientation over a
range of scales and positions using the MAX operation.tion” (and possibly scanning) operation over afferents

tuned to different positions and scales (for a computa- Filters were grouped in four bands, each spanning
roughly 0.5 octaves; sampling over position was donetional justification, see Riesenhuber and Poggio, 1999b).

The idea is similar to the original Hubel and Wiesel model over patches of linear dimensions of 4, 6, 9, and 12
pixels, respectively (starting with the smallest filterof a complex cell receiving input from simple cells at

different locations to achieve phase invariance. band); patches overlapped by half in each direction to
obtain more invariant cells responding to the same fea-In our model of object recognition in cortex (Figure

2), the two types of operations, selection and template tures as the S1 cells. Different C1 cells were then com-
bined in higher layers—the figure illustrates two possibil-matching, are combined in a hierarchical fashion to build

up complex, invariant feature detectors from small, lo- ities: either combining C1 cells tuned to different
features, resulting in S2 cells that respond to coacti-calized, simple cell–like receptive fields in the bottom

layer. Our model “retina” is composed of 160 3 160 vations of C1 cells that are tuned to different orientations,
or yielding C2 cells that respond to the same feature aspixels, corresponding to a 58 receptive field size if we

set 32 pixels 5 18 (Kobatake and Tanaka [1994] report the C1 cells but that have bigger receptive fields (i.e.,
the hierarchy does not have to be a strict alternation ofan average V4 receptive field size of 4.48). Patterns on the

model retina are first filtered through layer S1 (adopting S and C layers). In the version described in this paper,
there were no direct C1 to C2 connections, and eachFukushima’s [1980] nomenclature referring to feature-

building cells as “S” cells and pooling cells as “C” cells) S2 cell received input from four neighboring C1 units (in
a 2 3 2 arrangement) of arbitrary orientation, yielding aof simple cell–like receptive fields (first derivative of

Gaussians, zero-sum, square-normalized to 1, oriented total of 44 5 256 different S2 cell types. S2 transfer
functions were Gaussian (s 5 1, centered at 1). C2 cellsat 08, 458, 908, and 1358 with standard deviations of

1.75–7.25 pixels in steps of 0.5 pixels). S1 filter re- then pooled inputs from all S2 cells of the same type,
producing invariant feature detectors tuned to complexsponses are absolute values of the image “filtered”

through the units’ receptive fields (more precisely, the shapes. Top-level view-tuned units had Gaussian re-
sponse functions and each VTU received inputs from arectified dot product of the cell’s receptive field with

the corresponding image patch). Receptive field centers subset of C2 cells (see below).
This model had originally been developed to accountdensely sample the input retina. Cells in the next layer

Figure 2. Diagram of Our Hierarchical Model
of Object Recognition in Cortex

The model consists of layers of linear units
that perform a template match over their af-
ferents (blue arrows) and of nonlinear units
that perform a MAX operation over their in-
puts, where the output is determined by the
strongest afferent (green arrows). While the
former operation serves to increase feature
complexity, the latter increases invariance by
effectively scanning over afferents tuned to
the same feature but at different positions
(to increase translation invariance) or scale
(to increase scale invariance; not shown). In
the version described in this paper, learning
only occured at the connections from the C2
units to the top-level view-tuned units. From
Riesenhuber and Poggio (1999b).
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for the transformation tolerance of view-tuned units in and Edelman, 1992; Logothetis et al., 1994, 1995; Rie-
senhuber and Poggio, 1999b), an object is said to beIT as recorded by Logothetis et al. (1995). It turns out,

however, that the model also has interesting implica- recognized if the neuron’s response to the two-clip dis-
plays (containing its preferred stimulus) is greater thantions for the binding problem.
to any of the distractor objects. For 40 afferents to each
view-tuned cell (i.e., the 40 C2 units excited most

Binding without a Problem strongly by the neuron’s preferred stimulus—this choice
To correctly recognize multiple objects in clutter, two produced top-level neurons with tuning curves similar
problems must be solved: (1) features must be robustly to the experimental neurons; Riesenhuber and Poggio,
extracted, and (2) based on these features, a decision 1999b), we find that on average, in 90% of the cases,
has to be made about which objects are present in the recognition of the neuron’s preferred clip is still possible,
visual scene. The MAX operation can perform robust indicating that there is little interference between the
feature extraction (cf. Riesenhuber and Poggio, 1999b): activations caused by the two stimuli in the visual field.
a MAX pooling cell that receives inputs from cells tuned The maximum recognition rate is 94% for 18 afferents,
to the same feature at, e.g., different locations, will select dropping to 55% if each neuron is connected to all
the most strongly activated afferent; i.e., its response 256 afferents. Figure 3c plots the recognition rate as a
will be determined by the afferent with the closest match function of the number of afferents to each VTU: the
to its preferred feature in its receptive field. Thus, the rate climbs in the beginning as discriminability of differ-
MAX mechanism effectively isolates the feature of inter- ent clips increases with the number of afferents, and
est from the surrounding clutter. Hence, to achieve ro- then falls again as the presence of the second object
bustness to clutter, a VTU should only receive input from in the visual field increasingly interferes with the input
cells that are strongly activated by the VTU’s preferred to the VTU caused by the first object. Interference occurs
stimulus (i.e., those features that are relevant to the because the probability that another object activates a
definition of the object) and thus less affected by clutter feature detector connected to the VTU more strongly
(which will tend to activate the afferents less and will than the preferred object increases as the VTU also
therefore be ignored by the MAX response function). receives input from feature detectors that are excited
Also, in such a scheme, two view-tuned neurons receiv- only weakly by its preferred object.
ing input from a common afferent feature detector will These simulation results have an interesting experi-
tend to both have strong connections to this feature mental counterpart in the work of Sato (1989), who stud-
detector. Thus, there will be little interference even if ied the responses of neurons in macaque IT to displays
the common feature detector only responded to one consisting of one or two simultaneously appearing stim-
(the stronger) of the two stimuli in its receptive field due uli within the IT cell’s receptive field. He defines a “sum-
to its MAX response function. Note that the situation mation index,” SmI, as
would be hopeless for a response function that pools
over all afferents through, for example, a linear sum

SmI 5
RA1B 2max(RA,RB)

min(RA,RB)function: the response would always change when an-
other object is introduced in the visual field, making it
impossible to disentangle the activations caused by the with RA the IT neuron’s response to stimulus A, RB the
individual stimuli without an additional mechanism— neuron’s response to another stimulus B, and RA1B the
such as, for instance, an attentional sculpting of the neuron’s response to both stimuli presented simultane-
receptive field or some kind of segmentation process. ously in its receptive field. Neurons performing a linear

In the following two sections, we will show simulations summation would have an SmI of 1, while MAX neurons
that support these theoretical considerations, and we would show an SmI of 0. For a fixation task, Sato reports
will compare them to recent physiological experiments. a mean SmI of 20.18 (s 5 0.5, N 5 70, both stimuli in

the same hemifield). From these data, the response of
real IT neurons appears to have strong MAX characteris-Recognition of Multiple Objects
tics. In fact, a reduction of the response to the two-The ability of the model neurons to perform recognition
stimulus display compared to the response to theof multiple, nonoverlapping objects was investigated in
stronger stimulus alone, implied by the negative SmI,the following experiment: 21 model neurons were each
and also found in an experiment by Rolls and Toveetuned to a view of a randomly selected paperclip object,
(1995), is compatible with the response reduction ob-as used in theoretical (Poggio and Edelman, 1990), psy-
served in the two-clip simulation shown in Figure 3b.chophysical (Bülthoff and Edelman, 1992; Logothetis et
Interestingly, for a visual discrimination task, Sato (1989)al., 1994), and physiological (Logothetis et al., 1995)
reports very similar average SmI values, suggesting thatstudies on object recognition. Model neurons were each
the same bottom-up-driven MAX response mechanismpresented with 21 displays consisting of that neuron’s
might be operating in both cases.preferred clip combined with each of the 21 clip stimuli

(in the upper left and lower right corner of the model
retina, respectively; see Figure 3a) yielding 212 5 441 Recognition in Clutter

So far, we have examined the model’s performance fortwo-clip displays. Recognition performance was evalu-
ated by comparing the neuron’s response to these dis- two well-separated objects in the visual field. What

about the case of two overlapping stimuli, e.g., whenplays with its responses to 60 other, randomly chosen
“distractor” paperclip objects (Figure 3). Following the the object of interest is in front of a background object?

This stimulus configuration was used in a physiologystudies on view-invariant object recognition (Bülthoff
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Figure 3. Model Neuron Responses and Average Recognition Rate for the Case of Two Objects in the Visual Field

(a) Example stimuli.
(b) Response curve of one neuron to its 21 two-clip stimuli (the first four being the stimuli shown in 3a), with the dashed line showing the
response to the best distractor and the inset showing the response to 60 distractors.
(c) Dependence of average recognition rate (over 21 model neurons) on the number of afferents to each VTU.

experiment by Missal et al. (1997). They trained a mon- each), and testing each neuron’s response to an input
key on a paired-associate task involving 30 polygonal image consisting of that neuron’s preferred stimulus
shapes, followed by recordings of shape-selective cells superimposed on a randomly generated polygonal
in IT to the training stimuli and, among others, to displays background, responses on average (over 10 trials and
consisting of the training stimuli superimposed on ran- 21 model neurons each) drop to 49% of the response
domly generated background (other polygons in out- to the stimulus alone (Figure 5). However, average re-
line), which were selected so as not to drive the cells sponses to the best distractor (out of 60) are even lower
(Figure 4a). In this condition, the monkeys behavioral (42%). Note that the response level of the neurons (but
performance decreased slightly (from 98% to 89%), but not the recognition rates) depends on the standard devi-
the average neuronal response dropped precipitously ation s of their Gaussian response function, which is a
to 25%. How could the monkey still do the task so free parameter and was set to 0.16 in all simulations,
well in the face of such a drastic change in neuronal producing tuning curves qualitatively similar to those
response? Furthermore, do we see a similar behavior observed experimentally (Riesenhuber and Poggio,
in the model? 1999b): s 5 0.12, for instance, would give average re-

Simulation of the experimental paradigm with our sponses of 33% to the stimulus–background combina-
model is straightforward. Foreground stimuli were the tion and 23% to the best distractor. This leads to an
21 clips used in the simulations described previously; average recognition rate of 65% in this condition (unlike
backgrounds were randomly generated polygons con- in the Missal et al. [1997] experiment, using no color
sisting of eight edges, chosen so that each corner was cues—if features are color selected, performance is
at a distance from the center of at least 45% of the likely to increase). The maximum average recognition
stimulus size (Figure 4b). Following Missal et al. (1997), rate was 74% for 100 afferents; the maximum average
we only chose backgrounds that did not drive the model rate for one trial (over 21 neurons) was 90% with 105
cells, here defined as generating an input to the VTU afferents. Model parameters were not specially tuned
more than two standard deviations away from the pre- in any way to achieve this performance, so higher recog-
ferred stimulus. Taking the 21 view-tuned cells de- nition rates (for instance, through pooling the responses
scribed above (with 40 afferents out of 256 C2 cells of several neurons tuned to the same object but receiv-

ing inputs from different afferents) are very likely achiev-
able. This simulation thus demonstrates that the ability
of the MAX response function to ignore nonrelevant
information (in this case, the background figure), to-
gether with an object definition based on its salient com-
ponents, is sufficient to perform recognition in clutter.

Discussion
As with most existing theories of the brain, our model
is likely to be incomplete at best and quite possibly
wrong altogether. It provides, however, a plausibility

Figure 4. Recognition in Clutter proof that biologically plausible models do in fact exist
(a) Example stimulus (green) and outline background (red) used in that do not suffer from the binding problem in performing
the physiology experiments and redrawn from Missal et al. (1997).

difficult recognition tasks. This is of course just an ex-(b) Example stimulus for the corresponding experiment with the
plicit demonstration of a known but often neglectedmodel (see text). The foreground clip was correctly recognized by the

corresponding model neuron (which was the same as in Figure 3). fact—that the binding problem is not a fundamental
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Figure 5. Model Performance for Recognition in Clutter

(a) Average recognition rates (over 21 cells; 10 runs each with different, randomly selected backgrounds) for nonoverlap and overlap conditions
(cf. text).
(b) Average response levels in the two conditions, compared to the average response to the best distractor, as a function of the number of
afferents to each view-tuned model neuron.

computational problem, like, for instance, the corre- on feedforward (or recurrent) shunting presynaptic (or
postsynaptic) inhibition by “pool” cells (Poggio et al.,spondence problem in vision. Instead, the binding prob-

lem arises only from the limitations of certain specific 1981). The circuit performs a gain control operation and,
for certain values of the parameters, a “softmax” opera-computational architectures. Our model shows that

there are natural, old-fashioned cortical models that do tion (an approximation to the MAX operation in which
the degree of nonlinearity is controlled by a parameter):agree with available data, do not suffer from the binding

problems, and do not need oscillations or synchroniza- each of the N signals xi (the activation of the afferents)
undergoes a softmax operation astion mechanisms.

In models like ours, recognition can take place without
an explicit segmentation stage. The key is to ignore yi 5

xi
p

C 1 Sj xj
q

nonrelevant information. At the level of the C cells, this
is done through the MAX response function that allows Thus, for large p and for q 5 p 2 1, we have yi 5 xi if
a unit to scan over the image and pick best matches. x 5 maxj xj and yi 5 0 otherwise. Softmax circuits have
At the level of the final view-tuned cells (for instance), been proposed by Nowlan and Sejnowski (1995) and
this is achieved by restricting the afferents to the VTU others (Heeger, 1992; Lee et al., 1999) to account for
to those that correspond to the relevant/salient features several cortical functions. Circuits of this type may per-
for the object. This in turn requires an earlier, overcom- form an operation ranging between a simple sum and
plete set of “feature”-selective cells that may roughly a MAX on the inputs of a layer of cells under the control
correspond to the dictionary of shapes described by of a single variable, and thus may form the basis in
Tanaka (1993). Subsets of this dictionary are inputs to cortex for normalization of signals at one extreme and
each of several VTU units. for a MAX-like operation at the other (Chance et al.,

Many approaches to solving the binding problems do 1999). Thus, in the context of this hypothetical circuitry
not use oscillation or synchronization mechanisms but for the MAX operation, an intriguing possibility is that
instead rely on top-down attentional mechanisms. In the same softmax mechanism might be used in both
fact, it has been argued that top-down control might situations, either predominantly driven by bottom-up
help in “binding” features together by focusing attention information or using top-down signals that may control
on a region of interest (see Reynolds and Desimone, a parameter (equivalent to locally raising q or C) that
1999; Wolfe and Cave, 1999 [both in this issue of Neu- switches off the “competition” between inputs in loca-
ron]). However, we can perfectly well perform very com- tions outside the “focus of attention.” Several experi-
plex object recognition tasks (e.g., determining whether ments suggest that the visual system uses a MAX or
an image contains a certain object) without focusing softmax operation to select bottom-up among different
attention on a specific part of space (cf. Thorpe et al., inputs: for instance, there is evidence that a MAX-like
1996). Our model is bottom-up and does not require an operation is used in tasks involving object recognition
explicit top-down signal but is consistent with its use in context (Sato, 1989). As discussed by Nowlan and
in certain situations. To explain the latter point, we will Sejnowski (1995), the same active selection mechanism
briefly describe a possible approximate implementation underlying preattentive perceptual phenomena may
of the MAX operation in terms of cortical microcircuits also be used by top-down overt attentional signals—for
of lateral, possibly recurrent, inhibition between neurons instance, when focusing attention to a specific part of

visual space (Lee et al., 1999; Reynolds et al., 1999).in a cortical layer. A specific example is a circuit based
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The MAX mechanism performs an input-driven selec- feature dectectors in C2. The actual number of cells
tion (and possibly scanning) operation over its inputs required to perform the tasks is likely to be lower—in
that might have interesting implications for the pop-out fact, a model with bigger pooling ranges in C1 resulting
effect (Treisman and Gelade, 1980; cf. the review by in about one-fourth the number of S2 cells has been
Wolfe and Cave, 1999): as the MAX operation is per- shown to have very similar recognition rates. The crucial
formed in parallel over many neurons, detection of stim- observation is that if additional objects are to be recog-
uli does not require an attention-controlled “focused” nized irrespective of scale and position, the addition of
search, as described above, if surrounding stimuli do only one unit in the top layer, with sparse connections
not interfere with the VTU’s preferred object. Therefore, to the (256) C2 units, is required. Furthermore, in the
for objects that activate different features (such as a case of a distributed code, where individual neurons
square amid circles), recognition is possible without se- participate in the coding of several objects, require-
quential search—the stimuli “pop out.” However, in the ments are likely to be even less. This does not appear
case of interference, as in a display consisting of many to be specific to the class of paperclip objects: the exact
similar paperclips, detection might require “focusing at- same model described in this paper has already been
tention” (as discussed by Reynolds and Desimone, applied successfully (with the only difference being the
1999) to reduce the influence of competing stimuli. In appropriate setting of the weights from the C2 units
this case, there would be no pop-out, but rather sequen- to the VTUs) to the recognition of computer-rendered
tial search would be required to perform successful rec- images of cars (Riesenhuber and Poggio, 1996b). Thus,
ognition. the recognition of different classes of objects would only

The observed invariance ranges of IT cells after train- require the addition of more view-tuned units in the top
ing with one view are reflected in the architecture used layer of the network.
in our model: one of its underlying ideas is that invari- How could stimulus qualities other than shape, such
ance and feature specificity have to grow hierarchically as color, be added to the model? There are two straight-
so that view-tuned cells at higher levels show sizable forward options, both of which have some experimental
invariance ranges even after training with only one view, support: (1) to make cells in the first layer color selective,
as a result of the invariance properties of the afferent i.e., to have additional sets of S1 cells, at each orienta-
units. The key concept is to start with simple localized tion and scale, for different colors; or (2) to have “blob”
features—since the discriminatory power of simple cells in S1 that respond to a certain color, in addition
features is low, the invariance range has to be kept to the present noncolor-selective S1 cells. Driven by the
correspondingly low to avoid the cells being activated demands of the task in the same way composite features
indiscriminately. As feature complexity and thus dis- would be learned in a shape-only model, higher S layers
criminatory power grows, the invariance range, i.e., the would combine units selective to different colors, or
size of the receptive field, can be increased as well. units tuned to a certain orientation and blobs responding
Thus, loosely speaking, feature specificity and invari- to a certain color, respectively. So far, there are no sys-
ance range are inversely related, which is one of the tematic physiological studies investigating the extent of
reasons the model avoids a combinatorial explosion in color tuning of IT cells to a degree similar to the studies
the number of cells: while there is a larger number of on shape tuning: current studies, such as Missal et
different features in higher layers, there do not have to al. (1997), have mainly limited themselves to global
be as many neurons responding to these features as in changes of object color. Once more detailed data are
lower layers, since higher-layer neurons have bigger available, it will be interesting to see which of the two
receptive fields and respond to a greater range of scales. schemes, or if a combination of both, can yield the re-
Notice also that the cells in the model are not binary but quired color specificity.
have continuous response functions, greatly increasing Although clearly further work is required to determine
the representational power of the system (which is why

whether the generality and power of a representational
“hallucinations” do not occur).

scheme such as the one outlined here could ultimately
This hierarchical buildup of invariance and feature

account for the vast representational abilities of thespecificity greatly reduces the overall number of cells
brain, we believe that the model provides evidence thatrequired to represent additional objects in the model:
“the binding problem,” as commonly conceived, maythe first layer contains a little more than one million cells
only be a problem in the eye of the beholder, but it(160 3 160 pixels, at four orientations and 12 scales
is not necessarily a problem for all object recognitioneach—for simplicity, dense sampling was used at all
devices and perhaps may not be one for the brain.scales). Connections in higher levels are in principle

subject to learning, driven by the input ensemble and
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the requirements of the recognition task at hand. As
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ognition in clutter is possible using a simple hierarchical
feedforward architecture. Hence, except for the C2 to
VTU connections, which are learned, all connections
were preset by picking a simple pooling scheme in C1
(described above, resulting in 46,000 C1 cells) and a
combinatorial rule to create S2 features from C1 inputs
(yielding close to three million S2 cells), which were then
pooled over to yield the final 256 complex composite


