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Abstract. This paper presents a general, trainable system for object detection in unconstrained, cluttered scenes.
The system derives much of its power from a representation that describes an object class in terms of an overcomplete
dictionary of local, oriented, multiscale intensity differences between adjacent regions, efficiently computable as
a Haar wavelet transform. This example-based learning approach implicitly derives a model of an object class
by training a support vector machine classifier using a large set of positive and negative examples. We present
results on face, people, and car detection tasks using the same architecture. In addition, we quantify how the
representation affects detection performance by considering several alternate representations including pixels and
principal components. We also describe a real-time application of our person detection system as part of a driver
assistance system.
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1. Introduction

As the amount of image and video information avail-
able increases, robust, configurable object detection
systems for managing this data will become indispens-
able. There has been an explosion in the amount of
information presented on the Internet as it is quickly
transitions from a text-based medium to one of im-
age and video content; object detection systems will be
used to search through the growing number of image
and video databases. This technology will also be used
in surveillance applications, driver assistance systems,
and as front ends to recognition systems.

This paper addresses the problem of object and pat-
tern detection in static images of unconstrained, clut-
tered scenes. We contrast detection with the problem
of recognition, where the goal is to identify specific in-
stances of a class. A facedetectionsystem knows how
to differentiate faces from “everything else”, while a
facerecognitionsystem knows the difference between
my face and other faces. The detection of real-world
objects of interest, such as faces, people, and cars,
poses challenging problems: these objects are difficult

to model with significant variety in color and texture,
the backgrounds against which the objects lie are often
complex and cluttered, and characteristics like lighting,
size, and number of objects cannot be accounted for in
any but the most contrived situations.

Our technique uses a descriptive model of an object
class that is rich enough to effectively model any of the
possible shapes, poses, colors, and textures of an object.
At the same time, the technique is general enough that
it can easily be transfered to a new class of objects.

The system derives much of its power from a new
representation that describes an object class in terms
of a large set of local oriented intensity differences be-
tween adjacent regions; this representation is efficiently
computable as a Haar wavelet transform. Images are
mapped from the space of pixels to that of an overcom-
plete dictionary of Haar wavelet features that provides
a rich description of the pattern. This representation
is able to capture the structure of the class of objects
we would like to detect while ignoring the noise inher-
ent in the images. The use of an overcomplete dictio-
nary is inspired by image reconstruction techniques;
our goal is to do classification and, to this end, the
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overcomplete dictionary provides us with a richer ex-
pressive language in which we can compare complex
patterns.

We will be using an example-based learning ap-
proach where a model of an object class is derived
implicitly from a training set of examples. In this way,
specializing this general system to a specific domain
involves plugging in a new set of training data with-
out modifying the core system or handcrafting a new
model. The specific learning engine we use is a sup-
port vector machine (SVM) classifier. This classifica-
tion technique has a number of properties that make it
particularly attractive and has recently received much
attention in the machine learning community.

There is a large body of previous work in object de-
tection; of particular relevance to this paper is the work
on face detection in static images. Recently, example-
base approaches have achieved a high degree of success
in this field (Sung and Poggio, 1994; Moghaddam and
Pentland, 1995; Rowley et al., 1998; Vaillant et al.,
1994; Osuna et al., 1997b). These view-based ap-
proaches can handle detecting faces in cluttered scenes,
and have shown a reasonable degree of success when
extended to handle non-frontal views. In contrast to
face detection, detecting people in static images has,
until now, not been successfully tackled. Current peo-
ple detection systems (Wren et al., 1995; Haritaoglu
et al., 1998; Heisele and Wohler, 1998; McKenna and
Gong, 1997; Shio and Sklansky, 1991; Rohr, 1993;
Hogg, 1983) typically assume any of several restric-
tive assumptions, that the people are moving, there
is a static background with a fixed camera, imple-
ment tracking and not true detection, use hand-crafted
models, or they make assumptions on the number of
people in the scene. In Forsyth and Fleck (1997, 1998),
they describe a system that uses color, texture, and ge-
ometry to localize horses and naked people in static
images. The system is mainly targeted towards retriev-
ing images with a single object of interest. Methods
of learning these “body plans” of hand coded hierar-
chies of parts from examples are described in Forsyth
and Fleck (1997). Our system makes none of these
assumptions and results in a highly robust people de-
tection technique for static images. Car detection is
also a domain receiving increased attention; (Bregler
and Malik, 1996) describe a system using mixtures of
experts on second order Gaussian features to identify
different classes of cars (detection has been subsumed)
and (Lipson, 1996; Lipson et al., 1997) describes a sys-
tem that uses a deformable template for side view car

detection. In Beymer et al. (1997), they present a traf-
fic monitoring system that has a car detection module
that locates corner features in highway sequences and
groups features for single cars together by integrating
information over time. The system of Betke et al. (1997)
and Betke and Nguyen (1998) uses corner features and
edge maps combined with template matching to detect
cars in highway video scenes.

This paper describes our general framework for ob-
ject detection in the context of face, people, and car
detection. We provide an in-depth description of our
core system in Section 2, along with details on wavelets
(Section 2.1), our particular dictionary of wavelet fea-
tures (Section 2.2), and the support vector machine
classification technique (Section 2.3). In Section 3,
we compare and contrast wavelets with other possible
representations, including pixels and principal compo-
nents. A real-time implementation of our people de-
tection system as part of a driver assistance system is
described in Section 4. We conclude with related areas
that we are currently pursuing and directions for future
work.

2. Architecture and Representation

The architectural overview of our system is provided
in Fig. 1 as applied to the task of people detection and
shows the training and testing phases. In the training
step, the system takes as input 1) a set of images of
the object class that have been aligned and scaled so
that they are all in approximately the same position
and the same size and 2) a set of patterns that are not
in our object class. An intermediate representation that
encapsulates the important information of our object
class is computed for each of these patterns, yielding
a set of positive and negative feature vectors. These
feature vectors are used to train a pattern classifier to
differentiate between in-class and out-of-class patterns.

In the testing phase, we are interested in detecting
objects in out-of-sample images. The system slides a
fixed size window over an image and uses the trained
classifier to decide which patterns show the objects of
interest. At each window position, we extract the same
set of features as in the training step and feed them into
our classifier; the classifier output determines whether
or not we highlight that pattern as an in-class object.
To achieve multiscale detection, we iteratively resize
the image and process each image size using the same
fixed size window.
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Figure 1. The training and testing phases of our system.

This section addresses the key issues in the develop-
ment of our trained pattern classifier: the representation
and the learning engine.

2.1. Wavelets

The ultimate goal in choosing a representation for an
object detection system is finding one that yields high
inter-class variability, while at the same time achiev-
ing low intra-class variability. Since object classes like
people can be quite complex, this is a nontrivial task. To
encode the visual structure of an object class, our rep-
resentation must identify features at a resolution where
there will be some consistency throughout the object
class, while at the same time ignoring noise. The rep-
resentation we use, Haar wavelets, identifies local, ori-
ented intensity difference features at different scales

and is efficiently computable. The Haar wavelet is per-
haps the simplest such feature with finite support. We
transform our images from pixel space to the space of
wavelet coefficients, resulting in an overcomplete dic-
tionary of features that are then used as training for a
classifier.

This section describes the underlying representation
that we use for extracting object features, the Haar
wavelet. We also describe a denser (redundant) trans-
form that we use to provide a richer feature set and to
achieve the spatial resolution we need to accomplish
detection.

2.1.1. The Haar Wavelet. Wavelets provide a natural
mathematical structure for describing our patterns;
a more detailed treatment can be found in Mallat
(1989). These vector spaces form the foundations of



18 Papageorgiou and Poggio

the concept of a multiresolution analysis. We formal-
ize the notion of a multiresolution analysis as the
sequence of approximating subspacesV0 ⊂ V1 ⊂
V2 ⊂ . . .V j ⊂ V j+1 . . .; the vector spaceV j+1 can
describe finer details than the spaceV j , but every el-
ement ofV j is also an element ofV j+1. A multireso-
lution analysis also postulates that a function approxi-
mated inV j is characterized as its orthogonal projec-
tion on the vector spaceV j .

As a basis for the vector spaceV j , we use thescaling
functions,

φ
j
i =
√

2 jφ(2 j x − i ), i = 0, . . . ,2 j − 1, (1)

where, for our case of the Haar wavelet,

φ(x) =
{

1 for 0≤ x < 1

0 otherwise
(2)

Next we define the vector spaceW j that is the or-
thogonal complement of two consecutive approxima-

Figure 2. The Haar wavelet framework; (a) the Haar scaling function and wavelet, (b) the three types of 2-dimensional non-standard Haar
wavelets: vertical, horizontal, and diagonal, and (c) the shift in the standard transform as compared to our quadruply dense shift resulting in an
overcomplete dictionary of wavelets.

ting subspaces,V j+1 = V j ⊕W j . TheW j are known
as wavelet subspacesand can be interpreted as the
subspace of “details” in increasing refinements. The
wavelet spaceW j is spanned by a basis of functions,

ψ
j

i =
√

2 jψ(2 j x − i ), i = 0, . . . ,2 j , (3)

where for Haar wavelets,

ψ(x) =


1 for 0≤ x < 1

2

−1 for 1
2 ≤ x < 1

0 otherwise

(4)

The sum of the wavelet functions form an orthonor-
mal basis forL2(R). It can be shown (under the stan-
dard conditions of multiresolution analysis) that all the
scaling functions can be generated from dilations and
translations of one scaling function. Similarly, all the
wavelet functions are dilations and translations of the
mother wavelet function. Figure 2(a) shows the scaling
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and wavelet functions. The approximation of some
function f (x) in the spaceV j is found to be:

Aj ( f ) =
∑
k∈Z

λ j,k︷ ︸︸ ︷
〈 f (u), φ j

k (u)〉φ j
k (x) (5)

where we let the inner product be denoted byλ j,k for
future use. Similarly, the projection off (x) on W j is:

Dj ( f ) =
∑
k∈Z

γ j,k︷ ︸︸ ︷
〈 f (u), ψ j

k (u)〉ψ j
k (x) (6)

where, in this case, the inner product is denoted byγ j,k.
The structure of the approximating and wavelet sub-

spaces leads to an efficient cascade algorithm for the
computation of the scaling coefficients,λ j,k, and the
wavelet coefficients,γ j,k:

λ j,k =
∑
n∈Z

hn−2kλ j+1,n (7)

γ j,k =
∑
n∈Z

gn−2kλ j+1,n (8)

where {hi } and {gi } are the filter coefficients corre-
sponding to the scaling and wavelet functions. Using
this construction, the approximation of a functionf (x)
in the spaceV j is:

Aj ( f ) =
∑
n∈Z

λ j,k

√
2 jφ(2 j x − k) (9)

Similarly, the approximation off (x) in the spaceW j

is:

Dj ( f ) =
∑
n∈Z

γ j,k

√
2 jψ(2 j x − k) (10)

Since we use the Haar wavelet, the corresponding
filters are:h = {. . . ,0, 1

2,
1
2, 0, 0, . . .} andg = {. . . ,

0,− 1
2,

1
2, 0, 0, . . .}. The scaling coefficients are sim-

ply the averages of pairs of adjacent coefficients in
the coarser level while the wavelet coefficients are the
differences.

It is important to observe that the discrete wavelet
transform (DWT) performsdownsamplingor decima-
tionof the coefficients at the finer scales since the filters
h andg are moved in a step size of 2 for each increment
of k.

2.1.2. 2-Dimensional Wavelet Transform.The nat-
ural extension of wavelets to 2D signals is obtained
by taking the tensor product of two 1D wavelet trans-
forms. The result is the three types of wavelet basis
functions shown in Fig. 2. The first type of wavelet is
the tensor product of a wavelet by a scaling function,
ψ(x, y) = ψ(x)⊗φ(y); this wavelet encodes a differ-
ence in the average intensity along a vertical border and
we will refer to its value as averticalcoefficient. Simi-
larly, a tensor product of a scaling function by a wavelet,
ψ(x, y) = φ(x) ⊗ ψ(y), is a horizontalcoefficient,
and a wavelet by a wavelet,ψ(x, y) = ψ(x)⊗ ψ(y),
is a diagonal coefficient since this wavelet responds
strongly to diagonal boundaries.

Since the wavelets that the standard transform gen-
erates have irregular support, we use the non-standard
2D DWT where, at a given scale, the transform is ap-
plied to each dimension sequentially before proceeding
to the next scale (Stollnitz et al., 1994). The results are
Haar wavelets with square support at all levels, shown
in Fig. 2(b).

2.1.3. Quadruple Density Transform. For the 1D
Haar transform, the distance between two neighboring
wavelets at leveln (with support of size 2n) is 2n. To ob-
tain a denser set of basis functions that provide a richer
model and finer spatial resolution, we need a set of re-
dundant basis functions, or an overcompletedictionary,
where the distance between the wavelets at leveln is
1
42n (Fig. 2c). The straightforward approach of shifting
the signal and recomputing the DWT will not gener-
ate the desired dense sampling. Instead, this can be
achieved by modifying the DWT. To generate wavelets
with double density, where wavelets of leveln are lo-
cated every122n pixels, we simply do not downsample
in Eq. (8). To generate thequadruple densitydictionary,
first, we do not downsample in Eq. (7), giving us double
density scaling coefficients. Next, we calculate double
density wavelet coefficients on the two sets of scaling
coefficients—even and odd—separately. By interleav-
ing the results of the two transforms we get quadruple
density wavelet coefficients. For the next level (n+1),
we keep only the even scaling coefficients of the pre-
vious level and repeat the quadruple transform on this
set only; the odd scaling coefficients are dropped off.
Since only the even coefficients are carried along at
all the levels, we avoid an “explosion” in the number
of coefficients, yet obtain a dense and uniform sam-
pling of the wavelet coefficients at all the levels. As
with the regular DWT, the time complexity isO(n) in
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the number of pixelsn. The extension of the quadruple
density transform to 2D is straightforward.

2.2. The Wavelet Representation

The Haar transform provides a multiresolution repre-
sentation of an image with wavelet features at different
scales capturing different levels of detail; the coarse
scale wavelets encode large regions while the fine scale
wavelets describe smaller, local regions. The wavelet
coefficients preserve all the information in the original
image, but the coding of the visual information differs
from the pixel-based representation in two significant
ways.

First, the wavelets encode the difference in average
intensity between local regions along different orien-
tations, in a multiscale framework. Constraints on the
values of the wavelets can express visual features of the
object class; strong response from a particular wavelet
indicates the presence of an intensity difference, or
boundary, at that location in the image while weak re-
sponse from a wavelet indicates a uniform area.

Second, the use of an overcomplete Haar basis al-
lows us to propagate constraints between neighboring
regions and describe complex patterns. The quadruple
density wavelet transform provides high spatial reso-
lution and results in a rich, overcomplete dictionary of
features. Instead of quadruple density wavelets, it is
possible to use just the double density wavelets that
overlap by 50%; we expect that the quadruple density
version should give us better performance, though this
is an untested assumption.

Our main motivation for using wavelets is that they
capture visually plausible features of the shape and in-
terior structure of objects that are invariant to certain
transformations. The result is a compact representation
where dissimilar example images from the same object
class map to similar feature vectors.

With a pixel representation, what we would be en-
coding are the actual intensities of different parts of
the patterns—a simple example makes it clear that this
encoding does not capture the important features for
detection. Take, for instance, our example of two data
points of the same class where one is a dark body on
a white background and the other is a white body on a
dark background. With an intensity based representa-
tion (like pixels), each of these examples maps to com-
pletely different feature vectors. A representation that
encodes local, oriented, intensity differences (like Haar
wavelets) would yield similar feature vectors where the

features corresponding to uniform regions are zero and
those corresponding to boundaries are non-zero. In fact,
since in our representation we encode only the magni-
tude of the intensity difference, the feature vectors for
this simple two example case would be identical.

We do not use all the very fine scales of wavelets as
features for learning since these scales capture high fre-
quency details that do not characterize the class well;
for instance, in the case of people, the finest scale
wavelets may respond to checks, stripes, and other
detail patterns, all of which are not features that are
characteristic to the entire class. Similarly, the very
coarse scale wavelets are not used as features for learn-
ing since their support will be as large as the object
and will therefore not encode useful information. So,
for the object detection system we have developed, we
throw out the very fine and very coarse wavelets and
only use 2 medium scales of wavelets as features for
learning. These scales depend on the object class and
the size of the training images and are chosen a priori.

In the following sections, we show how our wavelet
representation applies to faces, people, and cars; this
coding of local intensity differences at several scales
provides a flexible and expressive representation that
can characterize each of these complex object classes.
Furthermore, the wavelet representation is computa-
tionally efficient for the task of object detection since
we do not need to compute the transform for each image
region that is examined but only once for the whole im-
age and then process the image in the space of wavelets.

2.2.1. Analyzing the Face Class.For the face class,
we have a training set of 2,429 gray-scale images of
faces—this set consists of a core set of faces, with some
small angular rotations to improve generalization—and
24,730 non-face patterns. These images are all scaled
to the dimensions 19× 19 and show the face from
above the eyebrows to below the lips; typical images
from the database are shown in Fig. 3. Databases of
this size and composition have been used extensively
in face detection (Sung, 1995; Rowley et al., 1998;
Osuna et al., 1997a). For the size of patterns our face
system uses, we have at our disposal wavelets of the
size 2× 2, 4× 4, 8× 8, and 16× 16. Instead of using
the entire set of wavelets, we a priori limit the dictio-
nary to contain the wavelets of scales 2× 2 and 4× 4,
since coarser features do not contain significant infor-
mation for detection purposes. At the scale 4×4 pixels,
there are 17×17 features in quadruple density for each
wavelet class and at 2× 2 pixels there are 17× 17
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Figure 3. Example images from the database of faces used for training and the corresponding ensemble average features. The training images
are gray level of size 19× 19 pixels. The average feature values are coded in gray level and are displayed in their proper spatial configuration.
Features whose values are close to the average value of one are coded as gray, coefficients that are above the average are darker and those below
the average are lighter. We can observe strong features in the eye areas and the nose. The cheek area is an area of almost uniform intensity, that
is, the coefficients in the cheek regions have below average values.

features in double density for each class, for a total of
1,734 coefficients.

The raw value of a coefficient may not necessarily be
indicative of a boundary—a weak coefficient in a rela-
tively dark image may still indicate the presence of an
intensity difference that is significant for the purposes
of classification. To reduce these effects on the features
used for classification, we normalize a coefficient’s
value against the other coefficients in the same area.
For the normalization step, we compute the average of
each wavelet’s class ({vertical, horizontal, diagonal}×
{2, 4}) over the current pattern and divide the wavelet
response at a certain spatial location by its correspond-
ing class average. We calculate the averages separately
for each class since the power distribution between the
different classes may vary.

After the normalization, the average value of a coef-
ficient for random patterns should be 1. Three classes
of feature magnitudes will emerge: ensemble average
values much larger than 1 indicate strong intensity dif-
ference features that are consistent along all the exam-
ples, values that are much less than 1 indicate consistent
uniform regions, and values that are close to 1 are asso-
ciated with inconsistent features, or random patterns.

To visualize the detected face features we code the
ensemble average of the wavelet coefficients using gray
level and draw them in their proper spatial layout in
Fig. 3. Coefficients with values close to 1 are plotted

in gray, those with values larger than 1 are darker, and
those with values less than 1 are lighter. It is interesting
to observe the emerging patterns in the facial features.
The vertical wavelets capture the sides of the nose,
while the horizontal wavelets capture the eye sockets,
eyebrows, and tip of the nose. Interestingly, the mouth
is a relatively weak feature compared to the others. The
diagonal wavelets respond strongly to the endpoint of
facial features.

2.2.2. Analyzing the People Class.For learning the
people class, we have collected a set of 1,800 color
images of people in different poses (Fig. 4) and use
the 1,800 mirror images as well and 16,726 non-
people patterns. All of the images are normalized to
the dimensions 128× 64 and the people images are
aligned such that the bodies are centered and approxi-
mately the same size (the distance from the shoulders
to feet is about 80 pixels).

As in the case of faces, to code features at appro-
priate scales for people detection—scales at which
we expect relevant features of people to emerge—
we restrict the system to the wavelets at scales of
32× 32 pixels (15× 5 features for each orientation)
and 16× 16 pixels (29× 13 for each orientation).

In our people detection system, our training database
is of color images. For a given pattern, we compute the
quadruple density Haar transform in each color channel
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Figure 4. Example images from the database of people used for training and the corresponding ensemble average features. The training images
are 128× 64 color images. As in the case of faces, the average feature values are coded in gray level and are displayed in their proper spatial
configuration. The wavelets identify the significant visual boundary information present in the people images: the vertical wavelets respond to
the sides of the body, the horizontal wavelets respond to the top of the head and the shoulders, and the diagonal wavelets respond to the head,
shoulders, hands, and feet.

(RGB) separately and take as the coefficient value at a
specific location and orientation the one largest in abso-
lute value among the three channels, providing the sys-
tem with the most visually significant information. This
technique maps the original color image to a pseudo-
color channel that gives us 1,326 wavelet coefficients,
the same number as if we had been using gray level
images.

To visualize the patterns that emerge using this
wavelet representation for people, we can code the av-
erage values of the coefficients in gray level and display
them in the proper spatial layout as we did for the faces.
Figure 4 shows each average wavelet displayed as a
small square where features close to 1 are gray, stronger
features are darker, and weaker features are lighter. As
with faces, we observe that each class of wavelet coef-
ficients is tuned to a different type of structural infor-
mation. The vertical wavelets capture the sides of the

people. The horizontal wavelets respond to the shoul-
ders and to a weaker belt line. The diagonal wavelets
are tuned to “corner features”, i.e. the shoulders, hands,
and feet. The 16×16 scale wavelets provide fine spatial
resolution of the body’s overall shape and smaller scale
details, such as the head and extremities, are clearly
evident.

2.2.3. Analyzing the Car Class.The car detection
system uses a database of 516 frontal and rear color
images of cars, normalized to 128× 128 and aligned
such that the front or rear bumper is 64 pixels across.
For training, we use the mirror images as well for a total
of 1,032 positive patterns and 5,166 negative patterns.
The two scales of wavelets we use for detection are
16× 16 and 32× 32. Like the processing for people,
we collapse the three color channel features into a sin-
gle channel by using the maximum wavelet response
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Figure 5. Example images from the database of cars used for training and the corresponding ensemble average features. The training images are
128×128 color images. The gray level coding of the average feature values show that the wavelets respond to the significant visual characteristics
of cars: the vertical wavelets respond to the sides of the car, the horizontal wavelets respond to the roof, underside, top of the grille and bumper
area, and the diagonal wavelets respond to the corners of the car’s body. At the scale 16× 16, we can even see evidence of what seems to be
license plate and headlight structures in the average responses.

of each channel at a specific location, orientation, and
scale. This gives us a total of 3,030 wavelet features
that are used to train the SVM.

The average wavelet feature values are coded in gray
level in Fig. 5. As with both faces and cars, much of
the characteristic structure of cars is evident in these
averages.

2.2.4. Discussion. Comparing the database of people
(Fig. 4) to the database of faces (Fig. 3) illustrates an
important fundamental difference in the two classes.
In the case of faces, there are clear patterns within the
face, consisting of the eyes, nose and mouth; these pat-
terns are common to all the examples. This is not the
case with full body images of people. The people do
not share any common color or texture. Furthermore,
the people images have a lot of spurious details such as
jackets, ties, and bags. On the other hand, we would ex-
pect that people can be characterized quite well by their
fairly similar overall body shape, or “silhouette”. Our
approach treats these two cases where there is different
underlying information content in the object classes
in a uniform manner. Frontal and rear views of cars
have both a certain amount of common interior struc-
ture (top of grille, license plates, headlights) as well as

fairly uniform outer boundaries; we will also see that
cars are handled equally well in this framework.

There is certain a priori knowledge embedded in our
choice of the wavelets. The use of the absolute value
of the coefficient may be essential in the case of people
since the direction of the intensity difference of a cer-
tain feature’s orientation is not important; a dark body
against a light background and a light body against a
dark background should be represented as having the
same information content. Furthermore, we compute
the wavelet transform for a given pattern in each of the
three color channels and then, for a wavelet at a specific
location and orientation, we use the one that is largest in
magnitude amongst the three channels. This is based on
the observation that there is little consistency in color
between different people and allows the system to key
off of the most visually significant features. This same
prior assumption is used for our car detection system
as well.

Once we have generated the feature vectors for an
object class and have done the same for a set of images
not in our object class, we use a learning algorithm
that learns to differentiate between the two classes. The
particular learning engine we use is a support vector
machine, described below.
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2.3. Support Vector Machine Classification

The second key component of our system is the use
of a trainable pattern classifier that learns to differen-
tiate between patterns in our object class and all other
patterns. In general terms, these supervised learning
techniques rely on having a set of labeled example pat-
terns from which they derive an implicit model of the
domain of interest. The particular learning engine we
use is a support vector machine (SVM) classifier.

Support vector machines (SVM) is a technique to
train classifiers that is well-founded in statistical learn-
ing theory; for details, see Vapnik (1995), Burges
(1998) and Vapnik (1998). One of the main attractions
of using SVMs is that they are capable of learning in
high-dimensional spaceswith very few training exam-
ples. They accomplish this by minimizing a bound on
the empirical error and the complexity of the classifier,
at the same time.

This concept is formalized in the theory of uniform
convergence in probability:

R(α) ≤ Remp(α)+8
(

h

`
,
− log(η)

`

)
(11)

with probability 1−η. Here,R(α) is the expected risk,
Remp(α) is the empirical risk,̀ is the number of train-
ing examples,h is the VC dimension of the classifier
that is being used, and8(·) is the VC confidence of
the classifier. Intuitively, what this means is that the
uniform deviation between the expected risk and em-
pirical risk decreases with larger amounts of training
data` and increases with the VC dimensionh. This
leads us directly to the principle of structural risk min-
imization, whereby we can attempt to minimize at the
same time both the actual error over the training set
and the complexity of the classifier; this will bound
the generalization error as in Eq. (11). It is exactly this
technique that support vector machines approximate.

This controling of both the training set errorandthe
classifier’s complexity has allowed support vector ma-
chines to be successfully applied to very high dimen-
sional learning tasks; (Joachims, 1997) presents results
on SVMs applied to a 10,000 dimensional text catego-
rization problem and (Osuna et al., 1997b) show a 283
dimensional face detection system.

The support vector machine algorithm formulates
the training problem as one that finds, among all possi-
ble separating surfaces, the one that maximizes the dis-
tance between the closest elements of the two classes. In
practice, this is determined through solving a quadratic
programming problem.

Using the SVM formulation, the general form of the
decision function for a pointx is:

f (x) = θ
(∑̀

i=1

αi yi K (x, xi )+ b

)
(12)

where` is the number of training data points,αi are
Lagrange parameters obtained in the optimization step,
and θ(·) is a threshold function. The kernelK (·, ·)
defines a dot product between projections of the ar-
guments in some feature space; it is in this (typically
high dimensional) feature space that a separating hy-
perplane is found. Different kernels induce different
types of classifiers. For example, withK (x, y) = x · y
the separating surface is a hyperplane in the space ofx,
K (x, y) = (x · y+ 1)n leads to annth degree polyno-
mial classifier, andK (x, y) = exp(−‖x− y‖2) gives a
Gaussian radial basis function.

Once the optimization problem has been solved, it
is usually the case that most of the parametersαi are
zero. The decision surface therefore only depends on a
smaller number of data points with non-zeroαi ; these
data points are calledsupport vectors.

For our detection problem, where we use a quadratic
classifier, the decision surface is:

f (x) = θ
(

Ns∑
i=1

αi yi (x · xi + 1)2+ b

)
(13)

wherei is now an index into just theNs support vectors.

3. Experiments

In Figs. 6–8 we present examples of our trainable object
detection system as applied to the domains of face,
people, and car detection, respectively. We reiterate that
the system makes no a priori assumption on the scene
structure or the number of objects present and does not
use any motion or other dynamical information. The
performance of each of these particular instantiations
of detection systems could easily be improved by using
more training data. We have not sought to push the
limits of performance in particular domains; rather, our
goal has been to show that this uniform architecture for
object detection leads to high performance in several
domains.

The dense Haar transform captures a rich set of fea-
tures that allows the SVM classifier to obtain a powerful
class model; the wavelets respond to significant visual
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Figure 6. Results of our face detection system on a set of out-of-sample images. A, C, E, F, G, H, I, J, K, L, M, N are from the test database
of Sung & Poggio; B, D are from www.starwars.com; O is from www.corbis.com. Missed faces (B, F, I, J, K, M) are due to significant head
rotations that were not present in the training data. False positives (D, E, F, N) are due to insufficient training data and can be eliminated by
using more negative training data.
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Figure 7. Results of people detection on out-of-sample images. A, I, K are from www.starwars.com; B, D, E, F, H, J, N are from www.corbis.com;
C, G are from www.cnn.com; L, O, P were taken in Boston and Cambridge; M was provided by DaimlerChrysler. Missed detections are due
to the person being too close to the edge of the image (B) or when the person has a body shape not represented in the training data (I). False
positives often look very similar to people (A) or are due to the presence of strong intensity differences (D, E, K, L, M, O).
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Figure 8. Results of car detection on out-of-sample images. A is from www.lewistonpd.com; B, C, D, E, F, G, H, J, K, L, M, O are from
www.corbis.com; I is from www.enn.com; N is from www.foxglove.com. Missed positive examples are due to occlusions (A, F, O) or where a
car is too close to the edge of the image (A). False positives (C, J, I, N) are due to insufficient training and can be eliminated with more negative
training patterns.
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features while smoothing away noise. This choice of
features is a priori, however; this section presents the re-
sults of many tests comparing different features for ob-
ject detection. There are many possible alternate repre-
sentations that have been used in the literature, includ-
ing pixels and PCA, and these different representations
are compared in our detection framework. Another de-
cision we made was to ignore the sign of the wavelets
and use their absolute value; this is tested against the
signed values. In addition, for people detection, our
training set is in color; we empirically quantify the im-
provement in performance using color data as opposed
to gray level data.

In the results presented in this section, our people
detection system is trained on 1,848 positive patterns
(924 frontal and rear people images and their mirror
images) and 11,361 non-people patterns and tested on
123 images containing people and 794,906 non-people
patterns. The face detection system is trained on 2,429
face images and 13,229 non-face patterns and tested on
105 images containing faces and 3,909,200 non-face
patterns. The car detection system is trained on 1,032
frontal and rear color images of cars (516 examples
and their mirrors) and 5,166 non-car patterns and tested
on 90 images containing cars and 600,272 non-car
patterns.

3.1. Pixels, Wavelets, PCA

Our main premise for choosing a wavelet based rep-
resentation is that intensity differences between lo-
cal adjacent regions contain higher quality informa-
tion for the purpose of object detection than other
traditional representations. Pixel representations cap-
ture the “most local” features. These have been used
extensively for face detection but due to the variability
in the people patterns, we would expect pixel repre-
sentations to fail for people detection. At the other end
of the locality spectrum are global representations like
PCA which encodes a class in terms of basis func-
tions that account for the variance in the data set. We
can change the class of features to see which yields
the best performance. For the people and car detec-
tion systems, we use the 1,769 overlapping 8× 8 av-
erages instead of pixels for a more fair comparison
that uses similar numbers of features; furthermore,
these averages are histogram equalized in the same
manner as the pixel representation. For faces, we use
pixels.

3.2. Signed vs. Unsigned Wavelets

The features our system uses do not contain informa-
tion on the sign of the intensity gradient, but are the
absolute values of the wavelet responses. With these
features, we are solely describing the strength of the
intensity differences. For an object class like people,
where a dark body on a light background has the same
information as a light body on a dark background and
there is little consistency in the intensities, the sign of
the gradient should not matter. On the other hand, if we
consider face patterns, there is consistent information
in the sign of the gradient of the intensity differences.
For instance, the eyes are darker than the cheeks and
the forehead and the mouth is darker than the cheeks
and the chin; these types of relationships have been
explored in Sinha (1994). We might expect that using
the sign information (+ or −) would enhance results
in this case.

3.3. Complete vs. Overcomplete

The motivation for using the overcomplete Haar
wavelet representation is to provide a richer set of fea-
tures over which the system will learn and, ultimately,
a more accurate description of a person. We test this
against the standard complete Haar representation.

3.4. Color vs. Gray Level

For color images in the case of people detection, we col-
lapse information from the three color channels into a
single pseudo-channel that maintains the strongest lo-
cal intensity differences. It is intuitively obvious that
color images contain much richer information than the
corresponding gray-scale versions. We present experi-
ments that quantify the inherent information content in
using color images as opposed to gray level for object
detection.

3.5. Faces, People, and Cars

Our ROC curves highlight the performance of the de-
tection system as accuracy over out-of-sample data
against the rate of false positives, measured as the num-
ber of false positives per pattern examined. The ROC
curves that compare different representations for the
face detection system are shown in Fig. 9. The repre-
sentations used for face detection are raw pixels (361
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Figure 9. ROC curves for face detection comparing different fea-
tures using pixel features as a benchmark.

features), histogram equalized pixels (361 features),
principal components of histogram equalized pixels
(361 features), gray signed wavelets (1,740 features),
and gray unsigned wavelets (1,740 features). Gray un-
signed wavelets yield the best performance, while gray
signed wavelets and histogram equalized gray pixels
lead to the same level of performance, slightly worse
than the gray unsigned wavelets; the version using prin-
cipal components is less accurate than the histogram
equalized pixels. That the unsigned wavelets perform
better than the signed wavelets is somewhat counterin-
tuitive; we had postulated that the sign of the wavelets
contain important information for face detection since
human faces have consistent patterns. Using the abso-
lute magnitude of the wavelets may result in a repre-
sentation with less variability than the signed version,
while still encoding the important information for de-
tection, allowing the classifier to find a better decision
surface. To gauge the performance of the system, we
can take a point on the ROC curve and translate the
performance into real image terms. For instance, for a
90% detection rate, we must tolerate 1 false positive for
every 100,000 patterns processed, or approximately 1
false positive per image.

The ROC curves for the people detection system are
shown in Fig. 10. Here, using all the color features
performs the best, where for instance a 90% detection
rate leads to 1 false positive for every 10,000 patterns
that are processed (about 3 false positives per image).
Gray level wavelets perform significantly better than
the corresponding gray level averages; here, unlike the

Figure 10. ROC curves for people detection comparing different
features using pixel type features as a benchmark.

case of face detection, the raw pixel values do not char-
acterize the object class well. When we use the 1,769
PCAs of the 8× 8 averages the performance is signif-
icantly worse. Figure 10 also supports our hypothesis
on the necessity of an overcomplete versus a complete
representation; the system starting from a complete rep-
resentation (120 color wavelets) underperforms all of
the systems based on the overcomplete representation.
The signed versions of both the color and gray level
wavelets perform worse than their unsigned versions.
We hypothesize that the reason is the same as the case
for faces, that the unsigned versions result in more com-
pact representations over which it is easier to learn (see
the intuition given in Section 2.2).

The preliminary ROC curve for our car detection sys-
tem using unsigned wavelet features on color images
is shown in Fig. 11.

4. A Real-Time Application

There are many possible applications of this technol-
ogy, ranging from automotive assistance systems to
surveillance. The only factor that is inhibiting our sys-
tem from being used right now in such systems is the
relatively slow processing speed. It is important to note
that our full system is, for the most part, an unoptimized
research tool; we have not invested significant amounts
of effort in improving the core speed.

We have developed a modified version of our
static people detection system that achieves real-time
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Figure 11. Preliminary ROC curve for car detection using wavelet
features over color images.

performance. This section describes a real-time appli-
cation of our technology as part of a larger system for
driver assistance; the combined system, including our
people detection module, is currently deployed “live”
in a DaimlerChrysler S Class demonstration vehicle.
The remainder of this section describes the integrated
system.

4.1. Speed Optimizations

Our original unoptimized static people detection sys-
tem using color images processes sequences at a rate
of 1 frame per 20 minutes; this is clearly inadequate for
any real-time automotive application. We have imple-
mented optimizations that have yielded several orders
of magnitude worth of speedups.

4.1.1. Gray Level Images. Our use of color images
for people detection is predicated on the fact that,
for people, the three different color channels (RGB)
contain a significant amount of information that gets
washed out in gray level images of the same scene. This
use of color information results in significant computa-
tional cost; the resizing and Haar transform operations
are performed on each color channel separately. In or-
der to improve system speed, we modify the system to
process intensity images.

4.1.2. Using a Subset of the Features.Instead of us-
ing the entire set of 1,326 wavelet features, the system

undergoes a feature selection step where we pick just
29 of the more important features across our training
set that encode the structure of the body. This changes
the 1,326 dimensional inner product in Eq. (13) into a
29 dimensional inner product. These wavelets are cur-
rently manually chosen as the strongest and weakest
wavelets that are consistent across the ensemble either
as indicators of an intensity boundary or a uniform re-
gion. There are 6 vertical and 1 horizontal coefficients
at the scale of 32× 32 and 14 vertical and 8 horizontal
at the scale of 16×16. Figure 12 shows the coefficients

Figure 12. The reduced set of 29 wavelet features for fast people
detection overlayed on an example image of a person.



A Trainable System for Object Detection 31

Figure 13. ROC curves for people detection comparing different
wavelet features and different feature set sizes; in the version running
in the experimental DaimlerChrysler car, we use the 29 gray unsigned
version.

in their proper spatial locations, overlayed on an image
from the training database. This sparser representation
does not, of course, yield the same performance; Fig. 13
shows how our 29 gray unsigned wavelet version com-
pares with other wavelet features and feature set sizes.

4.1.3. Reduced Set Vectors.From Eq. (13), we can
see that the computation time is also dependent on the
number of support vectors,Ns; in our system, this is
typically on the order of 1,000. We use results from
(Burges, 1996) to obtain an equivalent decision surface
in terms of a small number of synthetic vectors. This
method yields a new decision surface that is equivalent
to the original one but uses just 29 vectors.

4.1.4. Focus of Attention. To further enhance the pro-
cessing speed of the system, we can use a focus of
attention module that concentrates processing only on
areas of an image that are likely to contain people. This
focus of attention can key off of different characteris-
tics, including motion, distance, local image complex-
ity, shape, and color (Itti et al., 1998; Itti and Koch,
1999).

4.2. Integration with the DaimlerChrysler Urban
Traffic Assistant

To this end, we have integrated our people detection
system with a stereo-based obstacle detection system

in collaboration with DaimlerChrysler AG. Daimler-
Chrysler has obviously motivated interests in obstacle
detection algorithms for automotive applications as a
means to aid driving and, ultimately, to allow for au-
tonomous driving. One of the important requirements
of the system is that it is able to deal with both highway
and urban scenes, the latter being much more complex
than the former.

The DaimlerChrysler Urban Traffic Assistant (UTA)
is a real-time vision system for obstacle detection,
recognition, and tracking (Franke et al., 1998). UTA
relies on 3D position and depth information, obtained
using a binocular stereo vision system. To overcome
the expensive correspondence problem, they have de-
veloped a feature based approach to stereo analysis that
runs at 25 Hz on a 200 MHz PowerPC 604. The sys-
tem clusters feature points that correspond to the same
object, providing a rectangular bounding box around
each obstacle in the scene.

Using this bounding box which closely outlines the
shape of the obstacle, we expand this area to provide
a larger region of interest in which we will run our
people detection system; this is done to alleviate possi-
ble misalignments in the bounding box provided by the
stereo system. Furthermore, the stereo system provides
an accurate estimate of the distance to each object; us-
ing this information we can constrain the number of
sizes at which we look for people to a small number,
typically under three scales.

Within these regions of interest, we use our 29 gray
level feature system with the reduced set method that
lowers the number of support vectors to 29. In real-
world test sequences processed while driving through
Esslingen/Stuttgart, Germany, we are able to achieve
rates of more than 10 Hz with under 15 ms per obstacle
being spent in the people detection module.

5. Conclusion

We have described a general, trainable object detec-
tion system for static images; in this paper, results are
shown for face, people, and car detection with excel-
lent results. The system uses a representation based on
an overcomplete dictionary of Haar wavelets that cap-
tures the significant information about elements of the
object class. When combined with a powerful classifi-
cation engine, the support vector machine, we obtain a
detection system that achieves our goals of high accu-
racy with low rates of false positives. For face detec-
tion, typical out-of-sample performance is a detection
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rate of 90% with 1 false positive for every 100,000 pat-
terns that are processed and for people detection we can
achieve 90% accuracy with 1 false positive for every
10,000 patterns processed. To our knowledge, this is
the first people detection system described in the liter-
ature that is purely a pattern classification system and
that does not rely on motion, tracking, background sub-
traction, or any assumptions on the scene structure.

Our results in car detection in static images using
this trainable architecture are also novel. Due to the
significant change in the 2D image information of cars
under varying viewpoint, developing a pose invariant
car detection system is likely to be significantly more
difficult than a pose invariant (upright) people detection
system, since the characteristic pattern of a person does
not change significantly from different viewpoints. In-
stead of a full pattern approach, a component based
approach to car detection that identifies different parts
of a car—headlights, wheels, windshield, etc.—in the
appropriate configuration may be more successful. Pre-
liminary work on such a component based system for
people detection is described in Mohan (1999).

While the core system we describe implements a
brute force search in the entire image, the detector
would be more appropriate as part of a larger sys-
tem. For instance, if we incorporate afocus of attention
module as in the case of the DaimlerChrysler integra-
tion, the system will be able to target specific areas in
the scene. This results in both faster processing time
and more robust performance.

The performance that this system achieves can be en-
hanced by incorporating dynamical information when
we are processing video sequences. Several techniques
that we are working on have already improved the per-
formance to the point where our false positive rate is
near zero.
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