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One of the key problems in supervised learning is the insufficient
size of the training set. The natural way for an intelligent learner
to counter this problem and successfully generalize is to exploit
prior information that may be available about the domain or that
can be learned from prototypical examples. We discuss the notion
of using prior knowledge by creating virtual examples and thereby
expanding the effective training-set size. We show that in some
contexts this idea is mathematically equivalent to incorporating
the prior knowledge as a regularizer, suggesting that the strategy
is well motivated. The process of creating virtual examples in
real-world pattern recognition tasks is highly nontrivial. We pro-
vide demonstrative examples from object recognition and speech
recognition to illustrate the idea.
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I. LEARNING FROM EXAMPLES

Recently, machine learning techniques have become in-
creasingly popular as an alternative to knowledge-based
approaches to artificial intelligence problems in a variety
of fields. The hope is that automatic learning from ex-
amples will eliminate the need for laborious handcrafting
of domain-specific knowledge about the task at hand.
However, analyses of the complexity of learning problems
suggest that this hope might be overly optimistic—often the
number of examples needed to solve the problem might be
prohibitive. Clearly, a middle ground is needed and a useful
direction of research is the study of how to incorporate
prior world knowledge of the task within a learning from
examples framework.

The current paper deals with this subject. We first begin
by providing some background about how the problem
of learning from examples is usually formulated. In the
next section, we discuss briefly the complexity of the
learning problem and why, in the absence of any prior
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knowledge, one might require a large number of examples
to learn well. In Section III we introduce the idea ofvirtual
examples, i.e., creating additional examples from the current
set of examples by utilizing specific knowledge about the
task at hand. While the overall framework is similar to
learning from hints [4], our emphasis in this paper is
to describe some specific nontrivial transformations that
allow us to create virtual examples for real-world pattern
recognition problems. We first show in Section IV that in
certain function learning contexts, the framework of virtual
examples is equivalent to imposing prior knowledge as a
regularizer. Thus, the idea of virtual examples can be more
than an ad hoc strategy. We then discuss in Section V
some specific examples from computer vision and speech
recognition. Finally, we conclude by reiterating some of
our main points in Section VI.

A. Background: Learning as Function Approximation

The problem of learning from examples can be usefully
modeled as trying to approximate some unknown target
function from pairs that are consistent with this
function (modulo noise). The target functionbelongs to
some target class of functions denoted by. The learner
has access to a data set consisting ofexamples, i.e.,

pairs and picks a function
chosen from some hypothesis classon the basis of

this data set. The hope is that if “enough” examples are
drawn, the learner’s hypothesis will be sufficiently close
to the target, resulting in successful generalization to novel
unlabeled examples that the learner might encounter.

Numerous problems in pattern recognition, speech, vi-
sion, handwriting, finance, robotics, etc., can be cast within
this framework, and research typically focuses on different
kinds of hypothesis classes () and different ways of choos-
ing an optimal function in this class (training algorithms).
Thus, multilayer perceptrons [33], radial basis function
networks [21], [29], and decision trees [12], all correspond
to different choices of hypothesis classes on which popular
learning machines have been based. Similarly, different
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kinds of gradient descent schemes from backpropagation to
the expectation maximization (EM) algorithm correspond
to ways of choosing an optimal function from such a class
given a finite data set. By varying the choices of hypothesis
classes and training algorithms, a profusion of learning
paradigms have emerged. The most significant issue of
interest in each of these learning paradigms is how they
generalize to new unseen data. In the next section, we dis-
cuss the factors upon which the generalization performance
of a learning machine depends.

II. PRIOR INFORMATION AND THE PROBLEM

OF SAMPLE COMPLEXITY

In any learning from examples system, the number of
examples () that needs to be collected for successful
generalization is a key issue. This sample complexity
is typically characterized by the theory of Vapnik and
Chervonenkis [39], [40] that describes the general laws
that all probabilistically based learning machines have to
obey. It turns out that if the learner picks a hypothesis
( ) on the basis of the example set, then the
generalization error depends on the number of examples
as Here is the VC-dimension of the
class —a combinatorial measure of the complexity of
the hypothesis class. Roughly speaking, the VC dimension
(see [40] for further details) is a measure of how many
different kinds of functions there are in For example,
if were the parametric class of univariate polynomials
of degree , its VC dimension1 is . In general, large
or complex hypothesis classes that can accommodate many
different data sets would have a higher VC dimension than
smaller, restricted hypothesis classes. Thus we see that the
number of examples needed is proportional to the VC-
dimension and, in this sense, to the effective size of the
hypothesis class. Consequently, it is in our interest to use
small hypothesis classes in learning machines.

However, using a small hypothesis class is not enough.
Recall that the target function belongs to , and if
our hypothesis class is too small, then, even if we
choose the best function in it, the distance from the target
(generalization error) might be too high. To appreciate
this point better, let us consider a situation of learning
using neural networks in a least-squares setting. Recall that
ideally, we would like to “learn” the target function that is
given by the following (the expectation is with respect to
the true probability distribution generating the data):

However, in practice we do not know the true distribution
and so cannot compute the true expectation; nor do we
typically minimize over the class . For example, consider
the typical situation if we were using neural networks to

1While in this case the VC dimension is related in a simple way to
the number of parameters, this need not be true in general. One can think
of classes with many parameters having a small VC dimension and vice
versa. Thus the VC dimension is a better and more direct measure of
learning complexity than simply the number of parameters.

learn the function . We draw a finite data set (
pairs), construct an empirical approximation to the objective
function, and then minimize this over a class of neural
networks with a finite number of parameters. If we collected

data points and minimized over a neural network with
nodes in its hidden layer, we are in effect computing the
following function

Thus, when we attempt to learn the functionusing a
finite amount of data (points) and a hypothesis class with
a finite number of parameters ( ), then the function we
obtain in practice is given by . This is the function we
use to predict future, unknown values and, naturally, we
would like to know how good this function is, i.e., how
far this function is from the true target. In general, one
can show that the generalization error ( ) can
be decomposed into an approximation component and an
estimation component, i.e.

The approximation error is due to the finite size
of the hypothesis class. As the number of hidden nodes
increases, the representational power of the hypothesis class
increases and the approximation error goes to zero. The
estimation error is due to the finite amount
of data that is available to the learner. It is a monotonically
decreasing function and depends upon the VC dimension of
the hypothesis class and the amount of data (). As the
number of hidden nodes increases, the VC dimension of
increases, and consequently the estimation error increases
as well (keeping the data fixed). Thus to make the approxi-
mation error small, we need large-sized networks (large);
to make the estimation error small we need small-sized net-
works ( small). This tradeoff between the approximation
error and estimation error arises in all learning paradigms
and has been investigated for a number of different hy-
pothesis classes ranging from multilayer perceptrons [5] to
radial basis functions [26]. The following theorem states a
canonical result for radial basis functions, and Fig. 1 below
describes the generalization error surface as a function of
the number of parameters and the number of data.

Theorem 1 [26]: Let be the class of Gaussian radial
basis function networks with input nodes and hidden
nodes, i.e.,

Let be an element of the Bessel potential space2

of order , with (the class ). Assume that a data

2This is defined as the set of functionsf that can be written as
f = � � Gm, where� stands for the convolution operation,� 2 Lp
andGm is the Bessel–Macdonald kernel, i.e., the function whose Fourier
transform is ~Gm(s) = 1=((1 + 4�2ksk2)m=2):
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Fig. 1. The generalization error, the number of examples (l) and
the number of basis functions (n) as a function of each other.

set has been obtained by randomly sampling
the function in presence of noise, and that the noise
distribution has compact support. Then, for any
with probability greater than the following bound for
the generalization error holds:

(1)

What do we conclude from all this? First, that if we
work with unconstrained hypothesis classes, the number
of examples needed for low estimation error will almost
certainly be prohibitive. On the other hand, if we work with
highly constrained hypothesis classes, the approximation
error will be too high for successful generalization. The
only way around this dilemma is if the target class itself
( ) can be made small—but this is precisely the prior
information we have about the problem being solved. Thus,
if we have more prior information about the target function,
it would correspond to a smaller target class and the
problems with poor generalization would be ameliorated.

In essence, prior information is more than a good idea.
The mathematics of generalization (from the “no free
lunch” theorems of Wolpert [14] to the statistical theory of
Vapnik [39]) all point to one thing—incorporation of prior
knowledge might be the only way for learning machines to
tractably generalize from finite data. One way of incorporat-
ing prior knowledge is the idea of virtual examples: utilizing
prior information about the target function to generate novel
examples from old data, thereby enlarging our effective data
set. We discuss this in the next section.

III. V IRTUAL EXAMPLES: A FRAMEWORK

FOR PRIOR INFORMATION

As we have discussed above, a significant problem in
learning from examples is the large amount of data (ex-

amples) needed for adequate learning. Consequently, it
becomes crucial to exploit any form of prior knowledge we
might have about the task at hand. A well-known technique
for incorporating prior information is to restrict the class of
hypotheses—this would also reduce the data requirements
by the Vapnik theory, as discussed in the previous section.

Another alternative might be to expand the set of avail-
able examples in some fashion so that the learner has access
to an effectively larger set of examples resulting in more
accurate learning. These additional examples, created from
the existing ones by the application of prior knowledge,
will be referred to as virtual examples (first introduced
by Poggio and Vetter [30] and different from the notion
of virtual examples introduced by Abu-Mostafa [1]–[3], as
discussed later). We first lay the general framework for vir-
tual examples in Section III-A. Of course, virtual examples
are only one way of incorporating prior information, and
we will briefly review some alternate methods and their
relationship to our approach in Section III-B.

At first, the idea of virtual examples might seem like
an ad hocone, but we show in Section IV the connection
between the virtual examples approach and using regular-
ization as a technique for incorporating prior information.
For the example discussed, it is possible to prove that
both techniques yield the same solution. The heart of the
virtual examples idea involves the actual creation of the
virtual examples—this is the main focus of our paper,
and we discuss several substantive, real-world, practical
demonstrations of this approach in later sections.

A. The General Framework

As discussed earlier, the primary goal of the learner is
to approximate some unknown target function from
examples [ pairs] of this function. The unknown
target function might be a real valued, multivariate function
(as in Section IV), or even a characteristic function defined
over some manifold (as in Section V).

In the absence of any prior information, the learner would
attempt to fit a function from to the data set and use it
to predict future values. Suppose, however, that we have
prior knowledge of a set of transformations that allow us
to obtain new examples from old. For example, the target
function might be invariant with respect to a particular
group of transformations. A simple case is when the target
function is known to be even or odd. A more complex
case might be if the target function is a characteristic
function defined over a manifold of three-dimensional (3-
D) objects. Correspondingly, in some cases, obtaining the
new examples might be easy, in other cases—as in the case
for object recognition—it is quite difficult.

Thus, suppose we know some transformationsuch that
if is a valid example, then is
also a valid example. For an invariant transformation,
is the identity mapping. In general, of course, the relation
of to depends upon the prior knowledge of the
problem and might be quite complex. Then, given a set of

examples and knowledge
of this transformation , we generate the following set of
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virtual examples: such that
and

For many interesting cases, prior knowledge of the prob-
lem might allow us to define a group of transformations

such that for every we can create new, virtual
examples from the old data set. For example, rotations (in
the image plane or in 3-D) might define such a group
for object recognition problems. Thus, the creation of
virtual examples allows us to expand the example set and
consequently move toward better generalization.

B. Techniques for Prior Information and Related Research

Needless to say, the idea of virtual examples is only one
possible way of incorporating prior information. We discuss
in this section various ways in which researchers have tried
to utilize prior knowledge.

1) Prior Knowledge in the Choice of Variables or Features:
Prior knowledge could be used in the choice of the variables
or features that are used to represent the problem. Let us
consider the case of object recognition. A simple form
of prior knowledge is that the rotated version [in two
dimensions (2-D)] of an object still represents that object.
Therefore one could think of using, as input to the network,
features that are invariant under rotations in the image
plane. In this case, rotation invariant recognition would
be achieved with just one example. This approach is
somehow limited in vision applications, because it is very
difficult to find features that are invariant for “interesting”
transformations. For example it does not seem likely that
one can find features of face images that are invariant
with respect to rotation in 3-D space, apart from “trivial”
ones such as the color of the person’s hair, etc. (for
more details on the possibilities of such an approach,
see [24]).

Another kind of prior knowledge could be that certain
features always appear in conjunction (or disjunction), or
certain variables are always linked together in a certain
form. In this case one could explicitly add these new vari-
ables to the set of original variables, making the learning
task much easier. For example, in robotics it is known
that for certain mechanical systems, the relation between
torques and state variables is represented by certain com-
binations of trigonometric functions. Therefore, explicitly
adding sine and cosine transformations of the state space
variables usually makes the problem much easier to solve.
This technique is also not uncommon in statistics, where
often new variables are created by means of nonlinear
transformation of the original ones.

2) Prior Knowledge in the Learning Technique:Another
way to incorporate prior knowledge is to embed it in
the learning technique. Examples of this are the recent
transformation distance technique introduced by [35]. The
idea underlying this technique is the following: suppose
a pattern classification problem has to be solved, and we

know that the outcome of the classification scheme should
be invariant with respect to a certain transformation ,
where is a set of parameters (for example, the rotation
angle in the image plane for object recognition). This means
that for every input pattern there is a manifold on
which the output should be constant. Therefore, if we desire
to use a classification technique such as nearest neighbors,
which is based on a notion of distance, we should use as
distance between two patternsand , not the Euclidean
distance between them but the Euclidean distance between
the manifolds and . This quantity cannot be
computed analytically, in general, but [35] show how to
estimate it using a local approximation of the manifold
by its tangent plane that can be experimentally computed.
In this case the prior knowledge has been embedded in
the definition of distance and therefore in the learning
technique, rather than in the choice of the variables as
described above.

Another case in which prior knowledge is embedded in
the learning technique is regularization theory, a set of
mathematical tools introduced by Tikhonov in order to deal
with ill-posed problems [6], [15], [23], [29], [37], [44]. In
regularization theory an ill-posed problem is transformed
into a well posed one using some prior knowledge. The
most common form of prior knowledge is smoothness,
whose role in the theory of learning from examples has
been investigated at length by [29]. However, other forms
of prior knowledge can be used in the framework of
regularization theory. This topic has been investigated by
Verri and Poggio [41], who gave sufficient conditions for a
constraint to be embedded in the regularization framework.
Examples of the prior knowledge they considered include
monotonicity, convexity, and positivity.

3) Generating New Examples with Prior Knowledge:
Another form of utilizing prior knowledge for learning
is the idea of generating new examples from the existing
data set. This is the idea of virtual examples [30] that we
consider in this paper. An example of a similar technique
can be found in the work of Pomerleau [31], [32] on
ALVINN, an autonomous navigation vehicle that learns
to drive on a highway. The system consists of a camera
mounted on a vehicle, and a neural network that takes the
image of the road as an input and produces as output a
set of steering commands. The examples are acquired by
recording the actions of a human driver. Since humans
are very good at keeping the vehicle in the right lane,
the images of the road look all alike, and there are no
examples of what action to take if the vehicle is in an
“unusual attitude,” that is, too far to the right or to the left.
Therefore the network is not able to give correct answers
if it finds itself in these kinds of situations of which it
has no examples. Pomerleau used prior knowledge on
the geometry of the problem in order to create examples
of what to do in the case of unusual attitudes. Knowing
the location of the camera with respect to the vehicle,
and based on examples belonging to the data set created
by the human driver, he was able to create images of
what the road would look like if the vehicle were in an
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unusual attitude, e.g., too close to the centerline. Given
these new images and the corresponding locations of the
vehicle, he computed what the steering command should
be for each one of them, thereby creating a whole new
set of images that contain many examples of unusual
attitudes, and allowing the system to achieve excellent
performance

4) Incorporating Prior Knowledge as Hints:Another
technique is the one proposed by Abu-Mostafa [1]–[3].
Here we list very briefly the main points of his concept
of hints. The approach overlaps to a good extent but not
completely with our own ideas of virtual examples.

Consider the following:

1) a function to be learned with domain and range
;

2) the hypothesis provided by the learning process,
e.g., by a regularization network approximation of;

3) the functional measuring the error.

Then a hint is a test that must satisfy. One generates
one example of the hint and measures, the amount of
error of on that example (if the hint is that is odd
then one chooses an and uses ).
The total disagreement betweenand is then

.
Here are some examples of hints.

1) Invariance Hint: for certain examples
. The associated error can be

2) Monotonicity Hint: for certain examples
for which . Then the associated error

can be if and
otherwise.

3) Example Hint: The set of examples of can be treated
as a hint, .

Abu-Mostafa [1], [3] describes how to represent hints by
virtual examples. It is important for us to distinguish our
notion of virtual examples from that of Abu-Mostafa. For
Abu-Mostafa, a virtual example is typically a pair
that are related in some way by the hint. Minimization is
then done over all virtual examples. On the other hand,
Abu-Mostafa also introduces the notion of duplicate exam-
ples. These are pairs in the traditional sense that are
somehow created by knowledge of the hint. They are often
associated with invariant sets and are essentially the same
as our virtual examples. While Abu-Mostafa focuses on
the learning mechanism (a kind of adaptive minimization
scheme) to use the hint once it has been represented by the
creation of virtual examples (or duplicate examples), our
focus here is on the actual creation of the virtual examples
for some nontrivial learning problems.

IV. V IRTUAL EXAMPLES AND REGULARIZATION

We begin by showing that the idea of virtual examples
can lead to a solution that is identical to that obtained by
incorporating the prior knowledge as a regularizer. Related
results have also been obtained by [11] and [19].

A. Regularization Theory and RBF

Suppose that the set is
a random, noisy sample of some multivariate function.
The problem of recovering the function from the data

is ill posed and can be formulated in the framework of
regularization theory [30], [37], [44]. In this framework the
solution is found by minimizing a functional of the form

(2)

where is a positive number that is usually called the
regularization parameter and is a cost functional that
constrains the space of possible solutions according to some
form of prior knowledge. The most common form of prior
knowledge is smoothness, which ensures that if two inputs
are close the two corresponding outputs are also close.
We consider here a very general class of rotation invariant
smoothness functionals [15] defined as

where indicates the Fourier transform, is some positive
radial function that tends to zero as (so that

is a high-pass filter). We consider here for simplicity
of subsequent notations the case in which(the Fourier
transform of ) is positive definite rather than conditionally
positive definite [20], and therefore is a bell shaped function
[20]. It is possible to show (see [15] for a sketch of the
proof) that the function that minimizes the functional (2)
is a classical radial basis functions approximation scheme
[20]–[22]

(3)

where the vector of coefficients satisfies the linear
system

(4)

where is the identity matrix, and we have defined the
vector of output values and the matrix

. Classical examples of basis functionsinclude
the Gaussian and the inverse
multiquadric . In the next
section we will show how to embed the prior knowledge
about radial symmetry in this framework and we will derive
the corresponding solution.

B. Regularization Theory in Presence of Radial Symmetry

In the standard regularization theory approach, the min-
imization of the functional is usually done on the
space of functions for which is finite. If additional
knowledge of the solution is known, that can be used to
further constrain the space of solutions. If we know that
the solution is a function with radial symmetry, then we
can restrict ourselves to minimize over , where
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is the set of radial functions. The problem we have to
solve now is therefore the following:

(5)

We now notice that any function in uniquely defines
a one-dimensional function as follows:

(6)

Using this notation and standard results from Fourier
theory, we can represent elements ofby their Hankel
transform [13]

(7)

where is a known number, is a Bessel function
of the first kind [16], and is defined by

. The functional of (5) can now be thought as a
functional of , and the solution of the minimization
problem can be found by imposing the stationarity condition

. After some lengthy calculations it is
found that the solution of the approximation problem can
be written in the following form:

(8)

where we have defined

(9)

Although the basis function does not have a friendly
look, notice the similarity of the solution (8) with the
standard solution (3). In both cases the final approximating
function is a linear superposition of basis functions, and
there is one basis function for each data point. From a
computational point of view, in both cases the coefficients

are found by solving a linear system, with the only
difference being that in the case (8) the matrix of
(4) is replaced by the matrix .
However, while it is clear that the standard solution is
obtained by placing a “bump” function at each data point,
this interpretation is not evident from the solution (8). As
the following example shows, a very similar thing indeed
happens. This will become clearer in the next section, when
we will discuss the creation of “virtual” examples.

Example: Let us consider the very common case in
which the basis function is Gaussian. In this case
its Fourier transform is also a Gaussian, and therefore

. The integral of (9) can be performed
[16], to obtain the following form for :

(10)
where is the Bessel function of first kind of
imaginary argument [16]. A plot of this function in 2-D is
presented in Fig. 2, where we have set . It is clear

Fig. 2. The basis functionH(kxk; kxik) for xi = (2; 0).

that this function is a radial “bump” function whose bump is
concentrated on a circle of radius . Any radial section
of this function looks like a Gaussian function centered
at , providing a local, radially symmetric, form of
approximation.

C. Radial Symmetry and “Virtual” Examples

In this section, we use the prior knowledge to generate
new, “virtual” examples, from the existing data set.

Let be our data set, and let
us assume that we know that the functionunderlying the
data has radial symmetry. This means that
for all the possible rotation matrices in dimensions.
Here is a dimensional vector of parameters that
represents a point of , the surface of the-dimensional
unit sphere. This property implies that if is an
example of , the points for all are
also examples of , and we call these additional points the
“virtual” examples.

Let us now consider a standard radial basis functions
approximation technique of the form (3). Suppose for the
moment that the function is invariant with respect to a
finite number of rotations . Each example
will therefore generate virtual examples
that can now be included in the expansion (3) together
with the regular examples. It is trivial to see that, because
of the invariance property of , the coefficients of the
basis functions corresponding to the virtual examples will
be equal to the coefficients of the corresponding, original
example. As a result we have that (3) has to be replaced by

where we have defined , so that . We
now relax the assumption that the function is invariant with
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respect to only a finite number of rotations and allowto
span the entire surface . The equation above suggests
to replace (3) with the following:

(11)

where is the uniform measure over . Using
the Hankel representation (7) for the radial functionin
(11), the integral over can be performed, and provides
the result

where is given precisely by expression (9).
From this derivation it is clear that the basis function

is an infinite superposition of Gaussian func-
tions whose centers uniformly cover the surface of the
sphere of radius .

Therefore, creating virtual examples seems to be, in a
sense, the “right thing” to do, leading to the same result
that one gets from the more “principled” and sophisticated
approach of regularization theory. The appealing feature
of the virtual examples technique is the fact that it can
be applied in very general cases, in which it might be
impossible to derive analytical results as the one derived
in Section III.

V. VIRTUAL EXAMPLES IN VISION AND SPEECH

The goal of this paper is to suggest the creation of virtual
examples as a technique to incorporate prior information
in machine learning problems. The previous section shows
how creating virtual examples can be equivalent to incor-
poration of the prior information as a regularizer within a
framework for function learning. Thus the virtual example
strategy can often be more than a good heuristic. We now
turn our attention to some real-world problems that arise in
computer vision and speech recognition and give examples
of how one might generate virtual examples under certain
conditions.

In the examples we are about to consider, the nontrivial
part of the virtual example strategy is identifying the set
of legal transformations that allow a new, valid example
to be created. In the previous treatments of the machine
learning problem that concentrated on function learning,
the legal transformations were typically very simple and
could easily be used to create examples. For example,
whether the function is even or odd or whether it has
radial symmetry is easy to deal with. Imagine, instead, that
one were interested in object recognition. How does one
generate a new example? There are certain obvious cases.
For example, by translating the image in the image plane or
dilating the image (scale transformation) one could generate
some trivial cases of new examples. However, there are
some other nonobvious ones, such as rotation in depth or
changing the expression of a face, that are significantly
harder to realize. In the next section we discuss the problem

of object recognition, how to view it within a function
learning paradigm, and how to generate nontrivial virtual
examples for it.

A. Virtual Views for Object Recognition

Consider the problem of recognizing 3-D objects from
their 2-D images. A particular class of 3-D objects (like
cars, or cubes, or faces) can be defined in terms of pointwise
features that have been put in correspondence with each
other. If, for example, there arefeatures, and each feature
is represented by its location in a 3-D coordinate system
(e.g., by its coordinates) then a particular view of
a particular 3-D object can be represented as a point in

. However, note that not all points in correspond
to valid views of 3-D objects. Trying to learn this object
class could be regarded as trying to learn a characteristic
function in , i.e., a function of the form

otherwise.

When the 3-D view is projected to 2-D, then each 2-D
view can now be represented as a characteristic function
over . For problems such as these, one can rarely
specify simple mathematical constraints (like radial sym-
metry, etc.) on the characteristic functions. This makes the
recognition problem particularly challenging. Consider, for
example, the face recognition problem studied by [10]. The
goal is to recognize faces of different people under a variety
of views. One approach to this is to collect a large number
of views from each person and train a classifier to recognize
them. Shown in Fig. 3 are 15 views of one particular face
that have been collected as training examples for that face.
This relatively straightforward approach works but usually
requires a large number of training examples.

In contrast, an alternative strategy is to use some kind
of prior knowledge about the class of faces in order to
generate virtual examples or virtual “views.” One could
then train a view independent system on the basis of these
virtual examples. This raises the question: if we are given
examples of images belonging to some class, then can we
generate new examples of images belonging to the same
class? In order to do this we need to uncover the set of
legal transformations that allow us to take elements of
and come up with other elements of. Prior knowledge
about the class of objects allows us to uncover such a set
of valid transformations.

B. Symmetry as Prior Information

Poggio and Vetter [30] examined in particular the case
of bilateral symmetry of certain 3-D objects, such as faces.
Suppose that we have a model 2-D view of an object and a
pair of symmetric points in this 2-D view. For our purposes,
we can define an object to be bilaterally symmetric if the
following transformation of any 2-D view of a pair of
symmetric points of the object yields a legal view of the
pair, that is the orthographic projection of a rigid rotation
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Fig. 3. The pose-invariant, view-based face recognizer uses 15 views to model a person’s face.
From [10].

of the object

(12)

with

and

Notice that symmetric pairs are the elementary features
in this situation and points lying on the symmetry plane are
degenerate cases of symmetric pairs.

Geometrically, this simply means that for bilaterally
symmetric objects simple transformations of a 2-D view
yield other views that are legal. The transformations are
similar to mirroring one view around an axis in the image
plane, as shown in Fig. 4 (top, where the left image is
“mirrored” into the right one) and correspond—but only for
a bilaterally symmetric object—to proper rotations of a rigid
3-D object and their orthographic projection on the image
plane. Using the transformation of (12), an additional view
is generated from the one model view. If the two views are

linearly independent, then one can resort to the 1.5 Views
Theorem3 to compute a 3-D basis that spans the space of
the object. This allows us to compute a recognition function
with just one true view. Bilateral symmetry has been used in
face recognition systems [7] and psychophysical evidence
supports its use by the human visual system [34], [38], [43].

C. More General Transformations: Linear Object Classes

A more flexible way to acquire information about how
images of objects of a certain class change under pose,
illumination, and other transformations is to learn the pos-
sible pattern of variabilities and class-specific deformations
from a representative training set of views of generic or
prototypical objects of the same class, such as other faces.
In particular, if the objects belong to a well-behaved class
known as a linear object class, the transformations can be
easily learned. In this manner prior knowledge that the
object class is linear can be utilized effectively to generate
novel views that can be incorporated in the training process.

Although this approach of linear classes originates from
the proposal of Poggio and Vetter [30] for countering
the curse-of-dimensionality in applications of supervised

3Using the notation introduced earlier, the setE defines the space of
valid image views of a particular object. The 1.5 Views Theorem states
essentially thatE can be regarded as a six-dimensional vector space.
Furthermore this basis can be computed from two linearly independent
views. For further details on this, see [30]
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Fig. 4. Given a single 2-D view (upper left), a new view (upper
right) is generated under the assumption of bilateral symmetry.
The two views are sufficient to verify that a novel view (bottom)
corresponds to the same object as the first.

learning techniques, more powerful versions have been
developed recently. Techniques based on nonlinear learning
networks have been developed by Beymeret al. [9] as well
as Beymer and Poggio [7]. For our purposes here, we now
provide a brief overview of the technique of linear classes
for generating novel views of objects.

1) 3-D Objects, 2-D Projections, and Linear Classes:
Consider a 3-D view of a 3-D object that is defined in
terms of pointwise features [30]. Such a 3-D view can be
represented by a vector
that is by the -coordinates of its feature points.
Further, assume that is the linear combination of
3-D views of other objects of the same dimensionality,
such that

(13)

Consider now some linear operator associated with
a desired uniform transformation such as for instance a
specific rotation in 3-D. Let us define to be
the rotated 3-D view of object . Because of the linearity
of the group of uniform linear transformations, it follows
that

(14)

Thus, if a 3-D view of an object can be represented as the
weighted sum of views of other objects, its rotated view is a
linear combination of the rotated views of the other objects
with the same weights. Of course for an arbitrary 2-D view
that is a projection of a 3-D view, a decomposition like (13)

does not in general imply a decomposition of the rotated
2-D views (it is a necessary, but not sufficient, condition).

2) Linear Classes:A natural question to ask, therefore,
is: “Under what conditions do the 2-D projections of 3-
D objects satisfy (13) for (14)?” The answer will clearly
depend on the types of objects we use and also on the
projections we allow. In a series of articles [30] the notion
of linear classes has been introduced and developed. We
provide the following definition: a set of 3-D views (of
objects) is a linear object class under a linear pro-
jection if with and

and . This is equivalent to saying that the
minimal number of basis objects necessary to represent an
object is not allowed to change under the projection. Note
that the linear projection is not restricted to projections
from 3-D to 2-D, but it may also “drop” occluded points.
Now assume and are the projections
of elements of a linear object class with

(15)

then can be constructed without knowing
by using of (15) and the given of the other
objects

(16)

3) Implications: The relations described earlier suggest
that we can use “prototypical” 2-D views (the projections
of a basis of a linear object class) and their known trans-
formations to synthesize an operator that will transform
a 2-D view into a new 2-D view when the object is
a linear combination of the prototypes. In other words,
we can compute a new 2-D view of such an object
without knowing explicitly its 3-D structure. Notice also
that knowledge of the correspondence between (15) and
(16) is not necessary (rows in a linear equation system
can be exchanged freely). Therefore, the technique does
not require one to compute the correspondence between
views from different viewpoints. In fact some points may
be occluded. Fig. 5 shows a very simple example of a linear
object class and the construction of a new view of an object.
Since the dimension of the class of all cuboids is three,
any cuboid can be represented as a linear combination of
three prototypical cuboids. Thus the class is linear under all
orthographic projections that preserve the three dimensions.

Remark: 3-D objects differ in shape as well as in texture.
To truly apply the linear class idea to gray-level images,
we need to derive object representations that incorporate
texture. This can be done by developing shape and texture
vector representations that are in correspondence and using
the linear class idea over both.

4) Learning the Transformation:We finally complete the
story by discussing how the transformation from a reference
view to a novel view can be learned. Before we proceed,
let us introduce a helpful change of coordinate systems
in (15) and (16). Instead of using an absolute coordinate
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(a)

(b)

Fig. 5. Learning an image transformation according to a rotation
of three-dimensional cuboids from one orientation (a) to a new
orientation (b). The “test” cuboid in (a) can be represented as a
linear combination of the 2-D coordinates of the three example
cuboids in (a). The linear combination of the three example views
in (b), using the coefficients evaluated in (a), results in the correct
transformed view of the test cuboid as output in (b). Notice that
correspondence between views in the two different orientations is
not needed and different points of the object may be occluded in
the different orientations.

system, we represent the views as the difference to the
view of a reference object of the same class. Subtracting
the projection of a reference object from both sides of (15)
and (16), we have

(17)

and

(18)

After this change in the coordinate system, (18) now eval-
uates to the new difference vector to the rotated reference
view. The new view of the object can be constructed by
adding this difference to the reference view.

D. Steps in Constructing a Novel View

Step 1: First, we compute the coefficients for the
optimal decomposition (in the sense of least squares). We
decompose an “initial” field to a new object into the
“initial” fields to the given prototypes by minimizing

(19)

Rewriting this as (where is the matrix formed
by the vectors arranged column-wise and is the
column vector of the coefficients) and minimizing (19)
gives

(20)

Step 2: The observation of the previous section implies
that the operator that transforms into through

is given by

as (21)

and thus can be learned from the 2-D example pairs
. In this case, a one-layer linear network (com-

pare [17]) can be used to learn the transformation. can
then transform a view of a novel object of the same class.
If the examples are linearly independent, is given by

; in the other cases (19) can be solved
by a singular value decomposition (SVD) algorithm.

Step 3: Analogous steps have to be taken to deal with
textures. Before decomposing the new texture into example
textures, all textures are mapped onto a common ba-
sis—typically, the reference image using correspondences.
In this representation the decomposition of the textures can
be performed as described above.

Step 4: The final step is image rendering. Thecoeffi-
cients that are computed for both texture and shape vectors
are then applied to the prototype examples in the second
orientation. The correspondence fields to the new image are
combined with the reference image (often using forward
warping [45]) to generate the novel image.

Using this procedure, we can now generate novel views
of images with prior knowledge that the image belongs to
a linear class. Fig. 5 shows a case where a new view has
been generated for the class of cuboids for which the linear
class assumption is correct. More interestingly, however,
Fig. 6 shows how novel views of a face can be generated
from prototypical views using the linear class technique.
While faces are not theoretically guaranteed to constitute a
linear class, in practice the assumption turns out to be quite
good, as the example shows. Thus, instead of collecting 15
example patterns and training on them, one could generate
virtual examples using the techniques described here and
train on a combination of the real and virtual examples. A
system based on this has been successfully implemented
and described in [7]. A face recognition system using a
single real view plus 14 virtual views as in Fig. 6 (per
person) achieved a recognition rate of 85% correct while a
system using 15 real views (per person) achieved 99% on
the same database. Both systems were significantly better
than a system using one real view per person (32%). Notice
that in the approach outlined above, correspondence plays
a key role. Interestingly, correspondence for the prototypes
is only required between views from the same viewpoint.
Correspondence is also required between the real image and
one of the prototypes and can be computed automatically by
optical flow techniques [8]. A different approach (see [18])
does not require an explicit correspondence between the real
image and the prototypes. Vetteret al. [42] propose a tech-
nique that may also allow for an automatic correspondence
between the prototype images.

E. Virtual Examples in Speech Recognition

Another example of the potential utility of the “virtual
example” technique for incorporating prior information
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Fig. 6. A real view (center) surrounded by virtual views derived
from it a technique related to the linear class technique but
even simpler. The correspondence between the real view and the
prototypes is computed analytically. For details on the required
process, see [7].

can be provided in the context of speech recognition. In
the production of speech by humans, an important source
of prior information lies in the physical constraints that
the vocal tract and speech articulators (speech producing
apparatus) necessarily have to obey. For example, different
sounds (phonemes) produced by the same speaker might
share some common characteristics related to the properties
of the individual speaker’s vocal tract. Thus, if a speaker
has a high pitch, then this is likely to be the case for all
the phonemes the speaker produces.

Consider Fig. 7, which compares the formant values for
three vowel sounds—“i” (as in beat), “a” (as in palm), and
“u” (as in boot) for one male and one female speaker. The
data has been obtained from [28]. In speech recognition,
one will have to distinguish between the different vowels
on the basis of certain vowel features like formants. Notice
that while the broad pattern of formants for the two speakers
are the same, the actual formant values differ—the female
speaker has consistently higher formants in general. It turns
out that the formant values are related to the length of the
vocal tract—people with longer tracts have lower formants
and vice-versa. This is the sort of prior information that
one would like to capture while attempting to solve the
speech recognition problem in a way that is invariant to the
systematic speaker differences.

Roughly speaking, speech is produced when air is
pumped into the vocal tract, thereby exciting it, and
the corresponding acoustic waves are transmitted through
the air to the hearer. Thus, the vocal tract (including the

Fig. 7. The first and second formants of “i” (as in beat), “a” (as
in palm), and “u” (as in boot). The values for the female speaker
are plotted in italics.

nasal tract) modulates the excitations produced from below
resulting in speech. From an acoustic standpoint, the vocal
tract has been modeled as a nonuniform tube, and its
resonances correspond to the formants described earlier.
The length of the tube is inversely related to the frequency
of the resonances, thus humans with longer vocal tracts
have formants at lower frequencies. Each different sound
corresponds to a different articulatory configuration, a
correspondingly different vocal tract shape, a nonuniform
tube of different shape, and therefore a correspondingly
different set of formant values. All speakers producing an
“a” would have roughly the same configuration—as a first
order approximation, speaker differences would come about
due to variations in scale, i.e., all the vocal tracts would
have the same overall shape, the vocal tract of a large man
would be longer than that of a child. This overall length, for
example, is a quantity that is preserved across all sounds
of the speaker. If it could be extracted automatically from
a speaker’s “a,” then it could be used to scale a canonical
speaker’s “i” to produce a novel “i.”

The acoustic problem can be modeled using electrical
circuits, and the most common formulation has taken a
source-filter point of view. The vocal tract is viewed as
a filter shaping the input provided by electrical sources.
Sources are roughly of two types: 1) periodic sources that
correspond to the glottal vibrations during voiced speech
and 2) aperiodic sources that correspond to various kinds
of turbulent sources produced during unvoiced (or partially
voiced) speech, e.g., during fricatives like “s,” etc. Fig. 8
shows a schematic view of the speech production apparatus.
The vocal tract filter is shown to be parameterized
by two kinds of parameters:, which models the shape
of the tract and depends upon the phonetic identity of the
sound, and , which models things like overall scale and
depends upon the specific characteristics of the speaker.
Similarly, the voiced periodic source is also parameterized
by a set of parameters (denoted by) that are speaker-
specific and do not change from phoneme to phoneme.
Typical examples of such speaker-specific parameters are
pitch, voice quality, etc.
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Fig. 8. A schematic view of the speech production apparatus.

Fig. 9. A weighted spectral average measure for a speaker’s “i”
and the same speaker’s “ae” plotted against each other. Data from
360 speakers were collected and grouped into nine classes. The
class average for each of the two sounds has been plotted. Notice
the strong correlation suggesting that it is possible to predict the
“ae” sound from the “i” sound given the group to which a speaker
belongs.

One approach to the virtual examples idea is to obtain
a number of examples of a novel speaker’s “a” sounds.
For such sounds, we already know the phoneme-dependent
parameter values(since this depends only on the phoneme
and is common to all speakers, such parameters can be
estimated directly from the data collected from a reference
speaker). From the novel speaker’s sounds, we estimate
the speaker-specific parameters,. Now, to generate new
instances of a speaker’s “i,” we can drive the speech
production model using the phoneme-specific parameters
( , which are derived from the reference speaker) and the
speaker-specific parameters (, which are derived from the
test speaker). Note that such a virtual example strategy
would depend in large part upon the fidelity of the speech
production model that one has in the first place.

A simpler and more direct strategy is to learn the mapping
from “a” to “i” by collecting examples of each from
a number of different speakers. By doing this we can
convert a speaker’s “a” into a novel speaker’s “i” using
the functional mapping learned. Examine Fig. 9, which
shows the relationship between “ae” (as in bat) and “i”
(as in beat) from the same speaker. Data from 360 speakers
were collected and speakers were grouped into nine speaker
classes. A weighted spectral measure was computed for

each of the speaker’s “ae” and “i” sounds. The mean values
of this measure for each of the speaker groups is plotted.
Notice the strong correlation between the mean value of
a group’s “ae” and the mean value of that group’s “i”
suggesting strong predictability. Such an idea has been
used successfully in incorporating speaker information into
a speech recognition system [25], [27].

The problem described here is analogous to the vision
example we described. Different poses of the same face
are like different sounds of the same speaker (equivalent to
different “poses” of the vocal tract). In object recognition
we used knowledge of the relationship between different
poses of prototypes to create a novel pose for a new
speaker. In speech recognition we used knowledge of
the relationship between different sounds of prototypical
speakers to create a novel sound for a new speaker. This
particular strategy of creating virtual examples has rarely
been used in speech recognition and would be particularly
useful if one wishes to adapt a speech recognition system
to a new speaker using extremely limited amounts of
adaptation data [25], [27], [28].

VI. CONCLUSIONS

In this paper, we introduced the idea of virtual examples
as a possible strategy for incorporating prior knowledge
about the target function in a learning from examples
paradigm. We motivated the importance of using virtual
examples by discussing the issue of sample complexity in
machine learning. Specifically, using the general results of
Vapnik and Chervonenkis, we argued that the number of
examples needed for successful generalization would be
prohibitive without adequate constraints on the hypothesis
class. However, successful learning would result only if
such constraints properly reflected our prior knowledge of
the problem being solved.

The creation of virtual examples is one way around the
dilemma. We showed how the idea of virtual examples was
mathematically equivalent to incorporating prior knowledge
as a regularizer in function learning in certain restricted do-
mains. In most substantive real-world problems, however,
it is rare that prior knowledge can be directly implemented
as an elegant regularization constraint. For such cases, the
creation of virtual examples might be more straightforward.
However, this is not to say that virtual examples are easily
created. In particular, in this paper we spent a significant
portion of time discussing the details of the creation of
virtual examples for object recognition and speech recog-
nition. The results obtained so far suggest that this might
be a promising way to incorporate prior knowledge into an
example-based learning framework leading to systems that
generalize well from the limited amounts of data that are
typically available in real-world problems.
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