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Developing theoretical foundations for learning is a key step
towards understanding intelligence. ‘Learning from examples’ is
a paradigm in which systems (natural or artificial) learn a
functional relationship from a training set of examples. Within
this paradigm, a learning algorithm is a map from the space of
training sets to the hypothesis space of possible functional
solutions. A central question for the theory is to determine
conditions under which a learning algorithm will generalize
from its finite training set to novel examples. A milestone in
learning theory1–5 was a characterization of conditions on the
hypothesis space that ensure generalization for the natural class
of empirical risk minimization (ERM) learning algorithms that
are based on minimizing the error on the training set. Here we
provide conditions for generalization in terms of a precise
stability property of the learning process: when the training set
is perturbed by deleting one example, the learned hypothesis
does not change much. This stability property stipulates con-
ditions on the learning map rather than on the hypothesis space,
subsumes the classical theory for ERM algorithms, and is appli-
cable to more general algorithms. The surprising connection
between stability and predictivity has implications for the foun-
dations of learning theory and for the design of novel algorithms,
and provides insights into problems as diverse as language
learning and inverse problems in physics and engineering.

One of the main impacts of learning theory is on engineering.
Systems that learn from examples to perform a specific task have
many applications6. For instance, a system may be needed to
recognize whether an image contains a face or not. Such a system
could be trained with positive and negative examples: images with
and without faces. In this case, the input image is a point in a
multidimensional space of variables such as pixel values; its associ-
ated output is a binary ‘yes’ or ‘no’ label.

In the auditory domain, one may consider a variety of problems.
Consider speaker authentication. The input is an acoustic utterance,
and the system has to determine whether it was produced by a
particular target speaker or not. Training examples would then
consist of a set of utterances each labelled according to whether or
not they were produced by the target speaker. Similarly, in speech
recognition, one wishes to learn a function that maps acoustic
utterances to their underlying phonetic sequences. In learning the
syntax of a language, one wishes to learn a function that maps
sequences of words to their grammaticality values. These functions
could be acquired from training data.

In another application in computational biology, algorithms have
been developed that can produce a diagnosis of the type of cancer
from a set of measurements of the expression level of many
thousands of human genes in a biopsy of the tumour measured
with a complementary DNA microarray containing probes for a
number of genes. Again, the software learns the classification rule
from a set of examples, that is, from examples of expression patterns
in a number of patients with known diagnoses.

What we assume in the above examples is a machine that is
trained, instead of programmed, to perform a task, given data of the
form S ¼ ðxi;yiÞ

n
i¼1: Training means synthesizing a function that

best represents the relation between the inputs x i and the corre-
sponding outputs y i.

The basic requirement for any learning algorithm is generaliz-
ation: the performance on the training examples (empirical error)
must be a good indicator of the performance on future examples
(expected error), that is, the difference between the two must be
‘small’ (see Box 1 for definitions; see also Fig. 1).

Probably the most natural learning algorithm is ERM: the
algorithm ‘looks’ at the training set S, and selects as the estimated
function the one that minimizes the empirical error (training error)
over the functions contained in a hypothesis space of candidate

Box 1
Formal definitions in supervised learning

Convergence in probability. A sequence of random variables {Xn}
converges in probability to a random variable X (for example,

n!1
lim jXn 2Xj ¼ 0 in probability) if and only if for every e . 0,

n!1
limPðjXn 2Xj. eÞ ¼ 0.

Training data. The training data comprise input and output pairs. The
input data X is assumed to be a compact domain in an euclidean
space and the output data Y is assumed to be a closed subset of Rk.
There is an unknown probability distribution m(x,y) on the product
space Z ¼ X £ Y. The training set S consists of n independent and
identically drawn samples from the distribution on Z:

S ¼ {z1 ¼ ðx1;y1Þ;…; zn ¼ ðxn;ynÞ}

Learning algorithms. A learning algorithm takes as input a data set S

and outputs a function fS that represents the relation between the
input x and output y. Formally the algorithm can be stated as a map
L : <n$1Zn !H where H, called the hypothesis space, is the space of
functions the algorithm ‘searches’ to select fS. We assume that the
algorithm is symmetric, that is, fS does not depend on the ordering of
the samples in S. Most learning algorithms are either regression or
classification algorithms depending on whether y is real-valued or
binary valued.
Loss functions. We denote the price we pay with V(f, z) when the
prediction for a given x is f(x) and the true value is y. We assume that
V(f, z) is always bounded. A classical example of a loss function is the
square loss Vðf ;zÞ ¼ ðfðxÞ2 yÞ2.
Expected error. The expected error of a function f is defined as

I½f� ¼

ð
z

Vðf ; zÞdmðzÞ

which is also the expected error of a new sample z drawn from the
distribution. In the case of square loss:

I½f� ¼

ð
X;Y

ðfðxÞ2 yÞ2dmðx;yÞ

We would like to find functions for which I[f] is small. However, we
cannot compute I[f] because we are not given the distribution m.
Empirical error. The following quantity, called empirical error, can be
computed given the training data S:

IS½f� ¼
1

n

Xn

i¼1

Vðf ; ziÞ

Generalization and consistency. An algorithm generalizes if the
function fS selected by it satisfies for all S (jSj ¼ n) and uniformly for
any probability distribution m

n!1
lim jI½fS�2 IS½fS�j ¼ 0 in probability

An algorithm is (universally) consistent if uniformly for any distribution
m and any e . 0

n!1
lim P I½fS�.

f2H
inf I½f�þ 1

� �
¼ 0
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functions. Classical learning theory was developed around the study
of ERM. One of its main achievements is a complete characteriz-
ation of the necessary and sufficient conditions for generalization of
ERM and its consistency1–5. Consistency (see Box 2) requires that
the expected error of the solution converges to the expected error of
the most accurate function in the hypothesis class H. For ERM,
generalization is equivalent to consistency3. Generalization of ERM
can be ensured by restricting sufficiently the hypothesis space H
(ref. 7 provides a theory within a classical mathematical frame-
work).

The basic intuition here is that if the class H is too large, in the
sense of containing too many wild functions, it is impossible to
construct any useful approximating function using empirical data.
Without restrictions on H there are functions that minimize the
empirical error by fitting the data S exactly (thus I S[f S] ¼ 0) but are
very far away from the ‘true’ underlying function and therefore have
a large expected error (thus I[f S] is large).

Although the classical theory has achieved a complete character-
ization of ERM, there are many learning algorithms, some existing
and some likely to be discovered, that are not ERM. Several of the
most effective, state-of-the-art algorithms—from square-loss regu-
larization8 to support vector machines2, from bagging9 to boost-
ing10, 11, from k-nearest neighbour12 to vicinal risk minimization13—
are not, strictly, ERM, because ERM is defined as minimization of
the empirical error (see Box 1) within a fixed—a priori—hypothesis
space. Though specific theoretical results can be derived for some of
these algorithms7,14,15, general conditions, representing a broadly
applicable approach for checking generalization properties of any
learning algorithm, would be desirable. For the case of ERM
algorithms, Vapnik and Červonenkis2 asked: what property must
the hypothesis space H have for good generalization of ERM? For
the case of more general algorithms, we note that any learning
algorithm is a map L from data sets to hypothesis functions. For a
general theory, it therefore makes sense to ask: what property must
the learning map L have for good generalization error? Ideally a
general answer to the second question must include an answer to the
first question as well.

Recently, Bousquet and Elisseeff15 proposed the notion of uni-
form stability to characterize the generalization properties of an
algorithm (see Box 3). The idea—closely related to stability of well-
posed problems16—is to look at the stability of the learning map L by
considering how much the error at a point changes if the training set
is perturbed. Uniform stability was too strong a stability require-
ment to subsume the classical theory (see Box 3), so the search
remained open. Many different notions of algorithmic stability
exist, going back at least to refs 14 and 17.

We first introduce the definition of cross-validation leave-one-
out (CVloo) stability: the learning map L is distribution-
independent, CVloo stable if uniformly for all probability distri-
butions m

n!1
lim

ie{1;…;n}
sup jVðf Si ; ziÞ2Vðf S; ziÞj ¼ 0 in probability,

where S i denotes the training set S with the ith point removed.

CVloo stability measures the difference in errors at a point z i

between a function obtained given the entire training set and one
obtained given the same training set but with the point z i left out
(see Fig. 2). CVloo stability is strictly weaker than uniform stability
because the condition holds only on most (note the probabilistic
quantification) training points and not for all possible points z (see
also Box 3). For the supervised learning setting, the definition of
CVloo stability implements a specific and weak form of the general
idea of stability of a well-posed problem: the function ‘learned’ from
a training set should, with high probability, change little in its
predictions for a small change in the training set, such as deletion of
one of the examples.

The first crucial question is whether CVloo stability is general
enough to subsume the classical conditions of the consistency of
ERM. The answer is surprising and positive16:

Theorem A. For ‘good’ loss functions the following statements are
equivalent for ERM: (1) L is distribution-independent CVloo stable;
(2) ERM generalizes and is universally consistent; (3) H is uniform
Glivenko–Cantelli (uGC; see Box 2).

Figure 1 Example of an empirical minimizer with large expected error. In the case

sketched here the data were generated from the ‘true’ green function. The blue

function fits the data set and therefore has zero empirical error (I S[f blue] ¼ 0). Yet it

is clear that on future data, this function f blue will perform poorly as it is far from the

true function on most of the domain. Therefore I [f blue] is large. Generalization refers

to whether the empirical performance on the training set (I S[f ]) will generalize to test

performance on future examples ( I [f ]). If an algorithm is guaranteed to generalize, an

absolute measure of its future predictivity can be determined from its empirical

performance.

Box 2
Classical results of empirical risk minimization algorithms

Empirical risk minimization (ERM) algorithms are defined as those
satisfying:

IS½fS� ¼
f2H
min IS½f�

The results described in this Letter for the special case of exact
minimization are also valid in the general case of almost ERM, in which
the minimum is not assumed to exist (see ref. 16), though the proofs are
technically somewhat more complex.

The key theorem1–5 of classical learning theory relates consistency of
ERM to a constraint on the function classes H2.
Theorem. The following are equivalent for ‘well-behaved’ loss
functions, such as the square-loss; (1) ERM generalizes and is
consistent; (2) H is a uGC class.

A function class is a uGC class if universal, uniform convergence in
probability holds

n!1
lim

m
sup P

f2H
sup

1

n

Xn

i¼1

fðxiÞ2

ð
X

fðxÞdmðxÞ

�����
�����. 1

 !
¼ 0:

The result extends to general loss functions if the functions induced by
the composition of the loss V and hypothesis space H are uGC. For
binary functions the uGC property reduces to the well known
requirement of finite VC dimension.

Cucker and Smale7 and Zhou25 developed a complete and effective
theory exploiting the property of compactness of H, which is
sufficient, but not necessary, for generalization and consistency of ERM,
because compactness of H implies the uGC property of H but not vice
versa.

letters to nature

NATURE | VOL 428 | 25 MARCH 2004 | www.nature.com/nature420 ©  2004 Nature  Publishing Group



We now ask whether CVloo stability is sufficient for generalization
of any learning algorithm satisfying it. The answer to this question is
negative (Theorem 11 in ref. 15 claims incorrectly that CVloo

stability is sufficient for generalization, since there are counter-
examples16).

A positive answer can be obtained by augmenting CVloo stability
with stability of the expected error and stability of the empirical
error to define a new notion of stability, CVEEEloo stability, as
follows: the learning map L is distribution-independent, CVEEEloo

stable if for all probability distributions m: (1) is CVloo stable;
(2)

n!1
lim

ie{1;…;n}
sup jI½f S�2 I½f Si �j ¼ 0 in probability; (3)

n!1
lim

ie{1;…;n}
sup

jIS½ f S�2 ISi ½ f Si �j ¼ 0 in probability.

Properties (2) and (3) are weak and satisfied by most ‘reasonable’
learning algorithms. They are not sufficient for generalization. In
the case of ERM CVloo stability is the key property since both
conditions (2) and (3) are implied by consistency of ERM16. Unlike
CVloo stability, CVEEEloo stability is sufficient for generalization for
any learning algorithm16:

Theorem B. If a learning algorithm is CVEEEloo stable and the loss
function is bounded, then f S generalizes, that is uniformly for all m

n!1
lim jI½f S�2 IS½f S�j ¼ 0 in probability.

Notice that theorem B provides a general condition for general-
ization but not for consistency, which is not too surprising because
the class of non-ERM algorithms is very large. In summary,
CVEEEloo stability is sufficient for generalization for any algorithm
and necessary and sufficient for generalization and consistency of
ERM.

Good generalization ability means that the performance of the
algorithm on the training set will accurately reflect its future
performance on the test set. Therefore an algorithm that guarantees
good generalization will predict well if its empirical error on the
training set is small. Conversely, notice that it is also possible for an
algorithm to generalize well but predict poorly (when both empiri-
cal and expected performances are poor). Crucially, therefore, one
can empirically determine the predictive performance by looking at
the error on the training set.

Learning techniques are similar to fitting a multivariate function
to measurement data, a classical problem in nonparametric stat-
istics10,18,19. The key point is that the fitting should be predictive. In
this sense ‘learning from examples’ can also be considered as a
stylized model for the scientific process of developing predictive
theories from empirical data2. The classical conditions for general-
ization of ERM can then be regarded as the formalization of a ‘folk
theorem’, which says that simple theories should be preferred among
all of those that fit the data. Our stability conditions would instead
correspond to the statement that the process of research should—
most of the time—only incrementally change existing scientific
theories as new data become available.

It is intellectually pleasing that the concept of stability, which cuts
across so many different areas of mathematics, physics and engin-
eering, turns out to play such a key role in learning theory. It is
somewhat intuitive that stable solutions are predictive, but it is
especially surprising that our specific definition of CVEEEloo

stability fully subsumes the classical necessary and sufficient con-
ditions on H for consistency of ERM.

In this Letter we have stated the main properties in an asymptotic
form. The detailed statements16 of the two stability theorems
sketched here, however, provide bounds on the difference between
empirical and expected error for any finite size of the training
set.

Our observations on stability suggest immediately several other
questions. The first challenge is to bridge learning theory and a quite
different and broad research area—the study of inverse problems in
applied mathematics and engineering20—since stability is a key
condition for the solution of inverse problems (our stability
condition can be seen as an extension16 to the general learning
problem of the classical notion of condition number that charac-
terize stability of linear systems). In fact, while predictivity is at the
core of classical learning theory, another motivation drove the
development of several of the best existing algorithms (such as
regularization algorithms of which SVMs are a special case): well-

Box 3
Uniform stability

There have been many different notions of stability going back of
Tikhonov26, Devroye and Wagner27 and Kearns and Ron28. A significant
step was taken recently by Bousquet and Elisseeff15, who defined
uniform stability. The learning map L is uniformly stable if

;S2Zn; ;i2{1;…;n}
z2Z
sup jVðfS;zÞ2VðfSi ; zÞj# bðnÞ

and b (n) ¼ K/n, where K is a constant. Uniform stability is a natural
measure of continuity of L because the supremum measures the
largest change at any point z. Uniform stability implies good
generalization15, and Tikhonov regularization algorithms (including
support vector machines29) are uniformly stable15.

Unfortunately, uniform stability is a very strong requirement because
the change in error when a point is removed must be small for any x,y [

Z and any training set. Most algorithms are not uniformly stable. For
example, ERM with a hypothesis space of only two functions is not
guaranteed to be uniformly stable17.

The search remained open for a notion of stability that is sufficient for
generalization, and necessary and sufficient for ERM. A partial answer
was provided by Kutin and Niyogi17 when they introduced the notion of
cross validation (CV) stability and showed that this (with an additional
weaker condition) was adequate in the classical Probably Approximately
Correct (PAC) setting30. A general answer was not found.

In this Letter, we show that a leave-one-out version of CV stability
(CVloo) along with some more technical conditions provides the answer.

Figure 2 Measuring CV100 stability in a simple case. The blue line was obtained by a linear

regression (for example, ERM with square loss on a hypothesis space of linear functions)

on all five training points (n ¼ 5). The green line was obtained in the same way by ‘leaving

out’ the black triangle from the training set. In this case, CV loo stability requires that when

a single point is removed from a data set, the change in error at the removed point (here

indicated by the black dashed line) is small and decreases to zero in probability for n

increasing to infinity.
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posedness and, specifically, stability of the solution. These two
requirements—consistency and stability—have been treated so far
as ‘defacto’ separate, and in fact there was no a priori reason to
believe that they are related6. Our new result shows these two
apparently different motivations are actually completely equivalent
for ERM.

The most immediate implication of CVEEEloo stability and its
properties has to do with developing learning theory beyond the
ERM approach. In particular, CVEEEloo stability can provide
generalization bounds for algorithms other than ERM. For some
of them a ‘VC-style’ analysis (see Box 2) in terms of complexity of
the hypothesis space can still be used; for others, such as k-nearest
neighbour, such an analysis is impossible because the hypothesis
space has unbounded complexity or is not even defined, whereas
CVEEEloo stability can still be used. Though a detailed analysis for
specific algorithms needs to be done, some interesting observations
in terms of stability can be inferred easily from existing analyses. For
instance, the results of ref. 15 imply that regularization and SVMs
are CVEEEloo stable; a version of bagging with the number k of
regressors increasing with n is CVEEEloo stable21; k-nearest neigh-
bour with k ! 1 and k/n ! 0 and kernel rules with the width
hn ! 0 and h nn ! 1 are also CVEEEloo stable. Thus because of
theorem B, all these algorithms have the generalization property
(and some are also universally consistent).

More importantly, CVEEEloo stability may also suggest new
algorithms that, unlike ERM, enforce stability directly. Similarly,
it may be possible to gain a better understanding of existing
statistical tests and develop new ones based on the definition of
CVEEEloo stability and extensions of it. Furthermore, the search
for equivalent and possibly ‘simpler’ conditions than CVEEEloo

stability is open.
A theory of learning based on stability may have more direct

connections with cognitive properties of the brain’s mechanisms for
learning (needless to say, learning is much more than memory).
Stability is a condition on the learning machinery (or algorithms),
as the classical conditions, such as the uGC property of H, constrain
the domain of learning—the hypothesis space. It is interesting
that neural circuits approximating algorithms such as radial basis
functions have been proposed as learning modules in the brain22,23.
Such algorithms are CVEEEloo stable because they follow from
regularization. There are certainly other learning algorithms that are
biologically plausible, do not follow from regularization or ERM,
but may be analysable in terms of CVEEEloo stability.

Consider for example, the problem of learning a language. The
language learning algorithm AL is a map from linguistic data
(sentences produced by people) to computable functions (gram-
mars) that are learned from those data. Corresponding to the
learning algorithm AL there exists a class HAL

which is the class of
all learnable grammars. Thus HAL

is the hypothesis class corre-
sponding to the language learning algorithm. In the tradition of
generative linguistics identified most strongly with Chomsky, the
class of possible natural language grammars HAL

is called ‘universal
grammar’, and different linguistic theories attempt to characterize
the nature of this class. For example, the principles and parameters
approach24 tries to describe this class in a parametric fashion with a
finite number of boolean parameters.

Although this tradition in generative linguistics is a meaningful
one, it reflects an emphasis on the hypothesis class. In this sense, it is
in the same philosophical spirit as the classical approach to learning
theory of Vapnik and Červonenkis where conditions on the hypoth-
esis space (expressed in terms of the so called VC dimension) are
outlined for learnability. While A and HA are related, it is possible
that in many cases, A may admit an easier mathematical charac-
terization than HA. Thus, for example, it may be possible that the
language learning algorithm may be easy to describe mathematically
while the class of possible natural language grammars may be
difficult to describe. In that case, the shift in focus to the algorithm

rather than the hypothesis class would correspond to a shift to a
stability rather than a VC point of view.

It is often the case in the natural world that multiple represen-
tations of the same underlying phenomena are formally equivalent
but some representations are more insightful than others. In the
case of natural language, only time will tell whether A or HA will
prove to be the easier and more insightful object. At present,
learning theory in the context of language focuses heavily on the
latter, and many ‘learnable classes’ are studied and theories are
developed about them. We hope that focus on the learning algor-
ithm may stimulate a new kind of language learning theory and
practice. A
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