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and, (b) necessary and sufficient for consistency of ERM. Thus LOO stability is a weak form
of stability that represents a sufficient condition for generalization for symmetric learning al-
gorithms while subsuming the classical conditions for consistency of ERM. In particular, we
conclude that a certain form of well-posedness and consistency are equivalent for ERM.

Keywords: stability, inverse problems, generalization, consistency, empirical risk minimiza-
tion, uniform Glivenko–Cantelli.

Mathematics subject classifications (2000): 68T05, 68T10, 68Q32, 62M20.

� Corresponding author.



162 S. Mukherjee et al. / Stability in learning theory

1. Introduction

In learning from a set of examples, the key property of a learning algorithm is
generalization: the empirical error must converge to the expected error when the num-
ber of examples n increases.� An algorithm that guarantees good generalization for a
given n will predict well, if its empirical error on the training set is small. Empirical risk
minimization (ERM) on a class of functions H, called the hypothesis space, represents
perhaps the most natural class of learning algorithms: the algorithm selects a function
f ∈ H that minimizes the empirical error – as measured on the training set.

Classical learning theory was developed around the study of ERM. One of its main
achievements is a complete characterization of the necessary and sufficient conditions
for generalization of ERM, and for its consistency (consistency requires convergence of
the empirical risk to the expected risk for the minimizer of the empirical risk together
with convergence of the expected risk to the minimum risk achievable by functions in H).
It turns out that consistency of ERM is equivalent to a precise property of the hypothesis
space: H has to be a uniform Glivenko–Cantelli (uGC) class of functions (see defini-
tion 2.4).

Less attention has been given to another requirement on the ERM solution of the
learning problem, which has played an important role in the development of several
learning algorithms but not in learning theory proper. In general, empirical risk min-
imization is ill-posed (for any fixed number of training examples n). Any approach
of practical interest needs to ensure well-posedness, which usually means existence,
uniqueness and stability of the solution. The critical condition is stability of the solu-
tion; in this paper we refer to well-posedness, meaning, in particular, stability. In our
case, stability refers to continuous dependence on the n training data. Stability is equiv-
alent to some notion of continuity of the learning map (induced by ERM) that maps
training sets into the space of solutions, e.g., L :

⋃
n�1 Zn → H.

As a major example, let us consider the following, important case for learning de-
veloped in [6]. Assume that the hypothesis space H is a compact subset of C(X) with X

a compact domain in Euclidean space. Compactness�� ensures‡ the existence of the
minimizer of the expected risk for each n and, if the risk functional is convex‡‡ and reg-
ularity conditions on the measure hold, its uniqueness [6, 21]. Compactness guarantees
continuity of the learning operator L, measured in the sup norm in H (see section 2.4.3).
However, compactness is not necessary for well-posedness of ERM (it is well known, at
least since Tikhonov, that compactness is sufficient but not necessary for well-posedness
of a large class of inverse problems involving linear operators). Interestingly, compact-
ness is a sufficient§ but not necessary condition for consistency as well [6].

� The precise notion of generalization defined here roughly agrees with the informal use of the term in
learning theory.

�� With the sup norm as the distance metric.
‡ Together with continuity and boundedness of the loss function V .

‡‡ For convex loss function V (f, z).
§ Compactness of H implies the uGC property of H since it implies finite covering numbers.
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Thus it is natural to ask the question of whether there is a definition of well-
posedness, and specifically stability, of ERM – if any – that is sufficient to guarantee
generalization for any algorithm. Since some of the key achievements of learning the-
ory revolve around the conditions equivalent to consistency of ERM, it is also natural
to ask whether the same notion of stability could subsume the classical theory of ERM.
In other words, is it possible that some specific form of well-posedness is sufficient for
generalization and necessary and sufficient for generalization and consistency� of ERM?
Such a result would be surprising because, a priori, there is no reason why there should
be a connection between well-posedness and generalization – or even consistency (in
the case of ERM): they are both important requirements for learning algorithms but they
seem quite different and independent of each other.

In this paper, we define a notion of stability that guarantees generalization and in
the case of ERM is in fact equivalent to consistency.

There have been many different notions of stability that have been suggested in the
past. The earliest relevant notion may be traced to Tikhonov where stability is described
in terms of continuity of the learning map L. In learning theory, Devroye and Wag-
ner [9] use certain notions of algorithmic stability to prove the consistency of learning
algorithms like the k-nearest neighbors classifier. More recently, Kearns and Ron [14]
investigated several notions of stability to develop generalization error bounds in terms
of the leave one out error. Bousquet and Elisseeff [5] showed that uniform hypothesis
stability of the learning algorithm may be used to provide exponential bounds on gener-
alization error without recourse to notions such as the VC dimension.

These various notions of algorithmic stability are all seen to be sufficient for (a) the
generalization capability (convergence of the empirical to the expected risk) of learning
algorithms. However, until recently, it was unclear whether there is a notion of stability
that (b) is also both necessary and sufficient for consistency of ERM. The first partial
result in this direction was provided by Kutin and Niyogi [15] who introduced a proba-
bilistic notion of stability called Cross Validation or CV stability. This was shown to be
necessary and sufficient for consistency of ERM in the Probably Approximately Correct
(PAC) framework of Valiant [25].

However, the task of finding a correct characterization of stability that satisfies
both (a) and (b) above is subtle and nontrivial. In [15] at least ten different notions were
examined. An answer for the general setting, however, was not found.

In this paper we give a new definition of stability – which we call Leave-one-out
stability or, in short, LOO stability – of the learning map L. This definition answers the
open questions mentioned above.

Thus, our somewhat surprising new result is that this notion of stability is suffi-
cient for generalization and is both necessary and sufficient for consistency of ERM.
Consistency of ERM is in turn equivalent to H being a uGC class. To us the result seems
interesting for at least three reasons:

� In the case of ERM it is well known that generalization is equivalent to consistency.
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1. it proves the very close relation between two different, and apparently independent,
motivations to the solution of the learning problem: consistency and well-posedness;

2. it provides a condition – LOO stability – that is sufficient for generalization for any
algorithm and for ERM is necessary and sufficient not only for generalization but
also for consistency. LOO stability may, in some ways, be more natural – and per-
haps an easier starting point for empirical work� – than classical conditions such as
complexity measures of the hypothesis space H, for example, finiteness of Vγ or VC
dimension;

3. it provides a necessary and sufficient condition for consistency of ERM that – unlike
all classical conditions (see appendix A.1) – is a condition on the mapping induced
by ERM and not directly on the hypothesis space H.

The plan of the paper is as follows. We first give some background and definitions
for the learning problem, ERM, consistency and well-posedness. In section 3, which
is the core of the paper, we define LOO stability in terms of two conditions: CVloo

stability and Elooerr stability. We prove that LOO stability is sufficient for generalization
for general algorithms. We then prove that LOO stability is necessary and sufficient
for consistency of ERM. After the main results of the paper we outline in section 4
stronger stability conditions that imply faster rates of convergence and are guaranteed
only for “small” uGC classes. Examples are hypothesis spaces with finite VC dimension
when the target is in the hypothesis space and balls in Sobolev spaces or Reproducing
Kernel Hilbert Spaces (RKHS) with a sufficiently high modulus of smoothness. We
then discuss a few remarks and open problems: they include stability conditions and
associated concentration inequalities that are equivalent to uGC classes of intermediate
complexity – between the general uGC classes characterized by LOO stability (with
arbitrary rate) and the small classes mentioned above; they also include the extension of
our approach to non-ERM approaches to the learning problem.

2. Background: learning and ill-posed problems

For notation, definitions and some results, we will assume knowledge of a founda-
tional paper [6] and other review papers [13, 16]. The results of [5, 15] are the starting
point for our work. Our interest in stability was motivated by the above papers and by
our past work in regularization (for reviews see [13, 20]).

2.1. The supervised learning problem

There is an unknown probability distribution µ(x, y) on the product space Z =
X × Y . We assume X to be a compact domain in Euclidean space and Y to be a closed
subset of R

k. The measure µ defines an unknown true function T (x) = ∫
Y

y dµ(y|x)

mapping X into Y , with µ(y|x) the conditional probability measure on Y .

� In its distribution-dependent version.
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We are given a training set S consisting of n samples (thus |S| = n) drawn i.i.d.
from the probability distribution on Zn:

S = (xi, yi)
n
i=1 = (zi)

n
i=1.

The basic goal of supervised learning is to use the training set S to “learn” a func-
tion fS that evaluates at a new value xnew and (hopefully) predicts the associated value
of y:

ypred = fS(xnew).

If y is real-valued, we have regression. If y takes values from {−1, 1}, we have binary
pattern classification. In this paper we consider only symmetric learning algorithms, for
which the function output does not depend on the ordering in the training set.

In order to measure goodness of our function, we need a loss function V . We
denote by V (f, z) (where z = (x, y)) the price we pay when the prediction for a given x

is f (x) and the true value is y. An example of a loss function is the square loss which
can be written as

V (f, z) = (
f (x) − y

)2
.

In this paper, we assume that the loss function V is the square loss, though most results
can be extended to many other “good” loss functions. Throughout the paper we also
require that for any f ∈ H and z ∈ Z the loss is bounded, 0 � V (f, z) � M .

Given a function f , a loss function V , and a probability distribution µ over X, we
define the expected error of f as:

I [f ] = EzV (f, z)

which is also the expected loss on a new example drawn at random from the distribution.
In the case of square loss

I [f ] = EzV (f, z) =
∫

X,Y

(
f (x) − y

)2
dµ(x, y) = Eµ|f − y|2.

In the following we denote by Si the training set with the point zi removed and Si,z

the training set with the point zi replaced with z. For empirical risk minimization, the
functions fS , fSi , and fSi,z are almost minimizers (see definition 2.1) of IS[f ], ISi [f ],
and ISi,z[f ], respectively. As we will see later, this definition of perturbation of the
training set is a natural one in the context of the learning problem: it is natural to require
that the prediction should be asymptotically robust against deleting a point in the training
set.

2.2. Empirical risk minimization

For generalization, that is for correctly predicting new data, we would like to select
a function f for which I [f ] is small, but in general we do not know µ and cannot
compute I [f ].



166 S. Mukherjee et al. / Stability in learning theory

In the following, we will use the notation PS and ES to denote respectively the
probability and the expectation with respect to a random draw of the training set S of
size |S| = n, drawn i.i.d, from the probability distribution on Zn.

Given a function f and a training set S consisting of n data points, we can measure
the empirical error (or risk) of f as:

IS[f ] = 1

n

n∑

i=1

V (f, zi).

When the loss function is the square loss

IS[f ] = 1

n

n∑

i=1

(
f (xi) − yi

)2 = Eµn
(f − y)2.

where µn is the empirical measure supported on the set x1, . . . , xn. In this notation (see,
for example, [16]) µn = (1/n)

∑n
i=1 δxi

, where δxi
is the point evaluation functional on

the set xi .

Definition 2.1. Given a training set S and a function space H, we define almost-ERM
(Empirical Risk Minimization) to be a symmetric procedure that selects a function f εE

S

that almost minimizes the empirical risk over all functions f ∈ H, that is for any given
εE > 0:

IS

[
f εE

S

]
� inf

f ∈H
IS[f ] + εE. (2.1)

Definition 2.2. An algorithm is defined as symmetric if over training sets S

ESV (fS, z) = ES,πV (fS(π), z)

for any z and S(π) = {zπ(1), . . . , zπ(n)} for every permutation π from {1, . . . , n} onto
itself.

In the following, we will drop the dependence on εE in f εE

S . Notice that the term
“Empirical Risk Minimization” (see [26]) is somewhat misleading: in general, the min-
imum need not exist.� In fact, it is precisely for this reason�� that we use the notion
of almost minimizer or ε-minimizer, given in equation (2.1) (following others, e.g.,
[1, 16]), since the infimum of the empirical risk always exists. In this paper, we use
the term ERM to refer to almost-ERM, unless we say otherwise.

We will use the following notation for the loss class L of functions induced by V

and H. For every f ∈ H, let �(z) = V (f, z), where z corresponds to x, y. Thus

� When H is the space of indicator functions, minimizers of the empirical risk exist, because either a point
xi is classified as an error or not.

�� It is worth emphasizing that ε-minimization is not assumed to take care of algorithmic complexity issues
(or related numerical precision issues) that are outside the scope of this paper.
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�(z) : X × Y → R and we define L = {�(f ): f ∈ H, V }. The use of the notation � em-
phasizes that the loss function � is a new function of z induced by f (with the measure µ

on X × Y ).

2.3. Consistency of ERM and uGC classes

The key problem of learning theory was posed by Vapnik as the problem of sta-
tistical consistency of ERM and of the necessary and sufficient conditions to guarantee
it. In other words, how can we guarantee that the empirical minimizer of IS[f ] – the
distance in the empirical norm between f and y – will yield a small I [f ]? It is well
known (see [1]) that convergence of the empirical error to the expected error guarantees
for ERM its consistency.

Our definition of consistency is:

Definition 2.3. A learning map is (universally, weakly) consistent if for any given
εc > 0

lim
n→∞ sup

µ

P

{
I [fS] > inf

f ∈H
I [f ] + εc

}
= 0.

Universal consistency means that the above definition holds with respect to the set
of all measures on Z. Consistency can be defined with respect to a specific measure on Z.
Weak consistency requires only convergence in probability, strong consistency requires
almost sure convergence. For bounded loss functions weak consistency and strong con-
sistency are equivalent [11]. In this paper we call consistency what is sometimes defined
as weak, universal consistency [7].

The work of Vapnik and Dudley showed that consistency of ERM can be ensured
by restricting sufficiently the hypothesis space H to ensure that a function that is close
to a target T for an empirical measure will also be close with respect to the original
measure. The key condition for consistency of ERM can be formalized in terms of
uniform convergence in probability of the functions �(z) induced by H and V . Func-
tion classes for which there is uniform convergence in probability are called uniform
Glivenko–Cantelli classes of functions:

Definition 2.4. Let F be a class of functions. F is a (weak) uniform Glivenko–Cantelli
class if

∀ε > 0 lim
n→∞ sup

µ

P

{
sup
f ∈F

|Eµn
f − Eµf | > ε

}
= 0.

Measurability issues can be handled by imposing mild conditions on F (see
[10, 11]).
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When applied to the loss functions �, the definition implies that for all distribu-
tions µ there exist εn and δn such that

P

{
sup
f ∈F

∣
∣I [f ] − IS[f ]∣∣ > εn

}
� δεn,n,

where the sequences εn and δεn,n go simultaneously to zero.� Later in the proofs we will
take the sequence of εE

n (in the definition of ε-minimizer) to 0 with a rate faster than 1/n,
therefore faster than the sequence of εn (e.g., the εn in the uGC definition).

We are now ready to state the “classical” necessary and sufficient condition for
consistency of ERM (from [1, theorem 4.2, part 3], see also [11, 26]).

Theorem 2.5. Assuming that the loss functions � ∈ L are bounded and the collection
of functions {� − infL �: � ∈ L} are uniformly bounded,�� a necessary and sufficient
condition for universal consistency of ERM is that L is uGC.

We observe that for many “good” loss functions V – in particular, the square loss
– with � bounded, the uGC property of H is equivalent to the uGC property of L.‡

Notice that there is a definition of strong uGC classes where, instead of conver-
gence in probability, almost sure convergence is required.

Definition 2.6. Let F be a class of functions. F is a strong uniform Glivenko–Cantelli
class if

∀ε > 0 lim
n→∞ sup

µ

P

{
sup
m�n

sup
f ∈F

|Eµm
f − Eµf | > ε

}
= 0.

For bounded loss functions weak uGC is equivalent to strong uGC (see [11, theo-
rem 6]) and weak consistency is equivalent to strong consistency in theorem 2.5. In the
following, we will speak simply of uGC and consistency, meaning – strictly speaking –
weak uGC and weak consistency.

� This fact follows from the metrization of the convergence of random variables in probability by the
Ky Fan metric and its analogue for convergence in outer probability. The rate can be slow, in general
(Dudley, Pers. com.).

�� These conditions will be satisfied for bounded loss functions 0 � �(z) � M .
‡ Assume that the loss class has the following Lipschitz property for all x ∈ X, y ∈ Y , and f1, f2 ∈ H:

c1|V (f1(x), y) − V (f2(x), y)| � |f1(x) − f2(x)| � c2|V (f1(x), y) − V (f2(x), y)|,

where 0 < c1 < c2 are Lipschitz constants that upper and lower-bound the functional difference. Then
L is uGC iff H is uGC because there are Lipschitz constants that upper and lower bound the difference
between two functions ensuring that the cardinality of H and L at a scale ε differ by at most a constant.
Bounded Lp losses have this property for 1 � p < ∞.
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2.4. Inverse and well-posed problems

2.4.1. The classical case
Hadamard introduced the definition of ill-posedness. Ill-posed problems are often

inverse problems.
As an example, assume g is an element of Z and u is a function in H, with Z and H

metric spaces. Then given the operator A, consider the equation

g = Au. (2.2)

The direct problem is to compute g given u; the inverse problem is to compute u

given the data g. The inverse problem of finding u is well-posed when

• the solution exists,

• is unique, and

• is stable, that is depends continuously on the initial data g. In the example above this
means that A−1 has to be continuous. Thus stability has to be defined in terms of the
relevant norms.

Ill-posed problems (see [12]) fail to satisfy one or more of these criteria. In the
literature the term ill-posed is often used for problems that are not stable, which is the
key condition. In equation (2.2) the map A−1 is continuous on its domain Z if, given
any ε > 0, there is a δ > 0 such that for any z′, z′′ ∈ Z

‖z′ − z′′‖ � δ

with the norm in Z, then
∥
∥A−1z′ − A−1z′′∥∥ � ε,

with the norm in H.
The basic idea of regularization for solving ill-posed problems is to restore exis-

tence, uniqueness and stability of the solution by an appropriate choice of H (the hypoth-
esis space in the learning framework). Usually, existence can be ensured by redefining
the problem and uniqueness can often be restored in simple ways (for instance, in the
learning problem we choose randomly one of the several equivalent almost minimiz-
ers). However, stability of the solution is usually much more difficult to guarantee. The
regularization approach has its origin in a topological lemma� that under certain con-
ditions points to the compactness of H as sufficient for establishing stability and thus
well-posedness.��

� Lemma (Tikhonov [24]). If operator A maps a compact set H ⊂ H onto Z ⊂ Q, H and Q metric
spaces, and A is continuous and one-to-one, then the inverse mapping is also continuous.

�� In learning, the approach underlying most algorithms such as Radial Basis Functions (RBFs) and Support
Vector Machines (SVMs) is in fact regularization. These algorithms can therefore be directly motivated
in terms of restoring well-posedness of the learning problem.
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Notice that when the solution of equation (2.2) does not exist, the standard ap-
proach is to replace it with the following problem, analogous to ERM,

min
u∈H

‖Au − g‖, (2.3)

where the norm is in Z. Assuming for example that Z and H are Hilbert spaces and A

is linear and continuous, the solutions of equation (2.3) coincide with the solutions of

Au = Pg, (2.4)

where P is the projection onto R(A) = {Au | u ∈ H}.

2.4.2. Classical framework: regularization of the learning problem
For the learning problem it is clear, but often neglected, that ERM is, in general,

ill-posed for any given Sn. ERM defines a map L which maps any discrete data S =
((x1, y1), . . . , (xn, yn)) into a function f , that is

LS = fS.

In equation (2.2) L corresponds to A−1 and g to the discrete data S. In general,
the operator L induced by ERM cannot be expected to be linear. In the rest of this
subsection, we consider a simple, “classical” case that corresponds to equation (2.4) and
in which L is linear.

Assume that the x part of the n examples (x1, . . . , xn) is fixed; then L as an operator
on (y1, . . . , yn) can be defined in terms of a set of evaluation functionals Fi on H, that
is yi = Fi(u). If H is a Hilbert space and in it the evaluation functionals Fi are linear
and bounded, then H is a Reproducing Kernel Hilbert Space (RKHS) and the Fi can be
written as Fi(u) = (u, Kxi

)K where K is the kernel associated with the RKHS and we
use the inner product in the RKHS. For simplicity we assume that K is positive definite
and sufficiently smooth [6, 28]. The ERM case corresponds to equation (2.3) that is

min
f ∈BR

1

n

n∑

i=1

(
f (xi) − yi

)2
. (2.5)

Compactness is ensured by enforcing the solution f – which has the form f (x) =∑n
1=1 ciK(xi , x) since it belongs to the RKHS – to be in the ball BR of radius R in H

(e.g., ‖f ‖K � R). Then H = IK(BR) is compact – where IK :HK ↪→ C(X) is the
inclusion and C(X) is the space of continuous functions with the sup norm [6]. In this
case the minimizer of the generalization error I [f ] is well-posed. Minimization of the
empirical risk (equation (2.5)) is also well-posed: it provides a set of linear equations to
compute the coefficients c of the solution f as

Kc = y (2.6)

where y = (y1, . . . , yn) and (K)i,j = K(xi , xj ).
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A particular form of regularization, called Tikhonov regularization, replaces ERM
(see equation (2.5)) with

min
f ∈H

1

n

n∑

i=1

(
f (xi) − yi

)2 + γ ‖f ‖2
K, (2.7)

which gives the following set of equations for c (with γ � 0)

(K + nγ I)c = y, (2.8)

which for γ = 0 reduces to equation (2.6). In this RKHS case, stability of the empirical
risk minimizer provided by equation (2.7) can be characterized using the classical notion
of condition number of the problem. The change in the solution f due to a variation in
the data y can be bounded as

‖�f ‖
‖f ‖ � ‖K + nγ I‖∥∥(K + nγ I)−1

∥
∥‖�y‖

‖y‖ , (2.9)

where the condition number ‖K + nγ I‖‖(K + nγ I)−1‖ is controlled by nγ . A large
value of nγ gives condition numbers close to 1, whereas ill-conditioning may result if
γ = 0 and the ratio of the largest to the smallest eigenvalue of K is large.

Remarks.

1. Equation (2.5) for any fixed n corresponds to the set of well-posed, linear equa-
tions (2.6), even without the constraint ‖f ‖2

K � R: if K is symmetric and positive
definite and the xi are distinct then K−1 exists and ‖f ‖2

K is automatically bounded
(with a bound that increases with n). For any fixed n, the condition number is finite
but typically increases with n by equation (2.9).

2. Minimization of the functional in equation (2.7) with γ > 0 implicitly enforces the
solution to be in a ball in the RKHS, whose radius can be bounded “a priori” before
the data set S is known (see [18]).

2.4.3. Stability of learning: a more general case
The approach to defining stability described above for the RKHS case cannot be

used directly in the more general setup of the supervised learning problem introduced
in section 2.1. In particular, the training set Sn is drawn i.i.d. from the probability
distribution on Z, the xi are not fixed and we may not even have a norm in H (in the case
of RKHS the norm in H bounds the sup norm).

The probabilistic case for H with the sup norm. A definition of stability that takes care
of some of the issues above was introduced by [5] with the name of uniform stability:

∀S ∈ Zn, ∀i ∈ {1, . . . , n} sup
z∈Z

∣
∣V (fS, z) − V (fSi , z)

∣
∣ � β. (2.10)

Kutin and Niyogi [15] showed that ERM does not, in general, exhibit uniform
stability. Therefore they extended it in a probabilistic sense with the name of (β, δ)
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hypothesis stability, which is a natural stability criterion for hypothesis spaces equipped
with the sup norm. We give here a slightly different version:

PS

{
sup
z∈Z

∣
∣V (fS, z) − V (fSi , z)

∣
∣ � β

}
� 1 − δ, (2.11)

where β and δ go to zero with n → ∞.
Interestingly, the results of [5] imply that Tikhonov regularization algorithms are

uniformly stable (and of course (β, δ) hypothesis stable) with β = O(1/γ n). Thus, this
definition of stability recovers the key parameters for good conditioning number of the
regularization algorithms. As discussed later, we conjecture that in the case of ERM,
(β, δ) hypothesis stability is related to the compactness of H with respect to the sup
norm in C(X).

A more general definition of stability. The definitions of stability introduced in the past
are not general enough to be equivalent to the classical necessary and sufficient condi-
tions on H for consistency of ERM.� The key ingredient in our definitions of stability
given above is some measure on |�fS

− �f
Si
|, e.g., a measure of the difference between

the error made by the predictor obtained by using ERM on the training set S vs. the error
of the predictor obtained from a slightly perturbed training set Si . We propose here the
following definition�� of leave-one-out cross-validation (CVloo) stability, which is the
key part in the notion of LOO stability introduced later:

∀i ∈ {1, . . . , n} PS

{∣
∣V (fS, zi) − V (fSi , zi)

∣
∣ � βCV

}
� 1 − δCV.

Here we measure the difference between the errors at a point zi which is in the
training set of one of the predictors but not in the training set of the other. Notice that
the definitions of stability we discussed here are progressively weaker: a good condition
number (for increasing n) implies good uniform stability.‡ In turns, uniform stability im-
plies (β, δ) hypothesis stability which implies CVloo stability. For the case of supervised
learning all the definitions capture the basic idea of stability of a well-posed problem:
the function “learned” from a training set should, with high probability, change little in
its pointwise predictions for a small change in the training set, such as deletion of one of
the examples.

Remarks.

1. In the learning problem, uniqueness of the solution of ERM is always meant in terms
of uniqueness of � and therefore uniqueness of the equivalence class induced in H by
the loss function V . In other words, multiple f ∈ H may provide the same �. Even

� In addition, the above definitions of stability are not appropriate for hypothesis spaces for which the
sup norm is not meaningful, at least in the context of the learning problem (for instance, for hypothesis
spaces of indicator functions).

�� The definition is given here in its distribution-dependent form.
‡ Note that nγ which controls the quality of the condition number in regularization also controls the rate

of uniform stability.
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in this sense, ERM on a uGC class is not guaranteed to provide a unique “almost
minimizer”. Uniqueness of an almost minimizer therefore is a rather weak concept
since uniqueness is valid modulo the equivalence classes induced by the loss function
and by ε-minimization.

2. Stability of algorithms is almost always violated, even in good and useful algorithms
(Smale, Pers. comm.). In this paper, we are not concerned about stability of algo-
rithms but stability of problems. Our notions of stability of the map L are in the
same spirit as the condition number of a linear problem, which is independent of
the algorithm used to solve it. As we discussed earlier, both CVloo stability and uni-
form stability can be regarded as extensions of the notion of condition number (for a
discussion in the context of inverse ill-posed problems see [3]).

3. CVloo and ELooerr stability, generalization and consistency of ERM

3.1. Probabilistic preliminaries

The following are consequences of the linearity of expectations and the symmetry
of the learning algorithm. They will be used throughout the paper:

ES

[
I [fS]

] = ES

[
EzV (fS, z)

] = ES,z

[
V (fS, z)

]
,

for all i ∈ {1, . . . , n}

ES

[
IS[fS]

] = ES

[
1

n

n∑

i=1

V (fS, zi)

]

= 1

n

n∑

i=1

[
ESV (fS, zi)

] = ES

[
V (fS, zi)

]
,

ES

[
I [fSi ]] = ESEziV (fSi , zi) = ES

[
V (fSi , zi)

]
.

3.2. Forms of stability

This section introduces several definitions of stability and shows the equivalence of
two of them. The first definition of stability of the learning map L, is Cross-Validation
leave-one-out (CVloo) stability. This notion of stability is a variation of a definition of
stability introduced in [15].

Definition 3.1. The learning map L is distribution-independent, (β(n)

CV, δ
(n)

CV) CVloo stable
if for each n there exists a β

(n)

CV and a δ
(n)

CV such that

∀i ∈ {1, . . . , n}, ∀µ PS

{∣
∣V (fSi , zi) − V (fS, zi)

∣
∣ � β

(n)

CV

}
� 1 − δ

(n)

CV,

with β
(n)

CV and δ
(n)

CV going to zero for n → ∞.

Notice that our definition of the stability of L depends on the pointwise value of
|V (fS, zi) − V (fSi , zi)|. This definition is weaker than the uniform stability condition
stated in [5] and is implied by it.
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A definition which turns out to be equivalent was introduced in [5] (see also [14])
under the name of pointwise hypothesis (PH) stability.

Definition 3.2. The learning map L is distribution-independent, (PH) stable if for
each n there exists a β

(n)
PH

∀i ∈ {1, . . . , n}, ∀µ ES

[∣
∣V (fS, zi) − V (fSi , zi)

∣
∣
]

� β
(n)
PH,

with β
(n)
PH going to zero for n → ∞.

We now show that the two definitions of CVloo stability and PH stability are equiv-
alent.

Lemma 3.3. CVloo stability with βloo and δloo implies PH stability with βPH = βloo +
Mδloo and PH stability with βPH implies CVloo stability with (α, βPH/α) for any
α < βPH .

Proof. The following proof holds for any distribution µ and therefore it is distribution
independent. From the definition of CVloo stability and the bound on the loss function it
follows that

∀i ∈ {1, . . . , n} ES

[∣
∣V (fS, zi) − V (fSi , zi)

∣
∣
]

� βloo + Mδloo.

This proves the first statement.
From the definition of PH stability, we have

ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

� βPH.

Since |V (fSi , zi) − V (fS, zi)| � 0, by Markov’s inequality, we have

P
[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣ > α

]
� ES[|V (fSi , zi) − V (fS, zi)|]

α
� βPH

α
.

This proves the second statement. �

We now introduce a condition that we call Expected-to-leave-one-out error
(Elooerr) stability.

Definition 3.4. The learning map L is distribution-independent, Elooerr stable if for
each n there exists a β

(n)
EL and a δ

(n)
EL such that

∀i ∈ {1, . . . , n}, ∀µ PS

{∣
∣
∣
∣
∣
I [fS] − 1

n

n∑

i=1

V (fSi , zi)

∣
∣
∣
∣
∣
� β

(n)
EL

}

� 1 − δ
(n)
EL ,

with β
(n)
EL and δ

(n)
EL going to zero for n → ∞.
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Our use of the term stability for the Elooerr property may seem somewhat of a
stretch (though the definition depends on a “perturbation” of the training set from S

to Si). It is justified however by the fact that the Elooerr property is implied – in the gen-
eral setting – by a classical leave-one-out notion of stability called hypothesis stability,
which was introduced by Devroye and Wagner [9] and later used in [5, 14] (and in a
stronger change-one form in [15]). Our definition of hypothesis stability is equivalent to
leave-one-out stability in the L1 norm.

Definition 3.5. The learning map L is distribution-independent, leave-one-out hypothe-
sis stable if for each n there exists a β

(n)
H

∀µ ES,z

[∣
∣V (fS, z) − V (fSi , z)

∣
∣
]

� β
(n)
H ,

with β
(n)
H going to zero for n → ∞.

Intuitively, the Elooerr condition may seem both strong and weak. In particular, it
looks weak because the leave-one-out error Iloo = n−1

∑n
i=1 V (fSi , zi) seems a good

empirical proxy for the expected error EzV (fS, z) and it is in fact routinely used in this
way for evaluating empirically the expected error of learning algorithms.

Definition 3.6. A learning map L is LOO stable if it exhibits both CVloo and Elooerr

stability.

3.3. LOO stability implies generalization

We now prove that CVloo and Elooerr stability together are sufficient for gener-
alization of symmetric learning algorithms. The following lemma was mentioned as
remark 10 in [5].�

Lemma 3.7. The generalization error can be decomposed as follows

ES

(
I [fS]−IS[fS]

)2 � 2ES

(

I [fS]−1

n

n∑

i=1

V (fSi , zi)

)2

+2MES

∣
∣V (fS, zi)−V (fSi , zi)

∣
∣.

Proof. By the triangle inequality and inspection

ES

(
I [fS] − IS[fS]

)2 � 2ES

(

I [fS] − 1

n

n∑

j=1

V (fSj , zj )

)2

+ 2ES

(

IS[fS] − 1

n

n∑

j=1

V (fSj , zj )

)2

.

� Bousquet and Elisseeff attribute the result to Devroye and Wagner.
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We now bound the second term

ES

(

IS[fS] − 1

n

n∑

j=1

V (fSj , zj )

)2

= ES

(
1

n

n∑

j=1

V (fS, zj ) − 1

n

n∑

j=1

V (fSj , zj )

)2

= ES

1

n

∣
∣
∣
∣
∣

n∑

j=1

[
V (fS, zj ) − V (fSj , zj )

]
∣
∣
∣
∣
∣

2

� MES

1

n

∣
∣
∣
∣
∣

n∑

j=1

[
V (fS, zj ) − V (fSj , zj )

]
∣
∣
∣
∣
∣

� MES

1

n

n∑

j=1

∣
∣V (fS, zj ) − V (fSj , zj )

∣
∣ = M

1

n

n∑

j=1

ES

∣
∣V (fS, zj ) − V (fSj , zj )

∣
∣

= MES

∣
∣V (fS, zi) − V (fSi , zi)

∣
∣. �

The following proposition follows directly from the above decomposition of the
generalization error.

Proposition 3.8. LOO stability implies generalization.

Remarks.

1. Other stability conditions can be derived that ensure generalization for symmetric
algorithms [17, 19].

2. CVloo and Elooerr stability together are strong enough to imply generalization for
symmetric algorithms, but neither condition by itself is sufficient.

3. CVloo stability by itself is not sufficient for generalization, as the following coun-
terexample shows. Let X be uniform on [0, 1]. Let Y ∈ {−1, 1}. Let the “target
function” be t (x) = 1, and the loss-function be the {0, 1}-loss.
Given a training set of size n, our (non-ERM) algorithm ignores the y values and
produces the following function:

fS(x) =
{

(−1)n if x is a training point,
(−1)n+1 otherwise.

Now consider what happens when we remove a single training point to obtain fSi .
Clearly,

fSi (x) =
{

fS(x) if x = xi,

−fS(x) otherwise.

In other words, when we remove a training point, the value of the output function
switches at every point except that training point. The value at the training point
removed does not change at all, so the algorithm is (βC, δC) CVloo stable with βC =



S. Mukherjee et al. / Stability in learning theory 177

δC = 0. However, this algorithm does not generalize at all; for every training set,
depending on the size of the set, either the training error is 0 and the testing error is 1,
or vice versa.

4. Elooerr stability by itself is not sufficient for generalization, as the following example
shows. Using the same setup in the previous remark, consider an algorithm which
returns 1 for every training point, and −1 for every test point. This algorithm is
Elooerr stable (as well as hypothesis stable), but does not generalize.

5. The converse of proposition 3.8 is false. Using the same setup as in the previous
remark, consider an algorithm that, given a training set of size n, yields the constant
function f (x) = (−1)n. This algorithm is neither CVloo or Elooerr stable, but it will
generalize.

6. In [5, theorem 11], it is claimed that PH stability (which is equivalent to CVloo stabil-
ity, by lemma 3.3) is sufficient for generalization. However, there is an error in this
proof. The second line of the theorem, translated into our notation, states correctly
that

ES,z

[∣
∣V (fS, zi) − V (fSi,z , zi)

∣
∣
]
� ES

[∣
∣V (fS, zi) − V (fSi , zi)

∣
∣
]

+ ES

[∣
∣V (fSi , zi) − V (fSi,z , zi)

∣
∣
]
.

PH stability is used to bound both terms in the expansion. While the first term can be
bounded using PH stability, the second term involves the difference in performance
on zi between functions generated from two different test sets, neither of which con-
tain zi ; this cannot be bounded using PH stability. The proof can be easily “fixed” by
bounding the second term using the more general notion of hypothesis stability; this
would then prove that the combination of CVloo stability and hypothesis stability are
sufficient for generalization, which also follows directly from proposition 3.8. Hy-
pothesis stability is a stronger notion than Elooerr stability since hypothesis stability
implies Elooerr stability but Elooerr stability does not imply hypothesis stability.�

We now ask whether Elooerr and CVloo stability together are enough to capture the
fundamental conditions for consistency of ERM and thus subsume the “classical” the-
ory. We will in fact show in the next section 3.4.2 that CVloo stability alone is equivalent

� There is an unfortunate confusing proliferation of definitions of stability. The hypothesis stability of
Elisseeff and Bousquet [5] is essentially equivalent to the L1 stability of Kutin and Niyogi [15] (modulo
probabilistic versus non-probabilistic and change-one versus leave-one-out differences); similarly, what
Kutin and Niyogi call (β, δ) hypothesis stability is a probabilistic version of the (very strong) uniform
stability of Elisseeff and Bousquet. It is problematic that many versions of stability exist in both change-
one and leave-one-out forms. If a given form of stability measures error at a point that is not in either
training set, the change-one form implies the leave-one-out form (for example, Bousquet and Elisseeff’s
hypothesis stability implies Kutin and Niyogi’s weak-L1 stability), but if the point at which we mea-
sure is added to the training set, this does not hold (for example, our CVloo stability does not imply
the change-one CV stability of Kutin and Niyogi; in fact, Kutin and Niyogi’s CV stability is roughly
equivalent to the combination of our CVloo stability and Elisseeff and Bousquet’s hypothesis stability).
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to consistency of ERM. To complete the argument, we will also show in subsection 3.4.3
that Elooerr stability is implied by consistency of ERM.

3.4. LOO stability is necessary and sufficient for consistency of ERM

The main result of this section is the following theorem.

Theorem 3.9. Assume that fS, fSi ∈ H are provided by ERM and the loss is bounded.
Then LOO stability is necessary and sufficient for consistency of ERM. Therefore, the
following are equivalent

(a) the map induced by almost ERM is LOO stable,

(b) almost ERM is universally consistent,

(c) L is uGC.

Proof. The equivalence of (b) and (c) is well known (see theorem 2.5). The the equiv-
alence of (a) and (b) is a result of the following theorem and lemma which are proven in
sections 3.4.2 and 3.4.3, respectively.

Theorem 3.10. CVloo stability is necessary and sufficient for consistency of ERM on a
function class H.

Lemma 3.11. ERM on a uGC class implies Elooerr stability

ES

(

I [fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� βn,

where limn→∞ βn = 0.

As a result of the above theorem and lemma (b) implies (a). By proposition 3.8 (a)
implies (b). The equivalence of (a) and (b) follows. �

Remark. If we make specific assumptions on the loss function V (see footnote12), then
theorem 3.9 can be stated in terms of H being uGC.

3.4.1. Almost positivity of ERM
The two lemmas in this section will be important in proving theorem 3.10.
We first prove a lemma about the almost positivity� of V (fS, zi) − V (fSi , zi).

Lemma 3.12. Under the assumption that ERM finds a εE-minimizer,

∀i ∈ {1, . . . , n} V (fSi , zi) − V (fS, zi) + 2(n − 1)εE � 0.

� Shahar Mendelson’s comments prompted us to define the notion of almost positivity.
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Proof. By the definition of almost minimizer (see equation (2.1)), we have

1

n

∑

zj ∈S

V (fSi , zj ) − 1

n

∑

zj ∈S

V (fS, zj ) � −εE
n ,

1

n

∑

zj ∈Si

V (fSi , zj ) − 1

n

∑

zj ∈Si

V (fS, zj ) � n − 1

n
εE
n−1.

We can rewrite the first inequality as
[

1

n

∑

zj ∈Si

V (fSi , zj ) − 1

n

∑

zj ∈Si

V (fS, zj )

]

+ 1

n
V (fSi , zi) − 1

n
V (fS, zi) � −εE

n .

The term in the bracket is less than or equal to ((n − 1)/n)εE
n−1 (because of the second

inequality) and thus

V (fSi , zi) − V (fS, zi) � −nεE
n − (n − 1)εE

n−1.

Because the sequence of nεN
n is a decreasing sequence of positive terms, we obtain

V (fSi , zi) − V (fS, zi) � −2(n − 1)εE
n−1. �

Lemma 3.13. Under almost ERM with εE
n > 0 chosen such that limn→∞ nεE

n = 0, the
following bound holds

∀i ∈ {1, . . . , n} ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

� ESI [fSi ] − ESIS[fS] + 4(n − 1)εE
n−1.

Proof. We note that

ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

= ES

[∣
∣V (fSi , zi) − V (fS, zi) + 2(n − 1)εE

n−1 − 2(n − 1)εE
n−1

∣
∣
]

� ES

[∣
∣V (fSi , zi) − V (fS, zi) + 2(n − 1)εE

n−1

∣
∣
] + 2(n − 1)εE

n−1.

Now we make two observations. By lemma 3.12,

∀i ∈ {1, . . . , n} V (fSi , zi) − V (fS, zi) + 2(n − 1)εE
n−1 � 0,

and therefore

ES

[∣
∣V (fSi , zi)−V (fS, zi)+2(n−1)εE

n−1

∣
∣
] = ES

[
V (fSi , zi)−V (fS, zi)

]+2(n−1)εE
n−1.

Second, by the linearity of expectations,

ES

[
V (fSi , zi) − V (fS, zi)

] = ESI [fSi ] − ESIS[fS],
and therefore

ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

� ESI [fSi ] − ESIS[fS] + 4(n − 1)εE
n−1. �



180 S. Mukherjee et al. / Stability in learning theory

Remark. In the case when ERM finds a minima (exact minimization), positivity holds

∀i ∈ {1, . . . , n} V (fSi , zi) − V (fS, zi) � 0,

and the leave-one-out error error is greater than or equal to the training error

1

n

n∑

i=1

V (fSi , zi) � IS[fS].

3.4.2. CVloo stability is necessary and sufficient for consistency of ERM
Before proving theorem 3.10 in detail for the general case of almost ERM we prove

the statement for the case of exact ERM.

Exact ERM. The following short proof could be made much shorter by referring to
known results on ERM. The argument for almost ERM can be made along similar lines
with a few additional, annoying ε terms.

Theorem 3.14. Under exact minimization of the empirical risk and the existence of the
minima of the true risk, I [f ∗] where f ∗ ∈ arg minf ∈H I [f ], then (β, δ) CVloo stability
is equivalent to universal consistency of ERM.

Proof. By the assumption of exact ERM positivity holds

V (fSi , zi) − V (fS, zi) � 0.

Then the following equivalences hold:

(β, δ) CVloo stability ⇔ limn→∞ ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
] = 0

⇔ limn→∞ ES

[
V (fSi , zi) − V (fS, zi)

] = 0

⇔ limn→∞ ESI [fSi ] − ESIS[fS] = 0

⇔ limn→∞ ESI [fSi ] = limn→∞ ESIS[fS].
Now, I [f ∗] � I [fSi ] and IS[fS] � IS[f ∗]. Therefore,

I [f ∗] � lim
n→∞ ESI [fSi ] = lim

n→∞ ESIS[fS] � lim
n→∞ ESIS[f ∗] = I [f ∗],

resulting in

lim
n→∞ ESI [fSi ] = lim

n→∞ ESI [f ∗] = I [f ∗],
which implies that in probability,

lim
n→∞ I [fSi ] = I [f ∗].

Finally, we note that the convergence in probability of I [fSi ] to I [f ∗] is equivalent to
the convergence of I [fS] to I [f ∗] in probability which is universal consistency. �
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Almost ERM. The next two theorems combined prove theorem 3.10. We prove first
sufficiency and then necessity.

Theorem 3.15. If the map induced by ERM over a class H is distribution-independent
CVloo stable, and the loss is bounded by M , then ERM over H is universally consistent.

Proof. Given a sample S = (z1, . . . , zn) with n points and a sample Sn+1 = (z1,

. . . , zn+1) then by CVloo stability of ERM, the following holds for all µ:

ESn+1

[
V (fS, zn+1) − V (fSn+1, zn+1)

]
� ESn+1

[∣
∣V (fS, zn+1) − V (fSn+1, zn+1)

∣
∣
]

� β
(n+1)
PH , (3.1)

where β
(n+1)
PH = β

(n+1)

CVloo
+ Mδ

(n+1)

CVloo
.

The following holds for all µ:

ESI [fS] − ESn+1ISn+1[fSn+1] = ESn+1

[
V (fS, zn+1) − V (fSn+1, zn+1)

]
. (3.2)

From equations (3.1) and (3.2), we therefore have

∀µ ESI [fS] � ESn+1ISn+1[fSn+1] + β
(n+1)
PH . (3.3)

Now we will show that

lim
n→∞ sup

µ

(
ESI [fS] − inf

f ∈H
I [f ]) = 0.

Let ηµ = inff ∈H I [f ] under the distribution µ. Clearly, for all f ∈ H, we have
I [f ] � ηµ and so ESI [fS] � ηµ. Therefore, we have (from (3.3))

∀µ ηµ � ESI [fS] � ESn+1ISn+1[fSn+1] + β
(n+1)
PH . (3.4)

For every εc > 0, there exists fεc,µ ∈ H such that I [fεc,µ] < ηµ + εc. By the almost
ERM property, we also have

ISn+1[fSn+1] � ISn+1[fεc,µ] + εE
n+1.

Taking expectations with respect to Sn+1 and substituting in equation (3.4), we get

∀µ ηµ � ESI [fS] � ESn+1ISn+1[fεc,µ] + εE
n+1 + β

(n+1)
PH .

Now we make the following observations. First, limn→∞ εE
n+1 = 0. Second, limn→∞ β

(n)
PH

= 0. Finally, by considering the fixed function fεc,µ, we get

∀µ ESn+1ISn+1[fεc,µ] = 1

n + 1

n+1∑

i=1

ESn+1V (fεc,µ, zi) = I [fεc,µ] � ηµ + εc.

Therefore, for every fixed εc > 0, for n sufficiently large,

∀µ ηµ � ESI [fS] � ηµ + εc
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from which we conclude, for every fixed εc > 0,

0 � lim inf
n→∞ sup

µ

(
ESI [fS] − ηµ

)
� lim sup

n→∞
sup
µ

(
ESI [fS] − ηµ

)
� εc.

From this it follows that limn→∞ sup
µ

(ESI [fS] − ηµ) = 0. Consider the random variable

XS = I [fS] − ηµ. Clearly, XS � 0. Also, limn→∞ sup
µ

ESXS = 0. Therefore, we have

(from Markov’s inequality applied to XS):
For every α > 0,

lim
n→∞ sup

µ

P
[
I [fS] > ηµ + α

] = lim
n→∞ sup P[XS > α] � lim

n→∞ sup
ES[XS]

α
= 0.

This proves distribution independent convergence of I [fS] to ηµ (consistency), given
CVloo stability. �

Theorem 3.16. Consistency of ERM implies CVloo stability of ERM when the loss is
bounded.

Proof. CVloo stability and PH are equivalent when the loss is bounded by lemma 3.3.
To show PH stability, we need to show that

lim
n→∞ sup

µ

ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
] = 0.

From lemma 3.13,

∀µ ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

� ESI [fSi ] − ESIS[fS] + 4(n − 1)εE
n−1. (3.5)

Given (universal) consistency, theorem 2.5 implies that L is a uGC class. Because L
is uGC, I [fSi ] is close to IS[fSi ]. Because we are performing ERM, IS[fSi ] is close to
IS[fS]. Combining these results, I [fSi ] − IS[fS] is small.

We start with the equality

ES

[
I [fSi ] − IS[fS]

] = ES

[
I [fSi ] − IS[fSi ]] + ES

[
IS[fSi ] − IS[fS]

]
. (3.6)

Since L is uGC, with probability at least 1 − δn(εn),
∣
∣I [fSi ] − IS[fSi ]∣∣ � εn

and therefore

∀µ ES

[
I [fSi ] − IS[fSi ]] � ES

[∣
∣I [fSi ] − IS[fSi ]∣∣] � εn + Mδn(εn). (3.7)

From lemma 3.17, we have

∀µ ES

[
IS[fSi ] − IS[fS]

]
� M

n
+ εE

n−1. (3.8)
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Combining equation (3.6) with inequalities (3.7) and (3.8), we get

∀µ ES

[
I [fSi ] − IS[fS]

]
� εn + Mδn(εn) + M

n
+ εE

n−1.

From inequality (3.5), we obtain

∀µ ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
]

� εn + Mδn(εn) + M

n
+ εE

n−1 + 4(n − 1)εE
n−1.

Note that εE
n and εn may be chosen independently. Also, since we are guaranteed ar-

bitrarily good ε-minimizers, we can choose εE
n to be a decreasing sequence such that

limn→∞(4n − 3)εE
n = 0.

Further, by lemma 3.18, it is possible to choose a sequence εn such that εn → 0
and δn(εn) → 0. These observations taken together prove that

lim
n→∞ sup

µ

ES

[∣
∣V (fSi , zi) − V (fS, zi)

∣
∣
] = 0.

This proves that universal consistency implies PH hypothesis stability. �

Lemma 3.17. Under almost ERM,

IS[fSi ] − IS[fS] � M

n
+ εE

n−1.

Proof.

IS[fSi ] = (n − 1)ISi [fSi ] + V (fSi , zi)

n

�
(n − 1)(ISi [fS] + εE

n−1) + V (fSi , zi)

n
(by almost ERM)

= (n − 1)ISi [fS] + V (fS, zi) − V (fS, zi) + V (fSi , zi)

n
+ n − 1

n
εE
n−1

� IS[fS] + M

n
+ εE

n−1 since 0 � V � M. �

Lemma 3.18. If L is uGC, there exists a sequence εn > 0 such that:

(1) limn→∞ εn = 0,

(2) limn→∞ δn(εn) = 0.

Proof. Because L is uGC,

sup
µ

P

(
sup
f ∈H

∣
∣I [f ] − IS[f ]∣∣ > ε

)
� δn(ε),

where limn→∞ δn(ε) = 0.
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For every fixed ε we know that limn→∞ δn(1/k) = 0 for every fixed integer k.
Let Nk be such that for all n � Nk, we have δn(1/k) < 1/k. Note, that for all

i > j , Ni � Nj .
Now choose the following sequence for εn. We take εn = 1 for all n < N2; εn = 1

2
for N2 � n < N3 and in general εn = 1/k for all Nk � n < Nk+1.

Clearly εn is a decreasing sequence converging to 0. Further, for all Nk � n <

Nk+1, we have

δn(εn) = δn

(
1

k

)

� 1

k
.

Clearly δn(εn) also converges to 0. �

Remarks.

1. CVloo stability implies that the leave-one-out error converges to the training error in
probability.

2. In general the bounds above are not exponential in δ. However, since for ERM CVloo

stability implies that L is uGC, the standard uniform bound holds, which for any
given ε is exponential in δ

sup
µ

P

{
sup
f ∈H

∣
∣I [f ] − IS[f ]∣∣ > ε

}
� CN

(
ε(n)

8
,H

)

e−nε2/(8M2).

Notice that the covering number can grow arbitrarily fast in 1/ε resulting in an arbi-
trarily slow rate of convergence between IS[f ] and I [f ].

3. It is possible to define a one-sided version of PH stability, called here pseudo-PH
stability.

Definition 3.19. The learning map L is distribution-independent, pseudo-pointwise hy-
pothesis stable if for each n there exists a β

(n)
pPH

∀i ∈ {1, . . . , n}, ∀µ ES

[
V (fSi , zi) − V (fS, zi)

]
� β

(n)
pPH,

with β
(n)
pPH going to zero for n → ∞.

Pseudo-stability is also necessary and sufficient for universal consistency of ERM.
Pseudo-stability is weaker than PH stability. The proof of its equivalence to consistency
of ERM is immediate from its definition. However, for non-ERM algorithms pseudo-
PH stability is not sufficient in our approach to ensure convergence in probability of
the empirical to the expected risk (e.g., generalization), when combined with Elooerr

stability.�

� With pseudo-PH stability alone, we are unable to bound the second term in the decomposition of
lemma 3.7.
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3.4.3. Consistency of ERM implies Elooerr stability
We now show that consistency of ERM implies Elooerr stability.

Lemma 3.20. ERM on a uGC class implies

ES

(

I [fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� βn,

where limn→∞ βn = 0.

Proof. By the triangle inequality and inspection

ES

(

I [fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� 2ES

(
I [fS] − IS[fS]

)2

+ 2ES

(

IS[fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

.

We first bound the first term. Since we have are performing ERM on a uGC class we
have with probability 1 − δ1

∣
∣IS[fS] − I [fS]

∣
∣ � β1.

Therefore,

ES

(
I [fS] − IS[fS]

)2 � Mβ1 + M2δ1.

The following inequality holds for the second term (see proof of lemma 3.7)

ES

(

IS[fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� MES

∣
∣V (fS, zi) − V (fSi , zi)

∣
∣.

Since ERM is on a uGC class (β2, δ2) CVloo stability holds, implying

MES

∣
∣V (fS, zi) − V (fSi , zi)

∣
∣ � Mβ2 + M2δ2.

Therefore we obtain

ES

(

IS[fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� Mβ2 + M2δ2

leading to

ES

(

I [fS] − 1

n

n∑

i=1

V (fSi , zi)

)2

� 2Mβ1 + 2M2δ1 + 2Mβ2 + 2M2δ2. �
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Remark. In the classical literature on generalization properties of local classification
rules [9] hypothesis stability was proven (and used) to imply Elooerr stability. It is thus
natural to ask whether we could replace Elooerr stability with hypothesis stability in the-
orem 3.9. Unfortunately, we have been unable to either prove that ERM on a uGC class
has hypothesis stability or provide a counterexample. The question remains therefore
open. It is known that ERM on a uGC class has hypothesis stability when either (a) H
is convex, or (b) the setting is realizable,� or (c) H is finite-dimensional.

4. Stability conditions, convergence rates and size of uGC classes

The previous section concludes the main body of the paper. This section consists of
a few “side” observations. It is possible to provide rates of convergence of the empirical
risk to the expected risk as a function of CVloo stability using proposition 3.8. In general,
these rates will be very slow, even in the case of ERM.

CVloo and Elooerr stability together ensure the convergence of I [fS] to I [fS] for
non-ERM algorithms by controlling simultaneously both the expectation and variance
of the quantity V (fSi , zi) − V (fS, zi)

�� and the difference between expected and leave-
one-out error.

In this section we outline how CVloo stability can be used to control the expecta-
tion and another notion of stability, error stability, can be used to control the variance.
The two notions of stability together will be called here strong stability when the rate
of convergence of error stability is fast enough. Strong stability yields faster rates of
convergence of the empirical error to the expected error. In this section we define strong
stability and list several “small” hypothesis spaces for which ERM is strongly stable.

The following definition of the continuity of the learning map L is based upon a
variation of two definitions of stability first introduced in [15].

Definition 4.1. The learning map L is strongly stable if

(a) it is (βloo, δloo) CVloo stable,

(b) it is error stable with a fast rate, e.g., for each n there exists a β(n)
error and a δ(n)

error such
that

∀i ∈ {1, . . . , n}, ∀µ PS

{∣
∣I [fS] − I [fSi ]∣∣ � β(n)

error

}
� 1 − δ(n)

error,

where β(n)
error = O(n−α) where α > 1/2 and δ(n)

error = e−�(n).

The following theorem is similar to theorem 6.17 in [15].

� We say that the setting is realizable when there is some f0 ∈ H which is consistent with the examples.
�� For ERM – because of almost positivity – it is sufficient that the expectation of the above quantity is

controlled to ensure convergence.
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Theorem 4.2. If the learning map is strongly stable then, for any ε > 0,

PS

{∣
∣IS[fS] − I [fS]

∣
∣ � ε + βloo + Mδloo + βerror + Mδerror

}

� 2

(

exp

( −ε2n

8(2nβerror + M)2

)

+ n(n + 1)2Mδerror

2nβerror + M

)

,

where M is a bound on the loss.

The above bound states that with high probability the empirical risk converges to
the expected risk at the rate of the slower of the two rates βloo and βerror. The probability
of the lack of convergence decreases exponentially as n increases. The proof of the above
theorem is in [17, appendix 6.2.2]. For the empirical risk to converge to the expected
risk in the above bound βerror must decrease strictly faster than O(n−1/2). For ERM the
rate of convergence of βerror is the same rate as the convergence of the empirical error to
the expected error.

Error stability with a fast rate of convergence is a strong requirement. In general,
for a uGC class the rate of convergence of error stability can be arbitrarily slow be-
cause the covering number associated with the function class can grow arbitrarily fast�

with ε−1. Even for hypothesis spaces with VC dimension d the rate of convergence of
error stability is not fast enough, with probability 1 − e−t

I [fS] − I [fSi ] � O

(√
d log n

n
+

√
t

n

)

.

Fast rates for error stability can be achieved for ERM with certain hypothesis
spaces and settings:

• ERM on VC classes of indicator functions in the realizable setting;��

• ERM with square loss function on balls in Sobolev spaces Hs(X), with compact
X ⊂ R

d , if s > d (this is due to [6, proposition 6]);

• ERM with square loss function on balls or in RKHS spaces with a kernel K which
is C2s with s > d (this is can be inferred from [28]);

• ERM on VC-subgraph classes that are convex with the square loss.

� Take a compact set K of continuous functions in the sup norm, so that N(ε, K) is finite for all ε > 0.
The set is uniform Glivenko–Cantelli. N(ε, K) can go to infinity arbitrarily fast as ε → 0 in the sup
norm (Dudley, pers. com.).

�� This case was considered in [15, theorem 7.4].

Theorem. Let H be a space of ±1-classifiers. The following are equivalent

1. There is a constant K such that for any distribution � on Z and any f0 ∈ H, ERM over H is (0, e−Kn)

CV stable with respect to the distribution on Z generated by � and f0.

2. The VC dimension of H is finite.



188 S. Mukherjee et al. / Stability in learning theory

A requirement for fast rates of error stability is that the class of functions H is
“small”: hypothesis spaces with with empirical covering numbers N (ε,H) that are
polynomial in ε−1 (VC classes fall into this category) or exponential in ε−p with p < 1
(Sobolev spaces and RKHS spaces fall into this category). Simply having a “small” func-
tion class is not enough for fast rates: added requirements such as either the realizable
setting or assumptions on the convexity of H and square loss are needed.

There are many situations where convergence of the empirical risk to the expected
risk can have rates of the order of O(

√
d/n) using standard VC or covering number

bounds, here d is the metric entropy or shattering dimension of the class H. For these
cases we do not have stability based bounds that allow us to prove rates of convergence of
the empirical error to the expected error faster than the polynomial bound in theorem 3.8
which gives suboptimal rates that are much slower than O(

√
d/n). The following cases

fall into the gap between general uGC classes that have slow rates of convergence� and
those classes that have a fast rate of convergence:��

• ERM on convex hulls of VC classes.

• ERM on balls in Sobolev spaces Hs(X) if 2s > d, which is the condition that ensures
that functions in the space are defined pointwise – a necessary requirement for learn-
ing. In this case the standard union bounds give rates of convergence �((1/n)b): for
the general case b = 1/4 and for the convex case b = 1/3.

• ERM on VC classes of indicator functions in the non-realizable setting.

5. Discussion

The results of this paper are interesting from two quite different points of view.
From the point of view (A) of the foundations of learning theory, they provide a condi-
tion – LOO stability – that extends the classical conditions beyond ERM and subsumes
them in the case of ERM. From the point of view (B) of inverse problems, our results
show that the conditions of well-posedness of the algorithm (specifically stability), and
the condition of predictivity (specifically generalization) that played key but indepen-
dent roles in the development of learning theory and learning algorithms respectively,
are in fact closely related: well-posedness (defined in terms of LOO stability) implies
predictivity and it is equivalent to it for ERM algorithms.

A. Learning techniques start from the basic and old problem of fitting a multivariate
function to measurement data. The characteristic feature central to the learning frame-
work is that the fitting should be predictive, in the same way that cleverly fitting data
from an experiment in physics can uncover the underlying physical law, which should
then be usable in a predictive way. In this sense, the same generalization results of
learning theory also characterize the conditions under which predictive and therefore

� Obtained using either standard covering number bounds or proposition 3.8.
�� Obtained using either standard covering number bounds or strong stability.



S. Mukherjee et al. / Stability in learning theory 189

scientific “theories” can be extracted from empirical data (see [26]). It is surprising that
a form of stability turns out to play such a key role in learning theory. It is somewhat
intuitive that stable solutions are predictive but it is surprising that our specific definition
of CVloo stability fully subsumes the classical necessary and sufficient conditions on H
for consistency of ERM.

LOO stability and its properties may suggest how to develop learning theory be-
yond the ERM approach. It is a simple observation that LOO stability can provide
generalization bounds for algorithms other than ERM. For some of them a “VC-style”
analysis in terms of complexity of the hypothesis space can still be used; for others, such
as k-nearest neighbor, such an analysis is impossible because the hypothesis space has
unbounded complexity or is not even defined, whereas CVloo stability can still be used.

B. Well-posedness and, in particular, stability are at the core of the study of inverse
problems and of the techniques for solving them. The notion of CVloo stability may
be a tool to bridge learning theory and the broad research area of the study of inverse
problems in applied math and engineering (for a review see [12]). As we mentioned
in the introduction, while predictivity is at the core of classical learning theory, another
motivation drove the development of several of the best existing algorithms (such as
regularization algorithms of which SVMs are a special case): well-posedness and, in
particular, stability of the solution. These two requirements – consistency and stability –
have been treated so far as “de facto” separate and in fact there was no a priori reason to
believe that they are related (see [20]). Our new result shows that these two apparently
different motivations are closely related and actually completely equivalent for ERM.

Some additional remarks and open questions are:

1. It would be interesting to analyze LOO stability properties – and thereby estimate
bounds on rate of generalization – of several non-ERM algorithms. Several obser-
vations can be already inferred from existing results. For instance, the results of [4]
imply that regularization and SVMs are LOO stable; a version of bagging with the
number k of regressors increasing with n (with (k/n) → 0) is CVloo stable and
has hypothesis stability (because of [9]) and thus LOO stable; similarly k-NN with
k → ∞ and (k/n) → 0 and kernel rules with the width hn → 0 and hnn → ∞
are LOO stable. Thus all these algorithms satisfy proposition 3.8 and have the gen-
eralization property, that is IS[fS] converges to I [fS] (and some are also universally
consistent).

2. The rate of convergence of the empirical error to the expected error for the empirical
minimizer for certain hypothesis spaces differ, depending on whether we use the sta-
bility approaches or measures of the complexity of the hypothesis space, for example
VC dimension or covering numbers. This discrepancy is illustrated by the following
two gaps.

(a) The hypothesis spaces in section 4 that have a fast rate of error stability have a
rate of convergence of the empirical error of the minimizer to the expected error
at a rate of O(d/n), where d is the VC dimension or metric entropy. This rate
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is obtained using VC-type bounds. The strong stability approach, which uses a
variation of McDiarmid’s inequality, gives a rate of convergence of O(n−1/2). It
may be possible to improve these rates using inequalities of the type in [8].

(b) For the hypothesis spaces described at the end of section 4 standard martingale
inequalities cannot be used to prove convergence of the empirical error to the
expected error for the empirical minimizer.

It is known that martingale inequalities do not seem to yield results of optimal order
in many situations (see [23]). A basic problem in the martingale inequalities is how
variance is controlled. Given a random variable Z = f (X1, . . . , Xn) the variance of
this random variable is controlled by a term of the form of

Var(Z) � E

[
n∑

i=1

(
Z − Z(i)

)2

]

,

where Z(i) = f (X1, . . . , X
′
i , . . . , Xn). If we set Z = IS[fS] − I [fS] then for a

function class with VC dimension d the upper bound on the variance is a constant
since

E
[(

Z − Z(i)
)2] = K

d

n
.

However, for this class of functions we know that

Var
(
IS[fS] − I [fS]

) = 


(√
d log n

n

)

.

It is an open question if some other concentration inequality can be used to recover
optimal rates.

3. We have a direct proof of the following statement for ERM: If H has infinite VC
dimension, then ∀n, (βPH)n > 1

8 . This shows that distribution-free βPH does not
converge to zero if H has infinite VC dimension and therefore provides a direct link
between VC and CVloo stability (instead of via consistency).

4. Our results say that for ERM, distribution-independent CVloo stability is equivalent
to the uGC property of L. What can we say about compactness? Compactness is a
stronger constraint on L than uGC (since compact spaces are uGC but not vice versa).
Notice that the compactness case is fundamentally different because a compact H is
a metric space, whereas in our main theorem we work with spaces irrespectively of
their topology. The specific question we ask is whether there exists a stability condi-
tion that is related to compactness – as CVloo stability is related to the uGC property.
Bousquet and Elisseeff showed that Tikhonov regularization (which enforces com-
pactness but is NOT empirical risk minimization) gives uniform stability (with fast
rate). Kutin and Niyogi showed that Bousquet and Elisseeff’s uniform stability is
unreasonably strong for ERM and introduced the weaker notion of (β, δ)-hypothesis
stability in equation (2.11). It should also be noted (observation by Steve Smale)
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that both these definitions of stability effectively require a hypothesis space with the
sup norm topology. The following theorems illustrate some relations. For these the-
orems we assume that the hypothesis space H is a bounded subset of C(X) where X

is a closed, compact subset X ∈ R
k and Y is a closed subset Y ∈ R.

Theorem 5.1. Given (β, δ)-hypothesis stability for ERM with the square loss, the hy-
pothesis space H is compact.

Theorem 5.2. If H is compact and convex then ERM with the square loss is (β, δ)-
hypothesis stable under regularity conditions of the underlying measure.

The proofs of the above theorems and the regularity condition required are in [17].
The theorems are not symmetric, since the second requires convexity and constraints on
the measure. Thus they do not answer in a satisfactory way the question we posed about
compactness and stability. In fact it can be argued on general grounds that compact-
ness is not an appropriate property to consider in connection with hypothesis stability
(Mendelson, pers. com.).

Finally, the search for “simpler” conditions than LOO stability is open. LOO stabil-
ity answers all the requirements we need: it is sufficient for generalization in the general
setting and subsumes the classical theory for ERM, since it is equivalent to consistency
of ERM. There are other “simple” stability conditions equivalent to LOO stability [17,
19]. A prime candidate would be to replace Elooerr stability with a “strong” condition
such as hypothesis stability. We know that hypothesis stability implies Elooerr stability;
we do not know whether or not ERM on a uGC class implies hypothesis stability. Al-
ternatively, it may be possible to replace Elooerr stability with a “weak” condition such
as error stability, which is implied by ERM on a uGC class. The open question here
would be to show that the new condition together with CVloo stability is sufficient for
generalization in the general setting.

Appendix A

A.1. Necessary and sufficient conditions for a class of functions to be uniform
Glivenko–Cantelli

In this section we state two conditions each of which is necessary and sufficient for
a function class to be a uGC class. The first condition is on the metric entropy of the class
and the second is on a combinatorial quantity of the class. For technical reasons some
of the conditions are stated not for the class H but the class H̃ = {f − inf f : f ∈ H}.
For a uniformly bounded function class this difference is of no consequence.

The ε-covering number of the class H̃ is N (ε, H̃, l
p
xn) where p ∈ [1, ∞) and l

p
xn is

the empirical lp distance on points xn. The metric entropy of the class is

Hn,p

(
ε, H̃

) = sup
xn∈Xn

logN
(
ε, H̃, lpxn

)
.
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A class of functions γ -shatters a set A = {xi, . . . , xn} if for some point x ∈ A

there exists a level α(x) ∈ R such that, given a subset B of A, we can find a function
in H such that f (x) � α(x) for all x ∈ B and f (x) � α(x) + γ for x ∈ A\B. The
Vγ or γ -shattering dimension of H is the cardinality of the smallest set that cannot be
γ -shattered in all possible ways.

If the function class H is uniformly bounded then the following statements are
equivalent assuming certain measurability conditions (H̃ is image admissible [11]):

1. H̃ is a weak (convergence in probability) uniform Glivenko–Cantelli class,

2. H̃ is a strong (almost sure convergence) uniform Glivenko–Cantelli class,

3. limn→∞(Hn,p(ε, H̃)/n) = 0 for all ε > 0,

4. Vγ (H) is finite for all γ � 0.

The first three statements are from [11] and the last from [1].
Uniform Glivenko–Cantelli classes were first characterized for classes H of indica-

tor functions. In this case, H is a uGC class if and only if it has finite VC(H) dimension.
The “if” part of the statement was proven by Vapnik and Červonenkis [27] and the “only
if” part was proven by Assouad and Dudley [2]. For uniformly bounded real-valued
functions Dudley et al. [11] first stated necessary and sufficient conditions for uGC
classes based upon an asymptotic condition of the metric entropy. Alon et al. [1] stated
necessary and sufficient conditions for uGC classes based upon finiteness of Vγ (H).
This same property was used by Talagrand [22] but for problems in convex geometry.
Vγ (H) reduces to VC(H) when we set the scale parameter γ = 0.
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