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Abstract

In this paper we present a general example based framework for detecting

objects in static images by components. The technique is demonstrated by

developing a system that locates people in cluttered scenes. The system is

structured with four distinct example based detectors that are trained to �nd

separately the four components of the human body: the head, legs, left arm,

right arm. After ensuring that these components are present in the proper geo-

metric con�guration, a second example based classi�er combines the results of

the component detectors to classify a pattern as either a \person" or a \non-

person." We call this type of hierarchical architecture in which learning occurs

at multiple stages an Adaptive Combination of Classi�ers (ACC). We present

results that show that this system performs signi�cantly better than a similar

full body person detector. This suggests that the improvement in performance

is due to the component based approach and the ACC data classi�cation archi-

tecture. The algorithm is also more robust than the full body person detection

method in that it is capable of locating partially occluded views of people and

people whose body parts have little contrast with the background.

Index Terms: object detection, people detection, pattern recognition, machine

learning, components
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1 Introduction

In this paper we present a general example based algorithm for detecting objects

in images by �rst locating their constituent components and then combining the

component detections with a classi�er if their con�guration is valid. We illustrate the

method by applying it to the problem of locating people in complex and cluttered

scenes. Since this technique is example based, it can easily be used to locate any

object composed of distinct identi�able parts that are arranged in a well de�ned

con�guration, such as cars and faces.

The general problem of object detection in static images is a di�cult one as the

object detection system is required to distinguish a particular class of objects from all

others. This calls for the system to possess a model of the object class that has high

inter-class and low intra-class variability. Further, a robust object detection system

should be able to detect objects in uneven illumination, objects which are rotated

into the plane of the image, and objects that are partially occluded or whose parts

blend in with the background. Under all of the above conditions, the outline of an

object is usually altered and its complete form may not be discernible. However, in

many cases, the majority of the object's de�ning parts may still be identi�able. If an

object detection system is designed to �nd objects in images by locating the various

parts of the object, then it should be able to deal with such anomalies.

In this paper, we focus on the problem of detecting people in images; such a

system could be used in surveillance systems, driver assistance systems, and image

indexing. Detecting people in images is more challenging than detecting many other
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objects due to several reasons. First, people are articulate objects that can take on

a variety of shapes and it is non-trivial to de�ne a single model that captures all

of these possibilities. The ability to detect people when the limbs are in di�erent

relative positions is a desirable trait of a robust person detection system. Second,

people dress in a variety of colors and garment types (skirts, slacks, etc.) which leads

to high intra-class variation in the people class, that would make it di�cult for color

or �ne scale edge based techniques to work well. The pictures of people in Figure 1

illustrate the issues outlined above.

1.1 Previous Work

The approach we adopt builds on previous work in the �elds of object detection and

classi�er combination algorithms. This section reviews relevant results in these �elds.

1.1.1 Object Detection

The object detection systems that have been developed to date fall into one of three

major categories. The �rst category consists of systems that are model based, ie. a

model is de�ned for the object of interest and the system attempts to match this model

to di�erent parts of the image in order to �nd a �t [27]. The second type are image

invariance methods which base a matching on a set of image pattern relationships

(eg. brightness levels) that, ideally, uniquely determine the objects being searched

for [21]. The �nal set of object detection systems are characterized by their example

based learning algorithms [24], [22], [23], [18], [19], [16], [14]. These systems learn the

salient features of a class from sets of labeled positive and negative examples. Example
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based techniques have also been successfully used in other areas of computer vision,

including object recognition [13].

People Detection in Images

Most people detection systems reported on in the literature either use motion

information, explicit models, a static camera, assume a single person in the image, or

implement tracking rather than pure detection; relevant work includes [8], [10], [7].

Papageorgiou et al. have successfully employed example based learning techniques

to detect people in complex static scenes without assuming any a priori scene struc-

ture or using any motion information. Their system detects the full body of a person.

Haar wavelets [12] are used to represent the images and Support Vector Machine

(SVM) classi�ers [25] are used to classify the patterns. Details are presented in [16],

[15], and [14].

Papageorgiou's system has reported successful results detecting frontal, rear and

side views of people, indicating that the wavelet based image representation scheme

and the SVM classi�er are well suited to this particular application. However, the

system's ability to detect partially occluded people or people whose body parts have

little contrast with the background is limited.

Component Based Object Detection Systems

Previous research suggest that some of these problems associated with Papageor-

giou's full body detection system may be addressed by taking a component based

approach to detecting objects. A component based object detection system is one

that searches for an object by looking for its identifying components rather than the
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whole object. An example of such a system is a face detection system that �nds a

face when it locates a pair of eyes, a nose, and a mouth in the proper con�guration.

Component based approaches to object detection have been described in the past

but their application to the problem of locating people in images is fairly limited.

For component based face detection systems see [20], [11], and [26]. Systems in [11]

and [26] have the ability to explicitly deal with partial occlusions. These systems

have two common features: they all have component detectors that identify candidate

components in an image and they all have a means to integrate these components and

determine if together they de�ne a face . In [4] and [5], the authors describe a system

that uses color, texture, and geometry to localize horses and naked people in images.

The system can be used to retrieve images satisfying certain criteria from image

databases but is mainly targeted towards images containing one object. Methods of

learning these \body plans" from examples are described in [4].

It is worth mentioning that a component based object detection system for people

is harder to realize than one for faces because the geometry of the human body is less

constrained than that of the human face. This means that not only is there greater

intra-class variation concerning the con�guration of body parts, but also that it is

more di�cult to detect body parts in the �rst place since their appearance can change

signi�cantly when a person moves.

1.1.2 Classi�er Combination Algorithms

Recently, a great deal of interest has been shown in hierarchical classi�cation struc-

tures, ie. data classi�cation devices that are a combination of several other classi�ers.
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In particular, two methods have received considerable attention - bagging and boost-

ing. Both of these algorithms have been shown to increase the performance of certain

classi�ers for a variety of data sets [2], [6], [17], [1]. Despite the well documented

practical success of these algorithms, the reasons why they work so well is still open

to debate.

1.2 Component Based People Detection - Our Approach

The approach we take to detecting people in static images borrows ideas from the

�elds of object detection in images and data classi�cation. In particular, the system

detects the components of a person's body in an image, ie. the head, the left and

right arms, and the legs, instead of the full body. The system then checks to ensure

that the detected components are in the proper geometric con�guration and then

combines them using a classi�er. This approach of integrating components using a

classi�er promises to increase accuracy based on results of previous work in the �eld.

We introduce a new hierarchical classi�cation architecture where example based

learning is conducted at multiple levels, called an Adaptive Combination of Classi�ers

(ACC). Speci�cally, it is composed of distinct example based component classi�ers

trained to detect di�erent object parts, ie. heads, legs, and left and right arms,

at one level and a similar example based combination classi�er at the next. The

combination classi�er takes the output of the component classi�ers as its input and

classi�es the entire pattern under examination as either a \person" or a \non-person".

It bears repeating that since the classi�ers are example based, this system can easily

be modi�ed to detect objects other than people.
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A component based approach to detecting people is appealing and has the follow-

ing advantages over existing techniques:

� It allows for the use of the geometric information concerning the human body

to supplement the visual information present in an image and thereby improve

the overall performance of the system. More speci�cally, the visual data in an

image is used to detect body components and knowledge of the structure of

the human body allows us to determine if the detected components are propor-

tioned correctly and arranged in a permissible con�guration. In contrast, a full

body person detector relies solely on visual information and does not take full

advantage of the known geometric properties of the human body. In particular,

it employs an implicit and �xed representation of the human form and does not

explicitly allow for variations in limb positions [16], [15], [14].

� Sometimes it is di�cult to detect the human body pattern as a whole due to

variations in lighting and orientation. The e�ect of uneven illumination and

varying viewpoint on body components (like the head, arms, and legs) is less

pronounced and hence, they are comparatively easier to identify.

� The component based framework directly addresses the issue of detecting people

that are partially occluded or whose body parts have little contrast with the

background. This is accomplished by designing the system, using an appropriate

classi�er combination algorithm, so that it detects people even if all of their

components are not detected.

� The structure of the component based solution allows for the convenient use of
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hierarchical classi�cation machines to classify patterns which have been shown

to perform better than similar single layer devices for certain data classi�cation

tasks [2], [6], [17], [1].

The rest of the paper is organized as follows: Section 2 describes the system in

detail; Section 3 reports on the performance of our system; in Section 4, we present

conclusions along with suggestions for future research in this area.

2 System Details

2.1 Overview of System Architecture

The section explains the overall architecture and operation of the system by tracing

the detection process when the system is applied to an image; Figure 2 is a graphical

representation of this procedure.

The system starts detecting people in images by selecting a 128�64 pixel window

from the top left corner of the image as an input. This input is then classi�ed as

either a \person" or a \non-person", a process which begins by determining where

and at which scales the components of a person, ie. the head, legs, left arm, and right

arm, may be found within the window. All of these candidate regions are processed

by the respective component detectors to �nd the strongest candidate components.

The component detectors process the candidate regions by applying the Haar

wavelet transform to them and then classifying the resultant data vector. The com-

ponent classi�ers are quadratic Support Vector Machines (SVM) which are trained
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prior to use in the detection process (see Section 2.2). The strongest candidate com-

ponent is the one that produces the highest positive raw output, referred to in this

paper as the component score, when classi�ed by the component classi�ers. If the

highest component score for a particular component is negative, ie. the component

detector in question did not �nd a component in the geometrically permissible area,

then a component score of zero is used instead. The raw output of an SVM is a rough

measure of how well a classi�ed data point �ts in with its designated class and is

de�ned in Section 2.2.1. The highest component score for each component is fed into

the combination classi�er which is a linear SVM. The combination classi�er processes

the scores to determine if the pattern is a person.

This process of classifying patterns is repeated at all locations in an image, by

shifting the 128 � 64 pixel window across and down the image. The image itself is

processed at several sizes, ranging from 0.2 to 1.5 times its original size. This allows

the system to detect various sizes of people at any location in an image.

2.2 Details of System Architecture

2.2.1 First Stage - Identifying Components of People in an Image

When a 128� 64 pixel window is evaluated by the system, the individual component

detectors are applied only to speci�c areas of the window and only at particular

scales, since the relative proportions must match and the approximate con�guration

of body parts is known a priori. This is necessary because even though a component

detection is the strongest in a particular window under examination (it has the highest
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component score), it does not imply that it is in the correct position, as illustrated

in Figure 3. The centroid and boundary of the allowable rectangular area for a

component detection (relative to the upper left hand corner of the 128� 64 pattern)

determine the location of the component and the width of the rectangle is a measure

of a component's scale.

We calculated the geometric constraints for each component from a sample of the

training images, tabulated in Table 1 and shown in Figure 4, by taking the means

of the centroid and top and bottom boundary edges of each component over positive

detections in the training set. The tolerances were set to include all positive detections

in the training set. Permissible scales were also estimated from the training images.

There are two sets of constraints for the arms, one intended for extended arms and

the other for bent arms.

Wavelet functions are used to represent the components in the images. Wavelets

are a type of multi-resolution function approximation that allow for the hierarchical

decomposition of a signal [12]. When applied at di�erent scales, wavelets encode in-

formation about an image from the coarse approximation all the way down to the �ne

details. The Haar basis is the simplest wavelet basis and provides a mathematically

sound extension to an image invariance scheme [21]. Haar wavelets of two di�erent

scales (16�16 pixels and 8�8 pixels) are used to generate a multi-scale representation

of the images. The wavelets are applied to the image such that they overlap 75% with

the neighboring wavelets in the vertical and horizontal directions; this is done to in-

crease the spatial resolution of our system and to yield richer representation. At each

scale, three di�erent orientations of Haar wavelets are used, each of which responds
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to di�erences in intensities across di�erent axes. In this manner, information about

how intensity varies in each color channel (red, green, and blue) in the horizontal,

vertical, and diagonal directions is obtained. The information streams from the three

color channels are combined and collapsed into one by taking the wavelet coe�cient

for the color channel that exhibits the greatest variation in intensity at each location

and for each orientation. At these scales of wavelets there are 582 features for the

32�32 pixel window for the head and shoulders and 954 features for the 48�32 pixel

windows representing the lower body and the left and right arms. This method results

in a thorough and compact representation of the components, with high inter-class

and low intra-class variation.

We use support vector machines (SVM) to classify the data vectors resulting from

the Haar wavelet representation of the components. SVM's were proposed by Vapnik

[25] and have yielded excellent results in various data classi�cation tasks, including

people detection [16], [14] and text classi�cation [9]. Traditional training techniques

for classi�ers like multilayer perceptrons use empirical risk minimization and lack a

solid mathematical justi�cation. The SVM algorithm uses structural risk minimiza-

tion to �nd the hyperplane that optimally separates two classes of objects. This is

equivalent to minimizing a bound on generalization error. The optimal hyperplane is

computed as a decision surface of the form:

f(x) = sgn (g(x)) (1)

where,
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In Equation 2, K is one of many possible kernel functions, yi 2 f�1; 1g is the class

label of the data point x�

i
, and fx�

i
gl

�

i=1
is a subset of the training data set. The

x�

i
are called support vectors and are the points from the data set that de�ne the

separating hyperplane. Finally, the coe�cients �i and b are determined by solving

a large-scale quadratic programming problem. One of the appealing characteristics

of SVMs is that there are just two tunable parameters, Cpos and Cneg, which are

penalty terms for positive and negative pattern misclassi�cations, respectively. The

kernel function K that is used in the component classi�ers is a quadratic polynomial

and is K(x;x�

i
) = (x � x�

i
+ 1)2.

In Equation 1, f(x) 2 f�1; 1g is referred to as the binary class of the data point

x which is being classi�ed by the SVM. As Equation 1 shows, the binary class of a

data point is the sign of the raw output g(x) of the SVM classi�er. The raw output

of an SVM classi�er is the distance of a data point from the decision hyperplane. In

general, the greater the magnitude of the raw output, the more likely a classi�ed data

point belongs to the binary class it is grouped into by the SVM classi�er.

The component classi�ers are trained on positive images and negative images

for their respective classes. The positive examples are of arms, legs, and heads of

people in various environments, both indoors and outdoors and under various lighting

conditions. The negative examples are taken from scenes that do not contain any

people. Examples of positive images used to train the component classi�ers are shown
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in Figure 5.

2.2.2 Second Stage - Combining the Component Classi�ers

Once the component detectors have been applied to all geometrically permissible areas

within the 128 � 64 pixel window, the highest component score for each component

type is entered into a data vector that serves as the input to the combination classi�er.

The component score is the raw output of the component classi�er and is the distance

of the test point from the decision hyperplane, a rough measure of how \well" a

test point �ts into its designated class. If the component detector does not �nd a

component in the designated area of the 128 � 64 pixel window, then zero is placed

in the data vector.

The combination classi�er is a linear SVM classi�er. The kernel K that is used

in the SVM classi�er and shown in Equation 2 has the form K(x;x�

i
) = (x � x�

i
+ 1).

This type of hierarchical classi�cation architecture where learning occurs at multiple

stages is termed an Adaptive Combination of Classi�ers (ACC). Positive examples

were generated by processing 128� 64 pixel images of people at one scale and taking

the highest component score (from detections that are geometrically allowed) for each

component type.

3 Results

We compare the performance of our component based person detection system to

that of other component based person detection systems that combine the component
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classi�ers in di�erent ways and the full body person detection system that is described

in [16] and [14] and reviewed in Section 1.1.1.

3.1 Experimental Setup

All of the component based detection systems that were tested in this experiment are

two tiered systems. Speci�cally, they detect heads, legs, and arms at one level and

at the next they combine the results of the component detectors to determine if the

pattern in question is a person or not. The component detectors that were used in all

of the component based people detection systems are identical and are described in

Section 2.2.1. The positive examples for training these detectors were obtained from

a database of pictures of people taken in Boston and Cambridge, Massachusetts, with

di�erent cameras, under di�erent lighting conditions, and in di�erent seasons. This

database includes images of people who are rotated in depth and who are walking, in

addition to frontal and rear views of stationary people. The positive examples of the

lower body include images of women in skirts and people wearing full length overcoats

as well as people dressed in pants. Similarly, the database of positive examples for

the arms were varied in content, including arms at various positions in relation to

the body. The negative examples were obtained from images of natural scenery

and buildings that did not contain any people. The head and shoulders classi�er

was trained with 856 positive and 9,315 negative examples, the lower body with

866 positive and 9,260 negative examples, the left arm with 835 positive and 9,260

negative examples, and the right arm with 838 positive and 9,260 negative examples.

14



3.1.1 Adaptive Combination of Classi�ers Based Systems

Once the component classi�ers were trained, the next step in evaluating the Adap-

tive Combination of Classi�ers (ACC) based systems was to train the combination

classi�er. Positive and negative examples for the combination classi�er were collected

from the same databases that were used to train the component classi�ers. A positive

example was obtained by processing each image of a person at a single appropriate

scale. The four component detectors were applied to the geometrically permissible

areas of the image at the allowable scales. These geometrically permissible areas were

determined by analyzing a sample of the training set images as described in Section

2.2.1. There is no overlap between these images and the testing set used in this ex-

periment. The greatest positive classi�er output for each component was recorded.

When all four component scores were greater than zero, they were assembled as a

vector to form an example. If all of the component scores were not positive then no

vector was formed and the window examined did not yield an example. The negative

examples were computed in a similar manner, except that this process was repeated

over the entire image and at various scales. The images for the negative examples did

not contain people.

We used 889 positive examples and 3,106 negative examples for training the clas-

si�ers. First, second, third and fourth degree polynomial SVM classi�ers were trained

using the same training set and subsequently tested over identical out-of-sample test

data.

The trained system was run over a database containing 123 images of people to
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determine the positive detection rate. There is no overlap between these images

and the ones that were used to train the system. The out-of-sample false alarm

rate was obtained by running the system over a database of 50 images that do not

contain any people. By running the system over these 50 images, 796,904 windows

were examined and classi�ed. The system was run over the databases of test images

at several di�erent thresholds. The results were recorded and plotted as Receiver

Operating Characteristic (ROC) curves.

3.1.2 Voting Combination of Classi�ers Based System

The other method of combining the results of the component detectors that was tested

is what we call a Voting Combination of Classi�ers (VCC). VCC systems combine

classi�ers by implementing a voting structure amongst them. One way of viewing

this arrangement is that the component classi�ers are weak experts in the matter of

detecting people. VCC systems poll the weak experts and then based on the results,

decide if the pattern is a person. For example, in a possible implementation of VCC,

if a majority of the weak experts classify a pattern as a person, then the system

declares the pattern to be a person.

In the incarnation of VCC that is implemented and tested in this experiment, a

positive detection of the person class results only when all four component classes

are detected in the proper con�guration. The geometric constraints placed on the

components are the same in the ACC and VCC based systems. For each pattern that

the system classi�es, the system must evaluate the logic presented below:
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Person = Head & Legs & Left arm & Right arm (3)

where a state of true indicates that a pattern belonging to the class in question

has been detected.

The detection threshold of the VCC based system is determined by selecting ap-

propriate thresholds for the component detectors. The thresholds for the component

detectors are chosen such that they all correspond to approximately the same positive

detection rate, estimated from the ROC curves of each of the component detectors

shown in Figure 6. These ROC curves were calculated in a manner similar to the

procedure described earlier in Section 3.1.1. A point of interest is that these ROC

curves indicate how discriminating the individual components of a person are in de-

tecting the full body. The legs perform the best, followed by the arms and the head.

The superior performance of the legs may be due to the fact that the background of

the lower body in images is usually either the street, pavement, or grass and hence is

relatively clutter free compared to the background of the head and arms.

3.1.3 Baseline System

The system that is used as the \baseline" for this comparison is a full body per-

son detector. Details of this system, which was created by Papageorgiou et al., are

presented in [16], [14], and [15]. It has the same architecture as the individual compo-

nent detectors used in our system, described in Section 2.2.1, but is trained to detect

full body patterns and not separate components. The quadratic SVM classi�er was
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trained on 869 positive and 9; 225 negative examples.

3.2 Experimental Results

We compare the ACC based system, the VCC based system, and the full body detec-

tion system. The ROC curves of the person detection systems are shown in Figure

7 and explicitly capture the tradeo� between accuracy and false detections that is

inherent to every detector. An analysis of the ROC curves suggest that a component

based person detection system performs very well and signi�cantly better than the

baseline system at all thresholds. It should be emphasized that the baseline system

uses the same image representation scheme (Haar wavelets) and classi�er (SVM) that

the component detectors used in the component based systems. Thus, the improve-

ment in performance is due to the component based approach and the algorithm used

for combining the component classi�ers.

For the component based systems, the ACC approach produces better results than

VCC. In particular, the ACC based system that uses a linear SVM to combine the

component classi�er is the most accurate. This is related to the fact that higher

degree polynomial classi�ers require more training examples in proportion with the

higher dimensionality of the feature space to perform at the same level as the linear

SVM. During the course of the experiment, the linear SVM based system displayed a

superior ability to detect people even when one of the components was not detected,

in comparison to the higher degree polynomial SVM based systems. A possible ex-

planation for this observation may be that the higher degree polynomial classi�ers

place a stronger emphasis on the presence of combinations of components, due to the
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structure of their kernels. The second, third, and fourth degree polynomial kernels

include terms that are products of up to two, three, and four elements (which are

component scores).

It is also worth mentioning that the database of test images that were used to

generate the ROC curves did not just include frontal views of people, but also con-

tained a variety of challenging images. Included are pictures of people walking and

running, occluded people, people where portions of their body has little contrast with

the background, and slight rotations in depth; Figure 8 is a selection of these images.

Figure 9 shows the results obtained when the system was applied to images of

people who are partially occluded or whose body parts blend in with the background.

In these examples, the system detects the person while running at a threshold that,

according to the ROC curve shown in Figure 7, corresponds to a false detection rate

of less than 1 false alarm for every 796; 904 patterns inspected. Figure 10 shows the

result of applying the system to sample images with clutter in the background.

3.3 Extension of the System

In the component based object detection system presented in this paper, the con-

straints that are placed on the size and relative location of the components of an

object are determined manually. As explained in Section 2.2.1, the constraints were

calculated from the training examples. While this method produced excellent results,

it is possible that it may su�er from a bias introduced by the designer. Therefore

it is desirable for the system to learn the geometric constraints to be placed on the

components of an object from examples. This would make it easier to apply this
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system to other objects of interest. Also, such an object detection system would be

an initial step towards a more sophisticated component based object detection system

in which the components of an object are not prede�ned.

We created a component based object detection system that learns the relative

location and size of an object's components from examples in order to explore the

viability and performance of such a system. In the new system, the geometrically

permissible areas are learned by SVM classi�ers from training examples. Thus, in-

stead of checking the candidate coordinates of a window against the constraints listed

in Table 1, the coordinates are fed into an SVM classi�er. The output of the each

geometric classi�er determines whether the window is permissible for the particular

component. The coordinates that are fed into the geometric classi�ers are the loca-

tion of the top left corner and bottom right corner of the window, relative to the top

left corner of the 128 � 64 pixel window, ie. four dimensional feature vectors.

The kernel function K in Equation 2 that is used in the geometric classi�ers is a

fourth degree polynomial and has the form K(x;x�

i
) = (x � x�

i
+ 1)4. We trained the

geometric classi�ers for each component on 855 positive and 9,000 negative examples,

from the same databases of images used to train the component classi�ers.

This new system was tested on the same database as the system presented earlier;

Figure 11 compares the ROC curves for the two systems. Where the performance

of the two system is very similar, the system that learns the geometry of an object

performs better at higher thresholds. An added advantage of the system that learns

the relative location and size of the components of an object is that one can change

the size of the geometrically permissible area by varying the penalty parameters,
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Cpos and Cneg, for the misclassi�cation of positive and negative examples during

training [25], [3]. This results in di�erent geometric classi�ers and hence, di�erent

geometrically permissible areas. ROC curves corresponding to di�erent penalty terms

are shown in Figure 11.

4 Conclusions and Future Work

In this paper, we have presented a component based person detection system for

static images that is able to detect frontal, rear, slightly rotated (in depth) and

partially occluded people in cluttered scenes without assuming any a priori knowledge

concerning the image. The framework described here is applicable to other domains

besides people, including faces and cars.

A component based approach handles variations in lighting and noise in an image

better than a full body person detector and is able to detect partially occluded people

and people who are rotated in depth, without any additional modi�cations to the

system. A component based detector looks for the constituent components of a person

and if one of these components is not detected, due to an occlusion or because the

person is rotated into the plane of the image, the system can still detect the person if

the component detections are combined using an appropriate hierarchical classi�er.

The hierarchical classi�er that is implemented in this system uses four distinct

component detectors at the �rst level, that are trained to �nd, independently, com-

ponents of the \person" object, ie. heads, legs, and left and right arms. These

detectors use Haar wavelets to represent the images and Support Vector Machines
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(SVM) to classify the patterns. The four component detectors are combined at the

next level by another SVM. We call this type of hierarchical classi�cation architec-

ture, in which learning occurs at more than two levels, an Adaptive Combination

of Classi�ers (ACC). It is worth mentioning that one may use classi�cation devices

other than SVM's in this system; a comparative study in this area to determine the

performance of such implementations would be of interest.

The system is very accurate and performs signi�cantly better than a full body

person detector designed along similar lines. This suggests that the improvement

in performance is due to the component based approach and the ACC classi�cation

architecture we employed. (Further work in this area to quantitatively determine how

much of the improvement can be attributed to the component based approach and

how much is due to the ACC classi�cation architecture would be useful.) The superior

performance of the component based approach can be attributed to the fact that it

operates with more information about the object class than the full body person

detection method. Speci�cally, where both systems are trained on positive examples

of the human body (or human body parts in the case of the component based system),

the component based algorithm incorporates explicit knowledge about the geometric

properties of the human body and explicitly allows for variations in the human form.

This paper presents a valuable �rst step but there are several directions in which

this work could be extended. It would be useful to test the system described here in

other domains, such as cars and faces. Since the component based systems described

in this paper were implemented as prototypes, we could not gauge the speeds of

the various algorithms accurately. It would be interesting to learn how the di�erent
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algorithms compare with each other in terms of speed. It would also be interesting

to study how the performance of the system depends on the choice of the SVM

kernels and the number of training examples. While this paper establishes that this

system can detect people who are slightly rotated in depth, it does not determine,

quantitatively, the extent of this capability; further work in this direction would be of

interest. Along similar lines, it would be useful to investigate if the approach described

in this paper could be extended to detect objects from an arbitrary viewpoint. In

order to accomplish this the system would have to have a richer understanding of

the geometric properties of an object, that is to say, it would have to be capable of

learning how the various components of an object change in appearance with a change

in viewpoint and also how the change in viewpoint a�ects the geometric con�guration

of the components.
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Figure 1: These images demonstrate some of the challenges involved with detecting
people in still images with cluttered backgrounds. People are non-rigid objects and
dress in a wide variety of colors and garment types. Additionally, people may be
rotated in depth, partially occluded, or in motion (ie. running or walking).
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Original Image
128 x 64

Areas of the image, 
where it is possible to 
detect a head, legs, and 
arms are identified. 
Respective component 
detectors operate on 
these areas only. 

The "most suitable" head, 
legs, and arms are 
identified by the 
component detectors. 
The component scores,
i.e. raw output of the 
component classifiers, 
are fed into the 
combination classifier. 

The combination 
classifier classifies the 
pattern as a "person" or 
"non-person".

A person is detected.
The solid rectangle 
outlines the person. The 
dashed boxes mark the 
components of the 
person.

Face
Detector:
Quadratic
SVM

Right Arm
Detector:
Quadratic
SVM

Left Arm
Detector:
Quadratic
SVM

Leg 
Detector:
Quadratic
SVM

Combination Classifier:
Support Vector Machine

Component Detectors are
applied to all locations of 
permissible areas.

Figure 2: Diagrammatic description of the operation of the system.
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Figure 3: It is very important to place geometric constraints on the location and
scale of component detections. Even though a detection may be the strongest in a
particular window examined, it might not be at the proper location. In this �gure,
the shadow of the person's head is detected with a higher score than the head itself. If
we did not check for proper con�guration and scale, component detections like these
would lead to false alarms and/or missed detections of people.

Component Centroid Scale Other Criteria
Row Column Minimum Maximum

Head and Shoulders 23 � 3 32 � 2 28� 28 42 � 42
Lower Body 32 � 3 42� 28 69 � 46 Bottom Edge:

Row: 124 � 4
Right Arm Extended 54 � 5 46 � 3 31� 25 47 � 31
Right Arm Bent 46 � 3 31� 25 47 � 31 Top Edge:

Row: 31 � 3
Left Arm Extended 54 � 5 17 � 3 31� 25 47 � 31
Left Arm Bent 17 � 3 31� 25 47 � 31 Top Edge:

Row: 31 � 3

Table 1: Geometric constraints placed on each component. All coordinates are relative
to the upper left hand corner of a 128 � 64 rectangle.
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(a) (b)

(c) (d)

Maximum 
Size: 42x42

Minimum 
Size: 28x28

Centroid:
(23,32)
Tolerance:
Height +,- 2
Width +,- 3

(0,0)

(128,64)

Maximum
Size: 69x46

Minimum 
Size: 42x28

Centroid:
Width: 32
Tolerance:
+,- 3

Bottom Edge
Between 
120 & 128

(0,0)

(128,64)

Maximum
Size: 47x31

Minimum
Size: 31x25

Centroid:
(54,46)
Tolerance:
Height +,- 5
Width +,- 3

Top Edge
Between
28 & 34

Centroid:
Width: 46
Tolerance:
+,- 3

Minimum
Size: 25x17

Maximum 
Size: 47x31

(0,0) (0,0)

(128,64) (128,64)

Figure 4: Geometric constraints that are placed on the di�erent components. All
coordinates are relative to the upper left hand corner of a 128 � 64 rectangle; (a)
illustrates the geometric constraints on the head, (b) the lower body, (c) an extended
right arm, and (d) a bent right arm.
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Figure 5: The top row shows examples of \heads and shoulders" and \lower bodies"
of people that were used to train the respective component detectors. Similarly,
the bottom row shows examples of \left arms" and \right arms" that were used for
training purposes.
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Figure 6: ROC curves illustrating the ability of the component detectors to correctly
indentify a person in an image. The positive detection rate is plotted as a percentage
against the false alarm rate which is measured on a logarithmic scale. The false alarm
rate is the number of false positive detections per window inspected.
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Figure 7: ROC curves comparing the performance of various component based people
detection systems using di�erent methods of combining the classi�ers that detect the
individual components of a person's body. The positive detection rate is plotted as
a percentage against the false alarm rate which is measured on a logarithmic scale.
The false alarm rate is the number of false positives detections per window inspected.
The curves indicate that the system in which a linear SVM combines the results of
the component classi�ers performs best. The baseline system is a full body person
detector similar to the component detectors used in the component based system.
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Figure 8: Samples from the test image database. These images demonstrate the
capability of the system. It can detect running people, people who are slightly rotated,
people whose body parts blend into the background (bottom row, second from right
- the person is detected even though the legs are not), and people under varying
lighting conditions (top row, second from left - one side of the face is light and the
other dark).

Figure 9: Results of the system's application to images of partially occluded people
and people whose body parts have little contrast with the background. In the �rst
image, the person's legs are not visible; in the second image, her hair blends in with
the curtain in the background; and in the last image, her right arm is hidden behind
the column.
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Figure 10: Results from the component based person detection system. The solid
boxes outline the complete person and the dashed rectangles identify the individual
components. People may be missed by the system because they are either too large
or too small to be processed by the system (top right - person on the right); because
several parts of their body may have very little contrast with the background (bottom
left - person on the left) or because several parts of their body may be occluded
(bottom right - person second from the left).
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Figure 11: ROC curves comparing the performance of various methods of de�ning and
placing geometric constraints on components of objects. The core component based
object detection algorithm is the same for all the systems tested here - a linear SVM
based ACC system. The positive detection rate is plotted as a percentage against
the false alarm rate which is measured on a logarithmic scale. The false alarm rate is
the number of false positives detections per window inspected. The curves indicate
that the systems that learn the geometric constraints perform slightly better than the
one that uses manually determined values. The graphs also shows that changing the
penalty parameters for misclassi�cations of the geometry (Cpos and Cneg) alters the
overall system's performance.
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