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ABSTRACT

Sequence information and high-throughput
methods to measure gene expression levels open
the door to explore transcriptional regulation using
computational tools. Combinatorial regulation and
sparseness of regulatory elements throughout the
genome allow organisms to control the spatial and
temporal patterns of gene expression. Here we
study the organization of cis-regulatory elements in
sets of co-regulated genes. We build an algorithm to
search for combinations of transcription factor
binding sites that are enriched in a set of potentially
co-regulated genes with respect to the whole
genome. No knowledge is assumed about involve-
ment of speci®c sets of transcription factors.
Instead, the search is exhaustively conducted over
combinations of up to four binding sites obtained
from databases or motif search algorithms. We
evaluate the performance on random sets of genes
as a negative control and on three biologically valid-
ated sets of co-regulated genes in yeasts, ¯ies and
humans. We show that we can detect DNA regions
that play a role in the control of transcription. These
results shed light on the structure of transcription
regulatory regions in eukaryotes and can be directly
applied to clusters of co-expressed genes obtained
in gene expression studies. Supplementary informa-
tion is available at http://www.mit.edu/~kreiman/
resources/cisregul/.

INTRODUCTION

Transcriptional regulation plays a fundamental role in many
biological processes ranging from development to immunity
to learning and memory. Recent sequencing efforts suggest
that the total number of genes does not correlate well with the
behavioral complexity of an organism. This complexity may
arise, partly at least, from more intricate genetic regulatory
mechanisms. Two recent sources of information promise to
accelerate progress in our understanding of gene expression
and its regulation. First, we now have sequence information

from multiple species. Second, it is now possible to interrogate
the expression levels of thousands of genes simultaneously.
Combining these two types of data allows us to ask which
sequence elements govern the levels of mRNA molecules.

Gene expression by RNA polymerase II is orchestrated by
multiple protein transcription factors (TFs) that bind speci®c
sequences in the DNA (1±4). We refer to the DNA sequences
to which these factors bind to enhance or inhibit transcription
as cis elements. Three speci®c aspects of the TF±DNA
interaction complicate the computational search for regulatory
elements. Binding sites for a given TF are quite variable and
we generally lack accurate models of the binding energy
between the TF and DNA (5). Furthermore, TFs can bind
DNA near the transcriptional start site (TSS), usually called
the promoter region, but they can also act at a distance of tens
of thousands of base pairs away from the TSS (6,7). These
long-distance interactions substantially increase the noise in
any procedure to search for regulatory elements. Finally,
groups of TFs may cluster along the DNA to form modules
responsible for speci®c regulatory roles and therefore the
binding af®nity of a particular TF may also depend on the
sequence surrounding its binding site (8,9).

Several computational techniques to search for individual
TF binding sites, here called `motifs', have been proposed
(10±15). Some of these techniques have achieved considerable
degrees of success, particularly when applied to sequences
from prokaryotic organisms or yeasts, although in some cases
the false positive rates still remain high. The extrapolation of
these techniques to higher eukaryotes like mammals remains
dif®cult for several reasons. Non-coding sequences are longer
in humans or mice compared to yeast. Additionally, in several
paradigmatic examples, transcriptional regulation has been
shown to require the combinatorial interplay of multiple
factors (3,8,9,16). The binding of a single TF in general cannot
account for the complex spatial and temporal regulation of
gene expression in higher eukaryotes. As an example, p65 was
found to bind to 209 sites on human chromosome 22 alone by
ChIP-chip analysis. Furthermore, it did not affect transcription
at many of those sites (17).

In some cases, the investigators know or strongly suspect
that a particular group of TFs plays a role in the transcriptional
regulation of the set of genes under study. Several algorithms
have been proposed recently to study this scenario (18±25).
Here we address a different variant of the problem where the
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biologist is faced with a set of genes without any knowledge
about the TFs involved in their regulation. This setting may
arise, for example, in a DNA microarray experiment where
one of the outputs is a cluster of genes that share a similar
expression pattern.

Combinatorial regulation of transcription and sparseness of
regulatory modules in the whole genome underlie the
organization of cis elements in complex eukaryotic systems.
Multiple TF binding sites are clustered together along the
DNA forming modules that are required to control the
expression of each gene (1,8,9). These modules of regulatory
elements should occur infrequently throughout the whole
genome. The rationale for this is that speci®city requires a
sparse code. Here we show that combinatorial regulation and
sparseness can guide the search for regulatory elements in
higher eukaryotes. The evolutionary conservation of import-
ant regulatory elements has been discussed and applied
extensively (see for example 26±29). We therefore do not
discuss comparisons across species in detail here but we

incorporate conservation between species into our algorithm.
We combine these three ideas into an algorithm to search for
cis regulatory elements in sets of potentially co-regulated
genes (Fig. 1). We illustrate the performance of the algorithm
on random sets of genes as a negative control as well as on
three separate sets of biologically validated co-regulated
genes, ranging from yeast to humans. We show that we can
correctly ®nd many of the known regulatory regions in these
sets of genes without any a priori knowledge about which TFs
are involved or where to search.

MATERIALS AND METHODS

General overview

Given a set S of nS potentially co-regulated genes, our
algorithm searches for common sequence patterns that occur
more frequently than expected by chance (see scheme in
Fig. 1). The search is based on locating co-occurrences of

Figure 1. Overall scheme. Schematic description of our approach to ®nd cis elements in eukaryotes based on combinatorial usage of transcription factors and
sparseness of the regulatory modules. The approach involves searching for co-occurrences of motifs that are highly enriched in the set of potentially
co-regulated genes (S) with respect to the set of all genes in the corresponding genome. The upstream region, ®rst exon and ®rst intron are retrieved for each
gene in S. Non-conserved sequences can be masked to reduce the level of noise. A list of individual PWMs (L) is created by (i) searching for new motifs
(using the motif ®nding programs alignACE, MEME and MotifSampler) on the upstream, ®rst exon and ®rst intron sequences of the genes in S and
independently (ii) from motifs from the TRANSFAC database. Modules are de®ned by clusters of motifs within small DNA segments. Module enrichment is
evaluated by comparing the occurrences of the module in the set S against occurrences in all the genes in the genome. The boxes indicate the output of the
previous step and the arrows indicate the processs(es) involved in each step.
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putative binding sites for TFs within short segments of DNA
and ensuring that the co-occurring motifs are sparsely
distributed throughout the genome. We tested the algorithm
on different sequence sources including (i) arti®cial sequences
with implanted modules, (ii) random sets of genes (negative
control) and (iii) experimentally validated systems encom-
passing a wide range of sequence characteristics (positive
controls): (iiia) the CLB2 cluster in yeasts (30), (iiib) a set of
genes involved in pattern formation in ¯ies (24) and (iiic) a set
of genes co-expressed in human skeletal muscle (31). The list
of genes in each set is shown in Table 2. Further
characterization of the algorithm, performance details and a
list of results for the different data sets are available as
supplementary information at http://www.mit.edu/~kreiman/
resources/cisregul. All the code is available upon request from
the authors.

Sequences

Sequences were retrieved from the following sources: http://
www.yeastgenome.org/ for the Saccharomyces cerevisiae
sequences (release 01-21-2003); http://www.ncbi.nlm.
nih.gov/ for the human and mice RefSeq sequences (release
06-21-2003); http://www.ensembl.org/ for the Drosophila
melanogaster sequences (release 01-07-2003). The corres-
ponding annotations were used to retrieve the best current
estimation of the TSS for each gene. In cases of multiple
alternative start sites, we used the one farthest upstream. We
included in our search the upstream sequences, the ®rst exon
and the ®rst intron. We restricted the search to the 5000 bp
upstream of the TSS (see Discussion). If the ®rst exon or
intron was longer than 5000 bp they were trimmed to retain the
5000 bp closest to the TSS. In the CLB2 set in yeast the search
was restricted to 1000 bp upstream of the TSS (extensive
evidence suggests that this is the most important region for
yeasts; 13,26,32,33). For the human and mouse genes, we
restricted our analysis to the RefSeq set of genes (34). For the
comparison between mouse and human genes, the orthology
information was retrieved from the NCBI HomoloGene list
(http://www.ncbi.nlm.nih.gov/HomoloGene/).

Motif models and scanning

We used position weight matrices (PWM) to model the
binding speci®city of each motif. PWMs take into account the
frequency of each nucleotide (A, C, G and T) at each position
(5,35). PWMs assume independence between different
nucleotide positions and attempt to provide a ®rst level
approximation of the interaction energy of a TF with its
binding site (5,36). We used two sources of PWMs: (i) from a
database of known transcription factor binding sites,
TRANSFAC public release 6.0 (37); (ii) putative novel
motifs. The novel motifs were obtained by using three
motif-®nding algorithms: alignACE (13), MEME (12) and
MotifSampler (11). The input to the motif-®nding algorithms
was the set of sequences for the genes in S (the boundaries for
the sequences were de®ned in the previous section). For the
human muscle set, we ran the motif-®nding algorithms on both
the raw sequences and the sequences after masking those
segments not conserved in the mouse orthologs. Sequence
conservation was determined using BLAST. The parameters
for alignACE were -numcols 10 and the GC frequency. The
parameters for MEME were -minw 6, -maxw 20, -dna, -mod

tcm, -nmotifs 100, -evt 1, -minsites 3, -maxsites 500, 6th order
background model and -revcomp. The parameters for
MotifSampler were 6th order background model and -n 10.
The background models and GC frequency were computed
from the upstream sequences of all genes in the corresponding
genome (5000 bp upstream of the TSS for mouse, human and
¯ies and 1000 bp for yeast). The output of the motif search
algorithms depends on the random initial conditions. We
therefore ran 10 iterations of each motif search algorithm on
the same sequences (the number of novel non-redundant
PWMs reported by the motif-®nding programs decreases with
each successive iteration; see supplementary information.

The PWMs from the motif-®nding algorithms and the
motifs from TRANSFAC were merged. Redundancies
(between PWMs obtained from different iterations of a
motif-®nding algorithm or different motif-®nding algorithms
or the motif-®nding output and TRANSFAC) were removed
by considering the similarity of the weight matrices. Similarity
between two PWMs was assessed by the Spearman correlation
coef®cient between linearized weight matrices (in the best
alignment). We used a threshold correlation coef®cient of
0.70 to consider two motifs redundant (13). Furthermore, we
only considered motifs with an information content (5) larger
than 0.2331 bits/nt (this value corresponded to the lowest 5th
percentile from the TRANSFAC database), a minimum length
of 6 nt and a minimum of ®ve sequences used to de®ne the
PWM. The resulting set of T non-redundant motifs, L =
{m1,¼,mT}, was then used to search for modules (see below).

Given a PWM, we scanned all the sequences and assigned a
score to each sequence segment. In the human muscle set,
scanning was performed on the masked sequences (similar
results but with higher levels of noise were obtained when
using the raw sequences; see supplementary information). The
score was given by

q �
Xi�w

i� 1

log
fni

bn

� �
where w is the motif length, fni indicates the frequency of
nucleotide n at position i (n Î {A,C,G,T} and i = 1,¼,w; a
pseudocount of one was added at each position to account for
small sample bias; see 5) and bn is the overall frequency of
nucleotide n (5). Binding of a TF to DNA is likely to be a
continuum whereby the protein spends more time bound to
higher af®nity sequences. However, for the present imple-
mentation we chose a binary threshold that classi®ed each
PWM as present or absent at each position. As a threshold, we
used the maximum score qth that left out <5% of the sites used
to build the PWM (attempting to achieve a low false negative
rate). The search was conducted on both strands.

Preliminary search for modules

For faster performance, we ®rst compared the set of poten-
tially co-regulated genes against a small background set of
random genes before comparing against all genes in the
genome (this reduces the number of modules to analyze in all
genes in the genome by several orders of magnitude). For a set
S with nS potentially co-regulated genes, a background set of
genes was generated by extracting a random set of nb genes
where nb = 20ns. We exhaustively explored all combinations
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of motifs up to nmotifs (we used nmotifs = 2, 3 or 4) from the set
of non-redundant motifs L. A preliminary module M was
de®ned as a set of motifs {m1, ¼, mn}, with n < nmotifs, mi Î L,
that ful®lled the following requirements. (i) The distance
between adjacent motif occurrences was less than maxd. We
explored maxd = 25, 50, 100 and 200 bp; these values are
within the range of distances between binding sites observed
in several experimentally validated studies in multiple species
(3,24,31,38). (ii) The maximum overlap between adjacent
motifs was half the motif length. (iii) The module had to be
present in at least ntr genes in S (ntr = 4). (iv) The module had
to be enriched in S with respect to the background set at
p < 0.01 after Bonferroni correction by the total number of
combinations (see de®nition of enrichment below). The motifs
within a module were not required to be different and therefore
this allowed the modules to represent homotypic interactions
as well.

Comparison to all genes

For each preliminary module M, let x be the number of genes
within S where the module was present (ntr < x < ns). We
determined the frequency of occurrence of M in all genes as Pg

= eg/ng, where eg is the number of genes containing M in the
set of ng genes analyzed. For the enrichment with respect to
`all genes', ng = 16 969 for mice, 17 689 for humans, 13 639
for ¯ies and 6327 for yeast (the exact number of genes in each
species is still not settled, particularly for humans and mouse,
but we refer to this number as `all genes in the genome'
throughout the text). We assumed as a null hypothesis that M
was randomly distributed across all genes. We therefore
de®ned the enrichment as the probability that the number of
genes in S where M is present, es, is larger than or equal to the
observed value x assuming the frequency Pg in all genes. This
follows a hypergeometric distribution (sampling without
replacement from a ®nite population) which converges to
the binomial distribution when ns/ng is small (39). The
probability of enrichment can be expressed as:

P�es � x� �
Xi� ns

i� x

ns

i

� �
Pi

g�1ÿ Pg�nsÿi

This enrichment probability was computed for all the modules
M from the preliminary module search step. We report all
modules with enrichment probability <0.01. Given that
multiple hypotheses are tested, we applied the Bonferroni
correction using the total number of hypotheses (40). For the
comparison to all genes, the total number of hypotheses was
given by the number of preliminary modules. For the
de®nition of the preliminary modules, the total number of
hypotheses corresponded to the total number of motif
combinations.

Performance evaluation

We examined two main values to evaluate the performance of
our algorithm. First we considered whether we could detect
the known regulatory regions. We de®ned pknown as the
proportion of known regions that were detected. Secondly, we
examined the rate of false positives. It is not easy to accurately
determine the false positive rate without making strong
assumptions about the biology of the system under study.

Here we assume that none of the hitherto uncharacterized
regions play a biological role. The assumption that we know
all the regulatory regions leads to an upper bound on the false
positive rate. We de®ne pFA, the probability of false alarm, as
the proportion of module predictions where the location of M
overlaps with known regulatory regions in <50% of the genes.
In other words, if an investigator were to conduct a follow-up
experiment to study the putative regulatory regions predicted
by each of the modules, then the probability of false alarms
indicates the proportion of modules where more than half of
the genes would not show any biological regulatory function.
The 50% cut-off is arbitrary and Figure 4 and the supplemen-
tary information show the probability of false alarm for
different values of this threshold. We separately report the
false positive rate and pknown for all the predictions as well as
for the top 10 predictions. We do not discuss here the
computational performance of the algorithm; all the code was
run on a Pentium IV, 2.8 GHz computer running Linux.

RESULTS

We incorporated the principles of combinatorial regulation
and sparseness into an algorithm to search for cis-regulatory
elements in a set of potentially co-regulated genes. We also
added the power of evolutionary conservation to detect non-
coding sequences from multiple species that show little
variation through time. A schematic layout of the algorithm is
shown in Figure 1. We tested the algorithm to search for
putative regulatory sequences in both positive and negative
control sets. The ®rst positive control consisted of random
sequences where clusters of motifs were arti®cially implanted.
This served the purpose of calibrating the parameters of the
algorithm and studying its performance for different degrees
of degeneracy of the motifs, noise levels and distance
constraints (data not shown). As a negative control, we
selected random sets of genes and carried out the same
analysis as with the other sets. This showed that the number of
predictions expected by chance was small. We then studied the
CLB2 gene set in yeast. This is a well-known case where the
transcription of several genes in the set is regulated by the TFs
SFF and MCM (30,41,42). Many characteristics of the yeast
genome make searching for transcriptional regulatory signals
easier than in higher eukaryotic organisms. Therefore, we next
tested the algorithm in a set of genes involved in pattern
formation in ¯ies (24), as well as in a set of genes co-expressed
in skeletal muscle in humans (31).

Random sets of genes

Given the large number of combinations of motifs that had to
be tested, it was important to put a bound on the probability of
chance occurrence of putative modules. Therefore, we sought
to determine whether it is possible to obtain putative modules
that appear to be statistically signi®cant in negative controls
consisting of a random set of genes. The underlying assump-
tion is that a random set of genes is unlikely to share a speci®c
set of common regulatory elements. We randomly selected
groups of N genes (N = 20, 30 or 40) from the mouse RefSeq
collection and analyzed those genes as if they constituted a
real set of potentially co-regulated genes by applying our
algorithm and searching for regulatory modules. For each
value of N, the procedure was repeated ®ve times. The average
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number of PWMs was 372 6 29 (including 144 TRANSFAC
mouse and human motifs plus the output of the motif ®nding
programs; see Materials and Methods). The average sequence
length was 7961 6 419 bp. Table 1 summarizes the results of
this analysis for the set of parameters that most closely
matches the study of the human skeletal muscle set (results for
other parameters are shown in supplementary information).
Random sets of genes yield only a small number of module
predictions compared to the positive controls. For a maximum
of 4 motifs per module, the average number of modules from
the random sets of genes was 0.4 6 0.5 whereas the number of
modules for the human skeletal muscle set was 561. This
suggests that only a small fraction of the modules found in a
set of genes can be explained by random co-occurrences of
PWM hits. In addition to the low number, the quality of the
modules obtained from random sets of genes, as assessed by
the enrichment criterion, was poorer than the quality of those
modules obtained from real sets of co-regulated genes (median
p values: random sets of genes = 0.004 6 0.005; skeletal
muscle set = 7 3 10±4 6 1.6 3 10±4). Furthermore, the
putative modules showed no enrichment in the human genome
and therefore no evidence of evolutionary conservation of the
cis elements. The median p value in the human genome for
enrichment of the modules found in the random sets of mouse
genes was 0.4 6 0.3, whereas the median p value for
enrichment in the mouse genome of the modules found in the
human skeletal muscle set was 2.5 3 10±4 6 9.5 3 10±3. These
observations show that, in spite of the large number of
combinations, our analysis could still reveal interesting
regulatory elements beyond chance expectations. The number
of modules found for each iteration as well as results for other
parameters are shown in supplementary information.

Initial exploration: a set of genes co-expressed in the
yeast cell cycle

We studied a set of 32 genes (Table 2) comprising the CLB2
cluster in yeast. These genes show a pattern of expression that
peaks in the M phase of the cell cycle (30). The transcription
of several of these genes is known to be controlled by two TFs,
SFF and MCM (38,41,42). We searched for combinations of
two motifs from a list of 147 motifs that included those weight
matrices in TRANSFAC (37) as well as the output from
the alignACE motif search program (13) (the full list of
motifs is available at http://www.mit.edu/~kreiman/resources/
cisregul).

The top scoring module corresponded to the interaction
between two motifs resembling the SFF and MCM binding
sites. The SFF-like and the MCM-like motifs were found by
running alignACE on the 1000 bp promoter region of the 32
genes (the output of 10 runs of alignACE was a total of 286
motifs; 116 motifs remained after removing redundant
motifs). The correlation coef®cient between the linearized
PWM of our MCM-like motif and the MCM motif reported in
the literature (30,43) was 0.54 and the correlation coef®cient
for the SFF-like motif was 0.94. These two motifs co-occurred
12 times in 12 genes from the CLB2 cluster (see supplemen-
tary information). Among these genes were CLB1, BUD4,
SWI5, Swi5p and Ace2p, which are known to be transcrip-
tionally controlled by MCM and SFF (30). This pair of motifs
was also computationally identi®ed by Pilpel and colleagues
by considering the change in expression coherence during the
M phase of the cell cycle for genes containing binding sites for
both factors compared to either factor alone (43). The ®rst
motif alone occurred 57 times in 25 genes while the second
motif appeared 39 times in 23 genes from the CLB2 cluster
set. This emphasizes the power of combinatorial regulation by
searching for co-occurrences of the two motifs. When
scanning through all genes in the S.cerevisiae genome, the
two motifs co-occurred 62 times (<1% of the total of 6327
genes searched) while either motif alone was present in >1000
genes. This illustrates the power of the sparseness principle,
i.e. the enrichment in the set of co-regulated genes with
respect to all genes in the genome. This almost 40-fold
occurrence ratio in the CLB2 cluster compared to all genes
corresponds to an enrichment p value <10±17 (see Materials
and Methods). This two-motif module was the top scoring
module regardless of the value used for the maximum distance
parameter (25, 50, 100 or 200 bp). Furthermore, this was also
the top scoring module when allowing combinations of up to
three motifs, indicating that another motif did not add to the
speci®city of this regulatory module.

We analyzed the gene expression levels along the cell cycle
of all the genes containing co-occurrences of these two motifs
within 25 bp using the microarray cell cycle data of Spellman
and colleagues (30). Of the 50 genes where the module was
present (beyond the 12 genes already present in the CLB2 set),
cell cycle expression data were unavailable for 4 genes, 29
genes had no apparent modulation of gene expression, 3 had
strong cyclic modulation with a peak in G1 or S phase
(YFL037W, YLR194C and YNR009W), 5 genes showed

Table 1. Summary of performance for random gene sets and skeletal muscle set

nmotifs 30 Random mouse genes Skeletal muscle
Modules pmm phs Modules pmm phs

2 0.00 98.3 3.7E ± 04 5.4E ± 04
3 0.00 291.3 2.3E ± 04 3.4E ± 04
4 0.35 3.6E ± 03 0.37 561.5 1.7E ± 04 2.5E ± 04

The number of modules and module enrichment for the negative controls consisting of 30 random genes from the mouse RefSeq collection (average of ®ve
iterations) and for the skeletal muscle gene set. nmotifs indicates the maximum number of motifs per module. The number of modules indicates the average
over all iterations and the four values of maxd explored (25, 50, 100 and 200 bp). The p value shows the enrichment probability with respect to the whole
mouse (mm) or human genome (hs) (median across different values of maxd and different iterations, see Materials and Methods). The results presented in this
table were computed using a maximum upstream sequence length of 5000 bp and including the ®rst exon and ®rst intron (total sequence length: random
genes, 7961 6 419 bp; skeletal muscle, 6823 6 1700 bp). The results for each iteration and each value of maxd as well as a description of the dependence on
the sequence length and the number of genes are available at http://www.mit.edu/~kreiman/resources/cisregul/.
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weak modulation with a peak in M phase (YHL024W,
YHL042W, YNL042W, YDR121W and YDR208W) and 9
genes showed expression modulation with a peak in M phase
that resembled the expression patterns of other CLB2 genes
(YAR018C, YGL008C, YHL028W, YJL157C, YKL043W,
YML052W, YMR031C, YNL056W and YOR023C). The list
of all genes where the module was found is available at http://
www.mit.edu/~kreiman/resources/cisregul. These observa-
tions suggest that scanning for occurrences of regulatory
modules may reveal genes that share similar expression
patterns but were not detected in the gene expression analysis.

A more complex scenario: Drosophila pattern
development

Searching for cis-regulatory elements in higher eukaryotes
poses additional dif®culties: intergenic regions are longer,
gene structure includes longer introns and gene regulation
seems to be more complex, requiring the interplay of more
factors. Therefore, we next tested our algorithm in the search
for cis-regulatory elements in 13 genes involved in develop-
ment of the anterior±posterior axis in the D.melanogaster
embryo (Table 2). These genes were taken from a previous
study that combined computational and experimental work to
study clustering of ®ve known TFs, namely Bicoid, Caudal,
Hunchback, KruÈppel and Knirps (24). Here, we have assumed
no knowledge about the involvement of these speci®c TFs. We
ran our algorithm to study the potential regulatory mechan-
isms of these 13 genes by studying combinations from a list of
271 motifs (including 30 Drosophila PWMs from
TRANSFAC and 241 PWMs obtained from the motif-®nding
algorithms after removing redundancies from an initial list of
1336 motifs; the full list of motifs is available at http://
www.mit.edu/~kreiman/resources/cisregul).

Figure 2 shows an example where one of the top modules
found by our algorithm located the known regulatory regions
from six genes in the pattern formation set. This module
constituted the best prediction for some but not all parameter
combinations. For most of the parameters we explored (83%),
this module occurred within the top 10 predictions. It was the
top prediction, with an enrichment probability of 1.4 3 10±12,
for a maximum motif distance of 200 bp using a maximum of
either three or four motifs. For this parameter combination, the

Table 2. List of genes in each set

Gene identi®er Symbol Elements in
searched region

Saccharomyces cerevisiae CLB2 set
YLR131C ACE2 Yes
YGL021W ALK1 Yes
YNL172W APC1 Yes
YCL014W BUD3 Yes
YJR092W BUD4 Yes
YLR353W BUD8 Yes
YGL116W CDC20 Yes
YMR001C CDC5 Yes
YBR038W CHS2 Yes
YGR108W CLB1 Yes
YPR119W CLB2 Yes
YOR025W HST3 Yes
YPL242C IQG1 Yes
YPL155C KIP2 Yes
YIL106W MOB1 Yes
YHR023W MYO1 Yes
YDR150W NUM1 Yes
YDR146C SWI5 Yes
YML064C TEM1 Yes
YCL063W VAC17 Yes
YIL158W YIL158W Yes
YJL051W YJL051W Yes
YKL130C SHE2 Yes
YLR057W YLR057W Yes
YLR084C RAX2 Yes
YLR190W MMR1 Yes
YML034W SRC1 Yes
YML119W YML119W Yes
YMR032W HOF1 Yes
YNL058C YNL058C Yes
YPL141C YPL141C Yes
YPR156C TPO3 Yes

Drosophila melanogaster pattern formation set
CG9786 hb Yes
CG4717 kni Yes
CG3340 kr Yes
CG2328 eve Yes
CG6494 h Yes
CG1849 run Yes
CG10325 abd-A No
CG6464 salm No
CG10388 ubx No
CG7952 gt Yes
CG3851 odd Yes
CG6246 nub Yes
CG12287 pdm2 Yes

Homo sapiens skeletal muscle set
1140 CHRNB1a Yes
1146 CHRNGa Yes
1144 CHRNDa Yes
1145 CHRNEa Yes
70 ACTCa Yes
1158 CKMa Yes
1674 DESa Yes
6517 SLC2A4a Yes
4656 MYOGa Yes
4632 MYL1a Yes
4635 MYL4a Yes
7134 TNNC1a Yes
7135 TNNI1a Yes
7139 TNNT2a No
4625 MYH7a Yes
4624 MYH6a Yes
58 ACTA1a Yes
1410 CRYABa Yes
1339 COX6A2a Yes
4634 MYL3a Yes

Table 2. Continued

Gene identi®er Symbol Elements in
searched region

4633 MYL2a Yes
4151 MBa Yes
5224 PGAM2a Yes
5925 RB1a No
6876 TAGLNa Yes
226 ALDOAa No
4878 NPPAa Yes
1756 DMDa No
2027 EN3a Yes

For each of the three sets of biologically validated co-regulated genes that
we analyzed, this list indicates the gene identi®ers and symbols and whether
the regulatory elements reported in the literature fall within the search areas
that we included in the analysis.
aLocuslink.
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top 10 predictions yielded a false positive rate of 60% (see
Materials and Methods for de®nition of false positive rate) and
69% of the known regulatory modules were detected (out of a
maximum of 77% given that the regulatory regions of three
genes fell outside our search area; see Table 2). Using all
module predictions instead of the top 10 predictions, the false
positive rate increased to 80%, but we could detect all the
known regulatory regions within the sequence search bound-
aries (see supplementary information available at http://
www.mit.edu/~kreiman/resources/cisregul for other param-
eter combinations). Furthermore, considering the top 10
predictions for each parameter set, we detected at least one
of the known regulatory regions in 92% of the cases. In many
cases, there were multiple occurrences of some of the motifs
within the modules (for example, the total number of motif
occurrences was seven in the knirps gene for the module
illustrated in Fig. 2). This is typical of many DNA signals and
may improve the probability of DNA-binding proteins
detecting their target sites and exerting their functions (2,24).

The three individual motifs in the module illustrated in
Figure 2 occurred 30 times in 12 genes, 50 times in 13 genes
and 97 times in 13 genes, respectively. This was reduced to the
26 occurrences in 6 genes illustrated in Figure 2 upon applying
the constraint that the motifs had to cluster along the DNA.
Examination of all 13 639 genes in the ¯y genome led to
>2000 occurrences for each of the individual motifs. However,
this module was present in only 48 genes (<0.5% of the total
number of genes; see supplementary information available at
http://www.mit.edu/~kreiman/resources/cisregul for the list of
these 48 genes).

Human muscle regulatory regions

We further tested the algorithm to search for cis elements in
complex regulatory systems by studying a set of genes
expressed in skeletal muscle in humans (31). Several TFs have
been shown to play a role in the regulation of gene expression
in skeletal muscle, including Myf, Mef-2, SRF, Tef and Sp-1
(31). We applied our algorithm to a set of 29 genes with
skeletal muscle expression (Table 2) without assuming any
knowledge of the speci®c factors that regulate these genes. We
performed our de novo search for cis elements by considering
combinations from a list of 406 motifs (including 144 Mus
musculus and Homo sapiens PWMs from TRANSFAC and
262 PWMs obtained from the motif-®nding programs after
removing redundancies from an initial set of 4578 motifs; the
full list of all motifs is available at http://www.mit.edu/
~kreiman/resources/cisregul).

An example of the results obtained is shown in Figure 3. This
module, formed by SP1, SRF, TEF and another putative motif,
locates the known regulatory regions in four muscle genes and
showed an enrichment probability of 2 3 10±9 (maxd = 100 bp,
nmotifs = 4). We searched for the occurrences of this module in
the mouse genome (using exactly the same PWMs). We
observed that it was also enriched within the upstream regions
of the mouse orthologs of the human skeletal muscle genes of
Table 2. The enrichment p value in mouse with respect to the
whole mouse Refseq collection was 8 3 10±6. For this
combination of maxd and nmotifs parameters, 72% of the known
signals were detected (four genes in the set did not have any
annotated regulatory elements; see Table 2) and the false alarm
rate was 80% (Fig. 4; see supplementary information).

Figure 2. One of the top modules in the ¯y pattern formation set. Location of the three motifs from one of the top scoring modules found in six genes from
the ¯y pattern formation set (Table 2) within the 5 kb region upstream of the TSS plus ®rst exon and ®rst intron. Shaded boxes correspond to the known
regulatory regions as reported by Berman et al. (24). The number of total motif occurrences (n) is indicated next to each gene. Whenever n > 3, there were
multiple occurrences of at least one of the motifs. To the right of each gene, we zoom in (83) on the region including the module. The algorithm was run
with the following parameters: maximum distance between motifs = 200 bp, maximum number of motifs = 3, no order constraint, minimum number of genes
with module = 4. The enrichment p value (see Materials and Methods) was 10±12.
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We detected this module in 175 genes (<1% of the total of
17 689 genes in the human RefSeq collection). Whether this
module can control the expression of any of these other genes
or not requires further experimentation. As a coarse prelim-
inary exploration, we analyzed the expression patterns of these
genes in two independent DNA microarray studies of gene
expression across tissues (44±46). The list of tissues included
the human and mice skeletal muscle. Expression values for
some of the genes were not available (19 and 38%, respect-
ively). Also, DNA microarray data can yield false negatives;
for example, the CHRND gene, which was present in the
skeletal muscle set, did not show enrichment in either
microarray study. This emphasizes the importance of other
complementary experimental techniques such as in situ
hybridization to study gene expression (47). However, on
average, the expression level in skeletal muscle of the genes
with this module was larger than that of all genes. The ratio of
the Affymetrix mean expression levels of genes containing
this module to that of all genes was 4.0 for humans and 4.6 for
mice (p < 10±3 for humans and p < 10±5 for mice, t-test).
Furthermore, several genes that were not included in the
human muscle skeletal set showed higher expression levels in
muscle compared to other tissues in both humans and mice
(see supplementary information).

Parameter landscape

Throughout the algorithm, there are several parameters
requiring choices by the user. We discuss those parameters
here and we show that the search results were robust to most
(but not all) of these arbitrary choices.

One of the most sensitive decisions concerns where to
search for regulatory elements. Shorter sequences reduce the

amount of noise but the chances of missing true sites are
signi®cantly increased. In the CLB2 gene set in yeast, we
always used a ®xed window of 1000 bp. In the ¯y, mouse and
human studies, we chose a compromise of using 5000 bp
upstream of the TSS. Shorter regions (of 1000 or 2000 bp)
missed many important regulatory elements in the ¯y gene set.
In the analysis in ¯ies, known regulatory regions were present
between 5 and 10 kb upstream of the TSS in two genes and
beyond 10 kb upstream in four genes (24). Furthermore, two
genes had regulatory modules downstream of the ®rst intron.
Therefore, our search area encompassed 52% of the regulatory
modules and 77% of the genes in this set. Restricting the
search to only the ®rst 2 kb upstream region would miss 74%
of the known regulatory modules in the ¯y gene set. Our
algorithm was also able to detect the known regulatory regions
upon extending the upstream segment to 10 kb, albeit with a
considerable increase in computation time (the number of
putative motif binding sites is proportional to the total
sequence length and the computation time is polynomial on
the number of binding sites). The performance of the
algorithm was quite poor with upstream regions of 50 kb
(not shown). However, once a particular module (or a small
number of modules) is found and accurately de®ned, it is
possible to search for occurrences of the module throughout
the whole genome (20,24,48). Restricting the search to the
upstream sequences (i.e. ignoring the ®rst intron and ®rst
exon) would not have missed any other regulatory elements in
the example in ¯ies. However, in the human muscle set, three
genes (10%) had regulatory regions in the ®rst exon or intron.

Only a small fraction of the putative binding sites found by
the motif-®nding algorithms (alignACE, MEME and
MotifSampler) were incorporated into modules that occurred

Figure 3. One of the top results in the human skeletal muscle set. Location of four motifs (red rectangle, SP1-like; blue diamond, SRF-like; green oval,
TEF-like; black triangle, putative motif) from one of the top scoring modules found in ®ve genes from the human muscle set. Shaded boxes correspond to the
known regulatory regions as reported by Wasserman and Fickett (31). The format follows that in the previous ®gure. The algorithm was run with the follow-
ing parameters: maxd = 100 bp, maximum number of motifs = 4, no order constraint, minimum number of genes with module = 4. The enrichment p value
was 2 3 10±9.
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within the known regulatory regions (2.5% for the human
skeletal muscle gene set, 4% for the ¯y pattern formation set
and 8% for the yeast CLB2 cluster). It is unclear whether any
of the remaining motifs play any biological role or not. This
small fraction suggests that further research is necessary to
improve the detection of novel putative individual binding
sites in complex regulatory systems with long sequences. The
threshold for the comparison of motifs to eliminate redun-
dancies (see Materials and Methods) and the parameters used
to ®lter out some of the poorly de®ned PWMs did not affect
the results of the analysis.

Detecting the binding sites of a motif given its PWM
requires a threshold parameter. The trade-off between sensi-
tivity and speci®city for the detection of binding sites has been
discussed previously (see for example 49). We observed that
we could use a low threshold in the motif scanning step
(increasing the false positive rate but reducing the number of
missed binding sites) because of the subsequent ®ltering steps
imposed by motif clustering to form modules. We used the

maximum score value that left out <5% of the sequences used
to de®ne the PWM.

The de®nition of the modules also required several
parameters. These included the maximum number of inter-
acting motifs, the maximum and minimum distance between
motifs and the statistical threshold. Increasing the number of
interacting motifs beyond two did not improve the results for
the yeast case. In contrast, for the human and ¯y gene sets,
there was a signi®cant increase in the proportion of known
regions detected with three or four motifs. In the yeast case,
the maximum distance parameter did not in¯uence the results
(from 25 to 200 bp). For the ¯y and human cases, better
performances were obtained for maxd = 100 or 200 bp. The
constraint that the binding sites cluster in a short region of
the DNA is very important (9,20,24). Requiring only that the
motif combination is present in the set of genes, regardless of
the distances between motifs, led to poor results. For example,
running the algorithm on the human skeletal muscle set
without imposing any distance constraint between motifs, for

Figure 4. Average false positive probabilities. False positive probability, pFA, as a function of the threshold for the proportion of genes where the module
correctly predicts the known regulatory regions (see Materials and Methods for de®nitions). (A) Drosophila pattern formation set, all predictions.
(B) Drosophila pattern formation set, top 10 predictions. (C) Human skeletal muscle set, all predictions. (D) Human skeletal muscle set, top 10 predictions.
Error bars correspond to standard deviations. The values here were averaged over all combinations of maxd and nmotifs (the individual values for each
parameter combination are available at http://www.mit.edu/~kreiman/resources/cisregul/).
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the case nmotifs = 2, yielded 9 putative modules (versus 49 with
maxd = 100), the top scoring module had an enrichment p value
of 4 3 10±5 (versus 6 3 10±8 with maxd = 100) and showed no
conservation between humans and mouse (enrichment p value
in mouse = 0.1366 in contrast to the maxd = 100 case where the
top module had a p value in mouse = 6 3 10±4).

DISCUSSION

Transcriptional control constitutes one of the most ubiquitous
regulatory mechanisms; it is present in every species
examined so far and is part of many important biological
processes. Here we have shown that two simple principles
about the organization of regulatory regions in the DNA could
lead to the identi®cation of cis elements in a group of co-
regulated genes. These principles are: (i) the combinatorial
nature of transcriptional regulation; (ii) the sparseness of the
regulatory modules. The combinatorial arrangement of
multiple TFs allows cells to ®nely control gene transcription
and integrate multiple signal transduction pathways
(1,3,8,16,50). Thus, a small number of TFs can control a
large array of biological processes. Sparseness permits the cell
to manipulate the expression of different genes in a distinct
way.

The exploration of the parameter landscape suggests that
the algorithm's performance is robust to many of the
parameters and thresholds. Performance is very sensitive to
the choice of the search space. Without additional knowledge
about the location of the regulatory modules, short sequence
segments (e.g. <2 kb for higher eukaryotes) are likely to miss
many of the important regulatory elements. However, very
long sequences (e.g. >10 kb) signi®cantly increase the levels
of noise. Our compromise was to use 5000 bp upstream of the
TSS and to include the ®rst exon and ®rst intron. Once a
module is found in this sequence segment, the algorithm
searches for occurrences of the module in all genes in the
genome. The enrichment criterion assumes as a null hypoth-
esis that the scanned sequences of genes in the set under study
are not distinct from those in all genes. Differences that may or
may not play a direct role in speci®c regulation of transcrip-
tion, such as different content of CpG islands in tissue-speci®c
genes (51), would also be detected by our algorithm.

In addition to improving our understanding of transcrip-
tional regulation, an accurate model of the cis-regulatory
elements in a set of genes can lead to the identi®cation of other
genes that share the same regulatory mechanisms. A typical
case involves DNA microarray studies where some genes may
be missed due to thresholds in the analysis or to low
expression values that are below the detection limits. For
example, the module shown in Figure 2 was also present in
several TFs in the ¯y genome, including tll, can and fkh (see
supplementary information for the whole list). The tll TF is
known to play a role in controlling the expression of several of
the genes in the ¯y pattern formation gene set (24). In the
human skeletal muscle gene set, the module shown in Figure 3
was present in MAPK12 (mitogen-activated protein kinase
12), which is enriched in human skeletal muscle compared to
the median expression across all tissues in two independent
microarray data sets (44,45). Furthermore, MAPK12 is also
enriched in mouse skeletal muscle (44). This module was also
present in other genes highly expressed in skeletal muscle,

including MAPKAPK2, MAPKAPK3, CA3, PTGDS, CSDA,
SMG1 MRPL28 DMPK, TUBA8 and LARGE. However, it is
hard to assess without further biological experiments whether
expression of the other genes that contained the module and
were not in the original set is actually regulated by these
putative cis elements.

Other investigators have included requirements for cluster-
ing of motifs within their algorithms to search for cis elements
(20,24,43,52,53). Several of these algorithms consider a
combination of motifs to be signi®cant when its presence
cannot be accounted for by a simple model (like a Poisson
model) assuming independence for occurrences of separate
motifs. Important evolutionary forces such as duplication and
transposition are not well accounted for by independence
assumptions made by many parametric models of motif
clustering (as a trivial example, the sequence
AAAAAAAAAAAA occurs much more frequently than
would be predicted by independent occurrences of
AAAAAA in the yeast 1 kb sequences before the TSS). Our
implementation of the sparseness principle requires fewer
assumptions and may be more relevant to the situation in the
cell. In particular, it does not require determining a speci®c
distribution for the motif binding sites.

Gene expression also depends on chromatin structure
(2,4,54), on other regulatory mechanisms that are not seen at
the DNA sequence level (e.g. the phosphorylation of a TF) and
on elements far from the TSS (7). At the moment, our
algorithm does not account for any of these. The high false
positive rates observed with this as well as other algorithms
stresses the fundamental role of biological experimentation.
However, the use of computational algorithms to search for
cis-regulatory elements signi®cantly reduces the search space
to one that is manageable with current laboratory techniques.

Understanding transcriptional regulatory networks in higher
eukaryotes is a complex problem. As in other dif®cult
problems in other research areas, it is important to identify
some of the basic organizational structure that can account for
the majority of the examples (albeit not necessarily all of
them). Combinatorial regulation, sparseness and evolutionary
conservation can guide the search for cis elements, which
constitutes one of the ®rst key steps towards a more detailed
model of regulatory networks.
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