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A few distinct cortical operations have been postulated over the past
few years, suggested by experimental data on nonlinear neural response
across different areas in the cortex. Among these, the energy model pro-
poses the summation of quadrature pairs following a squaring nonlin-
earity in order to explain phase invariance of complex V1 cells. The
divisive normalization model assumes a gain-controlling, divisive inhi-
bition to explain sigmoid-like response profiles within a pool of neurons.
A gaussian-like operation hypothesizes a bell-shaped response tuned to
a specific, optimal pattern of activation of the presynaptic inputs. A max-
like operation assumes the selection and transmission of the most active
response among a set of neural inputs. We propose that these distinct
neural operations can be computed by the same canonical circuitry, in-
volving divisive normalization and polynomial nonlinearities, for dif-
ferent parameter values within the circuit. Hence, this canonical circuit
may provide a unifying framework for several circuit models, such as
the divisive normalization and the energy models. As a case in point, we
consider a feedforward hierarchical model of the ventral pathway of the
primate visual cortex, which is built on a combination of the gaussian-
like and max-like operations. We show that when the two operations are
approximated by the circuit proposed here, the model is capable of gen-
erating selective and invariant neural responses and performing object
recognition, in good agreement with neurophysiological data.

1 Introduction

Across the cortex, many different types of neural responses have been
observed and subsequently described by different models of neural
computations. For example, many cortical neurons are found to produce a
sigmoid-like response pattern as a function of certain stimulus parameters
like the contrast of an image. Such behavior is often modeled by divisive
normalization circuits over a pool of inputs (Carandini & Heeger, 1994;
Heeger, 1993).
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Some cortical neurons are found to produce strong activity for a certain
optimal input pattern and weaker activity for other inputs different from
the optimal one (Gallant, Connor, Rakshit, Lewis, & Van Essen, 1996; Gross,
Rocha-Miranda, & Bender, 1972; Hubel & Wiesel, 1962; Logothetis, Pauls,
& Poggio, 1995; Pasupathy & Connor, 2001; Rauschecker, Tian, & Hauser,
1995; Wilson, Turner, & Laurent, 2004). In some simple cases, like orientation
tuning in the primary visual cortex, the observed neural tuning may arise
from geometrical arrangement of the receptive fields of the afferent neurons
(Hubel & Wiesel, 1962). However, tuning behaviors along multiple nonspa-
tial dimensions cannot be explained by the geometry of the inputs alone.
With thousands of excitatory and inhibitory synapses, the input dimension-
ality of a cortical neuron is usually high, and the neural selectivity may be
determined by the pattern of its afferent inputs and not just by the sum
of their activations. A gaussian-like template-matching function provides
a natural, formal description for the multidimensional tuning behaviors of
the cortical neurons.

In addition to the sigmoid-like and gaussian-like behaviors, some cortical
neurons are found to be tolerant to appearance-altering transformation
of a stimulus. For example, in the visual cortex, neural responses can be
tolerant to a certain range of position, size, and rotation changes of an
object (Hubel & Wiesel, 1962; Ito, Tamura, Fujita, & Tanaka, 1995; Logothetis
et al., 1995). Some neurons are also tolerant to multiple cluttering stimuli
within the receptive field, and their responses may be described with a
maximum operation (Gawne & Martin, 2002; Lampl, Ferster, Poggio, &
Riesenhuber, 2004). The phase invariance of some of the complex cells in
V1 may be described by the energy model (Adelson & Bergen, 1985), where
phase-canceling (quadrature) pairs of neurons are combined with squaring.

These nonlinear behaviors can manifest themselves along various di-
mensions within the stimulus space, even for a single neuron. For example,
a complex cell in V1 (or a motion-selective cell in MT, or a shape-selective
cell in IT) may show a tuned response for a particular edge orientation (or
velocity, or a face image), a sigmoidal response for the image contrast, and
a translation-invariant response within its receptive field (Gross et al., 1972;
Hubel & Wiesel, 1962; Simoncelli & Heeger, 1998).

The goal of this letter is to present a model of a canonical neural circuitry
that can generate some of the nonlinear neural response properties found in
the physiological data, building on other models that have described differ-
ent types of nonlinearities. It is helpful to make the distinction between the
neural-level operations (which act on the responses of the afferent neurons
and produce a nonlinear output) and the stimulus-level behaviors (which
are measured from a neuron in typical extracellular physiological exper-
iments, as the sensory stimuli—not the direct inputs to the neuron—are
manipulated by the experimenters). The observed nonlinear behaviors of
a cortical neuron to the external sensory stimuli are the results of several
stages of neural computations and provide only indirect evidence for the
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neural-level operations. The proposed neural-level operations and the ac-
companying circuits are, hence, a hypothesis that needs to be tested with
detailed biophysical experiments.

In the following, we first review some of the previous experimental and
modeling works on the nonlinear response properties of the cortical neu-
rons. We then point out some similarities and common components found
in several well-known neural circuit models and show that a wide range
of nonlinear operations can be computed by the same biologically plausi-
ble, canonical neural circuitry with different parameter values. Finally, we
demonstrate that this circuit, repeated within a hierarchical architecture to
provide the tuning and the tolerant behaviors, leads to selective and invari-
ant neural representation that can support object recognition in agreement
with neurophysiological data.

1.1 Energy and Divisive Normalization Models. The energy or
quadrature model like equation 2.2 in Table 1 postulates that the phase
invariance observed in spatial or spatiotemporal orientation-selective neu-
rons may be acquired by computing the “energy,” or by half-squaring and
summing the responses of the quadrature pairs. Such a construct is moti-
vated by the mathematical identity cos2 θ + sin2 θ = 1 (Adelson & Bergen,
1985).

The energy model is related to the classical proposal by Hubel and Wiesel
(1962) for the complex cells in V1, as both models require the pooling of the
neurons with the same orientation tuning but with different phase tuning.
The energy model, however, specifies a particular polynomial nonlinearity,
a squaring operation. Although the energy model has been influential, it
is rather unclear whether and how this formulation may be extended to
describe other types of invariance.

The divisive normalization model like equation 2.3 has been proposed
in various contexts. Reichardt, Poggio, and Hausen (1983) considered di-
visive normalization for gain control and detection of motion disconti-
nuities by the fly visual system, using forward and recurrent shunting
inhibition circuits. A similar mechanism was used to explain contrast-
dependent, sigmoid-like neural responses (Carandini & Heeger, 1994;
Carandini, Heeger, & Movshon, 1997; Heeger, 1993) and center-surround
effect (Cavanaugh, Bair, & Movshon, 2002; Séries, Lorenceau, & Frégnac,
2003) in the primary visual cortex. A divisive normalization scheme was
also shown to increase the independence of the neural responses, despite the
dependencies in the inputs (Schwartz & Simoncelli, 2001) and to stabilize
recurrent neural networks (Chance & Abbott, 2000). Divisive normaliza-
tion is also likely to constitute an important part of the motion selectivity
in V1 and MT (Nowlan & Sejnowski, 1995; Rust, Schwartz, Movshon, &
Simoncelli, 2005; Rust, Mante, Simoncelli, & Movshon, 2006) and of the at-
tentional mechanisms (Lee, Itti, Koch, & Braun, 1999; Reynolds, Chelazzi,
& Desimone, 1999).
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Many of the above formulations of divisive normalization assume a
squaring nonlinearity between the contrast of the visual stimuli and the
prenormalized responses. Furthermore, this fixed nonlinearity is assumed
to be equally strong in the numerator and the denominator (i.e., the same
exponent of 2 in equation 2.3).

The energy and the divisive normalization models are well known and
more often studied (Schwartz, Pillow, Rust, & Simoncelli, 2006). We there-
fore focus on the following gaussian-like and max-like nonlinearities, which
have been less explored.

1.2 Gaussian-Like Tuning. Especially in the sensory areas of the cortex,
many neurons respond strongly to some stimuli but weakly to others, as if
they are tuned to a certain optimal pattern of activity of their inputs. For
example, some of the neurons in the primary visual cortex show gaussian-
like tuning in multiple dimensions, such as orientation, spatial frequency,
direction, and velocity (Hubel & Wiesel, 1962). Further along the ventral
pathway of the primate visual cortex, some neurons in area V4 show tuned
responses to different types of gratings or contour features (Gallant et al.,
1996; Pasupathy & Connor, 2001), and inferior temporal neurons are tuned
in a bell-shaped way to more complex shapes such as the view of an object
(Gross et al., 1972; Logothetis et al., 1995). Some neurons in MT are selec-
tive for the motion of a global pattern, displaying a gaussian-like tuning
behavior to a set of specific motion components of a moving stimulus (Rust
et al., 2006). In other sensory modalities, gaussian-like neural selectivities
are also reported: for example, the olfactory neurons in flies (Wilson et al.,
2004) and auditory neurons in primates (Rauschecker et al., 1995). In the
motor system, the activity of a spinal cord neuron can be regarded as being
tuned to a particular pattern of force fields or limb movements (Poggio
& Bizzi, 2004). Some neurons in hippocampus, known as place cells, are
found to be selective for the spatial position of an animal (O’Keefe, 1976).
The tuned response of a neuron can be sharp, broad, sparse, or distributed
(Kreiman, 2004), but overall, neural selectivity is believed to be one of the
major computational strategies for representing and encoding information
in the cortex.

From a theoretical side, it has been demonstrated that radial basis func-
tion (RBF) networks using a gaussian kernel can learn effectively from
“small” training sets and generalize the input-output mapping to a new set
of data (Poggio, 1990; Poggio & Bizzi, 2004). Such an architecture and its
generalization properties may be the basis of the stimulus-specific tuning
behaviors observed in the cortical networks. Notice that an advantage of the
networks with the gaussian-like tuning units (as opposed to a perceptron-
like network with the sigmoidal neural units only) is the speed and ease of
learning the parameters in the network (Moody & Darken, 1989; Poggio &
Girosi, 1989). Learning is even easier for a normalized RBF network because
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the synaptic weights from the gaussian units to the output are simply the
values of the function at the example points (Girosi, Jones, & Poggio, 1995).

These theoretical considerations, along with the experimental data that
find the tuned neural responses within the stimulus space, motivate and
suggest a neural-level tuning operation. For conceptual convenience (i.e.,
the specific mathematical form should not be taken too literally), such an
operation may be expressed by the gaussian function, y(�x) = e−|�x−�w|2/2σ 2

,
where a scalar value y corresponds to the strength of the neural response
or a monotonic function of it (e.g., the number of spikes or firing rate) for a
given input �x, which corresponds to the activity of the presynaptic afferent
neurons. In the gaussian function, �w denotes the optimal input pattern that
produces the highest output, and σ determines the sharpness of the tuning.

1.3 Max-Like Selection and Tolerance. In the primary visual cortex,
many neurons (probably a subset of the “complex” cells) show tuned, se-
lective responses to different orientations of a bar or Cartesian grating stim-
ulus, while being tolerant to small perturbations in the stimulus location
(Hubel & Wiesel, 1962). Such translation-invariance properties are found
in other parts of the primate visual cortex (Gallant et al., 1996; Ito et al.,
1995; Logothetis et al., 1995; Pasupathy & Connor, 2001). As proposed by
Fukushima and others (Fukushima, Miyake, & Ito, 1983; Hubel & Wiesel,
1962; Perrett & Oram, 1993; Riesenhuber & Poggio, 1999), a plausible feed-
forward mechanism for invariance is to pool from the afferent cells tuned to
the transformed versions of a stimulus (e.g., translation, scale, and rotation).
For example, a complex cell in the primary visual cortex may pool from the
simple cells with the same orientation selectivity but with receptive fields
at the neighboring positions, so that its output would still be orientation
selective but invariant to the exact spatial locations of the stimuli (Hubel &
Wiesel, 1962).

The energy model (Adelson & Bergen, 1985) follows a similar pooling
construct for building up translation invariance of complex cells in V1,
but its formulation has focused on describing the case where the pairs
with opposite phase can be identified (such as the Gabor patches with
even and odd phases). Alternatively, in Riesenhuber and Poggio (1999), the
maximum operation (y(�x) = max

i
(xi ), or its soft-max approximation), which

selects and transmits the strongest response among a pool of several scalar
inputs, was suggested for the pooling. It can serve as a more general neural
mechanism for generating tolerances not just to translation, but to other
stimulus transformations.1 For example, by pooling together the afferent

1For simple image transformations like translation on a uniform background, a sum-
mation operation is sufficient to explain the tolerance properties, but for more difficult
cases like clutter, the summation alone is not, as each object in the scene would contribute
to the sum and provide a highly distorted output. As a result, the summation operation
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neurons tuned to the different views of an object, it may be possible to
generate a view-invariant output (Perrett & Oram, 1993; Poggio & Edelman,
1990).

A few recent physiological experiments (Gawne & Martin, 2002; Lampl
et al., 2004) have reported that when multiple stimuli are simultaneously
presented, some neurons produce a max-like response. These results sup-
port the hypothesis of a max-like neural operation acting on the afferent
neural responses, although the evidence is indirect since the experiments
do not control for the inputs to the recorded neuron.

2 Neural Circuits

While there have been a number of experimental and theoretical studies
for the energy and the divisive normalization models, it is not obvious how
the cortex may implement the gaussian-like and max-like neural opera-
tions. In this section, we propose biologically plausible neural circuits that
are capable of computing close approximations to the exact gaussian and
maximum, under different parameter values. Furthermore, the proposed
circuits can also describe the energy model and the divisive normaliza-
tion model. We consider only a static approximation of the transduction
implemented by neurons. A more detailed description would involve the
dynamics of realistic synapses and spiking neurons (Knoblich, Bouvrie, &
Poggio, 2007).

The key element in the proposed neural circuit is the divisive normal-
ization of the inputs, which may be accomplished by feedforward or lateral
shunting inhibition, as exemplified by the two circuits in Figure 1, respec-
tively (see Carandini & Heeger, 1994; Fukushima et al., 1983; Grossberg,
1973; Heeger, 1993; Reichardt et al., 1983; Serre et al., 2005, and appendix
A, but also Chance, Abbott, & Reyes, 2002; Holt & Koch, 1997). Evidence
for abundant shunting inhibition in cortex is provided by Borg-Graham,
Monier, and Frégnac (1998).

Other key elements in the circuits are the monotonic nonlinearities, act-
ing on the positive-valued neural responses. Denoted by p, q , and r in the
figure, they represent and approximate different static strengths of non-
linear, monotonic transfer functions. The energy model and many divisive
normalization models (Adelson & Bergen, 1985; Carandini & Heeger, 1994;
Rust et al., 2005) have used (half) squaring operations only. However, the

can “hallucinate” or confuse the presence of the target object with the presence of several
less optimal objects. In contrast, a max-like operation can provide clutter tolerance more
effectively, as well as tolerance to other object transformations (Riesenhuber & Poggio,
1999). One of the earlier proposals for the maximum operation was known as the “max-
imum amplitude filter” (Taylor, 1964). An average operation, which produces an output
smaller than just a simple summation (i.e., a sublinear output like the maximum), may
work similarly.
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Figure 1: Biologically plausible neural circuits for implementing various neural
nonlinear operations in Table 1. The excitatory and inhibitory connections are
denoted by an open circle and a bar, respectively. Circuit A performs divisive
normalization with feedforward shunting inhibition. The same operation may
be computed by lateral inhibition as in circuit B. Such circuits have been pro-
posed and studied earlier in many different contexts (Carandini & Heeger, 1994;
Fukushima et al., 1983; Grossberg, 1973; Lee et al., 1999; Nowlan & Sejnowski,
1995; Reichardt et al., 1983; Yu et al., 2002; Yuille & Grzywacz, 1989). Instead
of shunting inhibition, the normalization, or gain control, mechanism may also
rely on the inherent biophysics of dendritic integration (Borst et al., 1995). Some
of the synaptic weights in these circuits may be negative (e.g., w2), possibly
mediated by interneurons (not drawn). Monotonic nonlinearities in the circuits
are denoted by p, q , and r . Also see appendix A.

observed nonlinearities are highly variable within the neural population
(Britten & Heuer, 1999; Sclar, Maunsell, & Lennie, 1990), and therefore, we
assume that the exponents p, q , and r are different and independent in this
generalized formulation.2

From the biophysical point of view, such different exponents may orig-
inate from noise and linear-threshold function between voltage and spike
generation (Anderson, Lampl, Gillespie, & Ferster, 2000; Miller & Troyer,
2002), where a wide distribution of polynomial exponents, as large as

2Again, care should be taken, as some of referenced studies model the nonlinearity
between the stimulus parameter (like the image contrast or the response of a linear filter)
and the neural response, whereas the denoted nonlinearities in the proposed circuit are
between the pre- and postsynaptic response transduction. Nevertheless, a wide distribu-
tion of stimulus-to-response nonlinearity implies that there would be a distribution of
nonlinearity in neural response functions as well.
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Table 1: Potential Computations That Can Be Performed by the Neural Circuits
in Figure 1 at Their Steady States.

Operation (Steady-State) Output

Canonical y =

n∑
i=1

wi xi
p

k +
( n∑

i=1

xi
q

)r (2.1)

Energy model y =
2∑

i=1

xi
2 (2.2)

Sigmoid-like y =

n∑
i=1

xi
2

k +
n∑

i=1

xi
2

(2.3)

Gaussian-like y =

n∑
i=1

wi xi

k +
n∑

i=1

xi
2

(2.4)

Max-like y =

n∑
i=1

xi
3

k +
n∑

i=1

xi
2

(2.5)

Notes: The canonical form is given in the first row, and its variations are given in the next
rows. The responses of the input neurons are denoted by �x and their synaptic weights
by �w. The exponents p, q , and r approximate potential monotonic nonlinear transfer
functions in the neural circuit. The summation in the denominator may also include
different synaptic weights, as in Fukushima et al. (1983), Rust et al. (2006), and Schwartz
and Simoncelli (2001).

four, has been found.3 Alternatively, different synaptic conductances may
generate differential postsynaptic neural activations (Knoblich et al., 2007).
For our simulations, the exponents are chosen to be an integer value be-
tween 1 and 3, although the general result applies over a wider range.

The combination of two key mechanisms in the circuit (i.e., divisive
normalization and polynomial nonlinearity) yields a canonical expression,
equation 2.1 (see appendix A for the derivation). Relative strengths of
these nonlinear mechanisms can produce various response patterns, as
summarized in Table 1. In the case of weak divisive inhibition (r = 0)

3In Britten and Heuer (1999), using a generalized nonlinear summation model
y = a (

∑2
i=1 xi

n)1/n) + b, a similarly wide range of power law exponents, around n = 2.72,
has been observed. This model can be rewritten as y = a (

∑2
i=1 xi

n)/(
∑2

i=1 xi
n)(n−1)/n + b,

which contains the divisive normalization term more explicitly.
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and squaring nonlinearity (p = 2), the circuit reduces to the energy model
(see equation 2.2), and in the case of squaring nonlinearities (p = q = 2
and r = 1), the circuit corresponds to the divisive normalization model
with matched exponents in the numerator and the denominator (see
equation 2.3).

If the strength of nonlinearity in the denominator is stronger than that
of the numerator (p < qr ), y monotonically increases like |�x|p for small
input, and for large input, y decreases and approaches 0 as the normalizing
denominator grows faster than the numerator. In other words, the output
y will show a tuning behavior like a gaussian function, peaking at and
being selective for a particular pattern of inputs. A simple calculation can
show the relationship between the optimal input pattern, synaptic weights
�w, and constant k for a given set of parameters p, q , and r (see appendix
B). If the strengths of nonlinearity in the numerator and denominator are
matched (p = qr ), then the output y will be a sigmoid-like function (see
Figure 2).

For a gaussian function, a Euclidean measure of similarity between two
vectors, |�x − �w|2, generates a tuned response profile around an optimal in-
put pattern �w. A biologically plausible mechanism for such a computation is
suggested by the following mathematical identity that relates the Euclidean
distance measure with the normalized dot product:

|�x − �w|2 = −2�x · �w + 1 + | �w|2, if |�x| = 1. (2.6)

In other words, the similarity between two vectors, �x and �w, can be mea-
sured by either the Euclidean distance or the dot product (the angle between
the two vectors in a multidimensional space). Hence, equation 2.6 suggests
that a gaussian-like tuning can arise from a normalization and a weighted
summation like equation 2.4 (see Maruyama, Girosi, & Poggio, 1992, for
more details).

Suppose an additional sigmoid nonlinearity operates on the tuned
output y:

h(y) = 1
1 + e−α(y−β)

. (2.7)

The parameters α and β in equation 2.7 play the similar role as σ of the
gaussian function, controlling the sharpness of tuning within the input
space for y. These parameters may be learned and calibrated (e.g., large
α and β to produce a sharp and sparse tuning), along with the synap-
tic weights, during the developmental or training period of the neural
circuit.

A multiquadric radial basis function,
√

k2 + |�x − �w|2, has an inverted
gaussian-like response profile and may be considered as another possible
tuning operation (Girosi et al., 1995). It can be computed with the same
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Figure 2: The canonical operation, equation 2.1 in Table 1, possibly computed
by the circuits in Figure 1, can generate a wide range of nonlinear neural re-
sponses for different sets of parameters p, q , and r , as illustrated in these
two-dimensional input spaces. Within each panel, x1 and x2 axes represent
the responses of two afferent neurons, bounded between 0 and 1, where 1 is
the maximum response. The output of the efferent neuron is represented by
the gray scale (a darker shade indicates a higher response). The top row shows
the default cases. From left to right, the response may be characterized as max-
like (equation 2.5), sigmoid-like (equation 2.3), and gaussian-like (equation 2.4),
as p goes from 3 to 1 (q and r are fixed at 2 and 1). Similar analyses were
done for the responses of the MT neurons in Britten and Heuer (1999). The
sigmoid-like neural response in the middle column may also be thought of
as a tuned response to the direction of a vector, which is a special case of a
gaussian-like response whose tuning peak is located at the far end of the affer-
ent input space. The bottom row illustrates the effect of “tuned” normalization,
where each afferent neuron is more strongly normalized by its own response
(i.e., y = ∑n

i=1 wi x′
i , where x′

i = xi
p/(k + αxi

q + ∑n
j=1 xj

q )). As shown here and
as considered by Rust et al. (2006), such “tuned” normalization can sharpen
the tuning curves within the afferent input space, and it may be implemented
by the stronger self-inhibiting synapses in Figure 1B. This mechanism is also
related to the proposal of allowing different synaptic weights in the divisive
normalization term, as in Schwartz and Simoncelli (2001).

neural circuits in Figure 1 by the gaussian-like tuning followed by
an inverted sigmoidal nonlinearity (e.g., 1 − 1/(1 + e−α(y−β))). Although
some neurons reportedly show monotonically increasing, multiquadric-
like responses along some feature dimensions (Freiwald, Tsao, Tootell,
& Livingstone, 2005; Leopold, Bondar, & Giese, 2006), they may still be
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explained by the gaussian-like computations operating in the neural input
space rather than the stimulus space.

In the limit of weak shunting inhibition, the general computation per-
formed by these canonical circuits can still involve some normalizing be-
haviors (see Borst, Egelhaaf, & Haag, 1995 and appendix A). Under certain
conditions (e.g., negligible normalization due to a large leak current; see
appendix A), the operation may be approximated by a weighted summa-
tion, still subject to different monotonic nonlinearities (p, q , and r ). Ex-
cluding some very special cases (e.g., the afferent inputs form opposite-
phase quadrature pairs like the energy model, equation 2.2), the overall
response of such a circuit increases with the increasing response by any
of its afferents (or with the decreasing response by the afferent neurons
with the negative synaptic weights). Therefore, the maximum response of
the circuit is constrained to be the point with the maximum activations of
the positive-weighted afferents and with the minimum activations of the
negative-weighted afferents. Tuning to an arbitrary input pattern is not
possible, unlike equation 2.4 or a gaussian function.4

In contrast to the gaussian-like tuning operation, a max-like output can
be achieved if the strength of nonlinearity in the denominator is smaller
than the numerator (i.e., p > qr ), using the same neural circuit and equa-
tion 2.5, as proposed by Yu, Giese, and Poggio (2002). In particular, a softmax
function (p = q + 1, r = 1 and small k in equation 2.1) approaches max(�x)
for large q , although our simulation results in the next section indicate
that a relatively small value of q = 2 may be sufficient to model invariance
properties of a neuron.

Therefore, building on the previously proposed neural mechanisms,
namely, the distribution of polynomial nonlinearities (Miller & Troyer,

4When the number of the afferent neurons is large, however, the weighted summation
operation may still create almost as complex a tuning behavior as a gaussian function. The
afferent response with an inhibitory synaptic weight (e.g., presence of an unpreferred fea-
ture in the stimulus) can lower the overall output, acting like a gaussian function tuned to
the small input. In other words, the inhibition effectively produces an AND-NOT behav-
ior, and a combination of the AND-NOT operations can create a tuning behavior similar
to the gaussian function. The output of the weighted summation operation depends on
the weights as well as the norm of the input vector. With a large input dimensionality, the
norm of the input vector has less influence over the tuning behavior, as the fluctuations
from each input component average out. In other words, the variance of the afferent re-
sponse decreases with the increasing number of the afferent neurons (cf. 1/n dependence
of the variance from the n-dimensional statistical samples). As a result, the weighted
summation may yield a tuning behavior strongly modulated by the synaptic weights,
although it still is a monotonic tuning within the input space of the afferent responses. An
approximation to the maximum operation can also be computed by a weighted summa-
tion with monotonic nonlinearities: for example, y = log(

∑n
i=1 exi ). Similar to the soft-max

operation, the summation of strongly scaled input values (e.g., an exponential function)
followed by an inverse scaling operation will produce a max-like response. It is an open
question whether the biophysics of a real neuron would have enough dynamic range to
allow such a steep, exponential nonlinearity.
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2002) and divisive normalization (Carandini & Heeger, 1994; Rust et al.,
2005; Yu et al., 2002), we have arrived at a generalized nonlinear operation,
equation 2.1, which can produce a wide range of nonlinear behaviors as
shown in Figure 2. Importantly, all these neural operations may be com-
puted by the same canonical neural circuit, shown in Figure 1, at different
parameter values. Furthermore, Figure 3 demonstrates that it is also pos-
sible to obtain rather close approximations to the gaussian and maximum
operations.

3 Discussion

We have shown that a static approximation of the same neural circuit can
generate a wide range of nonlinear neural responses, some of which may
be characterized as gaussian-like, max-like, or sigmoid-like. This circuitry
can be used to describe other neural models, such as the energy model
(Adelson & Bergen, 1985) or the divisive normalization models (Carandini
& Heeger, 1994). Therefore, the same biophysical mechanism with different
parameters (and potentially even in different operating regimes of the same
circuit; Moldakarimov, Rollenhagen, Olson, & Chow, 2005) can compute
several types of neural responses.

Such a neural circuit may possibly be operating throughout the cor-
tex. For instance, as shown in Figure 4, a biologically plausible model of
the visual cortex, employing the proposed canonical circuitry, can gener-
ate shape-selective and transformation-invariant neural response proper-
ties that can support object recognition. This model belongs to a class of
feedforward, hierarchical models of object recognition (Fukushima et al.,
1983; Mel, 1997) and is a much extended version of the original proposal
of Riesenhuber and Poggio (1999), based on more detailed anatomy and
physiology of the feedforward path of the ventral pathway in the primate
visual cortex (see Serre et al., 2005).

Interestingly, the model of motion selectivity in MT by Rust et al. (2006)
is equivalent to the proposed neural circuitry in Figure 1, since they both
involve weighted summation over the divisively normalized inputs. The
model of Rust et al. allows for the negative synaptic weights and for a dif-
ferent set of weights in the denominator (see Figure 2), but these differences
are minor (e.g., our current model of object recognition in Figure 4 may
be modified to include negative synaptic weights). Possibly, similar neural
circuits may also be operating in the dorsal pathway.

The universality of the proposed neural circuit is consistent with two in-
teresting observations: that the basic cortical structure is quite similar within
and across different functional areas and that there may exist “canonical mi-
crocircuits” in the cortex (Douglas & Martin, 2004; Douglas, Martin, & Whit-
teridge, 1989; Mountcastle, 2003; Nelson, 2002). The functional distinctions
among various neural response properties, hence, may be better consid-
ered by a continuous spectrum of nonlinear operations with a canonical
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Figure 3: This figure illustrates that the canonical operation, equation 2.1 in
Table 1, can approximate the gaussian and maximum operations in two- and
higher-dimensional input spaces. The gaussian functions are approximated by
equation 2.4 and the maximum operation by equation 2.5, within the afferent
input spaces of the indicated dimensionalities (d = 2, 10, 100, and 1000). For the
gaussian-like operation, the tuning center was found by choosing the synaptic
weights �w and k for fixed (p, q , r ) = (1, 2, 1), as shown in appendix B. For the
maximum-like operation, we set (p, q , r ) = (3, 2, 1) and �w = 1. The sigmoid
nonlinearity, equation 2.7, on the output is found by a numerical fitting routine
(shown as the insets for the high-dimensional cases). Within each panel of A, the
x1 and x2 axes represent the responses of two afferent neurons, and the output
of the efferent neuron is represented by the gray scale. The reference gaussian
is centered at (0.5, 0.3). In each panel of B, the ordinate axis is for equation 2.4
or equation 2.5, and the abscissa is for the reference gaussian or maximum
functions; hence, the points along the diagonal line would indicate a perfect
fit. These comparisons between the reference and approximating functions are
based on 1000 sample points.
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circuitry, similar to the proposal that the simple and complex cells in the
primary visual cortex may lie on a continuous spectrum of the same neu-
ral population (Chance, Nelson, & Abbott, 1999; Mechler & Ringach, 2002;
Priebe, Mechler, Carandini, & Ferster, 2004).

Two main mechanisms underlying the operation of equation 2.1 are the
divisive normalization and the polynomial nonlinearities. The spontaneous
activity or “noise” in the neural circuit plays an important role in generating
stable approximations to both mechanisms (Chance & Abbott, 2000; Chance
et al., 2002; Miller & Troyer, 2002). The observed variability in the exponents
(Britten & Heuer, 1999; Miller & Troyer, 2002) is also important for obtaining
a wide range of generalized nonlinear behaviors.

According to the circuit in Figure 1, the neural selectivity ultimately
arises from a combination of the feedforward inputs and the intracortical
refinements. Such a postulate takes an intermediate position between the
two competing theories about the origin of orientation selectivity in the pri-
mary visual cortex V1 (Ferster & Miller, 2000). That is, the overall orientation
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preference of a V1 neuron is determined by the spatial arrangements of the
lateral geniculate nucleus afferent inputs, and then the selectivity may be
sharpened by lateral interactions.

As shown by several experimental studies (Douglas et al., 1989; Marino
et al., 2005; Wang, Fujita, & Murayama, 2000), inhibitory mechanisms are
critically involved in generating neural selectivity and invariance, and in
our proposal, the input normalization by a pool cell or lateral inhibition
(Figure 1A or 1B) is the major component in the neural circuit. The inhibitory
pool cells or interneurons receive input from the afferent neurons with dif-
ferent receptive fields and selectivities. As a result, these inhibitory cells are
expected to have a large receptive field (i.e., the union of the receptive fields
of the afferent neurons), broad selectivity, and typically high responses.

Figure 4: (A) The architecture of a model of the ventral pathway in the primate
visual cortex for object recognition. The model describes the early stages of
the visual information processing for “immediate” recognition. Gaussian-like
and max-like operations are repeatedly applied in the hierarchy, progressively
building up richer and more complex selectivity and invariance properties.
See Kouh (2007) and Serre et al. (2005) for a comprehensive description of the
current, recently extended version of the model and Riesenhuber and Poggio
(1999) for the original proposal. In implementing this model, the same neural
operation (equation 2.1 with different parameters; (p, q , r ) = (1, 2, 1) or (3, 2, 1)
for gaussian-like and max-like operations, respectively) has been used. The soft-
ware of the model is available at http://cbcl.mit.edu. The layer in the model
labeled AIT corresponds to the inferotemporal (IT) cortex, which is the last
purely visual area in the hierarchy of the primate visual cortex, and in partic-
ular, Logothetis et al. (1995) have found some neurons in anterior IT, tuned to
scaled, translated, and rotated (in depth) images of the preferred paperclips that
the monkey was trained to recognize. (B) The response of a model IT neuron
to the preferred paperclip (under these transformations) and to 60 distractor
paperclips is plotted. The maximum distractor response is indicated by the
horizontal lines in the first two panels. These tuning curves are obtained by
the cascade of the gaussian-, max-, gaussian-, max-, and gaussian-like opera-
tions on the stimuli (five layers), and they quantitatively demonstrate that the
combination of the canonical operations can achieve view-tuned, selective, and
invariant tuning properties. This model unit shows the rotational invariance
range of approximately 60 degrees, scale invariance range of over 2 octaves,
and translation invariance range of 4 degrees of visual angle, with respect to the
maximum distractor responses. The size of the reference object was 2 degrees.
Other model units tuned to different paperclips show similar results, in good
quantitative agreement with the experimentally observed values. Similar results
have been reported earlier with the exact gaussian and maximum operations in
a more simplistic model (Riesenhuber & Poggio, 1999).
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Figure 5: Circuit diagram of the biophysics of a single cell.

Interestingly, putative inhibitory neurons possess similar traits (Bruno &
Simons, 2002).

There are other models of cortical nonlinear operations and neural cir-
cuits. For example, pattern matching may occur in the dendritic spines
(Blackwell, Vogl, & Alkon, 1998). Translation invariance may be computed
by the intradendritic mechanisms (Mel, Ruderman, & Archie, 1998) or
by the winner-take-all types of neural circuitry (Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung, 2000; Rousselet, Thorpe, & Fabre-Thorpe,
2003; Yuille & Grzywacz, 1989). The inhibition may operate through presy-
naptic feedback (Yuille & Grzywacz, 1989) instead of a feedforward pooling
mechanism as in Figure 1A. The excitatory and inhibitory circuit elements
may be found at specific laminar locations within cortical tissues (Douglas
& Martin, 2004; Douglas et al., 1989; Fitzpatrick, 1996). Clearly, the study
of more detailed, biophysical implementations of the proposed static neu-
ral circuits (e.g., spiking neural network including the kinetics of realistic
synapses and of the spike generation process; see section 5 in Serre et al.,
2005, and Knoblich et al., 2007) is the next step in the work described
here.

Appendix A: Divisive Normalization with Shunting Inhibition

Figure 1A shows a plausible neural circuit that computes a divisive nor-
malization. Figure 5 is an electrical equivalent circuit diagram of the cel-
lular membrane of the output neuron y in Figure 1A, which receives the
inputs from the neurons x1, x2, and x3, along with the shunting inhibi-
tion from a pool cell. The membrane is assumed to have the capacitance
C , the variable conductances g’s, and the equilibrium potentials E ’s. The
subscript o (Eo , go) is for the leak ionic channels, e (Ee , ge ) is for the exci-
tatory inputs, and i (Ei , gi ) is for the shunting inhibition. The magnitude
of the conductances (ge and gi ) depends on the level of their presynaptic
activities.
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Suppose that the transformation of a signal from a presynaptic to a
postsynaptic neuron is described by the polynomial nonlinearity with the
exponent p, q , or r (Miller & Troyer, 2002), as in Figure 1A. Then we may
identify

ge ∝
n∑

i=1

wi xi
p, (A.1)

gi ∝
(

n∑
i=1

xi
q

)r

. (A.2)

The membrane potential evolves according to

−C
dV
dt

= ge (V − Ee ) + gi (V − Ei ) + go(V − Eo). (A.3)

At the steady state,

V = ge Ee + gi Ei + go Eo

go + ge + gi
. (A.4)

Now assume that Vrest = Ei = 0 (i.e., shunting inhibition), ge � gi , based
on experimental evidence like Borg-Graham et al. (1998), and assume that
Eo is also close to Vrest . Then,

V ∼ ge Ee

go + gi
. (A.5)

Next, assume that the membrane potential V and the activity of the
output neuron y are approximated by a linear relationship, or a polyno-
mial “nonlinearity” with exponent 1 (Miller & Troyer, 2002) (note that other
monotonic relationships can also generate gaussian-like tuning and approx-
imate max-like behaviors). Thus, using equations A.1 and A.2, we arrive
at equation 2.1 in Table 1 with positive and negative weights (depolariz-
ing and hyperpolarizing inputs) in general. (For a similar discussion, see
Carandini & Heeger, 1994; Reichardt et al., 1983; Chance et al., 2002; Holt
& Koch, 1997.)

Note that even without explicitly assuming shunting inhibition (i.e., gi =
0), equation A.4 contains divisive normalization by the input conductance
ge , which can realize similar gain control mechanism (Borst et al., 1995).
When go is much greater than ge , the overall operation will be close to the
weighted summation without normalization (although go is typically found
to be on the order of ge ; Borg-Graham et al., 1998).
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Appendix B: Optimal Input Pattern for Divisive Normalization

A straightforward calculation on equation 2.1 shows that the peak of the
normalized weighted summation operation occurs at

xoi
q−p = p

qr

k +

 n∑

j=1

xo j
q




r


 n∑

j=1

w j xo j
p





 n∑

j=1

xo j
q




r−1 · wi (B.1)

≡ γ · wi . (B.2)

The above expression can be interpreted as a tuning around xoi that is
proportional to wi (although due to the exponent q − p, the proportionality
is not strictly linear).

For consistency, it is required that

γ = p
qr

k + γ qr/(q−p)


 n∑

j=1

w j
q/(q−p)




r

γ p/(q−p)+q (r−1)/(q−p)


 n∑

j=1

w j
p/(q−p)+1





 n∑

j=1

w j
q/(q−p)




r−1 .

(B.3)

For a given set of w’s, this condition relates the parameters k and γ . If γ is
already determined or fixed (e.g., γ = 1, as in the simulations), equation B.3
will uniquely determine the parameter k. It is unlikely that there is an active
neural process that adjusts k for given w’s, as the above derivation suggests.
Rather, a fixed constant k (possibly originating from leak currents) and a set
of synaptic weights �w determine the center of tuning �xo .

Note that the relation between k and γ may not always be uniquely de-
fined. Consider a special case when (p, q , r ) = (1, 2, 0.5) (divisive normal-
ization by the L2-norm of �x). Then equation B.3 is satisfied for any γ when
k = 0. This result confirms our intuition that �w · �x/|�x| has the maximum
value as long as these two vectors are parallel. However, in general when
p < qr , equation 2.1 describes tuning around some particular point, �xo .

Appendix C: Learning the Synaptic Weights

We have shown that both gaussian-like and max-like operations may be
implemented by relatively simple, biologically plausible neural circuits. It
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is then an interesting question whether these operations can be learned
also from a similarly simple and plausible plasticity mechanism, especially
for setting the values of the synaptic weights within the neural circuits in
Figure 1. According to Table 1, the synaptic weights implementing the max-
like operation are all uniform (wi = 1 for all i), indicating that the circuit
for the max-like operation probably requires less fine-tuning of the synaptic
weights. On the other hand, the gaussian-like tuning operation will likely
require more precise tuning of the synaptic weights (Serre et al., 2005).

Hebb’s rule (“fire together, wire together”) is the best-known synaptic
learning rule in neuroscience. Consider the following modified Hebbian
rule with a flavor of the stochastic gradient descent algorithm (�w ∝ �y):

w(t + �t) = w(t) + η · (y(x, t + �t;w + η) − y(x, t;w)), (C.1)

where η is a small, random jitter in a synaptic weight. The synaptic weight
is strengthened if this random perturbation produces a higher response,
and it is weakened if the perturbation produces a lower response. Thus, the
“wiring” of the synapse is dependent on not just whether the presynaptic
and postsynaptic neurons fire together, but also whether the presynaptic
activity has a positive effect on the postsynaptic neuron within a short
temporal window (Dan & Poo, 2004) (hence, stochastic gradient descent).5

Now suppose that a neural circuit of Figure 1 is repeatedly exposed to a
particular pattern of input �xo , so that a target value for �w is given. Then the
learning rule, equation C.1, brings the synaptic weights to the target after

5If the tuning operation does not have a divisive normalization or a gaussian-like
response profile, an additional constraint is required for stability. One such example is the
following:

n∑
i=1

w2
i (t) = wo . (C.2)

This condition, also known as Oja’s rule (Oja, 1982), implies that the total synaptic weights
are normalized or conserved. When some synaptic weights are increased, others will be
decreased. This particular mathematical form (i.e., the squaring of the weights) is chosen
for convenience but captures the basic idea. The normalization of the synaptic weights is
a separate mechanism, different from the normalization of the inputs. Such a condition is
expected since the synapses are likely competing for the limited resources (e.g., the number
of the receptors on the postsynaptic membrane). Without any mechanism for competition,
a simple Hebb-like rule will be subject to a positive feedback (stronger synapses getting
even stronger), leading to instability. There is a growing body of experimental evidence
and theoretical arguments in support of the competitive Hebbian mechanism (Miller,
1996). Alternatively, a decay term in the learning rule can also ensure stability, as done in
Földiák (1991). In the case of the normalization circuit where the response does not always
increase with the larger norm of �w, equation C.1 converges to a stable value without an
extra constraint like equation C.2.
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Figure 6: The neural circuit performing the gaussian-like operation can be
tuned to a particular input pattern by learning the synaptic weights. The ex-
ample shown here has two afferent inputs (x1 and x2), and the target pattern
has been set at �xo = (0.5, 0.3). While the presynaptic activations are fixed at �xo ,
the synaptic weights evolve according to equation C.1 from randomly selected
initial values (middle figure). The left figure shows the evolution of the output
of equation 2.4 (with (p, q , r ) = (1, 2, 1) and a sigmoid on y), which reaches the
maximum as the correct synaptic weights are learned. The right figure shows
the learned tuning behavior around �xo . The random jitters, corresponding to η

in equation C.1, were selected from a normal distribution with the maximum
value of 0.1.

several iterations (i.e., �w → �wo , so that y(�xo; �wo) = the maximum output
value), as shown by the simulation results in Figure 6.

This scheme involves supervised learning, because the input �x is required
to be fixed at some �xo (e.g., the system is exposed to a target stimulus) while
the learning takes place. However, choosing the target values themselves
may be unsupervised or subject to a hedonistic principle (Seung, 2003). As
demonstrated in Serre et al. (2005), the selectivity for the features useful
for object recognition (i.e., the centers of the gaussian-like tuning functions)
can be learned by storing the snapshots of the naturally occurring sensory
stimuli in an unsupervised manner. Such a learning scheme can provide a
large, overcomplete set of features or basis functions that reflect the stimulus
statistics inherent in the natural environment. We also note that the invari-
ance property can be learned by the similar Hebbian mechanism (Bartlett
& Sejnowski, 1998; Földiák, 1991).

Acknowledgments

We thank G. Kreiman, D. Zoccolan, T. Serre, U. Knoblich, H. Jhuang, N. Rust,
and M. Riesenhuber, as well as two anonymous reviewers, for helpful
discussions.

This letter describes research done at the Center for Biological and Com-
putational Learning, which is in the McGovern Institute for Brain Research
at MIT, as well as in the Department of Brain and Cognitive Sciences, which



A Canonical Neural Circuit for Cortical Nonlinear Operations 1447

is affiliated with the Computer Sciences and Artificial Intelligence Labora-
tory (CSAIL). This research was sponsored by grants from DARPA Contract
No. HR0011-04-1-0037, DARPA Contract No. FA8650-06-7632, National Sci-
ence Foundation-NIH (CRCNS) Contract No. EIA-0218506, and National
Institutes of Health (Conte) Contract No. 1 P20 MH66239-01A1. Additional
support was provided by Central Research Institute of Electric Power In-
dustry, Daimler-Chrysler AG, Eastman Kodak Company, Honda Research
Institute USA, Komatsu, Merrill Lynch, NEC Fund, Oxygen, Siemens Cor-
porate Research, Sony, Sumitomo Metal Industries, Toyota Motor Corpora-
tion, and the Eugene McDermott Foundation.

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the percep-
tion of motion. Journal of the Optical Society of America A, 2(2), 284–299.

Anderson, J. S., Lampl, I., Gillespie, D. C., & Ferster, D. (2000). The contribution
of noise to contrast invariance of orientation tuning in cat visual cortex. Science,
290(5498), 1968–1972.

Bartlett, M. S., & Sejnowski, T. J. (1998). Learning viewpoint-invariant face repre-
sentations from visual experience in an attractor network. Network, 9(3), 399–
417.

Blackwell, K. T., Vogl, T. P., & Alkon, D. L. (1998). Pattern matching in a model of
dendritic spines. Network, 9(1), 107–121.
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Földiák, P. (1991). Learning invariance from transformation sequences. Neural
Comput., 3, 194–200.

Freiwald, W. A., Tsao, D. Y., Tootell, R. B., & Livingstone, M. S. (2005). Single-unit
recording in an fMRI-identified macaque face patch. II. Coding along multiple
feature axes. In Society for Neuroscience, Program No. 362.6. Washington, DC.

Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network model
for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man
and Cybernetics, 13, 826–834.

Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W., & Van Essen, D. C. (1996). Neural
responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque
monkey. J. Neurophysiol., 76(4), 2718–2739.

Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical V4 neurons
to simultaneously presented stimuli. J. Neurophysiol., 88(3), 1128–1135.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks
architectures. Neural Comput., 7(2), 219–269.

Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of
neurons in inferotemporal cortex of the macaque. J. Neurophysiol., 35(1), 96–111.

Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in
reverberating neural networks. Studies in Applied Mathematics, 52(3), 213–257.

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405(6789), 947–951.

Heeger, D. J. (1993). Modeling simple-cell direction selectivity with normalized,
half-squared, linear operators. J. Neurophysiol., 70(5), 1885–1898.

Holt, G. R., & Koch, C. (1997). Shunting inhibition does not have a divisive effect on
firing rates. Neural Comput., 9(5), 1001–1013.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol., 160, 106–154.

Ito, M., Tamura, H., Fujita, I., & Tanaka, K. (1995). Size and position invariance
of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol., 73(1),
218–226.

Knoblich, U., Bouvrie, J., & Poggio, T. (2007). Biophysical models of neural compu-
tation: Max and tuning circuits (Tech. Rep. CBCL Paper). Cambridge, MA: MIT.

Kouh, M. (2007). Toward a more biologically plausible model of object recognition. Ph.D.
Thesis, MIT.



A Canonical Neural Circuit for Cortical Nonlinear Operations 1449

Kreiman, G. (2004). Neural coding: Computational and biophysical perspectives.
Physics of Life Reviews, 1(2), 71–102.

Lampl, I., Ferster, D., Poggio, T., & Riesenhuber, M. (2004). Intracellular measure-
ments of spatial integration and the max operation in complex cells of the cat
primary visual cortex. J. Neurophysiol., 92(5), 2704–2713.

Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all
competition among visual filters. Nat. Neurosci., 2(4), 375–381.

Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by
single neurons in the monkey inferotemporal cortex. Nature, 442(7102), 572–575.

Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior
temporal cortex of monkeys. Curr. Biol., 5(5), 552–563.

Marino, J., Schummers, J., Lyon, D. C., Schwabe, L., Beck, O., Wiesing, P., Obermayer,
K., & Sur, M. (2005). Invariant computations in local cortical networks with
balanced excitation and inhibition. Nat. Neurosci., 8(2), 194–201.

Maruyama, M., Girosi, F., & Poggio, T. (1992). A connection between GRBF and
MLP (Tech. Rep. AI Memo 1291). Cambridge, MA: MIT.

Mechler, F., & Ringach, D. L. (2002). On the classification of simple and complex
cells. Vision Research, 42(8), 1017–1033.

Mel, B. W. (1997). SEEMORE: Combining color, shape, and texture histogramming
in a neurally inspired approach to visual object recognition. Neural Comput., 9(4),
777–804.

Mel, B. W., Ruderman, D. L., & Archie, K. A. (1998). Translation-invariant orientation
tuning in visual “complex” cells could derive from intradendritic computations.
J. Neurosci., 18(11), 4325–4334.

Miller, K. D. (1996). Synaptic economics: Competition and cooperation in synaptic
plasticity. Neuron, 17(3), 371–374.

Miller, K. D., & Troyer, T. W. (2002). Neural noise can explain expansive, power-law
nonlinearities in neural response functions. J. Neurophysiol., 87(2), 653–659.

Moldakarimov, S., Rollenhagen, J. E., Olson, C. R., & Chow, C. C. (2005). Competitive
dynamics in cortical responses to visual stimuli. J. Neurophysiol., 94(5), 3388–3396.

Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned processing
units. Neural Comput., 1(2), 289–303.

Mountcastle, V. B. (2003). Introduction: Computation in cortical columns. Cereb.
Cortex, 13(1), 2–4.

Nelson, S. (2002). Cortical microcircuits: Diverse or canonical? Neuron, 36(1), 19–27.
Nowlan, S. J., & Sejnowski, T. J. (1995). A selection model for motion processing in

area MT of primates. J. Neurosci., 15(2), 1195–1214.
O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat.

Experimental Neurology, 51(1), 78–109.
Oja, E. (1982). A simplified neuron model as a principal component analyzer. J.

Math. Biol., 15(3), 267–273.
Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-

specific tuning for boundary conformation. J. Neurophysiol., 86(5), 2505–2519.
Perrett, D. I., & Oram, M. W. (1993). Neurophysiology of shape processing. Image

and Vision Computing, 11(6), 317–333.
Poggio, T. (1990). A theory of how the brain might work. Cold Spring Harb. Symp.

Quant. Biol., 55, 899–910.



1450 M. Kouh and T. Poggio

Poggio, T., & Bizzi, E. (2004). Generalization in vision and motor control. Nature,
431(7010), 768–774.

Poggio, T., & Edelman, S. (1990). A network that learns to recognize three-
dimensional objects. Nature, 343(6255), 263–266.

Poggio, T., & Girosi, F. (1989). A theory of networks for approximation and learning
(Tech. Rep. AI Memo 1140). Cambridge, MA: MIT.

Priebe, N. J., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of
spike threshold to the dichotomy of cortical simple and complex cells. Nat.
Neurosci., 7(10), 1113–1122.

Rauschecker, J. P., Tian, B., & Hauser, M. (1995). Processing of complex sounds in
the macaque nonprimary auditory cortex. Science, 268(5207), 111–114.

Reichardt, W., Poggio, T., & Hausen, K. (1983). Figure-ground discrimination by
relative movement in the visual system of the fly. Biological Cybernetics, 46, 1–30.

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms
subserve attention in macaque areas V2 and V4. J. Neurosci., 19(5), 1736–1753.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nat. Neurosci., 2(11), 1019–1025.

Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2003). Taking the max from
neuronal responses. Trends. Cogn. Sci., 7(3), 99–102.

Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells
analyze the motion of visual patterns. Nat. Neurosci., 9(11), 1421–1431.

Rust, N. C., Schwartz, O., Movshon, J. A., & Simoncelli, E. P. (2005). Spatiotemporal
elements of macaque V1 receptive fields. Neuron, 46(6), 945–956.

Schwartz, O., Pillow, J. W., Rust, N. C., & Simoncelli, E. P. (2006). Spike-triggered
neural characterization. J. Vision, 6(4), 484–507.

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain
control. Nat. Neurosci., 4(8), 819–825.

Sclar, G., Maunsell, J. H., & Lennie, P. (1990). Coding of image contrast in central
visual pathways of the macaque monkey. Vision Research, 30(1), 1–10.
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