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Abstract 

 
Face identification systems relying on local descriptors are 

increasingly used because of their perceived robustness with 
respect to occlusions and to global geometrical deformations. 
Descriptors of this type – based on a set of oriented Gaussian 
derivative filters – are used in our identification system. In this 
paper, we explore a pose-invariant multiview face identification 
system that does not use explicit geometrical information. The 
basic idea of the approach is to find discriminant features to 
describe a face across different views. A boosting procedure is 
used to select features out of a large feature pool of local features 
collected from the positive training examples. We describe 
experiments on well-known, though small, face databases with 
excellent recognition rate. 
 
1. Introduction 
 

After the seminal work of Kanade [28], there have been many 
face identification algorithms proposed in the literature. However, 
the task of face identification still remains a challenging problem 
because of its fundamental difficulties regarding various factors in 
the real-world such as illumination changes, rotation in both 
in-plane and out-plane, facial expressions, and clutter backgrounds. 
One of the most popular approaches is to use the eigenspace  
approach originally proposed by Turk and Pentland [29] and later 
extended in a Bayesian framework by Moghaddam and Pentland 
[30]. Although these approaches show good performances on 
frontal face identification, they have limited performance for both 
in-plane and in depth face rotations. As Heisele [16] pointed out, 
face rotations lead to considerable position changes of facial 
components, making feature localization difficult and thus lead to 
poor recognition performance. Therefore, it is necessary to use 
flexible geometrical models even in the frontal face identification 
system. Heisele [16] proposed component-based face 
detection/recognition system. Facial components are selected 
automatically using a statistical error bound; a SVM classifier is 
then generated for each component, followed by a higher-level 
combination classifier. Wiskottt and Malsburg [31] used another 
type of flexible geometrical model called “elastic graph matching” 
with Gabor local features. These systems – which have 
component/local features and their flexible geometrical constraints 
– have been shown to have better recognition performance than 
the global/holistic approaches. Those component or local feature 
based algorithms have also been proposed for the task of object 
identification. Lowe [7] developed an object identification system 
that works well in cluttered scenes and achieves rotational and 
scale invariance by using a unique local descriptor called “SIFT”. 

Inspired by his work, the use of local features for object 
recognition has become popular. Several recognition systems 
combined with statistical learning have been since proposed 
[13][14]. Although they are not face identification systems, they 
are related to our work. Let us clarify the main differences relative 
to our work. Wallraven [13] proposed local kernels for SVM to 
learn the object model from multiple image samples. Their system 
yields good performance  though their formulation has theoretical 
problems (the kernel is not positive definite). Csurka [14] 
introduced the notion of a “bags of keypoints” for object 
recognition. Their system computes SIFT local features; a 
clustering technique was used to build a “visual vocabulary” and a 
SVM classifier was trained to classify each category such as faces 
and cars. The input features to SVMs are the number of 
occurrences of each key feature. The occurrences are represented 
by a binned histogram where features are thresholded using 
Euclidian distance. The main problem of this approach is that all 
the features have the same threshold, that is the same probability 
to describe the object. Our framework is more general and we do 
not use any heuristic such as a threshold ; those thresholds are 
learned for each feature during the learning. Additionally, we are 
exploring the relative peformance of full-multiview object/face 
identification. Therefore, we do not perform clustering of the local 
features [14] since we found that clustering blurs the 
representation power of each local feature . We show in this paper 
that our framework can achieve the following three  properties in 
a unified framework: (1) tuning a threshold for each local feature 
matching, (2) selecting discriminant local features out of a large 
feature pool, (3) constructing a strong classifier by combining the 
selected features.  
In the literature, multiview (pose invariant) face identification 

approaches can be categorized into either multiview-based 
[1][2][3][21][22][23][26] or single-view based [20] approach. In 
the multiview-based approach, the training is done using 
multiview face images and a test image is assumed to be matched 
to one of the existing head pose model whereas the single-view 
based approach uses a canonical head pose for recognition. 
Normally, with the multiview-based approach, one might have 
“view specific models” [21] which makes the recognition process 
more complicated and even more time consuming. On the other 
hand, our framework can be applied without any explicit 
view-tuned models; we do not exploit strong geometric constraints. 
Our approach is significantly differs from other approaches in the 
literature (except [26]) in that just one model describes the whole 
multiview face space. 

In this report, we show how a full-multiview (invariant to 
rotations both in-plane and in depth) face identification system can 
be designed and how viewpoint-robust local features can be 
selected during the learning procedure. Although there are several 



related approaches in the literature which use local features and 
feature selection for the face identification [17] [18], their 
performance is limited because of the strong geometry constraints 
on the face (without actually exploiting the multiview face 
approach). Comparisons with two other statistical classifiers, SVM 
and boosting, are also described in this paper. The main 
contribution of this paper is (1) to propose a framework that can 
effectively select viewpoint-specific distinctive features for 
full-multiview face/object recognition, (2) to propose a simple 
(actually simpler than conventional approaches) yet powerful 
framework for integrating full face poses into just one model (3) to 
show promising experimental results on face identification 
(though they should be validated on larger databases). 

In section 2, we review a simple-cell type local descriptor based 
on the Gaussian derivatives, implemented using “steerable filters” 
[6]. Section 3 overviews the system. We describe the main 
experiments in section 4 and 5. Section 6 concludes the paper. 
 
2. A simple-cell type local descriptor 
 

 
Figure 1. Gaussian derivatives up to the third order with four 
orientations and three scales are computed at corner-like 
points and four neighboring pixel locations.  
 

Gaussian derivatives are filters with spatial orientation 
selectivity as well as frequency selectivity. The steerable filter [6] 
response for the nth order Gaussian derivative )(θnG  to an 
arbitrary orientation θ  is, given the Gaussian distribution G: 
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where )(θink  is the coefficient of the basis. Gaussian derivatives 
can be seen as the asymptotic form of Gabor filters. Yokono and 
Poggio [19] evaluated their invariance and selectivity concluding 
that Gaussian derivatives with higher order derivatives make the 
descriptor more powerful than Gabor descriptor for the specific 
object identification task. We use Gaussian derivatives up to the 
third order, with four orientations and three widths: 1,2, and 4. The 
vector length of the jet descriptor associated with a location in the 
image is 3x3x4=36. The descriptor can be made more powerful by 
combining the neighboring four jets, which are five pixels away 
from the center pixel. In this case the length of the local descriptor 
is 36x5=180. The local descriptor used in the experiments is 
shown in Figure 1. 
Design details of the descriptor can be found in [19][34][35]. 
 
3. Boosting local features with no geometric 
constraints 

3.1. Correlation features 
 

An overview of the system is shown in Figure 2. The basic idea 
of our approach -- motivated by Morgenstern and Heisele[8] -- is 
to collect local features from the positive training images and thus 
create a feature pool. The pool features represent a “dictionary” of 
features that describes the face. When considering multi-class 
recognition, a feature pool is created for each class with a different 
set of local features. Local features based on the Gaussian 
derivatives are computed on corner-like points detected by Harris 
measure. The advantage of using corner-like points is that those 
points usually have high information. Once the feature pool is 
created, all the positive and negative training images are used to 
compute “correlation features”: for each feature 

ix  in the pool 
X  , the maximum of the (normalized) correlation over all the 
local features in a sample is computed for each training sample. 
Therefore, if N features are in the pool, every training image has a 
N-dimensional feature vector. Let V be the set of features in the 
image, a correlation feature C  has elements ][),( Ν1,..., ∈iiC , 
such that 
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We call this vector – which is the input to the classifier -- a 
“correlation feature”. Taking the max over all the features in a 
sample means that we do not use geometric information. Our 
expectation was that even without geometric information, the 
descriptors are sufficiently discriminant. The correlation features 
might be common features across the viewpoint of the face or 
distinctive features for a specific viewpoint. At run time local 
features on the corner-like points are used to compute a 
correlation feature which is fed into the previously trained 
classifier. 
 
3.2. Discrete AdaBoost and Gentle AdaBoost 
 

We may use any kind of classifiers such as Support Vector 
Machine and boosting. AdaBoost was originally proposed by 
Freund and Schapire [32] and is a successful classifier in a host of 

 
Figure 2. System Overview: Local features are collected 

from positive training examples. Then maximum correlations 
over all the local features in a sample are computed and used 
as inputs to the classifier. Note that when considering 
multiclass recognition, a different set of features is used for 
each class. 



real-world application [4]. Later, Friedman et. al. [9] proposed a 
modified version of AdaBoost that uses additive regression as a 
weak learner and adaptive Newton steps for the optimization. 
They called the original AdaBoost Discrete AdaBoost and claimed 
that their new Gentle AdaBoost often outperforms Discrete 
AdaBoost [9][15]. Both algorithms are listed in the Algorithm 
Box. As can be seen, Gentle AdaBoost uses real-valued regression 
rather than the {-1, +1} of Discrete AdaBoost. 

 
3.3. Boosting local features 
 

In terms of performance, SVM and boosting (and as a matter of 
fact also square-loss regularization) are usually quite similar. An 
advantage of using boosting is that it effectively performs feature 
selection during the learning. For instance, if the system holds 
initially 6000 features in the feature pool, it is necessary when 
using SVM to compute at run time all the correlation values for all 
the features. On the other hand, boosting may selects fewer 
features, say 200, thereby considerably speeding up computation 
at run time. Since we are effectively using a decision stump 
(binary split decision tree) as weak classifiers [32], the learning 
procedure tunes the threshold for each feature. Good features can 
be selected by taking the minimum error of the features. In the 
experiments, we use both SVM and boosting and compare the 
results. 

 
4. Frontal face identification 
4.1. MIT CBCL datasets 

 

 
Figure 3. Sample images from the MIT face database. The 
database contains 10 people with approximately 200 images 
per person. It has various changes in illumination, scale, pose, 
and facial expression. 
 
4.1. 1 Experimental setup 
 

In the first experiment, we performed face identification on 
MIT face database (*1). The face database contains faces of 10 
people with approximately 200 images per person. It has both 
male and female face images collected from various ethnic 
subjects. Sample images are shown in Figure 3. As shown in these 
images, there are variations in illuminations, face positions (not 
aligned to center), slight scale changes, and pose changes up to 
about 45 degrees of depth rotation and up to 30 degrees of in-plane 
rotation. Images are 70x70 gray values. For each run, N images 
are randomly chosen as training images and the remaining images 
are used for testing. Gaussian derivative based local features are 
computed on the corner-like points detected by the Harris corner 
detector for every training image. Approximately 50 points per 
image are detected in our experiments. These local features from 
positive examples are collected to build a feature pool. For 
instance, when we use 30 training images, approximately 50x30 = 
1500 features are in the pool. Then, all the positive and negative 
images are used to make the correlation feature vectors where 
each image represents approximately 1500-dimensional 
correlation feature vector. All the results are averages of 10 runs. 
We report here the performance of the binary classifier and 
multiclass face identification. 

 
4.1.2 Number of training images 
 

We conduct experiments by changing the number of training 
images. ROC curve indicating the classifier performance is shown 
in Figure 4. Due to the difficulty of the database, 10 images are 
not enough for the high performance. If we use 50 images for  
training, recognition is almost perfect. 

 
4.1.3 Number of weak classifiers 

 
We also conduct experiment how number of weak classifiers of 

the boosting affects the performance. As expected, if we use more 
weak classifiers, performance increases significantly. When 30 
images are used for the training, a classifier using 1000 stumps is 
almost perfect as shown in ROC curve (Figure 5). 

 
4.1.4 Multiclass Recognition 

 
We also perform multiclass face recognition. The system has to 

identify the specific person out of 10 subjects. We trained 10 
one-vs-all binary classifiers and take the maximum output. Results 
are shown in Table1. As shown in the table, if we have more 
images available for training, there is no significant difference in 
performance between SVMs and Boostings. However, the 
boosting performance is worse than SVMs when less than 10 
images are used for training. Figure 6 shows recognition rate of 
each class. Person 5 and person 6 are difficult due to the much 
variation in illumination and depth rotation. 
 

# of training images  
/ Methods  

5 
images 

10 
images 

20 
images 

30 
images 

Linear SVM 82.1 % 90.3 % 95.0 % 97.2 % 
RBF SVM 84.3 % 92.4 % 95.9 % 97.2 % 
AdaBoost 
 (200 stumps) 

60.8 % 84.9 % 93.8 % 96.7 % 

GentleBoost 
 (200 stumps) 

68.5 % 87.7 % 93.8 % 96.7 % 

Table 1. Recognition performance on MIT face database. 

Discrete AdaBoost Algorithm (Freund & Schapire [32]) 
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Gentle AdaBoost Algorithm (Friedman, Hastie & Tibshirani [9])  
1.Initialize weights NiNwi ,...,2,1,/1 == 　 , where N  is the number of samples. 
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(*1) http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html 



 
4.2. ORL datasets 
 

 

 
Figure 7. Sample images from ORL face database. The 
database contains 40 subjects with minor variation of 
illumination, scale, and pose. Faces are aligned to the center of 
the image with a uniform background. There are 10 face 
images per subject.  

 
We also performed multiclass face recognition on the 

Cambridge ORL face database. This database is an often used 
benchmark test set for face identification. The images are 112x92 
pixels and have minor variation in facial expression and scale and 
pose. Example images are shown in Figure 7. It contains 40 
different subjects with 10 images each. Although this database is 
relatively easy, compared to the MIT database (since the faces are 
aligned in the center of the image and the subjects are placed on 
the uniform background), it is interesting to compare the results 
with other techniques reported in the literature. When 5 images are 
used for training and testing, our implementation of 
one-shot-learning system[19][34][35] achieved 97.5% recognition 
rate which is state-of-the-art performance for this (quite easy) 
database. We tested our new approach to this data set. For each 
subject, N randomly chosen images are used for training and the 
remaining 10-N images are used for testing. Thus a total of Nx40 
images are used for training and (10-N)x40 images are used for 
the testing. The number of local features depends on the image but 
approximately 70 features are found in an image. For instance, 
when 5 images are used for training, there are 70x5=350 features 
in the feature pool. Maximum correlations are computed for all the 
features. We trained the one-vs-all SVM classifiers and boosting 
classifiers for all the 40 people. In the testing, all the test data are 
classified into one of the 40 categories. The input feature vector is 
classified by all the 40 classifiers. The classifier with maximum 
value provides the final decision. We ran the experiment 30 times 
since the result is slightly different when different images are 
chosen as training and testing and considered the average result. 
Table 2 shows the results with other techniques such as 
Eigenface[10], SOM+CN[10], and ARENA[11]. As we can see 
from the table, the result is excellent: even with only 1 training 
image, the recognition rate of the SVM classifier is over 80%. 
When we use 3 images for training, performance is almost perfect. 
When 5 images are used for the training, 12 out of 30 runs 
show100% recognition rate. We should note here that boosting 
performs poorly compare to SVM. However, when the number of 
training images is more than 10, the performance of boosting 
increases significantly. We already showed the result on MIT 
database containing more number of examples. 
 

 
 
 

 
Figure 4. ROC curve of a boosted face classifier using 200 
stumps. The performance increases, as more training images 
are available.  

 
Figure 5. ROC curve as a function of number of weak classifiers. 
When 1000 stumps are used, performance is almost perfect. 
 

 
Figure 6. Performance of each person. Figures show average 
recognition rate on 10 runs when 10 images are used for training 
(left) and 30 images are used for training (right). Some people are 
more difficult than the others to recognize. More the training 
images are available, performance of SVM and boosting getting 
closer. 

# of training images 1 image 3 images 5 images 

Eigenface [10] 61.4 % 81.8 % 89.5 % 

SOM+CN [10] 70.0 % 88.2 % 96.5 % 

ARENA [11] 74.7 % 92.2 % 97.1 % 

Linear SVM 84.4 % 96.5 % 99.3 % 

RBF SVM 84.5 % 96.8 % 99.3 % 

Gentle AdaBoost 74.7 % 74.8 % 78.6 % 
One Shot System [19] 50.3 % 82.9 % 97.5 % 
Table 2. Recognition performance on the ORL database. 
Our system outperforms other previously proposed 
techniques in the literature on this database. In particular, 
when 1 image is used for training, SVM classifiers show 
excellent results.



5. Multiview face identification 
5.1. Integrating multiview to one model 
 

In the previous section, we applied our system to the frontal 
face recognition task and showed high recognition performance on 
the ORL and MIT face databases. The next challenge was to apply 
the system to multiview face recognition. One way to accomplish 
multiview recognition from collection of 2D images is to use 
reference view [21]. In that method, a set of images separated by 
N degrees in depth rotation are chosen as references. For a planar 
object such as a painting, even if the viewpoint is changed 45 
degrees, the images are still similar enough for detection. On the 
other hand, for a rigid object like faces, 30 degrees interval might 
not be too much and we have to tune this interval heuristically. In 
our approach, this problem is dealt with same way as framework 
described in the previous section. Local features are extracted 
from face images taken from the various viewpoint and good 
features are selected during the learning procedure. The selected 
features are common features across the view or distinctive 
features of a certain viewpoint. As noted in the previous section, 
local features from the positive training examples are used to 
create a “feature pool” and “correlation features” are computed for 
all the positive and negative examples.  

 
5.2. Results on CMU PIE face database 
 

 
Figure. 8  Sample images from CMU PIE database.  
We use 48 subjects from the database since those subjects have 
images under two different conditions: “lights” and “facial 
expression”. 
 
CMU PIE is a commonly used dataset [24][26] for evaluation of 

multiview face identification performance. We use 48 subjects 
from this dataset, which have face images taken under different 
light conditions and different facial expressions. Sample images 
from this database are shown in Fig.8. We cropped face regions 
and resized to 100x100 pixels in the experiments. 
The experiment is conducted by making train/test subsets for 

each person using one of the conditions (lights or expression) and 
evaluate the performance by changing number of training samples. 
For each subject, N randomly chosen images are used for training 
and the remaining images in the same condition are used for 
testing.  Following the same procedure of the previous section, 
we first construct the feature pool and train the one-vs-all SVM 
classifiers and boosting classifiers for all the 48 people. In the 
testing, the classifier with maximum value provides the final 
decision. Note that when only one image is used for training, the 
classifier might capture only one view of the face. Testing is done 
using all the viewpoints (including frontal and profile and other 
views). Results are shown in Table 3 and Table 4,. As we can see 
from the tables, the results are excellent even when the number of 
training samples is only one, with better than 40% of identification 
rate when tested on light changes. This means that the one view 
model allows 36±  degrees in-depth head pose changes. Since 
the training images are chosen randomly from all the multiview 
images, sometimes the classifier cannot model the full view even 
when 3 images are used for training. This leads to no performance 
increase despite of the increase in the number of training images; 
however, when 9 images are used for training, the RBF SVM 

classifier achieves almost 90% identification correctness, which is 
a state-of-the-art performance on this database. Fig. 9 shows some 
of the images from one of the subjects under lighting changes. 
Fig.10 shows initially detected corner points and selected local 
features during the boosting procedure. It is interesting to point out 
that the features in the half-profile views are more likely to be 
selected rather than the frontal views. This observation implies 
that near-frontal views can be recognized by a small set of 
common features across the viewpoints while near-profile views 
require more view-specific features. Another implication is that 
local features from half-profile views are more distinctive than 
frontal view features for the face identification. 
Table 4 shows the performance on the “expression” subset. Due 

to the variation of facial expressions, the result shows lower 
identification performance than the “light” experiment. We also 
show the sample images of facial expression variations in Fig. 11. 
It is clear that the boosting algorithm performs poorly in most of 

our experiments when the training samples are few in number. 
However, recent advances in boosting algorithm [5] shows almost 

 

 
Figure. 10 Initially detected corner points (top row) and selected 
local features (bottom row). Red circle regions indicate the 
support regions of the local descriptors.  

 
Figure. 9  Sample images from “lights” subset. This subset has 
approximately 73 images per person. Even though the lighting 
condition is changed, normalized correlation of the two local 
features is still high, thus yielding good identification 
performance (see Table 3).  

 
Figure. 11 Sample images from “facial expression” subset. This 
subset contains approximately 50 images per person with various 
facial expressions. There are images of some subjects with and 
without glasses. These factors lead to failure in local feature 
matching.  

# of training images  
/ Methods  

1 image 3 images 5 images 9 images 

Linear SVM 41.9 % 51.4 % 75.4 % 85.2 % 
RBF SVM 44.2 % 55.2 % 82.7 % 89.4 % 
GentleBoost  
(200 stumps) 

42.6 % 41.0 % 65.7 % 79.4 % 

Table 3. Recognition performance on light changes. 
 

# of training images  
/ Methods  

1 image 3 images 5 images 9 images 

Linear SVM 22.2% 37.3% 47.7% 62.1% 
RBF SVM 20.6% 42.1% 54.3% 69.7% 
GentleBoost  
(200 stumps) 

24.8% 26.3% 42.2% 59.5% 

Table 4. Recognition performance on expression changes. 



the same classification performance as SVM and our system can 
be extended using those algorithms when there are a few training 
samples available. 
 
6. Conclusion 
 

In this paper, we do not exploit any geometric constraints for 
the face identification. Local features based on sets of oriented 
Gaussian derivatives are efficiently implemented by “steerable 
filters”. Positive training images are used to extract local features 
and build a “feature pool”. For each feature in the pool, a 
maximum correlation is computed to make a “correlation feature” 
to be trained by SVM and boosting. We applied our system to 
frontal face identification and multiview face identification. The 
ORL and MIT CBCL and CMU PIE database showed excellent 
results in relation to other approaches. It should be emphasized 
that larger databases should be used to obtain absolute levels of 
performance that are relevant to some real world situations. Even 
without geometric information, the system achieves 
state-of-the-art performance. A motivation for applying the system 
to multiview face identification is that the system effectively 
integrates automatically multiview face models into one model by 
collecting a sufficient number of distinctive and subject-specific 
local features from the training images. The boosting algorithm 
selects specific features out of a large feature pool while tuning the 
threshold of matching each feature. Those are distinctive features 
in a certain viewpoint as well as the common features across 
viewpoints. Currently our system needs training images collected 
from various viewpoints. Future work will consider the generation 
of multiview faces by the morphable models [23] and possibly 
weak geometry constraints for the model. 
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