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In recent years the amount and complexity of data 
in several areas of cognitive neuroscience have
increased substantially. As a consequence, pure intu-
ition, and the qualitative mental models associated
with it, are becoming less appropriate for interpret-
ing experimental results and for planning new exper-
iments. We believe that quantitative computational
theories can be an effective tool for summarizing
existing data, and for testing the consistency of possible
explanations.

For example, a substantial amount of data about
the properties and neural substrates of the recognition
of BIOLOGICAL MOVEMENTS is accumulating in neurophysi-
ology, psychophysics and functional imaging, but the
underlying computational mechanisms remain largely
unknown. It also remains unclear how different exper-
imental evidence is related. Quantitative models might
help us to organize our knowledge and to use it to
provide explanations and to propose and plan new
experiments.

In this article, we review key experimental results
relating to the recognition of biological movements.
Throughout the article, we use a computational

model as a framework to organize these results. We
describe how several experimental results can be
accounted for by simple neural mechanisms, under
the key assumption that recognition is based on a
feedforward architecture that uses learned prototypi-
cal patterns. Such prototypes are potentially stored in
specific neurons in the ventral and dorsal pathways of
the visual system.

Two main sets of questions are addressed. The first
is the key to our approach: is it possible to recognize
biological movements in a way that is consistent with
the experimental data, and that uses plausible neural
mechanisms? The second is more specific: what are
the roles of the ventral and dorsal pathways for the
recognition of biological movement stimuli?

The proposed computational model gives an inter-
pretation of the data that are reviewed and provides
answers to these questions. It also points to issues that
cannot be answered by the model and by the available
experimental results. For instance, how is the informa-
tion from the two pathways combined, what is the role
of time in the ventral pathway, and how does attention
influence the recognition process?
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BIOLOGICAL MOVEMENT

In psychophysics, ‘biological
motion’ often refers specifically
to point-light stimuli. We use the
term ‘biological movements’ to
characterize stimuli that show
the movements of animals and
humans, independent of the
presentation mode.

SUPERIOR TEMPORAL SULCUS

(STS). A sulcus in the temporal
lobe of monkey and human
cortex that contains areas that
are selectively activated by
biological movements.

MULTIMODAL

Neurons that respond to sensory
input in more than one
modality, for example, both
visual and auditory stimuli.

180 | MARCH 2003 | VOLUME 4  www.nature.com/reviews/neuro

R E V I E W S

motor actions by imitation13,15. Interestingly, mirror
neurons and neurons in the STS are often MULTIMODAL7,16.

The neural basis of movement recognition has also
been studied using functional imaging in humans17–19.
Positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) experiments have
found that point-light and natural biological motion
stimuli selectively activate areas in the STS17–23. These
areas are also selectively activated during observation of
mouth and hand movements, and of facial expressions18.
A reported analogue of area F5 in the inferior frontal
gyrus in humans shows selective activation during grasp-
ing and during the observation and imagery of hand and
body movements13,17,24,25. Selective activation for biologi-
cal movement stimuli has been reported in the occipital
and the fusiform face areas19, and in the lingual gyrus26.
Biological movements also activate non-visual areas such
as the amygdala and cerebellum18,20,22,23.

The roles of the ventral and dorsal visual processing
streams in the recognition of biological movements are
unclear. It seems likely that the dorsal pathway, which is
specialized for the processing of motion information,
contributes substantially to the perception of biological
movements27, in particular as the perception of actions is
possible without well-defined form information28.At the
same time, subjects can recognize gait patterns from
individual stationary key frames29, and from stimuli with
strongly degraded motion information30, indicating that
the ventral pathway is involved. Neurophysiological and
imaging experiments support the existence of neurons
that respond selectively to human body configura-
tions9,19,31, so biological movements might be recognized
by analysing sequences of body shapes that correspond
to ‘snapshots’ from movies of complex movements.
fMRI results indicate that normal movement stimuli
activate areas in both pathways, whereas point-light
stimuli tend not to activate form-selective areas19.

Learning in biological motion recognition
Learning seems to be important in the recognition of
complex movements. Subjects can learn to discriminate
between different movement styles32, and between move-
ments of different individuals33. In addition, learning is
fundamental in the recognition of three-dimensional
stationary objects34, and the neural representation of
objects seems to be based on learned two-dimensional
views35,36. This supports the hypothesis that learning is
involved in the recognition of complex movements.

Neural model
Before reviewing many of the experimental results on
biological movement perception, we describe a model
that we use to organize and interpret the data (FIG. 1). The
model is based on four assumptions, which are consistent
with established anatomical and physiological facts.

The model is divided into two parallel processing
streams37–44, analogous to the ventral and dorsal
streams, that are specialized for the analysis of form and
OPTIC-FLOW information, respectively.

Both pathways comprise hierarchies of NEURAL FEATURE

DETECTORS that extract form or optic-flow features with

Recognition of biological movements
Recognition of complex biological movements — such
as locomotion, gestures, facial expressions and motor
actions — is biologically important for activities such as
detecting predators, selecting prey1 and courtship behav-
iour2. Gestures and facial expressions are also central to
social communication in primates and humans3–5.
Humans recognize biological movements accurately and
robustly, as was shown in classical psychophysical work
by Johansson6 (BOX 1).

Neural mechanisms
Only a few electrophysiological experiments have
addressed the recognition of biological movements.
Some neurons in the SUPERIOR TEMPORAL SULCUS (STS)
respond selectively to full-body7–11 or hand movements12.
A few of these neurons are view-dependent — their
response decreases substantially if the movement is pre-
sented from a viewing direction other than the neuron’s
preferred view8–10. Another set of action-selective neu-
rons has been found in area F5 in monkey premotor cor-
tex13,14. As these neurons also respond when the monkey
performs the action, they have been dubbed ‘mirror neu-
rons’. Such neurons might be involved in the learning of

Box 1 | Perception of point-light displays

The information carried by biological
movements is beautifully illustrated in
an experiment devised by the Swedish
psychologist Gunnar Johansson6. He
attached ten light bulbs to the joints of
actors (left, a). The actors were video-
taped while they performed complex
movements, such as walking, running
or dancing in the dark. From the videos,
which showed only ten light dots
moving against a dark background
(right, b), subjects could immediately
recognize the action. In addition, the
dots were spontaneously interpreted as
a human being. If the subjects saw
individual frames from the videos
presented as static pictures, they neither
perceived the dots as human, nor were
able to identify the actions. (For movies
that illustrate the stimuli that have been
used to study the recognition of
biological movements, see
supplementary information)

Subsequent studies have shown that
many complex actions can be recognized
on the basis of such ‘point-light
displays’, including facial expressions132,
American Sign Language133, arm
movements100 and various full-body
actions96. From the same highly
impoverished stimuli, subjects could
even extract information about subtle details of the action, for example the identity98

and gender97,102 of walkers, emotional states99,100 or the weight of lifted objects134. See
REF. 135 for a more detailed review of psychophysical studies. (Figure modified, with
permission, from REF. 6 © (1973) The Psychonomic Society.)

a b
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adding the dorsal pathway. The model represents the
average belief — often implicit — of several visual
physiologists. It is intended to be a quantitative tool to
summarize, organize and interpret existing data, and 
to discuss open questions. Its basic architecture is con-
strained by neurophysiological data. We have imple-
mented this architecture so that quantitative predictions
can be derived through computer simulations.

The architecture of the model (FIG. 1) includes only
areas that are primarily visual, and that are involved in
movement recognition. The two pathways in the model,
which are specialized for the analysis of form and
motion (optic flow) information, are kept separate. This
is a simplification: in monkey and human brains, the
two processing streams interact at several levels38,46,47.
Such couplings, for example at the level of the STS, can
be easily integrated in the model48 and improve the
recognition performance without changing the basic
results discussed here.

Both pathways consist of a hierarchy of neural fea-
ture detectors (TABLE 1). In addition, they contain neural
circuits that make recognition sequence-selective.
Further details about the model are presented in REF. 49.

Form pathway. The form pathway analyses biological
movements by recognizing sequences of ‘snapshots’ of
body shapes. Several neurophysiologically plausible
models for the recognition of stationary form have been
proposed (for example, REFS 43,50,51). The form pathway
of our model extends a model for object recognition43

that consists of a hierarchy of neural detectors that
process form features of increasing complexity. These
detectors correspond to different classes of neurons in
the ventral visual pathway. Consistent with neurophys-
iological data, the receptive field sizes and the position
and scale invariance of the neural detectors increase
along the hierarchy.

The first level of the form pathway consists of local
orientation detectors that model simple cells52 in the
primary visual cortex (V1). Consistent with other
models of simple cells53, these detectors are modelled as 
GABOR-LIKE FILTERS. The model contains orientation detec-
tors for eight preferred orientations, and two spatial scales
that differ by factor 2. The sizes of the receptive fields are
in the range of those of neurons in monkey V1 (REF. 54).

The next level of the form pathway contains posi-
tion- and scale-invariant bar detectors, which extract
local orientation information. Within a limited range,
their responses are independent of the spatial position
and scale of contours within their receptive fields.
They might correspond to complex-like cells in area
V1 (REF. 52), or to neurons that are increasingly invariant
to position changes in areas V2 and V4 (REFS 55,56). The
receptive field size of the invariant bar detectors is typi-
cal of neurons in area V4 (REF. 57). Many neurons in areas
V2 and V4 are selective for more complex form features
that are similar to corners or junctions55,58. Such fea-
tures were not necessary to achieve sufficient selectivity
of the model for motion recognition.

A neurophysiologically plausible mechanism for
achieving position and scale invariance is the pooling of

increasing complexity along the hierarchy. The position
and size invariance of the feature detectors also increases
along the hierarchy.

The model assumes that in its basic, initial operation
— akin to ‘immediate recognition’ — the hierarchy in
both pathways is predominantly feedforward (apart
from local feedback loops), without the need of
top–down signals. We do not claim that such signals are
not important, in particular for longer stimulus presen-
tations, but we show that without them good recog-
nition performance can be achieved in most cases.
This parallels results on the recognition of stationary
objects showing that recognition can be achieved 
with extremely short latencies, making a key role of
top–down signals unlikely40. Similarly, recordings in the
STS have found short latencies for the recognition of
biological movements41. None of this rules out the use
of feedback processing. However, it indicates a hierar-
chical feedforward architecture as the core circuitry
underlying ‘immediate’ recognition that might be mod-
ulated by recursion and higher-level interactions over
longer time intervals.

The representation of motion is based on a set of
learned patterns. These patterns are encoded as
sequences of ‘snapshots’ of body shapes by neurons in
the form pathway, and by sequences of complex optic
flow patterns in the motion pathway. This assumption is
a central postulate of our model.

Our model extends a previous model for the recog-
nition of stationary objects43–45 by integrating form
information over time in the ventral pathway, and by

OPTIC FLOW

A field of motion vectors that
specifies how points of a frame
(in an image sequence) are
displaced over time. Unlike
densely textured scenes, point-
light stimuli do not specify a
dense, spatially continuous,
optic-flow field.

NEURAL FEATURE DETECTORS

Neurons in cortex can often be
interpreted as graded ‘detectors’
that are activated when specific
features (such as orientation,
corners, local motion with
defined speed and direction, and
faces) are present in their
receptive fields.

GABOR-LIKE FILTERS

Gabor functions are defined by
sinusoidal functions that are
windowed by a gaussian
function. They define filters that
are localized in the spatial
domain as well as in the spatial
frequency domain.
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Figure 1 | Hierarchical neural model that provides a unifying interpretation of the data.
Overview of the model with two pathways for the processing of form and motion (optic flow). The
approximate size of the receptive fields compared to typical stimuli is indicated in the middle row.
Insets show the different types of neural detectors at different levels of the hierarchy (see tests
referred to in this review). IT, inferotemporal cortex; KO, kinetic occipital cortex; OF, optic flow; 
RF, receptive field; STS, superior temporal sulcus; V1, primary visual cortex. Other abbreviations
indicate corresponding areas in monkey and human visual cortex (see text).
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cells’ are an over-simplification: it is likely that a sparse
population code is used, as for the neural encoding of
stationary shape66,67. According to physiological data,
motion pattern neurons in monkey and human cortex
are probably located in the STS8–12,19–23, the premotor
cortex (area F5)13,25 and possibly the fusiform and
occipital face areas19.

Motion pathway. The motion pathway recognizes
biological movements by analysing optic-flow patterns.
Consistent with neurophysiological data68, it consists of
a hierarchy of neural detectors for optic-flow features 
of increasing complexity. As in the form pathway, the
receptive field sizes, invariance of the detectors and
complexity of the extracted features increase along the
hierarchy.

The first level of the motion pathway consists of local
motion detectors that correspond to direction-selective
neurons in V1 (REF. 69) and component motion-selective
neurons in area MT70. Many neurophysiologically plau-
sible models for local motion estimation have been pro-
posed (see, for examples, REFS 71–76). For the simulations
reported here, we directly computed optic-flow patterns
and calculated the responses of motion-sensitive neu-
rons with physiologically realistic parameters (see REF. 49

for details). Their equivalent receptive field sizes are in
the range of direction-selective neurons in V1, and of
foveal neurons in area MT54,77.

The second level of the motion pathway consists of
neurons with larger receptive fields that analyse the
local structure of the optic-flow fields induced by
movement stimuli. There are two types of local optic-
flow detector. The first is selective for translation flow
and corresponds to motion pattern neurons in area
MT70 with low or bandpass tuning with respect to
speed78, and has direction tuning curves with a width
of about 90° (REF. 69). The model includes neuron pop-
ulations with four preferred directions and with a
receptive field size similar to monkey MT neurons77.
The second class of local optic-flow detectors is
selective for motion edges (horizontal and vertical).
Their output signals are computed by combining the
responses of two adjacent subfields with opposite

the responses of neurons with similar preferred orienta-
tions, but with different receptive field positions and
spatial scales50,59,60. We assume that this pooling is
accomplished by a nonlinear MAXIMUM-LIKE OPERATION

rather than by linear summation43,61. Subpopulations of
complex cells in the visual cortex of cats62 and neurons
in area V4 of macaques63 show behaviour that is com-
patible with a maximum computation.

The next level of the form pathway contains snap-
shot neurons that are selective, for instance, for body
shapes. These model neurons are similar to view-tuned
neurons in monkey inferotemporal cortex (area IT),
which are selective for complex shapes36,64,65 and can
become tuned to complex shapes through learning36.
Like view-tuned neurons in area IT64, the snapshot neu-
rons have large receptive fields (> 8°) and show sub-
stantial position- and scale-invariance. As in previous
models of view-tuned neurons35,43, we model the snap-
shot neurons by GAUSSIAN RADIAL BASIS FUNCTIONS. These
neurons receive inputs from the invariant bar detectors
on the previous hierarchy level. The centres of the basis
functions are adjusted during training so that each
snapshot neuron encodes one key frame from a train-
ing sequence. In our simulations, each movement pat-
tern is encoded by 21 snapshot neurons representing
regularly sampled key frames (this number is not cru-
cial for the performance of the model). The model does
not address how an optimum set of key frames can be
learned automatically.

Neurons with similar properties in the cortex might
be located in area IT in monkeys64,65, and in the STS of
monkeys and humans10,19–23. Activity that is selective
specifically for human body shapes has been found in
the human lateral occipital complex31, occipital and
fusiform face areas19 and monkey STS9,41.

The highest hierarchy level of the form pathway
consists of motion pattern neurons. These model neu-
rons temporally smooth and summate the activity of all
snapshot neurons that contribute to the encoding of
the same movement pattern. The temporal smoothing
is modelled by a LEAKY INTEGRATOR (see first equation in
FIG. 2b). Each motion pattern neuron encodes a single
action, such as ‘walking’ or ‘boxing’. Such ‘grandmother

MAXIMUM-LIKE OPERATION

An operation that results in an
output signal that approximates
the maximum among several
input signals. Maximum
computation can be
approximated by physiologically
plausible neural circuits.

GAUSSIAN RADIAL BASIS

FUNCTIONS

(RBF). Units used to model
neurons that are tuned for
complex stimuli. Their
activation is described by a
multi-dimensional gaussian
function that depends on the
difference between input signals
and a constant vector (RBF
centre) that defines the input
that induces maximal activity.

LEAKY INTEGRATOR

A simplified model for the
dynamics of the membrane
potential of a neuron. The
dynamics are given by a linear
differential equation.

Table 1 | Classifications of model neurons

Model neurons Area Number of neurons Receptive References
field size

Form pathway

Simple cells V1, V2 1010 0.6°/1.2° 52–54,59

Complex cells (V1, V2) V4 128 4° 52, 55–58,62,63

(View-tuned) snapshot neurons IT, EBA, STS, FA 63–840 >8° 19-23,31,36,64–65

Motion pattern neurons STS, FA, F5 3–40 > 8° 7–15,19–24

Motion pathway

Local motion detectors V1, V2, MT 1147 0.9° 54,59,69–70,73–77

Local OF pattern detectors MT, MST 72 (translation) 3.5° 69,77–78
MST, KO 2 x 50 (expansion/contraction) 68,79-87

Complex OF pattern detectors STS, FA 63–840 > 8° 8–10,19–23

Motion pattern neurons STS, FA, F5 3–40 > 8° 7–15,19–24

OF, optic flow. Other abbreviations indicate areas in human and monkey visual cortex (see text). 
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sequences (21 neurons per stored pattern). We assume
that such optic-flow pattern neurons might be found at
different locations in the visual cortex, in particular in
the STS8–12,19–23, fusiform and occipital face areas19, and
maybe area MST.

The output signals of the optic-flow pattern neurons
are summed and temporally smoothed by the motion
pattern neurons of the motion pathway. They are mod-
elled in the same way as the motion pattern neurons of
the form pathway. Alternatively, a single set of motion
pattern neurons might integrate the information from
both pathways (see REF. 48 for an implementation).
Motion pattern neurons are probably located in the
STS, fusiform and occipital face areas, and maybe area
F5 in the premotor cortex.

Sequence selectivity. Movement recognition is selective
for temporal order: randomization of the temporal
order of the frames of a movie typically destroys the
percept of a biological movement, even though the
scrambled movie contains the same ‘snapshots’.

In the model, sequence selectivity results from
asymmetric lateral connections between the snapshot
neurons in the form pathway (and between the optic
flow pattern neurons in the motion pathway). With

direction preferences (FIG. 1) in a multiplicative way.
Neurons with such opponent motion selectivity have
been found in several areas in the dorsal processing
stream, including areas MT79–81, MSTd68,82 and MSTl
(REF. 83). They are probably also present in the kinetic
occipital area (KO) in humans84,85. Neurons in area
MST have substantial position and scale invariance86,87.
In our model, such position invariance is obtained by
pooling the signals from position-specific motion edge
detectors through a maximum operation. The recep-
tive field size of the motion edge-selective detectors is
in the range of neurons in areas MT54 and MSTl83 in
the macaque monkey.

The optic-flow pattern neurons on the third level of
the motion pathway are equivalent to the snapshot
neurons in the form pathway. Their existence is a pre-
diction of the model. These detectors are selective for
complex optic flow patterns that arise for individual
moments of biological movement patterns (FIG. 1). Like
the snapshot neurons, the motion pattern neurons are
modelled by gaussian radial basis functions that
receive their inputs from the previous hierarchy level.
After training, the centres of the basis functions corre-
spond to the optic-flow patterns that are characteristic
for individual moments of the learned movement
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Figure 2 | Neural mechanisms of sequence selectivity. a | A model circuit with snapshot neurons and motion pattern neurons that
implements sequence selectivity. Each snapshot neuron has asymmetric lateral connections that pre-activate snapshot neurons that
encode subsequent body configurations. The other snapshot neurons are inhibited. The output signals of all snapshot neurons that
are involved in the encoding of the same motion pattern are summed in a motion pattern neuron. The same circuit is used in the
dorsal pathway (with optic-flow pattern neurons instead of snapshot neurons). +, excitation; –, inhibition. b | Differential equations
describing the dynamics of the snapshot neurons (see REF. 92) and of the motion pattern neurons. Variables: sn, output signals of radial
basis functions trained with learned snapshots; un, membrane potential of the snapshot neurons; y, output signal of the motion
pattern neuron; w, asymmetric lateral coupling strength; f, sigmoidal nonlinear function; t, time; τu, τy, time constants (150 ms); m, n,
neuron indices. c | Inset shows a response of a neuron in area STPa (anterior superior temporal polysensory area) of a macaque
monkey that becomes selective with short latency (< 200 ms). Green and purple areas indicate the time course of the neural response
for a body stimulus moving in the preferred and anti-preferred direction of the neuron, respectively. The main graph shows the time
course of the responses of the motion pattern neurons of the model (form pathway) for stimulus frames presented in the correct
temporal order (blue line), reverse temporal order (green line) and random temporal order (red lines). The activity is strongly reduced if
the temporal order of the frames is incorrect. Response latency is comparable with the neurophysiological data. Panel c inset
modified, with permission, from REF. 41 © (1996) American Physiological Society.
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must generalize across illumination, position, scale and
identity of the actor, while being selective enough to dis-
tinguish subtle details. This leads to the question of
whether the combination of selectivity and generaliza-
tion that has been observed in humans and in monkeys
can be achieved with simple neural mechanisms, and, if
so, whether the ventral or the dorsal pathway or both are
necessary. This question can be answered only by a
quantitative model.

We tested the selectivity and invariance of the two
pathways separately in the model (FIG. 3a). The activity of
motion pattern neurons trained with ‘walking’ is shown
in the left panels of FIG. 3a for a ‘walking’ stimulus and 
38 distractor patterns (including other forms of loco-
motion, sports and dancing movements). The motion
pattern neurons respond significantly only to ‘walking’,
but not to the distractor patterns. The right panels show
the responses of all neurons for all tested action patterns
as colour-coded plots, indicating that all motion pattern
neurons achieved high pattern selectivity. High selectiv-
ity for different action patterns can be achieved with
either pathway. Additional simulations49 show that each
pathway generalizes well over the same action executed
several times by the same or different actors.

Consistent with psychophysical data98, the selectivity
of the model is sufficient to identify people by gait.
FIGURE 3b shows the responses of motion pattern neurons
in the motion and form pathways, after training with
the gaits of two male and two female actors. In both
pathways the neurons become activated only for the gait
pattern of the person whose gait was presented during
training. This result implies that subtle details from
biological movement patterns can be recognized using
simple neural mechanisms, and by each pathway alone.

The generalization properties of biological move-
ment recognition can be investigated more systematically
with stimuli that are generated by MOTION MORPHING. Such
morphing stimuli have been used to study action catego-
rization101, gender perception102 and caricature effects103

in movement recognition. The upper panel in FIG. 3c

shows a result from a psychophysical experiment101 dur-
ing which subjects had to categorize motion morphs
between four prototypical locomotion patterns — walk-
ing, running, limping and marching. The morphs were
generated by computing linear combinations of the tra-
jectories of the prototypes using an algorithm based on
spatiotemporal correspondences104. The linear combi-
nations are defined by the equation: morphed pattern = 
α

1
walking + α

2
running + α

3
limping + α

4
marching,

with 0 ≤ α
i
≤ 1 and α

1 
+ α

2 
+ α

3 
+ α

4
=1. The weight

vectors (α
1
, α

2
, α

3
, α

4
) parameterize a linear space of

locomotion patterns. Morphs with different weight com-
binations had to be categorized into the four categories
— ‘walking’,‘running’,‘limping’ and ‘marching’. FIGURE 3c

(left panels) shows the experimental results for the first
three categories (for patterns with α

4 
= 0). The colour

indicates the categorization probabilities for seven
human subjects. The position of the pixels in the trian-
gles symbolizes the weights of the linear combination
(α

1
,α

2
, α

3
). The category judgements vary smoothly with

the weights of the prototypes in the linear combination.

this circuitry, active snapshot neurons pre-excite neurons
that encode temporally subsequent configurations,
and inhibit neurons that encode other configurations
(FIG. 2a). The network dynamics are given by the equa-
tions in FIG. 2b. Significant activity can arise only when
the individual snapshot neurons are activated in the
‘correct’ temporal order. In this case, the network stabi-
lizes a propagating activation pulse with high amplitude,
as its feedforward input and the recurrent activation
interact in a synergistic way. If the body configurations
in the stimulus sequence are in the ‘wrong’ temporal
order, the feedforward and recurrent feedback signals
in the snapshot neurons inhibit each other, suppressing
the activation (see REF. 88 for a mathematical analysis 
of the network dynamics). Simulations show that 
in the model, appropriate lateral connections for the
‘correct’ sequences can be learned robustly with a sim-
ple time-dependent hebbian learning rule89,90 from a
small number of stimulus repetitions, consistent with 
psychophysical data91.

Asymmetric lateral connections are one physiologi-
cally plausible implementation of sequence selectivity92.
In area IT, memory and delay activity93 provide evi-
dence for recurrent connectivity. Sequence selectivity
and short-term memory for stationary images might be
mediated by similar recurrent neural mechanisms94.
Alternative mechanisms for sequence selectivity include
the classical REICHARDT DETECTOR71 or equivalent biophysical
mechanisms95.

FIGURE 2c illustrates the behaviour of the proposed
mechanism. The neural activity is strongly reduced if
the order of the input frames is reversed or random-
ized with respect to the training sequence. Otherwise,
the activity increases quickly after stimulus onset 
(in < 200 ms), implying that recognition is possible for
stimuli lasting a fraction of a full walking cycle, consis-
tent with psychophysical experiments42. The simula-
tion is also consistent with the electrophysiological
finding that some STS neurons show selective activity
with a latency of < 200 ms41.

We tested the model with more than 100 video
sequences showing natural actions, including different
forms of human locomotion, dancing and physical exer-
cises. From these video sequences we generated pixel
maps and optic-flow sequences that served as inputs for
the two pathways of the model (see REF. 49 for details).

Biological movement perception
In this section, we review several key experimental
results. The material is organized according to key prop-
erties that characterize the class of neural architectures
represented by the model: selectivity, view dependence
and robustness. Using the model as an interpretative
tool, we also describe data that relate to the roles of the
two pathways in motion recognition.

Selectivity and invariance. Humans can easily distinguish
many action categories6,96. They can also distinguish
between very similar movements, inferring, for instance,
the sex, identity or emotional states of moving peo-
ple97–100. This is the typical trade-off of recognition: it

REICHARDT DETECTOR

A simple model for local motion
detectors, originally studied in
the eye of the beetle and the fly.
The Reichardt detector
multiplies the output signals of
two receptors with different
positions in the visual field, after
delaying or low-pass filtering the
output of one of them. The
output of the detector is
direction-selective.Versions of
the Reichardt detector have been
used to model direction-
selective neurons in the primary
visual cortex.

MOTION MORPHING

An algorithm that continuously
interpolates between different
movement patterns, for
example, walking and running.
Good morphing algorithms
result in interpolations that are
very similar to natural
movements.
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Figure 3 | Testing selectivity and generalization. a | Left: activation of a motion pattern neurons trained with ‘walking’ in both
pathways for stimulation with ‘walking’ and 38 distractor patterns. The panels on the right show, as colour-coded plots, the
activities of 39 motion pattern neurons, each trained with a different natural action, and each tested with all 39 training patterns.
Motion pattern neurons have high pattern selectivity in the form pathway (top panel) and motion pathway (bottom panel). b | The
model can achieve a degree of selectivity sufficient for person identification by gait. Activities of motion pattern neurons that have
been trained with ‘walking’ executed by different actors (M, X, A and C) are shown for both pathways. Numbers indicate
repetitions of the same gait pattern by the same actor. The patterns M1, … , C1 were used for training. Activities of different
motion pattern neurons are indicated by different line styles. c | Generalization fields measured with stimuli generated by motion
morphing between three prototypes (W, walking; R, running; L, limping). Left: classification rates of the morphs for seven subjects
for the categories ‘walking’, ‘running’ and ‘limping’ from a psychophysical experiment. The weight combinations of the prototypes
in the morph are encoded by the pixel positions. The corners of the triangles indicate the pure prototypes. Points on the edges of
the triangle represent morphs between the two adjacent prototypes, and the points in the triangle represent three-pattern morphs.
The distance of the pixel from the corners varies inversely with the contribution of the corresponding prototype. (Examples: O,
morph between walking and running with equal weights (50%); X, morph with equal weights (1/3) of all prototypes; +, 20%
walking, 20% limping and 60% running.) Right: colour-coded plots of the neural activity of the motion pattern neurons (motion
pathway) trained with the three prototypes, and tested with the morphs using the same plotting style. Panel c modified, with
permission, from REF. 101 © (2002) Elsevier Science.
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The same view-dependence has been found in func-
tional imaging experiments110. Biological movement-
selective voxels in the STS were determined using an
appropriate localizer, and their sum activity was deter-
mined for three test stimuli: a point-light walker, an
inverted point-light walker (rotated by 180° in the image
plane) and a scrambled point-light walker. The mea-
sured activity in the STS was much higher for the walker
than for the inverted walker (FIG. 5, inset). However,
the inverted walker induced more activity than the
scrambled walker.

Simulations with our learning-based neural model
give the same result (FIG. 5). In the dotted box, the sum
activity from the motion pattern neurons of the motion
pathway (functionally corresponding to biological
motion-selective neurons in the STS) is compared with
the experimental data. The inverted walker induces
some activity in the model because many of the specific
optic-flow features — such as the opponent movements
of the feet — are invariant with respect to rotations 
by 180°. So, view-dependence of the recognition of
complex movements is quantitatively consistent with
the idea that recognition is based on the matching of
learned two-dimensional patterns, whereas mechanisms
based on three-dimensional internal models111,112 would
imply view-independence.

Robustness. Another key property of biological move-
ment recognition is its reliability and robustness:
predators must be recognized under difficult condi-
tions, such as clutter or bad illumination. The recogni-
tion of point-light walkers illustrates this robustness.
It has sometimes been assumed that recognition of
such impoverished stimuli requires complex computa-
tional mechanisms that determine the link structure of
the walker, and that match the movement trajectories
of the joints113,114. Can recognition of point-light stimuli
be accounted for by the simple neural architecture
shown in FIG. 1?

The simulation results presented in FIG. 4b indicate
that it can. The figure shows the time-course of the
activity of the motion pattern neurons in the form and
motion pathways after training with a normal (full-
body) ‘walking’ stimulus. Activities are shown for a 
normal (full-body) walker, a point-light walker, and
distractors (including other locomotion patterns pre-
sented as point-light stimuli). In both pathways, the
motion pattern neurons become activated for the nor-
mal walker stimulus, signalling that they ‘recognize’ it.
In the motion pathway, the point-light stimulus also
leads to substantial, but lower activation. The same
neuron does not respond to the distractors, showing
that the activity is selective for walking. This result 
is consistent with neurophysiological data from area 
STPa (anterior supeior temporal ploysensory area) of
monkeys115 (FIG. 4c). The motion pathway of the model
generalizes from full-body to point-light stimuli
because the optic-flow field induced by point-light
stimuli is a ‘sparsely sampled’ version of the optic-flow
field generated by the full-body stimulus. No such 
generalization occurs in the form pathway.

This indicates that locomotion patterns are embedded
into a continuous perceptual motion pattern space. This
hypothesis is confirmed by the fact that perceived prop-
erties of the morphs also vary smoothly with the weights,
and can be accounted for by linear combinations of
perceived properties of the prototypes101.

Can such a continuous pattern space of biological
movements be adequately represented by the simple
hierarchical neural architecture presented in FIG. 1? To
address this question, the model was trained with the
same four prototypical locomotion patterns and tested
with the morphs. The right panels in FIG. 3c show the
neural activities of the motion pattern neurons trained
with ‘walking’,‘running’and ‘limping’ (motion pathway),
plotted as for the categorization results. The activities 
of the motion pattern neurons in the model vary
smoothly with the weights of the morph. Even the sizes
of the regions in pattern space associated with the indi-
vidual prototypes in the model coarsely match the 
psychophysical results. The motion pattern ‘walking’
occupies a region in pattern space that is larger than the
other locomotion patterns for the experimental data
and also for the model. As the model treats all training
patterns in the same way, this asymmetry must reflect
an inherent property of the motion pattern space.

So, the proposed neural model reproduces the gener-
alization properties of biological movement recognition.
In other simulations49 it also reproduced the following
partial invariances of biological movement perception,
consistent with experimental data: (1) invariance against
position changes of about half of the width of the
walker105; (2) invariance against scale changes up to 
1.4 OCTAVES36; (3) invariance against changes of total speed
of the walker up to about 2 octaves106. Non-biological
algorithms that are based on alignment with templates or
abstract geometrical constraints would predict complete
rather than partial invariances.

View-dependence. Another property of biological move-
ment recognition is view-dependence. When a movie of
a point-light walker is rotated in the image plane107,108 or
in depth109, recognition performance drops substantially.
Neural correlates of this effect have been found in the
temporo-parieto-occipital area of the macaque monkey8

(FIG. 4a, inset). The response of the neuron shown by the
green diamond is strongly view-dependent, and decays
when the walker rotates in depth.

Are these results consistent with the class of recogni-
tion architectures embodied by the model? We would
expect them to be, as the representations in both model
pathways are based on stored, two-dimensional patterns
(snapshots of body configurations and optic-flow pat-
terns). Simulations (white diamond in the inset) repro-
duce quantitatively the observed view-dependence of the
neural responses for rotation. The bar plot in FIG. 3a

shows the view-dependence for rotation of the stimulus
in the image plane for the response of a motion pattern
neuron that was trained with ‘walking’ for the form path-
way. Consistent with psychophysical data108, the response
is degraded substantially for rotations above 30°. The
model shows similar effects for the motion pathway.

OCTAVE

The interval between any two
frequencies that have a ratio 
of 2 to 1.
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the elbows and the feet is especially harmful for recogni-
tion both in the model and in psychophysical experi-
ments27,116. The effect of the elbows rules out simple
explanations based on the maximum speed of the dots.
A more detailed analysis shows that opponent motion
seems to be crucial for recognition because the elbows
specify a characteristic opponent motion feature.

Point-light stimuli that are even more degraded can
be recognized by the same mechanisms. FIGURE 4d shows
the activities of the motion pattern neurons of the
motion pathway (trained with walking sequences) for
point-light stimuli from which individual dots have been
removed. Depending on the missing joints, the recogni-
tion performance is more or less degraded. Removing
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with permission, from REF. 119 © (2002) Pion.
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architecture that pools neuronal signals using a 
maximum-like operation and effectively filters out sub-
optimal features from the motion clutter43. Humans can
further reduce the effect of clutter by top–down ‘atten-
tional’ selection of the region of the walker. Attentional
mechanisms are not included in the model. FIGURE 4f

shows results from a psychophysical experiment that
demonstrates the influence of attention119. When the
subjects have to perform a secondary task, the tolerance
against masking is strongly reduced.

What are the roles of the two pathways? Our theoretical
framework can be used to address the question of
the roles of the two pathways in motion recognition.
The present data are partially contradictory. Classically,
it has been assumed that point-light walkers are
analysed primarily in the dorsal (motion) pathway27.
This view has been challenged by results on patients
with lesions in this pathway who can recognize point-
light stimuli120,121. This leads to the question of whether
point-light walkers can be recognized by the form
pathway alone.

The form pathway of the model does not respond for
point-light walkers (FIG. 5), supporting the classical view.
This is consistent with the finding from an fMRI experi-
ment that point-light stimuli produce no selective activa-
tion in form-selective areas19. Even when the parameters
of the neural detectors are optimized, generalization to
point-light stimuli cannot be achieved in the form path-
way of the model without losing selectivity for individual
action categories. As the first levels of the form pathway
respond well for point-light stimuli (FIG. 5), the low
responsiveness of the snapshot (output) neurons is not
due to inadequate stimulation of the lower level neurons.

A psychophysical experiment that could argue
against the involvement of the dorsal pathway in the
recognition of point-light displays used point-light
stimuli with strongly degraded local motion informa-
tion30. The lifetime of the dots was limited122, and their
position was randomly reassigned on the skeleton of
the walker in every frame. Detailed simulations
(Casile, A. and M.A.G., unpublished observations) show
that our model achieves a recognition performance
for these stimuli that is comparable with the psycho-
physical results — exploiting the motion pathway.
This is a computational proof that the form pathway
is not strictly required for the recognition of such
degraded stimuli.

In conclusion, the available data interpreted with our
model indicate that both pathways contribute to the
recognition of normal biological movement stimuli,
and that point-light stimuli are analysed predominantly
in the dorsal pathway.

Interpretation of fMRI data. The activity distributions
within the two pathways of the model can be compared
with fMRI data by assigning different brain areas to the
stages of the model. FIGURE 5 shows a possible corre-
spondence that seems compatible with the experimental
literature. Such simulations of fMRI results must be
interpreted with caution because a homology between

Masking experiments provide further evidence for
the robustness of movement recognition. Many moving
background dots can be added to point-light stimuli
without greatly impairing recognition117,118, even when
the background dots are created by ‘scrambling’ point-
light walkers118. Each masking dot has the same move-
ment as one dot of the point-light walker, but a different
average position. Surprisingly, our neural model is robust
against such masking. FIGURE 4e shows the activity of
a motion pattern neuron (in the motion pathway)
trained with a full-body stimulus walking rightwards,
and tested with point-light stimuli walking rightwards
and leftwards, with different numbers of extra, moving,
background dots. Even when there are almost three
times as many noise dots as dots in the point-light
walker, the activation levels for rightwards and leftwards
walking are still significantly different. This implies that a
right–left discrimination would be possible on the basis
of these neural responses in the presence of substantial
motion clutter. This robustness results from a hierarchical
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Figure 5 | Prediction of neural activities for a comparison with functional imaging
experiments. Bars indicate the sum activities averaged over time for a number of simulated
‘areas’ in both pathways. These areas correspond to the hierarchy levels of the model (see text).
Activities are normalized separately for each area (activity for the full-body walking stimulus is set
to one). Test stimuli are: W, walking; R, running (full-body); Wr, walking (full-body, reverse temporal
order); Wj, walking (point-light stimulus); Wji, point-light walker rotated by 180°; Rd, randomly
moving dots (scrambled point-light walker leads to approximately the same results). The dotted
box shows the measured blood oxygenation level-dependent (BOLD) signal change (averaged
over eight subjects) for stimuli Wj, Wji and Rd from a functional magnetic resonance imaging
experiment (data replotted from REF. 110) in comparison with the predicted activity in the motion
pattern neurons of the model. Both activities are view-dependent. IT, inferotemporal cortex; 
KO, kinetic occipital cortex; LOC, lateral occipital complex; MST, medial superior temporal area;
MT, middle temporal area; STS, superior temporal sulcus; V1, primary visual cortex.
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weak differences are expected at earlier levels of the
motion pathway (stimuli W and Wr in FIG. 5). This pre-
diction could be tested in fMRI adaptation experi-
ments124 to distinguish neural populations that encode
forward and backward walking. Still other predictions
can be derived in a similar way from the model and
tested in fMRI experiments.

Discussion
Interpretation of existing data. Our review indicates
that many existing data on biological movement recog-
nition can be accounted for by a model using estab-
lished cortical mechanisms. The model’s key features
are a mainly feedforward architecture and the learning of
biological movements by storing prototypical patterns125.
The proposed model has a number of serious limita-
tions that are discussed in BOX 2. The relationship with
other computational methods for motion recognition is
briefly discussed in BOX 3.

As the form pathway of our model is an extension
of a recently proposed model for the visual recognition
of stationary objects43–45 our theory includes stationary
object recognition as a special case. Many experi-
mental results in this domain could, in principle, be
accounted for by the same neural architecture. The
form pathway of our model extends these previous
models by associating form information over time.
Interestingly, time-dependent learning rules89,90 of
the type that are appropriate for the learning of the
sequence selectivity of the snapshot neurons have also
been discussed in the context of the learning of view-
invariance from image sequences126. The learning of
view-invariance and of biological movement patterns
might therefore share similar neural mechanisms94.

Predictions. The available data, interpreted through
the lens of the model that we used for this review,
motivate several predictions that could be tested in
future experiments.

human and monkey cortex is not yet fully established,
especially for higher cortical areas, and because of the
non-trivial relationship between neural activity and the
blood oxygenation level-dependent (BOLD) signal123.

Experimental results show that activity differences
that distinguish between biological motion and non-
biological motion (scrambled walker) arise only at
higher levels of the dorsal pathway17–23, in particular in
the STS. This behaviour is expected in the framework
of the model (FIG. 5, stimuli Rd versus Wj). Another
prediction is that a walker stimulus played in reverse
temporal order should elicit significantly less activity in
neural populations in the STS that encode forward
walking than a normal walker stimulus, whereas only

HIDDEN MARKOV MODEL

A finite set of states, each of
which is associated with a
probability distribution.
Transitions among the states are
governed by a set of so-called
transition probabilities. In a
given state, an outcome can be
generated according to the
associated probability
distribution. Only the outcome,
not the state, is visible to an
external observer and so the
states are 'hidden'.

Box 2 | Limitations of the model

The neural architecture we have used in this review is only a first-order approximation with the explicit goal of
summarizing, within a consistent quantitative framework, a diverse body of experimental evidence. It provides a
plausibility proof that a relatively simple, biologically plausible architecture can account for many properties of the
recognition of complex movements. We are aware that the model contains a number of strong simplifications. We list
here two of the main shortcomings.

There is experimental evidence for substantial top–down,‘attentional’ effects on the recognition of biological
motion119,128. Likewise, experimental results demonstrate top–down influences in the two pathways38,46,47,129. The model
predicts that attention is not necessarily required for basic recognition of biological motion. Attention is probably
needed, however, when motion recognition is too complex — due to, for instance, visual clutter or ambiguous displays
— to be solved by one feedforward pass in the form or motion pathway. The model does not yet account for the
complexities of every day vision, such as eye movements and attention shifts; it also does not account for the back-
projections between cortical areas. It needs to be extended to incorporate top–down mechanisms and their likely
anatomical substrates.

In the version of the model described here, we also did not implement biologically plausible mechanisms for the
measurement of optical flow from the sequence of real images. There is abundant evidence about the accuracy and
robustness of such low-level motion mechanisms, and several good models have been developed71–76. Future
implementations of the model will integrate a biologically realistic model for the estimation of motion energy on real
video sequences. This will be important for evaluating the limits and accuracy of the proposed architecture for realistic
real-world stimuli.

Box 3 | Other models

Several other computational approaches are related to the one used throughout this
review. We owe many ideas to previous work; Fukushima’s model60 is a precursor of the
‘standard model’ of Riesenhuber and Poggio43–45, which provides the basis of form
recognition in our model. Hierarchical feedforward architectures can be traced back to
Hubel and Wiesel’s original proposal of the simple–complex cell hierarchy59, which was
later revived by Tanaka in the context of object recognition65.

Neural network models for action recognition136–138 in computer vision share many
aspects with the model of this review. Even though their details are usually not
consistent with known properties of the cortex, they provide a computational proof
that neural mechanisms similar to the ones discussed in this paper work for complex
stimuli and real video sequences.

Other algorithms for motion recognition in computer vision (for reviews, see 
REFS 139–141) are based on two- or three-dimensional skeleton models that are fitted
adaptively, or on optimization under general geometrical constraints113,114. These
methods lead to many predictions that are inconsistent with the predictions of our
feedforward architecture (view independence, substantial latency after stimulus onset,
and so on). Learning-based engineering approaches to motion recognition28,139–142 that
are based on active shape models or statistical methods (such as HIDDEN MARKOV MODELS)
work well in practice, and also predict view dependence. Most of them, however, rely on
computational strategies (such as optimization on graphs, dynamic programing) that
do not have a direct interpretation in terms of plausible neural circuitries and
mechanisms.
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subjects see motion along the shortest paths between
the two body configurations — consistent with the
prediction from low-level motion perception. For
large ISIs, subjects perceive movement along biome-
chanically possible paths129, indicating an influence of
high-level motion recognition on local motion esti-
mation. Similar top–down influences have been
reported for depth perception; the depth information
indicated by an articulating point-light walker can
completely override the stereoscopically specified
depth information of the points109. We believe that the
necessary extension of our framework to include all of
these top–down effects will be possible by adding back-
projection to the basic feedforward architecture, which
is the backbone of this review.

Another related question that is not addressed by our
interpretation is the role of higher motor areas, and in
particular of the mirror neuron system (area F5 in mon-
keys and BA44 in humans) in the recognition of biologi-
cal movements. Recent electrophysiological evidence
indicates that such neurons might help in understand-
ing partially occluded actions130. The responses of many
of these neurons, and of some of the action-selective
neurons in the STS, are dependent on the presence of
target objects for the recognized actions. This is another
aspect that we have ignored so far, and that might be
integrated in the proposed architecture because the
form pathway could be exploited for the recognition of
target objects.

Open questions. Our interpretation of the data leaves
several open questions: For instance, how exactly is an
optimal set of snapshots or optic-flow patterns selected?
How is the information from the two pathways com-
bined? Does form or optic flow-based recognition 
dominate for certain stimulus classes, for example for
point-light stimuli as compared to face stimuli? Is there
a common area where both pathways converge into a
common representation for biological movements? 
A combination of anatomical and fMRI studies with the
investigation of patients with localized lesions should
give some insights in this issue. In fact, the effects of
localized lesions in the ventral and the dorsal pathway 
of patients on biological motion recognition can be
interpreted directly in terms of the model48.

Another question is whether the neural circuits for
stationary object recognition and the recognition of
snapshots overlap, or if the neural substrates for the
representation of moving or articulating objects are
localized in separate areas, as indicated by recent fMRI
results19,31. This question could be addressed with elec-
trophysiological recordings while stimulating neurons,
for example in area IT, with body configurations that
are embedded in movement sequences that are com-
patible or incompatible with biological movements.
In psychophysical studies, equivalent priming experi-
ment have yielded results that are compatible with the
theoretical framework of this review131. It would
remain a challenge for future electrophysiological and
modelling work to unravel the neural correlates of
such learning.

For instance, in the dorsal stream, we expect to find
neurons tuned to instantaneous optic-flow field pat-
terns that are characteristic for biological movements. In
general, neural mechanisms that are similar to the ones
that account for the invariant recognition of stationary
objects34,35,43–45 might also be present in the dorsal path-
way for the position- and scale-invariant recognition of
complex optic-flow patterns.

We also expect that arbitrary complex movement
patterns can be learned, as long as they provide suitable
stimulation of the mid- and low-level feature detectors
of the two pathways. This is related to the question of
how far biological movement recognition is ‘special’
and potentially innate4,127. We have collected prelimi-
nary psychophysical evidence that seems to show that it
might not be special91: synthetic action patterns that do
not match any naturally occurring movement can be
learned very quickly in the same way as biological
movements. In addition, their representations seem to
be view dependent.

The two most crucial predictions that follow from
the architecture are the existence of neurons tuned to
learned biological motions and that attention is not
necessary for the basic tasks of motion recognition.
If either of these predictions is experimentally falsified,
so will be our interpretation of the data. The claim is
not that attention does not have any role but rather
that, similar to the recognition of stationary objects40,
attention and top–down influences are not necessary.
This of course does not preclude that such effects might
be necessary for more sophisticated motion recognition
tasks (as illustrated in FIG. 4f).

Data that cannot be readily interpreted. It would be
surprising if all available data were to fit our proposed
interpretation. A number of important experimental
results were not addressed by the interpretation given
in this paper. Some of them cannot be explained with
the proposed neural model. We did not address the rel-
evance of neurons, for example in the STS10, that are
selective for rigidly translated pictures. Such neurons
might be involved in the recognition of translating
bodies.

A large and important class of effects that cannot
be explained in terms of the proposed feedforward
architecture is the influence of attention and top–down
effects. FIGURE 4f shows that the human tolerance to
motion clutter depends on attention119. Other psycho-
physical studies, using a visual search experiment,
confirm that complex motion recognition tasks require
attention128. An influence of attention is also indicated
by an fMRI experiment showing that a biological
motion stimulus did not induce selective activity in
the STS during a low-level direction discrimination
task, whereas the same area was activated when sub-
jects had to discriminate point-light walkers versus
scrambled walkers23. Evidence for strong top–down
influences in motion recognition was obtained in
psychophysical experiments during which two human
body configurations were presented in sequence with
a variable inter-stimulus interval (ISI). For small ISIs,
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Online links

FURTHER INFORMATION
ARL homepage:
www.http://www.uni-tuebingen.de/uni/knv/arl/arl-home.html
Biological Motion Demonstrations:
George Mather: http://www.biols.susx.ac.uk/home/
George_Mather/Motion/index.html
Randolph Blake:
http://www.psy.vanderbilt.edu/faculty/blake/BM/BioMot.html
BioMotionLab:
http://www.bml.psy.ruhr-uni-bochum.de/index.htm
CBCL homepage: http://www.ai.mit.edu/projects/cbcl/web-
homepage/web-homepage.html
MIT Encyclopedia of Cognitive Sciences:
http://cognet.mit.edu/MITECS/
computational vision | object recognition, animal studies |
structure from visual information sources | vision and learning
Access to this interactive links box is free online.




