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Abstract

We introduce a method of feature selection for Support Vector Machines.
The method is based upon finding those features which minimize bounds
on the leave-one-out error. This search can be efficiently performed via
gradient descent. The resulting algorithms are shown to be superior to
some standard feature selection algorithms on both toy data and real-life
problems of face recognition, pedestrian detection and analyzing DNA
microarray data.

1 Introduction

In many supervised learning problems feature selection is important for a variety of rea-
sons: generalization performance, running time requirements, and constraints and interpre-
tational issues imposed by the problem itself.

In classification problems we are given ` data points x i 2 R
n labeled y 2 �1 drawn i.i.d

from a probability distribution P (x; y). We would like to select a subset of features while
preserving or improving the discriminative ability of a classifier. As a brute force search
of all possible features is a combinatorial problem one needs to take into account both the
quality of solution and the computational expense of any given algorithm.

Support vector machines (SVMs) have been extensively used as a classification tool with a
great deal of success from object recognition [5, 11] to classification of cancer morpholo-
gies [10] and a variety of other areas, see e.g [13] . In this article we introduce feature se-
lection algorithms for SVMs. The methods are based on minimizing generalization bounds
via gradient descent and are feasible to compute. This allows several new possibilities:
one can speed up time critical applications (e.g object recognition) and one can perform
feature discovery (e.g cancer diagnosis). We also show how SVMs can perform badly in
the situation of many irrelevant features, a problem which is remedied by using our feature
selection approach.

The article is organized as follows. In section 2 we describe the feature selection problem,
in section 3 we review SVMs and some of their generalization bounds and in section 4 we
introduce the new SVM feature selection method. Section 5 then describes results on toy
and real life data indicating the usefulness of our approach.



2 The Feature Selection problem

The feature selection problem can be addressed in the following two ways: (1) given a
fixed m � n, find the m features that give the smallest expected generalization error; or
(2) given a maximum allowable generalization error , find the smallest m. In both of
these problems the expected generalization error is of course unknown, and thus must be
estimated. In this article we will consider problem (1). Note that choices of m in problem
(1) can usually can be reparameterized as choices of  in problem (2).

Problem (1) is formulated as follows. Given a fixed set of functions y = f(x; �) we wish
to find a preprocessing of the data x 7! (x � �), � 2 f0; 1gn, and the parameters � of the
function f that give the minimum value of

�(�; �) =

Z
V (y; f((x � �); �))dP (x; y) (1)

subject to jj�jj0 = m, where P (x; y) is unknown, x � � = (x1�1; : : : ; xn�n) denotes an
elementwise product, V (�; �) is a loss functional and jj � jj0 is the 0-norm.

In the literature one distinguishes between two types of method to solve this problem: the
so-called filter and wrapper methods [2]. Filter methods are defined as a preprocessing step
to induction that can remove irrelevant attributes before induction occurs, and thus wish to
be valid for any set of functions f(x; �). For example one popular filter method is to use
Pearson correlation coefficients.

The wrapper method, on the other hand, is defined as a search through the space of feature
subsets using the estimated accuracy from an induction algorithm as a measure of goodness
of a particular feature subset. Thus, one approximates �(�; �) by minimizing

�wrap(�; �) = min
�

�alg(�) (2)

subject to � 2 f0; 1gn where �alg is a learning algorithm trained on data preprocessed with
fixed �. Wrapper methods can provide more accurate solutions than filter methods [9],
but in general are more computationally expensive since the induction algorithm � alg must
be evaluated over each feature set (vector �) considered, typically using performance on a
hold out set as a measure of goodness of fit.

In this article we introduce a feature selection algorithm for SVMs that takes advantage
of the performance increase of wrapper methods whilst avoiding their computational com-
plexity. Note, some previous work on feature selection for SVMs does exist, however
results have been limited to linear kernels [3, 7] or linear probabilistic models [8]. Our
approach can be applied to nonlinear problems. In order to describe this algorithm, we first
review the SVM method and some of its properties.

3 Support Vector Learning

Support Vector Machines [13] realize the following idea: they map x 2 R
n into a high

(possibly infinite) dimensional space and construct an optimal hyperplane in this space.
Different mappings x 7! �(x) 2 H construct different SVMs.

The mapping�(�) is performed by a kernel functionK(�; �) which defines an inner product
inH. The decision function given by an SVM is thus:

f(x) = w ��(x) + b =
X
i

�0i yiK(xi;x) + b: (3)

The optimal hyperplane is the one with the maximal distance (inH space) to the closest im-
age �(xi) from the training data (called the maximal margin). This reduces to maximizing



the following optimization problem:

W 2(�) =
X̀
i=1

�i �
1

2

X̀
i;j=1

�i�jyiyjK(xi;xj) (4)

under constraints
P`

i=1 �iyi = 0 and �i � 0; i = 1; :::; `. For the non-separable case
one can quadratically penalize errors with the modified kernel K  K + 1

�
I where I is

the identity matrix and � a constant penalizing the training errors (see [4] for reasons for
this choice).

Suppose that the size of the maximal margin is M and the images �(x1); :::;�(x`) of the
training vectors are within a sphere of radius R. Then the following holds true [13].

Theorem 1 If images of training data of size ` belonging to a sphere of size R are separa-
ble with the corresponding margin M , then the expectation of the error probability has the
bound

EPerr �
1

`
E

�
R2

M2

�
=

1

`
E
�
R2W 2(�0)

	
; (5)

where expectation is taken over sets of training data of size `.

This theorem justifies the idea that the performance depends on the ratio EfR 2=M2g and
not simply on the large margin M , where R is controlled by the mapping function �(�).

Other bounds also exist, in particular Vapnik and Chapelle [4] derived an estimate using
the concept of the span of support vectors.

Theorem 2 Under the assumption that the set of support vectors does not change when
removing the example p

EP `�1
err �

1

`
E
X̀
p=1

	

 
�0p

(K�1
SV )pp

� 1

!
(6)

where 	 is the step function, KSV is the matrix of dot products between support vectors,
p`�1err is the probability of test error for the machine trained on a sample of size ` � 1 and
the expectations are taken over the random choice of the sample.

4 Feature Selection for SVMs

In the problem of feature selection we wish to minimize equation (1) over � and �. The
support vector method attempts to find the function from the set f(x; w; b) = w ��(x) + b
that minimizes generalization error. We first enlarge the set of functions considered by the
algorithm to f(x; w; b; �) = w � �(x � �) + b. Note that the mapping ��(x) = �(x � �)
can be represented by choosing the kernel function K� in equations (3) and (4):

K�(x;y) = K((x � �); (y � �)) = (��(x) � ��(y)) (7)

for any K. Thus for these kernels the bounds in Theorems (1) and (2) still hold. Hence, to
minimize �(�; �) over � and � we minimize the wrapper functional �wrap in equation (2)
where �alg is given by the equations (5) or (6) choosing a fixed value of � implemented by
the kernel (7). Using equation (5) one minimizes over �:

R2W 2(�) = R2(�)W 2(�0; �) (8)

where the radius R for kernel K� can be computed by maximizing (see, e.g [13]):

R2(�) = max
�

X
i

�iK�(xi;xi)�
X
i;j

�i�jK�(xi;xj) (9)



subject to
P

i �i = 1; �i � 0; i = 1; : : : ; `, and W 2(�0; �) is defined by the maximum
of functional (4) using kernel (7). In a similar way, one can minimize the span bound over
� instead of equation (8).

Finding the minimum of R2W 2 over � requires searching over all possible subsets of n
features which is a combinatorial problem. To avoid this problem classical methods of
search include greedily adding or removing features (forward or backward selection) and
hill climbing. All of these methods are expensive to compute if n is large.

As an alternative to these approaches we suggest the following method: approximate the
binary valued vector � 2 f0; 1gn; with a real valued vector � 2 R

n . Then, to find the
optimum value of � one can minimize R2W 2, or some other differentiable criterion, by
gradient descent. As explained in [4] the derivative of our criterion is:

@R2W 2(�)

@�k
= R2(�)

@W 2(�0; �)

@�k
+W 2(�0; �)

@R2(�)

@�k
(10)

@R2(�)

@�k
=

X
i

�0i
@K�(xi;xi)

@�k
�
X
i;j

�0i �
0

j

@K�(xi;xj)

@�k
(11)

@W 2(�0; �)

@�k
= �

X
i;j

�0i�
0

jyiyj
@K�(xi;xj)

@�k
: (12)

We estimate the minimum of �(�; �) by minimizing equation (8) in the space � 2 R
n

using the gradients (10) with the following extra constraint which approximates integer
programming:

R2W 2(�) + �
X
i

(�i)
p (13)

subject to
P

i �i = m; �i � 0; i = 1; : : : ; `.

For large enough � as p ! 0 only m elements of � will be nonzero, approximating opti-
mization problem �(�; �). One can further simplify computations by considering a step-
wise approximation procedure to find m features. To do this one can minimize R 2W 2(�)
with � unconstrained. One then sets the q � n smallest values of � to zero, and repeats
the minimization until only m nonzero elements of � remain. This can mean repeatedly
training a SVM just a few times, which can be fast.

5 Experiments

5.1 Toy data

We compared standard SVMs, our feature selection algorithms and three classical filter
methods to select features followed by SVM training. The three filter methods chose the m
largest features according to: Pearson correlation coefficients, the Fisher criterion score 1,
and the Kolmogorov-Smirnov test2). The Pearson coefficients and Fisher criterion cannot
model nonlinear dependencies.

In the two following artificial datasets our objective was to assess the ability of the algo-
rithm to select a small number of target features in the presence of irrelevant and redundant
features.

1F (r) =
��� �+

r
���

r

�
+
r

2
+�
�

r

2

���, where ��r is the mean value for the r-th feature in the positive and negative

classes and ��r
2

is the standard deviation
2KStst(r) =

p
` sup

�
P̂fX � frg � P̂fX � fr; yr = 1g

�
where fr denotes the r-th feature

from each training example, and P̂ is the corresponding empirical distribution.



Linear problem Six dimensions of 202 were relevant. The probability of y = 1 or�1 was
equal. The first three features fx1; x2; x3g were drawn as xi = yN(i; 1) and the second
three features fx4; x5; x6gwere drawn as xi = N(0; 1)with a probability of 0:7, otherwise
the first three were drawn as xi = N(0; 1) and the second three as xi = yN(i� 3; 1). The
remaining features are noise xi = N(0; 20), i = 7; : : : ; 202.

Nonlinear problem Two dimensions of 52 were relevant. The probability of y = 1 or �1
was equal. The data are drawn from the following: if y = �1 then fx 1; x2g are drawn
from N(�1;�) or N(�2;�) with equal probability, �1 = f� 3

4
;�3g and �2 = f 34 ; 3g and

� = I , if y = 1 then fx1; x2g are drawn again from two normal distributions with equal
probability, with �1 = f3;�3g and �2 = f�3; 3g and the same � as before. The rest of
the features are noise xi = N(0; 20); i = 3; : : : ; 52.

In the linear problem the first six features have redundancy and the rest of the features are
irrelevant. In the nonlinear problem all but the first two features are irrelevant.

We used a linear SVM for the linear problem and a second order polynomial kernel for the
nonlinear problem. For the filter methods and the SVM with feature selection we selected
the 2 best features.

The results are shown in Figure (1) for various training set sizes, taking the average test
error on 500 samples over 30 runs of each training set size. The Fisher score (not shown in
graphs due to space constraints) performed almost identically to correlation coefficients.

In both problems standard SVMs perform poorly: in the linear example using ` = 500
points one obtains a test error of 13% for SVMs, which should be compared to a test error of
3%with ` = 50 using our methods. Our SVM feature selection methods also outperformed
the filter methods, with forward selection being marginally better than gradient descent.
In the nonlinear problem, among the filter methods only the Kolmogorov-Smirnov test
improved performance over standard SVMs.
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Figure 1: A comparison of feature selection methods on (a) a linear problem and (b) a
nonlinear problem both with many irrelevant features. The x-axis is the number of training
points, and the y-axis the test error as a fraction of test points.

5.2 Real-life data

For the following problems we compared minimizing R 2W 2 via gradient descent to the
Fisher criterion score.

Face detection The face detection experiments described in this section are for the system
introduced in [12, 5]. The training set consisted of 2; 429 positive images of frontal faces of



size 19x19 and 13; 229 negative images not containing faces. The test set consisted of 105
positive images and 2; 000; 000 negative images. A wavelet representation of these images
[5] was used, which resulted in 1; 740 coefficients for each image.

Performance of the system using all coefficients, 725 coefficients, and 120 coefficients is
shown in the ROC curve in figure (2a). The best results were achieved using all features,
however R2W 2 outperfomed the Fisher score. In this case feature selection was not useful
for eliminating irrelevant features, but one could obtain a solution with comparable perfor-
mance but reduced complexity, which could be important for time critical applications.

Pedestrian detection The pedestrian detection experiments described in this section are
for the system introduced in [11]. The training set consisted of 924 positive images of
people of size 128x64 and 10; 044 negative images not containing pedestrians. The test set
consisted of 124 positive images and 800; 000 negative images. A wavelet representation
of these images [5, 11] was used, which resulted in 1; 326 coefficients for each image.

Performance of the system using all coefficients and 120 coefficients is shown in the ROC
curve in figure (2b). The results showed the same trends that were observed in the face
recognition problem.
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Figure 2: The solid line is using all features, the solid line with a circle is our feature
selection method (minimizing R2W 2 by gradient descent) and the dotted line is the Fisher
score. (a)The top ROC curves are for 725 features and the bottom one
for 120 features for face detection. (b) ROC curves using all features and 120 features for
pedestrian detection.

Cancer morphology classification For DNA microarray data analysis one needs to deter-
mine the relevant genes in discrimination as well as discriminate accurately. We look at
two leukemia discrimination problems [6, 10] and a colon cancer problem [1] (see also [7]
for a treatment of both of these problems).

The first problem was classifying myeloid and lymphoblastic leukemias based on the ex-
pression of 7129 genes. The training set consists of 38 examples and the test set of 34
examples. Using all genes a linear SVM makes 1 error on the test set. Using 20 genes 0
errors are made for R2W 2 and 3 errors are made using the Fisher score. Using 5 genes
1 error is made for R2W 2 and 5 errors are made for the Fisher score. The method of [6]
performs comparably to the Fisher score.

The second problem was discriminating B versus T cells for lymphoblastic cells [6]. S-
tandard linear SVMs make 1 error for this problem. Using 5 genes 0 errors are made for
R2W 2 and 3 errors are made using the Fisher score.



In the colon cancer problem [1] 62 tissue samples probed by oligonucleotide arrays contain
22 normal and 40 colon cancer tissues that must be discriminated based upon the expression
of 2000 genes. Splitting the data into a training set of 50 and a test set of 12 in 50 separate
trials we obtained a test error of 13% for standard linear SVMs. Taking 15 genes for each
feature selection method we obtained 12.8% for R 2W 2, 17.0% for Pearson correlation
coefficients, 19.3% for the Fisher score and 19.2% for the Kolmogorov-Smirnov test. Our
method is only worse than the best filter method in 8 of the 50 trials.

6 Conclusion

In this article we have introduced a method to perform feature selection for SVMs. This
method is computationally feasible for high dimensional datasets compared to existing
wrapper methods, and experiments on a variety of toy and real datasets show superior
performance to the filter methods tried. This method, amongst other applications, speeds up
SVMs for time critical applications (e.g pedestrian detection), and makes possible feature
discovery (e.g gene discovery). Secondly, in simple experiments we showed that SVMs can
indeed suffer in high dimensional spaces where many features are irrelevant. Our method
provides one way to circumvent this naturally occuring, complex problem.
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