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Abstract

We present a 2-D spectro-temporal Gabor filterbank based on
the 2-D Fast Fourier Transform, and show how it may be used
to analyze localized patches of a spectrogram. We arguéhthat
2-D Gabor filterbank has the capacity to decompose a patch int
its underlying dominant spectro-temporal components,vaad
illustrate the response of our filterbank to different spegloe-
nomena such as harmonicity, formants, vertical onset&tsf
noise, and overlapping simultaneous speakers.
Index Terms: speech analysis, spectro-temporal filterbanks, 2-
D Gabor .

1. Introduction

A typical narrowband magnitude spectrogram of speech dis-
plays several important and well-known phenomena: harcaoni
ity, which is exemplified by the presence of horizontal lines
lated to the pitch of the speaker; low-frequency amplituadelm
ulations, related to the formants of the speaker’'s vocat;tra
vertical onset/offset edges in time, related to plosivensisu

in speech; and noise, related to fricatives, aspirants,oimer
phonemes which generate noise.

All of these speech-related phenomena may be viewed as
different types of spectro-temporal modulations, and drtbke
challenges our auditory system faces in processing speech i
that it must detect, separate, and recognize these mazhgati
a fast and reliable manner.

Recent neurophysiological evidence from a number of ani-
mals [1] [2] indicates that cells in the auditory cortex amefact,
tuned to localized spectro-temporal modulations. Thetspec
temporal receptive fields (STRFs) of these cortical celtsk o
like 2-D spectro-temporal Gabor filters, and an analogy be-
tween these STRFs and a 2-D spectro-temporal Gabor filter-
bank clearly suggests itself.

Motivated by these studies, we present in this work a simple
2-D Gabor filterbank, and use it to analyze localized patdfes
a spectrogram. We show in this work how such a filterbank re-
sponds to the different types of phenomena commonly oogurin
in spectrograms, and further argue that, in principle, & thee
capacity to detect, separate, and recognize these pheaomen

Our 2-D Gabor filterbank is implemented using the 2-D
FFT. We do this for two main reasons: firstly, the 2-D FFT
is fast, since it makes use of the Fast Fourier Transform. Ad-
ditionally, the 2-D FFT organizes its outputs into a 2-D grid
which allows us to easily visualize the filterbank’s resgoas
an image.

In prior work, Kleinschmidt, Gelbart, and colleagues [J] [4
also applied 2-D spectro-temporal Gabors to mel-speargr
However, in their approach, no organizational map of thedab
filter responses was formed. Instead, the 2-D Gabor outputs
were lumped together into a one-dimensional feature vdgtor
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use in recognition experiments. As a consequence, it is hard
to interpret their results and see how the 2-D Gabor filtekban
analyzed the various types of spectrogram phenomena.

Shamma and colleagues [1] [5] have also applied 2-D
spectro-temporal Gabor filterbanks for speech discrironat
and enhancement. In their work the spectro-temporal regzon
were organized into a very large multi-dimensional teraori
representation which is very hard to visualize and intetrpiée
present an alternative filterbank decomposition in our viate
which we believe is simpler and easier to interpret.

Finally, in our own previous work [6], we applied 2-D Ga-
bor analysis using the 2-D FFT to spectrogram patches. How-
ever, in that work we only noted the filterbank’s response to
harmonic phenomena, and failed to document how it responds
to other very important phenomena such as formants and ver-
tical edges. This was partly due to the fact that patch DC val-
ues were not removed prior to performing 2-D Gabor analysis,
which made it difficult to see the response of the filterbank fo
these other phenomena.

In the following sections, we briefly review how our spec-
trograms are constructed (Section 2), and how are patckes ar
selected (Section 3). Then we describe our 2-D Gabor filter-
bank in Sections 4 and 5. Finally, in Section 6 we describe the
response of the filterbank for different types of speechteel

phenomena.
2. 1D STFT

All of the 16KHz utterances we consider are first STFT ana-
lyzed using a 25msec Hamming window with a 1ms frame rate
and a zeropadding factor of 4. This yields 1600 dimensional
STFT frames, which are truncated to 800 bins due to the sym-
metry of the Fourier transform. We limit our analysis in this
paper to the magnitude spectrogram of each utterance, which
we represent notationally & f, t). Additionally, we limit our
analysis to a linear frequency axis, deferring logarithifinés
guency analysis to future work.

3. STFT Patches

At every grid point(z, j) in the spectrogram, we extract a patch
P;;(f,t) of the spectrogram of sizéf and widthdt. The
heightdf and widthdt of the local patch are important anal-
ysis parameters: they must be large enough to be able toveesol
the underlying spectro-temporal components in the patah, b
small enough so that the underlying signal is stationaryt- Su
able parameter ranges are 5-15msec fordhparameter, and
600 — 800H = for thedf parameter. Additional analysis param-
eters are the window hopsizes in timg and frequencyAj.
Typically we setAi to be 3-5ms and\; to 150-350Hz, which
creates overlap between the patches. Additionally, weractbt
the patch DC valu%fth > 5.1 Pii(f,t) fromthe patchP; (£, t)
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Figure 1: Left: Examples of spectro-temporal Gabor filters
Gre(f.t)for F = {1,2,3} and® = {0, &, &', 32'} Right:
The magnitude Fourier transform of each corresponding GGabo

filter on the left.

before any further processing.

4. 2-D Gabor Filterbank Using the 2-D FFT

To perform 2-D Gabor filterbank analysis, we first multiplgkba
patchP;;(f,t) by a 2-D Gaussian windowV ( f, ¢) located at

the patch centeffo, to):
) 7%<(f;£0)2 +<t:};§>2>
e f ¢

2mooy

W(ft) = 1)

Typically, we fix the window bandwidtfo ¢, o+ ) to be one-third
of the patch height and width respectively.

Secondly, a 2-D Fourier transform of si2ég x Ny is
applied to the windowed patch to produce the 2-D spectro-
temporal Gabor filterbank output:
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Rij(Q,w) = W(f, )P (f,t)e

Typical valuesNy and Nw are 512 and 256 respectively.
By exchanging the termid’( f,¢) and P;;(f, ¢), we can re-
write the filterbank output as

Rij(Q,w) ZZPU Fit)Gou(f 1)
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where

Gow(fit) = W, T w0 (g)
Equation 3 above is the equation of a 2-D spectro-temporal Ga
bor filter. R;; (€2, w) may thus be viewed as the projection of a
patch P;;(f,t) on an entire bank of spectro-temporal 2-D Ga-
bor filtersGa,. (f, t).

It is sometimes desirable to re-parameterize the spectro-
temporal Gabor&:o,.,(f,t) in terms of their spectro-temporal
frequency F' and orientation®©. This can be done in a
straight-forward manner through the forward trigononeetri
mapping(F, 0) = (vVO2 + w2, tan™*(Q,w)) and the back-
ward trigonometric mappindQ,w) = (Fcos®, Fsin®).
Shown in Figure 1 on the left are example 2-D Gabors
Gr,e(f,t) for different values of" and®.

Finally, it is well-known [7] that the Fourier transform of
a 2-D Gabor looks like a pair of conjugate Gaussian “peaks”,
whose distance from each other is proportionar't@nd whose
orientation is proportional t®. Shown in Figure 1 on the right
are example 2-D Fourier transforms of the Gabor filters on the
left.

5. Patch 2-D Gabor Analysis& Synthesis

Shown in Figure 2 on the left is a representative patch from
a narrowband magnitude spectrogram. The magnitude of the
2-D spectro-temporal respons&;;(Q2,w)| for that patch is

Q
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Figure 2: Left: example spectrogram patéhy(f,¢). Mid-
dle: magnitude spectro-temporal respofiBg (2, w)|. Right:
reconstructed patcﬁ’ij( f,t) using the top 5 spectro-temporal
components.

plotted in the middle. In general, 2-D spectro-temporal Ga-
bor responses of spectrogram patches exhibit multiple €kaus
“peaks” that come in conjugate pairs. Each peak pair corre-
sponds to a different spectro-temporal modulation coethin
the patch. In effect, the 2-D Gabor filterbank decomposes a
patch into its spectro-temporal components. “Peaks” vaithe
amplitude in the spectro-temporal resporf?g ({2, w) corre-
spond to dominant spectro-temporal modulations in thehpatc

In order to examine what spectro-temporal component each
of these peak pairs corresponds to, a simple peak-detection
strategy is used to obtain a s€tof candidate peak locations
(Qpeak, wpeak) @and values (amplitudd ., and phas®,,.x)
from the spectro-temporal responBeg; (2, w). We match the
conjugate peak locations i@ with each other into pairs and
throw out any peak candidates which do not have matching con-
jugate peaks.

For each of these matched peak pairs, we can estimate a
spectro-temporal orientatio®; and frequencyF;, associated
with that spectro-temporal componénas

O = tan~? (7227)%:) (4)
pea
and > >
AQpeak Awpeak
Y (%) (32
Fy = 5 (5)

where AQpeqr and Awyeqr refers to differences between the
conjugate pair location coordinates. The amplitudle and
phase®,, of the spectro-temporal component are just equal to
the amplituded e, and phas@,,.. of the peaks irk;; (2, w)
itself.

The spectro-temporal componentk  associated
with a certain peak pair may thus be synthesized as
Are % Gp, 0, (f,t). If there arek components in a
patch then the patch may be approximately reconstructed as

1J(f7 = <2Ake I® kGFk Ok(f7 )> (6)

Shown in Figure 2 at right is the reconstuction of the patch on
the left using the top 5 spectro-temporal components fraen th
2-D spectro-temporal Gabor response in the middle.

6. Phenomenological Analysisof 2-D Gabor
Responses

We now examine more carefully how different types of
commonly-occurring phenomena in spectrograms are ardilyze
by the 2-D Gabor transform. The phenomena we will examine
are harmonicity; low-frequency amplitude modulationsatred

to formants; vertical onset/offset phenomena relateddsipts;
phonetic noise; the effect of adding white background noise
and finally, the effect of overlapping simultaneous speskbr
each of the following sections, we look at each phenomenon
individually.
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Figure 3: First column: example harmonic patchgs(f,t).
Second column: magnitude spectro-temporal responses
|Ri; (2, w)| for each patch. Third column: spectro-temporal
components corresponding to largest (black “X”) and next
largest (green “X”) peak pairs. Fourth column: reconsedct
patcheslf’ij (f,t) using the top 2 spectro-temporal components.

6.1. Harmonicity

Shown in Figure 3 on the far left are two different representa
tive harmonic patches from a spectrogram. In the second col-
umn, we plot the magnitude of the spectro-temporal response
|R;; (2, w)| for each patch. In the third column we plot the re-
synthesized spectro-temporal components associatedtlth
top two peak pairs in the spectro-temporal response. Thte firs
spectro-temporal component corresponds to peak pair héth t
largest amplitude (marked with a black “X”"), while the sedon
spectro-temporal component corresponds to peak pair héth t
second largest amplitude (marked with a green “X”). Finally
the last column we plot the reconstructiég}-(ﬂ t) of the input
patch using only the top two components (as in Equation 6).
Clearly we can see that the spectro-temporal components
associated with the largest peaks are in fact the harmonie co
ponents. In general, harmonicity in a patch emerges as d set o
dominant conjugate peaks spaced with a distance propaltion
to spectro-temporal frequendyand with an angle proportional
to the spectro-temporal orientatién This fact was noticed and
employed for the purposes of carrier estimation in [6] andpi
tracking in [8].

6.2. Formants

Further inspection of the spectro-temporal magnitudemesgs
|Ri; (2, w)|in Figure 3 reveals that the patches contain a second
component exemplified by the presence of two smaller peaks
located closer to the origin in the spectro-temporal respsn
Synthesizing the spectro-temporal component associaittd w
these secondary peaks reveals that they correspond tovthe lo
frequency amplitude modulations associated with formants

In general, low-frequency amplitude modulations in a patch
emerge as a set of conjugate peaks that are spaced closer to th
origin in the spectro-temporal response. As with the haimon
peaks, the distance and angle of the peaks correspond#ydirec
to the frequency and orientation of the modulation.

It is worthwhile to note here that 2-D Gabor filterbank anal-
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Figure 4: First column: example plosive patchBs(f,t).
Second column: magnitude spectro-temporal responses
|Ri; (2, w)| for each patch. Third column: spectro-temporal
components corresponding to largest (black “X”) and next
largest (green “X”) peak pairs. Fourth column: reconsedct
patcheslf’ij (f,t) using the top 2 spectro-temporal components.

ysis is capable o$eparatingharmonic from formant spectro-
temporal components. Such a property could be used by our
auditory system to endow us with the ability to recognizeespe

in a manner that is invariant to the speaker uttering it: auali-a
tory system could have evolved to focus its attention maomly

the low-frequency components (which carry the phonetiorinf
mation), ignoring the higher-frequency harmonic compadsen
related to the speaker.

On the other hand, the response to both harmonic and for-
mant components is simultaneouglsesevedn the Gabor fil-
terbank’s outputs. Such a property could be used by our audi-
tory system to enable us to recognize speech in a noisetrobus
manner: whenever distinct harmonic peaks emerge in the filte
bank’s response, the auditory system can identify thaoresgp
as a distinct signature of speech, and it can then attene iath
formation contained in the low-frequency peaks relatedte f
mants.

6.3. Vertical/Plosive Edges

Shown in Figure 4 on the far left are two different represtvea
patches which contain plosive phenomena. These phenomena
are characterized by rapid onset/offset of voicing or nasel

look like vertical edges in a patch.

Inspection of the spectro-temporal magnitude responses
|R:; (2, w)| for these plosive patches reveals the presence of
two dominant peaks which aterizontalin their angular ori-
entation, in contrast to theertical angular orientation of both
harmonic and formant spectro-temporal modulations shown i
Figure 3. Synthesizing the spectro-temporal componewcass
ated with these peaks reveals that they do in fact corresjocend
vertical amplitude modulation associated with the plosigige.

We note that vertical plosive onset/offset edgasnotbe
detected unless a filterbank is used whose filters hdfrsita
extent in time Consequently, it is quite heartening that, within
the same 2-D Gabor filterbank framework, all three types of
harmonic, formant, and plosive phenomena can be separately
detected.



Figure 5: First column: example noisy patety (f, ¢). Second
column: magnitude spectro-temporal responges (2, w)|.
Third column: spectro-temporal components correspontiing
largest (black “X"), second largest (green “X”), and thieddest
(magenta “X") peak pairs. Fourth column: reconstructeaipat
Pij (f,t) using the top 3 spectro-temporal components.

Figure 6: PatchP;;(f,t) with increasing levels of white
noise added, along with the corresponding magnitude spectr
temporal responsiR;; (€2, w)| for each patch. (Top left: 10 dB
SNR, Top right: 5 dB SNR, Bottom left: -5 dB SNR, Bottom
right: -10 dB SNR).

6.4. Phonetic Noise

Shown in Figure 5 on the left is a representative noisy patch ¢
responding to the phonensh. As may be seen, the spectro-
temporal response of a noisy patch contains multiple peaks a
multiple orientations and frequencies. In general we haued

that this is a signature propery of noisy patches, in contmas
harmonic patches or plosive patches which usually contaén o
or at most two dominant spectro-temporal components. For ex
ample, we need at least three spectro-temporal comporents i
order to begin to faithfully reconstruct the patch in Figbre

6.5. Background Noise

In Figure 6 we investigate the effect of adding white noisa to
sound. Shown on the left of each figure pair is the same idantic
patch but with increasing amounts of white noise adde@in

the right hand side of each figure pair are the corresponding

spectro-temporal responses. As may be seen, even though the [4]

SNR ratios are quite low, the spectro-temporal responsas sh
very clear harmonic peaks up to about -5 SNR ratios. At -10
SNR, the spectro-temporal response begins to lose the datmin
harmonic peaks.

Even though white noise adds a large number of uncorre-
lated peaks to the spectro-temporal response, peaks poncks
ing to the relevant harmonic, formant, or plosive phenomena
may still be detectable. This is because the output of any one
spectro-temporal Gabor filter is obtained iogegrating infor-
mation from the entire 2-D patc¢hvhich allows the 2-D spectro-

1white noise added in the time domain before the STFT is recom-
puted.

—

Figure 7: Patche®;;(f,t) and associated magnitude spectro-
temporal responsiR;; (2, w)| for speaker A (left), speaker B
(middle), and speaker A+B (right).
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temporal filterbank to be more robust to noise than purely 1-D
spectral counterparts.

6.6. Overlapping Speakers

Finally, we examine the effect of simultaneous speakerden t
spectro-temporal response. Shown in the left of Figure 7 is a
patch from speaker A and its associated spectro-temporal re
sponse. In the middle is the patch and response from speaker
B (with same spectrogram coordinatgs;j) as the patch from
speaker A). Finally, in the right of the figure is the patch and
response from a spectrogram of speaker A and B. As may be
seen, the spectro-temporal response of the simultaneea&-sp
ers contains identifiable peaks from both speakérstrategy
suggests itself for speaker separation which is based am ide
tifying the peaks in the combined spectro-temporal respons
and assigning those peaks across frequency and time ta eithe
speaker.

7. Discussion and Conclusion

In this work, we showed that the 2-D spectro-temporal Gabor
responseR;; (f, t) contains many useful and important proper-
ties. In particular, we showed that 1) harmonicity emerges a
a pair of very dominant vertical peaks; 2) formants emerge as
a pair of vertical peaks spaced closer to the origin; 3) péosi
onsets/offsets emerge as a pair of horizontal peaks; amigg n
emerges as a large number of peaks at multiple orietaticths an
frequencies.

While this paper merely presented initial observations, fu
ture work will consist of more systematic exploration of trse
of 2-D Gabor spectro-temporal responses for applicatiooh s
as speech recognition, de-noising, separation, and ssiathe
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