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Abstract

We describe how to create with machine learning tech-
niques a generative, videorealistic, speech animation mod-
ule. A human subject is first recorded using a videocamera
as he/she utters a pre-determined speech corpus. After pro-
cessing the corpus automatically, a visual speech module is
learned from the data that is capable of synthesizing the hu-
man subject’s mouth uttering entirely novel utterances that
were not recorded in the original video. The synthesized ut-
terance is re-composited onto a background sequence which
contains natural head and eye movement. The final output is
videorealistic in the sense that it looks like a video camera
recording of the subject. At run time, the input to the system
can be either real audio sequences or synthetic audio pro-
duced by a text-to-speech system, as long as they have been
phonetically aligned.

1. Overview

Is it possible to record a human subject with a video cam-
era, process the recorded data automatically, and then re-
animate that subject uttering entirely novel utterances which
were not included in the original corpus? In this work, we
present such a technique for achieving videorealistic speech
animation. 1.

We choose to focus our efforts in this work on the issues
related to the synthesis of novel video, and not on novel au-
dio synthesis. Thus, novel audio needs to be provided as in-
put to our system. This audio can be either real human audio
(from the same subject or a different subject), or synthetic
audio produced by a text-to-speech system. All that is re-
quired by our system is that the audio be phonetically tran-
scribed and aligned.In the case of synthetic audio from TTS
systems, this phonetic alignment is readily available from
the TTS system itself [6]. In the case of real audio, publicly
available phonetic alignment systems [22] may be used.

1 A longer version of this paper appeared in [16]

Figure 1. Some of the synthetic facial configura-
tions output by our system.

Our visual speech processing system is composed of two
modules: The first module is the multidimensional mor-
phable model (MMM), which is capable of morphing be-
tween a small set of prototype mouth images to synthe-
size new, previously unseen mouth configurations. The sec-
ond component is a trajectory synthesis module, which uses
regularization [19] [36] to synthesize smooth trajectories
in MMM space for any specified utterance. The parame-
ters of the trajectory synthesis module are trained automati-
cally from the recorded corpus using gradient descent learn-
ing.

Application scenarios for videorealistic speech anima-
tion include: user-interface agents for desktops, TVs, or
cell-phones; digital actors in movies; virtual avatars in cha-
trooms; very low bitrate coding schemes (such as MPEG4);
and studies of visual speech production and perception.
The recorded subjects can be regular people, celebrities, ex-
presidents, or infamous terrorists.

In the following section, we begin by first reviewing the



relevant prior work and motivating our approach.

2. Background

2.1. Facial Modeling and Speech Animation

One approach to model facial geometry is to use 3D
methods. Parke [28] was one of the earliest to adopt such an
approach by creating a polygonal facial model. To increase
the visual realism of the underlying facial model, the facial
geometry is frequently scanned in using Cyberware laser
scanners. Additionally, a texture-map of the face extracted
by the Cyberware scanner may be mapped onto the three-
dimensional geometry [25]. Guenter [20] demonstrated re-
cent attempts at obtaining 3D face geometry from multi-
ple photographs using photogrammetric techniques. Pighin
et al. [30] captured face geometry and textures by fitting a
generic face model to a number of photographs. Blanz and
Vetter [8] demonstrated how a large database of Cyberware
scans may be morphed to obtain face geometry from a sin-
gle photograph.

An alternative to the 3D modeling approach is to model
the talking face using image-based techniques, where the
talking facial model is constructed using a collection of ex-
ample images captured of the human subject. Bregler, Cov-
ell, and Slaney [10] describe an image-based facial anima-
tion system called Video Rewrite in which the recorded
video is broken into a set of smaller audiovisual basis units.
Each one of these short sequences is a triphone segment,
and a large database with all the acquired triphones is built.
A new audiovisual sentence is constructed by concatenat-
ing the appropriate triphone sequences from the database
together.

The approach used in this work presents another ap-
proach to solving the video synthesis problem which has
the capacity to generate novel video from a small number
of examples as well as the capacity to model how the mouth
moves. This approach is based on the use of a multidimen-
sional morphable model (MMM), which is capable of mult-
dimensional morphing between various lip images to syn-
thesize new, previously unseen lip configurations. MMM’s
have already been introduced in other works [31] [3] [13]
[23] [24] [8] [7]. In this work, we develop an MMM vari-
ant and show its utility for facial animation.

In terms of speech animation, techniques have tradition-
ally included both keyframing methods [28] [29] [12] [26]
and physics-based methods [37] [25], and have been ex-
tended more recently to include machine learning methods
[9] [27] [11].

In this work, we present a trajectory synthesis mod-
ule to address the issues of synthesizing mouth trajectories
with correct motion, smoothness, dynamics, and coarticu-
lation effects. This module maps from an input stream of
phonemes (with their respective frame durations) to a tra-
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Figure 2. An overview of our videorealistic
speech animation system.

jectory of MMM shape-appearance parameters. This trajec-
tory is then fed into the MMM to synthesize the final visual
stream that represents the talking face.

3. System Overview

An overview of our system is shown in Figure 2. After
recording the corpus (Section 4), analysis is performed to
produce the final visual speech module. Analysis itself con-
sists of three sub-steps: First, the corpus is pre-processed
(Section 5) to align the audio and normalize the images to
remove head movement. Next, the MMM is created from
the images in the corpus (Section 6.2). Finally, the cor-
pus sequences are analyzed to produce the phonetic mod-
els used by the trajectory synthesis module (Sections 6.4
and 7.2).

Given a novel audio stream that is phonetically aligned,
synthesis proceeds in three steps: First, the trajectory syn-
thesis module is used to synthesize the trajectory in MMM
space using the trained phonetic models (Section 7). Sec-
ondly, the MMM is used to synthesize the novel visual
stream from the trajectory parameters (Section 6.3). Fi-
nally, the post-processing stage composites the novel mouth
movement onto a background sequence containing natural
eye and head movements (Section 8).

4. Corpus

An audiovisual corpus of a human subject uttering var-
ious utterances was recorded. Recording was performed at
a TV studio against a blue “chroma-key” background with
a standard Sony analog TV camera. The data was subse-
quently digitized at a 29.97 fps NTSC frame rate with an
image resolution of 640 by 480 and an audio resolution of
44.1KHz. The final sequences were stored as Quicktime se-
quences compressed using a Sorenson coder. The recorded
corpus lasts for 15 minutes, and is composed of approxi-



mately 30000 frames. The recorded corpus consisted of 152
1-syllable and 156 2-syllable words, In addition, the corpus
included 105 short sentences.

5. Pre-Processing

The recorded corpus data needs to be pre-processed in
several ways before it may be processed effectively for re-
animation.

Firstly, the audio needs to be phonetically aligned in or-
der to be able to associate a phoneme for each image in the
corpus. We perform audio alignment on all the recorded se-
quences using the CMU Sphinx system [22], which is pub-
licly available.

Secondly, each image in the corpus needs to be normal-
ized to remove any head movement. Since the head motion
is small, we make the simplifying assumption that it can be
approximated as the perspective motion of a plane lying on
the surface of the face, and remove it by perspective warp-
ing the current frame with respect to a reference frame [16].

6. Multidimensional Morphable Models
6.1. Definition

An MMM consists of a set of prototype images
����������
	��

that represent the various lip textures that will be encapsu-
lated by the MMM. One image is designated arbitrarily to
be the reference image

���
.

Additionally, the MMM consists of a set of prototype
flows

���������
	��
that represent the correspondences between

the reference image
���

and the other prototype images in the
MMM. The correspondence from the reference image to it-
self,

 �
, is designated to be an empty, zero, flow.

In this work, we choose to represent the correspondence
maps using relative displacement vectors:

 ��������� ��� �� ������� � �� ����� ���
(1)

A pixel in image
���

at position
� �!��"���#$�

corresponds to a
pixel in image

�%�
at position

��"'& � �� ��"(�)#*�+��#,& � �� ��"���#$���
.

In this work, we make use of optical flow [21] [1] [2] al-
gorithms to estimate this motion. This motion is captured
as a two-dimensional array of displacement vectors, in the
same exact format shown in Equation 1.

6.2. Building an MMM

An MMM must be constructed automatically from a
recorded corpus of

���.-/��0-)	��
images. The two main tasks

involved are to choose the image prototypes
�����1����
	��

, and
to compute the correspondence

��2�3����
	��
between them. We

discuss the steps to do this briefly below. Note that the fol-
lowing operations are performed on the entire face region,
although they need only be performed on the region around
the mouth.

Figure 3. 24 of the 46 image prototypes included
in the MMM. The reference image is the top left
frame.

6.2.1. PCA For the purpose of more efficient process-
ing, principal component analysis (PCA) is first performed
on all the images of the recorded video corpus. PCA al-
lows each image in the video corpus to be represented us-
ing a set of low-dimensional parameters. This set of low-
dimensional parameters may thus be easily loaded into
memory and processed efficiently in the subsequent cluster-
ing and Dijkstra steps. We adopt an on-line PCA method,
termed EM-PCA [32] which allows us to perform PCA on
the images in the corpus without loading them all into mem-
ory.

Performing EM-PCA produces a set of 4 624x472 prin-
cipal components and a matrix 5 of eigenvalues. In this
work, 4 �76�8 PCA bases are retained. The images in the
video corpus are subsequently projected on the principal
components, and each image

� -
is represented with a 4 -

dimensional parameter vector 9 - .
6.2.2. K-means Clustering Selection of the proto-
type images is performed using k-means clustering [5].
The algorithm is applied directly on the

� 9 -:��0-)	�� low di-
mensional PCA parameters, producing ; cluster centers.
Typically the cluster centers extracted by k-means clus-
tering do not coincide with actual image datapoints, so
the nearest images in the dataset to the computed clus-



ter centers are chosen to be the final image prototypes��� � ����
	��
for use in our MMM. The distance metric used be-

tween two points 9�� and 9�� is the Mahalanobis distance
metric:

� � 9�� � 9�� � � � 9���� 9�� ��� 5 �
� � 9��	� 9�� � (2)

where 5 is the afore-mentioned matrix of eigenvalues ex-
tracted by the EM-PCA procedure.

We selected ; ��
�
image prototypes in this work,

which are partly shown in Figure 3. The top left image is
the reference image

� �
. There is nothing magical about our

choice of 46 prototypes, which is in keeping with the typical
number of visemes other researchers have used [33] [18]. It
should be noted, however, that the 46 prototypes have no ex-
plicit relationship to visemes, and instead form a simple ba-
sis set of image textures.

6.2.3. Dijkstra After the ; ��
��
image prototypes are

chosen, the next step in building an MMM is to compute
correspondence between the reference image

���
and all the

other prototypes. Although it is in principle possible to com-
pute direct optical flow between the images, we have found
that direct application of optical flow is not capable of es-
timating good correspondence when the underlying lip dis-
placements between images are greater than 5 pixels.

To compute good correspondence between prototypes,
we construct the corpus graph representation of the corpus:
A corpus graph is an S-by-S sparse adjacency graph ma-
trix in which each frame in the corpus is represented as a
node in a graph connected to � nearest images. The � near-
est images are chosen using the k-nearest neighbors algo-
rithm [5], and the distance metric used is the Mahalanobis
distance in Equation 2 applied to the PCA parameters 9 . We
set � �����

in this work.
After the corpus graph is computed, the Dijkstra shortest

path algorithm [14] [35] is used to compute the shortest path
between the reference example

� �
and the other chosen im-

age prototypes
� �

. Each shortest path produced by the Dijk-
stra algorithm is a list of images from the corpus that cumu-
latively represent the shortest deformation path from

���
to
�%�

as measured by the Mahalanobis distance. Concatenated op-
tical flow from

���
to
�%�

is then computed along the interme-
diate images produced by the Dijkstra algorithm (see [16]
for details on concatenated optical flow). Since there are 46
images, ; ��
�

correspondences
�� � ����
	��

are computed
in this fashion from the reference image

� �
to the other im-

age prototypes
��� � � ��
	��

.

6.3. Synthesis

The goal of synthesis is to map from the multidimen-
sional parameter space

��� �����
to an image which lies at

that position in MMM space. Since there are 46 correspon-
dences,

�
is a 46-dimensional parameter vector that con-

Figure 4. Top: Original images from our corpus.
Bottom: Corresponding synthetic images gener-
ated by our system.

trols mouth shape. Similarly, since there are 46 image pro-
totypes,

�
is a 46-dimensional parameter vector that con-

trols mouth texture. The total dimensionality of
��� �����

is
92.

Synthesis first proceeds by synthesizing a new corre-
spondence

�� � ����� using linear combination of the proto-
type flows

 �
:

 � � ������ � � � 	�� � � ��)� (3)

The subscript 1 in Equation 3 above is used to emphasize
that
 � � ������

originates from the reference image
� �

, since
all the prototype flows are taken with

� �
as reference.

Forward warping may be used to push the pixels of the
reference image

� �
along the synthesized correspondence

vector
 � � ������

. Notationally, we denote the forward warp-
ing operation as an operator ! � � �  � that operates on an
image

�
and a correspondence map


(see Appendix B in

[16] for details on forward warping).
However, a single forward warp will not utilize the image

texture from all the examples. In order to take into account
all image texture, a correspondence re-orientation proce-
dure first described in [4] is adopted that re-orients the syn-
thesized correspondence vector

 � � ������
so that it originates

from each of the other example images
� �

:

 � � ������ � ! �  �
�
������ �  ���  � � � (4)

Re-orientation is performed for all examples in the example
set.

The third step in synthesis is to warp the prototype im-
ages

� �
along the re-oriented flows

 � � ������
to generate a set

of ; warped image textures
�#"%$'&)(+*-,�

:

� "%$'&)(+*-,� � ! � � ���  �
�
������ � �

(5)

The fourth and final step is to blend the warped images� "%$.&)(+*-,�
using the

�
parameters to yield the final morphed

image:



� ��� &-( � � � �
	�� � � � "%$.&)(+*-,� �
(6)

Combining Equations 3 through 6 together, our MMM syn-
thesis may be written as follows:

� ��� &-( � � ��������� � � 	 � � � ! � �+� � ! �
� -)	�� � -��- � �� �  � ��� �

(7)
Empirically we have found that the MMM synthesis

technique is capable of surprisingly realistic re-synthesis of
lips, teeth, and tongue. However, the blending of multiple
images in the MMM for synthesis tends to blur out some
of the finer details in the teeth and tongue (See Appendix
C in [16] for a discussion of synthesis blur). Shown in Fig-
ure 4 are some of the synthetic images produced by our sys-
tem, along with their real counterparts for comparison.

6.4. Analysis

The goal of analysis is to project the entire recorded cor-
pus
��� - �:0-)	��

onto the constructed MMM, and produce a
time series of

� � - ��� - � 0-)	��
parameters that represent trajec-

tories of the original mouth motion in MMM space.
In addition to the image

� ����� *�� to be analyzed, our anal-
ysis method requires that the correspondence

 ����� *�� from
the reference image

� �
in the MMM to the novel image� ���	� *�� be computed beforehand. In our case, most of the

novel imagery to be analyzed will be from the recorded
video corpus itself, so we employ the Dijkstra approach dis-
cussed in Section 6.2.3 to compute good quality correspon-
dences between the reference image

���
and
� ����� *�� .

Given a novel image
� ���	� *�� and its associated correspon-

dence
 ����� *�� , the first step of the analysis algorithm is to es-

timate the parameters
�

which minimize


� ���	� *�� �
� �
	�� � �  � 
:� (8)

This is solved using the pseudo-inverse:

� � �  �  � � �  �  ���	� *��
(9)

where C above is a matrix containing all the prototype cor-
respondences

�: � ����
	��
.

After the parameters
�

are estimated, ; image warps are
synthesized in the same manner as described in Section 6.3
using flow-reorientation and warping:

� "%$'&-(� � ! � � ��� ! �
� �
	�� ���  � �  �)�  � ��� � (10)

The final step in analysis is to estimate the values of
�

as
the values which minimize


+� ���	� *�� ��� ��
	�� � ��� "%$'&)(� 
�����������������
� ��� � �"!$#&%�' � ��
	�� � ��� 6 �

(11)
The non-negativity constraint above on the

� �
parameters

ensures that pixel values are not negated. The normaliza-
tion constraint ensures that the

� �
parameters are computed

in a normalized manner for each frame, which prevents
brightness flickering during synthesis. Equation 11, which
involves the minimization of a quadratic cost function sub-
ject to constraints, is solved using quadratic programming
methods. In this work, we use the Matlab function quad-
prog.

Each utterance in the corpus is analyzed with respect to
the 92-dimensional MMM created in Section 6.2, yielding
a set of ( � � ��� � ��� � � parameters for each utterance. Anal-
ysis takes on the order of 15 seconds per frame on a circa
1998 450 MHz Pentium II machine. Shown in Figure 5 in
solid blue are example analyzed trajectories for

���*)
and

�+)-,
computed for the word tabloid.

7. Trajectory Synthesis

7.1. Overview

The goal of trajectory synthesis is to map from an input
phone stream

�/. � � to a trajectory
# � � ��� � ��� � � of param-

eters in MMM space. After the parameters are synthesized,
Equation 7 from Section 6.3 is used to create the final vi-
sual stream that represents the talking face.

The phone stream is a stream of phonemes
�/. � � repre-

senting that phonetic transcription of the utterance. For ex-
ample, the word one may be represented by a phone
stream

�/. � � ��0� 	�� = ( 1 w 1 , 1 w 1 , 1 w 1 , 1 w 1 , 1 uh 1 ,
1 uh 1 , 1 uh 1 , 1 uh 1 , 1 uh 1 , 1 uh 1 , 1 n 1 , 1 n 1 ,
1 n 1 , 1 n 1 , 1 n 1 ). Each element in the phone stream rep-
resents one image frame. We define 2 to be the length of
the entire utterance in frames.

Since the audio is aligned, it is possible to examine all
the flow and texture parameters for any particular phoneme.
Evaluation of the analyzed parameters from the corpus re-
veals that parameters representing the same phoneme tend
to cluster in MMM space. We represent each phoneme 9
mathematically as a multidimensional Gaussian with mean3 ( and diagonal covariance 5 ( . Separate means and covari-
ances are estimated for the flow and texture parameters.

The trajectory synthesis problem is framed mathemat-
ically as a regularization problem [19] [36]. The goal is
to synthesize a trajectory

#
which minimizes an objective

function 4 consisting of a target term and a smoothness
term:



4 � ��# � 3 � � 4 � 5 � � 4 ��# � 3 �� ��� �
� $'&��.* � � *)& � &��2# �
	 ��	 #� ��� �

� ���	����� � * �-�
�

(12)

The desired trajectory
#

is a vertical concatenation of the
individual

# � � � � terms at each time step (or
# � � � � ,

since we treat flow and texture parameters separately):

# �
�� # �...# �

���� (13)

The target term consists of the relevant means 3 and co-
variances 5 constructed from the phone stream:

3 �
�� 3����...3����

� �� � 5 � �� 5 ��� . . . 5 ���
� �� (14)

The matrix 4 is a duration-weighting matrix which
emphasizes the shorter phonemes and de-emphasizes the
longer ones, so that the objective function is not heavily
skewed by the phonemes of longer duration:

4 �
��
� � �������� � � ��� �! �

. . . � � � �"� ��
� �������
(15)

One possible smoothness term consists of the first order
difference operator:

	 �
��
� � �

� � �
. . .

� � �

� ���� (16)

Higher orders of smoothness are formed by repeatedly mul-
tiplying

	
with itself: second order

	 � 	 � 	#	
, third or-

der
	 � 	 � 	 � 	#	#	

, and so on.
Finally, the regularizer

�
determines the trade-off be-

tween both terms.
Taking the derivative of Equation 12 and minimizing

yields the following equation for synthesis:

� 4 � 5 � � 4 &$� 	 ��	 �3# � 4 � 5 � � 4 3 � (17)

Given known means 3 , covariances 5 , and regularizer�
, synthesis is simply a matter of plugging them into Equa-

tion 17 and solving for
#

using Gaussian elimination. This
is done separately for the flow and the texture parameters. In
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Figure 5. Top: The analyzed trajectory for %�&(' (in
solid blue), compared with the synthesized trajec-
tory for %�&(' before training (in green dots) and
after training (in red crosses). Bottom: Same as
above, but the trajectory is for ) '+* . Both trajecto-
ries are from the word tabloid.

our experiments a regularizer of degree four yielding multi-
variate additive septic splines [36] gave satisfactory results
(see next subsection).

7.2. Training

The means 3 ( and covariances 5 ( for each phone 9 are
initialized directly from the data using sample means and
covariances. However, the sample estimates tend to average
out the mouth movement so that it looks under-articulated.
As a consequence, there is a need to adjust the means and
variances to better reflect the training data.

Gradient descent learning [5] is employed to adjust the
mean and covariances. First, the Euclidean error metric is
chosen to represent the error between the original utterance
( and the synthetic utterance

#
:

4 � � ( � #*� � � ( � #$� � (18)

The parameters
� 3 ( � 5 ( � need to be changed to minimize

this objective function 4 . The chain rule may be used to de-
rive the relationship between E and the parameters:, 4, 3 � � - , 4, #/. � - , #, 3 �0. (19), 4,21 � - � - , 4, #/. � - , #,21 � -3. � (20)

Gradient descent is performed by changing the previous
values of the parameters according to the computed gradi-



Figure 6. The background compositing process:
Top: A background sequence with natural head
and eye movement. Middle: A sequence generated
from our system, with the desired mouth move-
ment and appropriate masking. Bottom: The fi-
nal composited sequence with the desired mouth
movement, but with the natural head and eye
movements of the background sequence. Head
and eye masks are used to guide the composit-
ing process.

ent: 3 � *)" � 3 � � , ���
, 4, 3 (21)

5 � *)" � 5 � � , ���
, 4, 5 � (22)

Cross-validation sessions were performed to evaluate the
appropriate value of

�
and the correct level of smoothness	

to use. The learning rate � was set to 0.00001 for all tri-
als, and 10 iterations performed. The results showed that
the optimal smoothness operator is fourth order and the op-
timal regularizer is

� �!6 ����
. Figure 5 depicts synthesized

trajectories for the
����)

and
�")	,

parameters before training
(in green dots) and after training (in red crosses) for these
optimal values of

	
and

�
.

8. Post-Processing

Due to the head and eye normalization that was per-
formed during the pre-processing stage, the final anima-
tions generated by our system exhibit movement only in
the mouth region. This leads to an unnerving “zombie”-
like quality to the final animations. As in [15] [10], we ad-
dress this issue by compositing the synthesized mouth onto
a background sequence which contains natural head and eye
movement.

9. Computational Issues

To use our system, an animator first provides phoneti-
cally annotated audio. The annotation may be done auto-

matically [22], semi-automatically using a text transcript
[22], or manually [34].

Trajectory synthesis is performed by Equation 17 using
the trained phonetic models. This is done separately for the
flow and the texture parameters. After the parameters are
synthesized, Equation 7 from Section 6.3 is used to create
the visual stream with the desired mouth movement. MMM
synthesis takes on the order of about 7 seconds per frame
for an image resolution of 624x472. The background com-
positing process adds on a few extra seconds of processing
time. All times are computed on a 450 MHz Pentium II.

10. Evaluation

We have synthesized numerous examples using our sys-
tem, spanning the entire range of 1-syllable words,
2-syllable words, short sentences, and long sentences. In
addition, we have synthesized songs and foreign speech ex-
amples. Oue results may be viewed on the web at

http://cerboli.mit.edu:8000/

research/mary101/mary101.html.

We evaluated our results by performing three different
visual “Turing tests” to see whether human subjects can
distinguish between real sequences and synthetic ones. Per-
formance in all three experiments was close tochance level
(50%) and not significantly different from it. Finally, we
also evaluated our system by performing intelligibility tests
in which subjects were asked to lip read a set of natural
and synthetic utterances. Details on all experiments are de-
scribed in [17].
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