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DNA microarrays make possible the rapid and comprehensive assessment of the transcriptional activity of a cell, and as such
have proven valuable in assessing the molecular contributors to biological processes and in the classification of human can-
cers. The major challenge in using this technology is the analysis of its massive data output, which requires computational
means for interpretation and a heightened need for quality data.The optimal analysis requires an accounting and control of
the many sources of variance within the system, an understanding of the limitations of the statistical approaches, and the abil-
ity to make sense of the results through intelligent database interrogation.

Expression array technology
Expression genomics is an approach that examines gene
expression in a comprehensive and massively parallel fashion.
The core technology in expression genomics is microarrays,
whereby thousands of DNA probes are immobilized on a solid
surface and hybridized against fluorophore-labeled cDNA or
cRNA targets from template RNA sources. The two major plat-
forms for microarrays are spotted arrays, where the probes are
mechanically deposited onto modified glass slides by contact or
ink jet printing, and in situ arrays, where oligo probes are syn-
thesized in silico (e.g., via photolithographic synthesis as in
Affymetrix GeneChip arrays [Affymetrix, Santa Clara, CA]). For
a comparative review of the two platforms, we refer the reader to
Harrington et al. (2000).

The power of expression genomics is that the simultaneous
assessment of gene expression in such a massively parallel
manner and across numerous cellular conditions uncovers
higher-order organization in gene transcriptional behavior.
Often, the more genes and biological conditions studied, the
more obvious this underlying organization becomes. Thus,
complexity is essential, and the analysis of this complex array
data becomes the most critical issue in expression genomics.
The power of microarray data is not in viewing the technology
as a collection of individual “Northern” blots, but in generating a
composite image of the expression profile of a cell.

In cancer research, the most intriguing use of expression
arrays has been in the molecular classification of tumors. Many
studies have now shown the ability of this approach to identify
tumor subclasses that standard clinical indicators or
histopathology could not (Alizadeh et al., 2000; Sorlie et al.,
2001; Bhattacharjee et al., 2001). Taken together, these studies
have highlighted several key points.

First, cell lineage has a primary role in determining the
expression profile. Individual lineages may originate from a spe-
cific cell type such as germinal center B cells, “activated” B cells
(Alizadeh et al., 2000), or basal or luminal breast epithelial cells
(Sorlie et al., 2001). The importance of cellular lineage is also
seen in the greater similarity of array profiles between a primary

and metastatic tumor from the same patient rather than
between profiles of primary cancers from different patients
(Perou et al., 2000).

Second, array profiles may define distinct prognostic sub-
groups, and frequently these subgroups are associated with cell
lineages. For example, diffuse large B cell lymphomas with an
activated B cell-like profile have a worse prognosis than those
with a germinal center B cell-like profile (Alizadeh et al., 2000).
van’t Veer et al. (2002) identified 70 genes from over 20,000
genetic elements that can collectively separate node negative
breast cancer patients into distinctly good prognostic and poor
prognostic groups. Singh et al. (2002) found five genes whose
expression characteristics alone could discern prostate cancer
patients with excellent versus poor survival. Based on the
known function of these genes, no obvious biological explana-
tion linked most of these specific transcripts to tumor behavior
and prognosis. Thus, though the composite expression of many
genes define profiles associated with clinical outcomes, it is not
clear whether any are causal or merely surrogate markers.

Third, there is primacy of pathways over the effects of indi-
vidual genes. Transgenic animal models suggest that genes
involved in the same pathway generate tumors with similar
expression profiles and are distinct from profiles of tumors aris-
ing from other transgene pathways (Desai et al., 2002). This,
again, means that the information from the composite expres-
sion of a group of genes is likely to be more important than the
behavior of any one particular genetic element.

Fourth, though pathways ultimately define the profiles, key
oncogenetic events inducing downstream pathway changes are
associated with distinguishable expression profiles. The
approaches used to analyze arrays have also placed specific
pathways in a hierarchy of importance for determining a tumor
profile. For example, estrogen receptor (ER) status appears to
define breast cancers into two major classes (Sorlie et al., 2001;
van’t Veer, 2002). Subclasses can be discerned only within the
major ER groups by other parameters such as p53 status and the
presence of HER-2 overexpression (Sorlie et al., 2001).
Moreover, in the analysis of pediatric acute lymphoblastic
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leukemias, specific chromosomal abnormalities such as E2A-
PBX1, BCR-ABL, TEL-AML1, MLL rearrangement, and hyper-
diploidy are associated with signature profiles (Yeoh et al., 2002).

The ability to identify tumor classes with clinical importance
through an association with the expression behavior of a popu-
lation of genes has made expression profiling an attractive
approach in the study of malignant transformation and for the
discovery of tumor markers. Like any new technology, the con-
fusing and sometimes contradictory data that often emerges is
due to an incomplete understanding of the limits of the technol-
ogy and the optimal ways to analyze its unique data sets.
Herein, we focus on the capabilities and limitations of the
expression array technologies and suggest “best practices” for
optimal study design and analysis. Formulation of the best tech-
nical and operational approaches is necessary to render this
platform useful in clinical practice since, in its current form,
expression arrays cannot be considered sufficiently reliable
upon which to make clinical decisions.

Study design and scientific objectives
The focus on the array technology hardware has often over-
shadowed the importance of quality experimental design in
array experiments. Declarations that functional genomics is not
hypothesis testing or that arrays merely cast a wide net for
“interesting” genes are misguided. Occasionally, arrays are
used to define pathways to uncover the function of a gene of
unknown activity and of unknown significance. This approach,
while always generating data, usually leads to inconclusive and
often irrelevant results. The complexity and diversity of the data
output from array experiments are such that any narrow conclu-
sion can be divined from random noise. Unless the conclusions
are analytically or biochemically validated, or the experimental
conditions well defined, the veracity of the results remain sus-
pect. For experiments in expression genomics to be effective,
the design must be anchored to defined phenotypic end points
(for example, growth versus no growth or long-term survival ver-
sus short-term survival) or to a defined hypothesis such as
“large cell lymphomas are likely to be subclassified into prog-
nostically important molecular classes.”

The design of an array experiment often begins with the
selection of the most relevant reference RNA. This is especially
important in the spotted array format. Often, in time course
experiments, all time points are compared to an untreated refer-
ence at time zero or one that parallels each time point. This is
much more preferable to time series studies where each time
point is compared to the subsequent time point. For clinical
samples such as tumors, some have suggested using the
matched patient’s normal tissue as reference. This approach
can be problematic because, often, sufficient quantities of a
tumor’s normal counterpart are not available or identifiable,
such as the normal tissue for a head and neck cancer.
Moreover, the normal tissues may actually be commonly abnor-
mal, as in the case of hepatocellular carcinoma where the adja-
cent liver tissues are usually cirrhotic. At the Genome Institute of
Singapore, we consistently use a specific universal reference
RNA comprising a calibrated mix of a number of defined cell
lines for experiments in human cells (Universal Human
Reference RNA, Stratagene, La Jolla, CA). In this manner, most
spots give a signal in the reference channel, thus avoiding hav-
ing a small, near zero denominator in calculating ratios. More
importantly, all experiments over time and across operators can
be compared since the reference RNA is the same. This con-

cept of a “perpetual array platform” allows for the collective
experimental history of a laboratory to be used to uncover new
hypotheses. Other microarray experimental designs involving
multifactorial comparisons have also been proposed and may
be useful in unique experimental circumstances; however, for
the majority of array experiments, the simplest study design
provides the most clearly interpretable results (Yang and
Speed, 2002; Dobbin and Simon, 2002).

The main objectives of most microarray studies can be
broadly classified into one of the following categories: class
comparison, class discovery, or class prediction. For the class
comparison aim, the interest is in establishing whether expres-
sion profiles differ between classes, and if they do, what genes
are differentially expressed between the classes. Examples
include establishing that expression profiles differ between two
histologic subtypes of cancer and identifying genes whose
expression levels are altered by exposure of cells in vitro to an
experimental drug. For class discovery, the goal is to elucidate
subclusters or structure among specimens or among genes.
Examples include discovery of previously unrecognized sub-
types of lymphoma and identification of coregulated genes. The
goal of class prediction is to predict a phenotype using informa-
tion from a gene expression profile. Examples include predicting
which patients are likely to experience severe drug toxicity ver-
sus who will have none and predicting which breast cancer
patients will relapse within two years of diagnosis versus who
will remain disease free. For excellent discussions of sample
size and other design considerations relevant to the various
types of study aims, the reader is referred to Simon et al. (2002)
and Yang and Speed (2002).

Higher-order analysis: Analytic approaches appropriate
for the scientific objectives
When class discovery is the goal, unsupervised analysis strate-
gies such as clustering methods can be used. For class com-
parison or class prediction, supervised analysis methods that
use known class information (such as tumor versus normal des-
ignations) are most effective.

Prior to conducting any of these analyses, data from low
signal intensity or inconsistent/nonreciprocating spots and from
genes exhibiting little variation across the collection of arrays
should be excluded. The rationale is that low-intensity spots are
unstable, and genes that exhibit little variation across arrays do
not contribute useful information for distinguishing among spec-
imens. Eliminating genes showing little to no variation is an
important “filtering” step in the data analysis that is sometimes
overlooked. Typically, genes exhibiting high calculated variance
across all samples (above a specified threshold) are included in
the final analysis. By removing such "noise" from the system,
the results are cleaner but without biasing the outcome.

Unsupervised clustering methods seek structure inherent
in the data and assume no a priori classifications of the genes
and samples (see Figures 1A and 1B).Their goal is to separate
specimens or genes into subgroups of related expression pat-
terns in an unbiased manner. One of the most widely used
clustering approaches for microarray data is hierarchical
agglomerative clustering (Eisen et al., 1998). In this procedure,
each individual (specimen or gene) starts as its own cluster,
and then pairs of clusters that are most similar in some sense
are iteratively merged to form new clusters. There are nonhier-
archical clustering alternatives as well. Many of these require
that the number of clusters be predefined by the user.The clas-
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sical K-means algorithm is a partitional clustering that is often
used (Tibshirani et al., 1999), and self-organizing maps
(SOMs) have also been profitably applied (Tamayo et al.,
1999). Loosely speaking, self-organizing maps promote the
choice of clusters whose centers can be rearranged on a two-
dimensional grid without distorting the distances between them
too much. This allows for a graphical presentation of the results
that can yield useful insights. It is important to keep in mind that
clustering algorithms will always find clusters, even in data that
is random noise. Here, again, a clear understanding of the
study objective and careful study design are important for opti-
mal analysis. McShane and colleagues (McShane et al., 2002)
discuss this issue and suggest some methods for assessing
the reproducibility of clustering patterns found in analyses of
microarray data.

For class comparison (a method for supervised analysis),
one usually identifies genes that are differentially expressed
between known classes of specimens using univariate analy-
ses on each gene, such as Wilcoxon tests. In doing so, it is
important to take into account the problem of multiple testing in
order to avoid generating many false leads (sometimes referred
to as “false discoveries”). For example, if 10,000 genes were
tested, we would expect 500 genes to be falsely declared as
significantly different between the classes at p < 0.05, even if
there were no real differences. Various multiple comparisons
adjustment procedures have been applied to microarray data
for purposes of controlling the number or proportion of false dis-
coveries (see Tusher et al., 2001; Efron et al., 2001). One simple
method to control for false discoveries is to conduct each uni-
variate test using a small significance level. If each univariate
test is conducted at a significance level α and there are N tests,
the expected number of false discoveries will be α × N or less.
Thus, if 10,000 tests are conducted, each at a specified proba-

bility level of 0.001, on average the num-
ber of false discoveries will be 10 or less.
If the analysis of these 10,000 genes
reveals 100 that achieve this statistical
level of significance, then one can be
confident that true classification markers
are within the 100 selected genes.

Sometimes it is desired to develop a
multivariate predictor of tumor classifica-
tion (Figure 1C). For example, there may
be a number of gene markers whose col-

lective behavior may predict with substantial accuracy whether
a tumor will respond to a particular chemotherapeutic agent.
Here, the tissues are already divided into classes based on a
putative “gold standard” assessment of response, and the ques-
tion is how to best mathematically combine the gene expression
measurements into a single function that can delineate those
classes. Several analytical strategies have been successfully
used in array studies, such as Fischer linear discriminant analy-
sis (Dudoit et al., 2002), nearest centroid (Tibshirani et al.,
2002), and the support vector machine (SVM) (Furey et al.,
2000; Mukherjee et al., 1999).These approaches are especially
important in the potential clinical application of microarrays
where the power of the technology is in its ability to use some-
what imprecise composite patterns of expression rather than
exact thresholds of individual markers.

Leave-one-out crossvalidation is a popular method for esti-
mating the accuracy of the output class prediction rule: each of
the samples is individually removed from the data set, the
remaining data is used to train a class prediction rule, and the
resulting rule is applied to predict the class of the held-out sam-
ple.The accuracy of the class prediction rule is assessed by the
number of true or false assignments in the samples that have
been held out. For a discussion of the pros and cons of this and
other methods, including k-fold crossvalidation and bootstrap-
ping, see Efron and Tibshirani (1997) and Dudoit et al. (2002).

A common experimental question is whether statistically
significant differences between the expression profiles of sam-
ples from different classes are seen. This can be assessed by
estimating whether the accuracy achieved by a class prediction
rule is better than would be obtained by chance. In assessing
single markers, a standard t test would suffice. For the analysis
of a multitude of markers as are generated from microarray
experiments, this is assessed by randomly permuting the class

Figure 1. Three approaches to the analysis of
high-dimensional expression data 

A: Hierarchical clustering identifies cases in
which groups of genes (or samples) with similar
expression profiles contain smaller groups
whose members are even more similar to one
another. B: Self-organizing maps promote the
choice of clusters that bear a special relation-
ship to one another; shown is how the clusters
can be laid out on a two-dimensional grid, with
similar clusters near to each other. C: In class
prediction, an algorithm takes as input a collec-
tion of expression profiles paired with preas-
signed class designations and outputs a rule for
predicting class designations. The leave-one-
out approach generates a class prediction rule
using all but one sample, then subjects that
�held-out� sample to the rule. By holding out
each of the samples in turn, a measure of accu-
racy is obtained.
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designations and measuring whether this degrades the predic-
tive accuracy. The confidence in the putative association
between expression profiles and their class designations can be
estimated by the frequency of false positives (see Radmacher
et al., 2002).

Self-fulfilling oracles
An insidious problem that has been seen in array analysis is that
of circular reasoning. The most obvious example is when a t test
is used to identify genes that distinguish between two defined
classes (such as tumor versus normal). This gene list is then
used in hierarchical clustering of the tissues. As expected, the
cluster dendrogram recapitulates the distinction between normal
and tumor tissues. It is then claimed that the clustering result val-
idates the t test gene list. This assertion of validation is not justi-
fied because one must validate on an independent test set.

Biases like this have been discussed previously (Furey et

al., 2000; Ambroise and McLachlan, 2002) and are illustrated in
the following simulation experiment. We constructed an artificial
data set with 100 samples, each with 100,000 random expres-
sion values and randomly assigned class designations.We then
selected the 20 genes with the smallest p values determined by
the Wilcoxon rank sum test. Next, we evaluated the accuracy of
using these 20 genes in class prediction by leave-one-out
crossvalidation using only the 20 selected genes. The resultant
estimated accuracy was 88%, despite the fact that the true
accuracy must be only 50% (because the data are derived from
random assignments). The proper approach would be to rese-
lect the top 20 genes each time a sample is held out in the
leave-one-out cycle. Otherwise, information about the held-out
sample is inappropriately “leaked” to the process that generates
the class prediction rule. Alternatively, the 20 most significant
genes could have been derived from one data set and their
association with class membership validated on a second set of

Table 1. Sources of technical variance in microarray data and proposed solutions

Domain Problem Solution

Printing/Processing-dependent Missing spots Guard against particulates that might clog pins, i.e., keep dust levels low, 
sonicate pins; facilitate pin wicking with 0.5× SSC in wash buffer and sufficient 
probe volumes; carefully calibrate for consistent pin-slide contact and 
faithful sample loading

Merging spots Reduce acceleration at which pins exit probe samples; reduce velocity of pin-
surface contact; use slide �blot pads� and multiple tapping to remove excess 
probe; clean pins in EtOH after use

Probe carry-over Experiment with pin cleaning procedure to ensure adequate cleaning and
contamination drying—check on regular basis; avoid reduction of vacuum pressure by keeping 

dry station and vacuum pump free of particulates and salt build-up 

Variability in probe volume Ensure adaquate pin cleaning and drying; tightly seal print plates when not in use 
and concentration to prevent evaporation of probe buffer; routinely dry down probes and resuspend 

in appropriate volume 

Variability in slide For both commercially acquired and in-house prepared slides, routinely check the 
surface-DNA affinity capacity of processed arrays to retain probe via flourescent staining and 

quantitation of DNA spots 

Comet tailing (i.e., probe During array postprocessing, i.e., where the unbound glass is blocked to prevent 
smearing) and background background, dunk slides vigorously in blocking solution for at least 20 s

when first wetted to disperse �loose� DNA; perform this step in low humidity as spots
should also be completely dry prior to entering blocking solution

Hybing/Scanning-dependent Damage to array surface Take care to prevent contact of coverslip, or other solid matter, with the array 
surface; minimize bubble formation when adding target to the array

Dye bias Minimize exposure of fluorophores to bright light; for target labeling, try 
amino-allyl-coupling protocol instead of direct incorporation; use dye swapping 
strategy to detect such events

Signal gradients and Be consistent with hybridization volumes, conditions, and technique; avoid 
high background evaporation of target by humidifying hyb chamber with an appropriate volume of 

water or SSC and by rapidly transferring slide from warm hyb chamber (after 
hybridization) to first wash buffer (otherwise instantaneous evaporation can occur)

Signal saturation This occurs when the scanner PMTs or laser power is set too high to detect signal in 
the linear range; this results in an underestimation of expression levels and ratio 
compression of differentially expressed genes. This can be avoided on some 
scanners by pixel coloring that indicates saturation has occurred

Sample-dependent Tissue heterogeneity When resecting tissues, prepare all samples in a consistent way such that minimal 
(but equal) amounts of associated nontarget tissues are cocollected

RNA degradation Take precautions to minimize RNAse activity during RNA purification, run RNA on 
gel to check (by size) for degradation; avoid multiple freeze-thaw cycles

Limited RNA quantity Purify total RNA instead of mRNA (for increased polyA RNA yield); use validated 
linear RNA (or cDNA) amplification

Probe-dependent Probe-target cross Avoid cDNA probe sequences that span conserved coding regions; select oligos 
hybridization that have high hamming distance or are otherwise scored for high specificity

Poor hybridization Select cDNA or oligo sequences with similar annealing temperatures and with
characteristics minimal predicted secondary structure
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samples. It is very important that the test data used to evaluate
the system plays no role in training the classifier. The paper by
Ambroise and McLachlan (2002) contains additional examples,
some quite dramatic, using natural data.

Validating findings
Once microarray results have been analyzed, an orderly valida-
tion of the molecular and biological findings is necessary. Such
a validation scheme should include some or all of the following
elements. (1) When a particular gene is crucial to a hypothesis,
the behavior of its transcript should be validated by an alterna-
tive RNA quantitation method. (e.g., Northern Blot, quantitative
RT-PCR, etc.). (2) The pathway identified should be confirmed
using biochemical means. (3) The importance of that pathway to
the cellular phenotype should be confirmed by perturbing the
pathway using chemical or molecular modifiers if available.
(4) In the case of classification of tumors, validation may be per-
formed on a new set of tumors or in assessing common features
with other studies.

One way to focus on the critical genes involved in a specific
pathway is to use clean genetic models such as knockout ani-
mals or cell lines. In this approach, a pathway can be inferred if
the elements are operative in the wild-type cells, absent or
reduced in the knockout condition, and recovered in the knockin
or reconstituted cells (Aprelikova et al., 2001). We have found
that the analysis of several knockout lines or of a knockout with
a reconstituted cell line or animal is very helpful in narrowing the
affected genes to only those most likely to be important.
Interestingly, gene dose effects are not linear in that overex-
pression of a cDNA, such as an oncogene, does not always
activate the same genes reduced after gene disruption. This

suggests that inferences about function
from overexpressing a gene may be dif-
ferent from those after gene attenuation
(Guo et al., 2000).

For tumor classification, a variant of
the leave-one-out crossvalidation is com-
monly employed where for any tumor
set, two-thirds are randomly selected
and used to generate the class determi-
nation functions that are then tested 
on the remaining “held-out” one-third 
of the samples. This is done many times
to arrive at an estimate of the perfor-
mance of the classification algorithm.
Alternatively, testing a gene list of classi-
fiers from one study on the data of anoth-

er can provide an assessment of the robustness of the classi-
fiers (Shipp et al., 2002).

Database integration
The ability to assign biological importance to any array-based
result is dependent on the quality and ease of access to infor-
mation from a variety of databases.There are two types of data-
bases that are relevant to the use of microarray technology as
above. The first concerns the microarray measurements and
experimental attributes and involves data management. The
second concerns the linking of genes represented on the arrays
with functional information that facilitates biological interpreta-
tion of the results. We note that, optimally, the two types of data-
bases should be linked.
Managing expression data and experimental parameters
An effective array database tracks large-scale microarray data
in a precise fashion and captures certain experimental attribut-
es that may affect the expression ratio measurements. The
essential components of such a database are as follows: first,
the coordinates of the array probes and their corresponding sig-
nal measurements must be correctly mapped to a relational
table that uniquely identifies each probe. Next, each set of array
measurements must be linked to the biological or clinical infor-
mation associated with the RNA samples, and this must be
done in accordance to a strict controlled vocabulary. Finally, it
must capture the experimental procedure and the protocols of
sample collection and processing. This database infrastructure
facilitates the extraction of information necessary for analysis of
multiple data sets across a wide range of biological conditions.
In addition to the database, uniform and effective experimental
procedures are also important. A properly organized tissue

Figure 2. Array manufacturing artifacts that con-
tribute to error

Arrays were printed from left to right, top to bot-
tom. A: Example of probe carryover contamina-
tion. Note the three diagonal lines (top left to
bottom right) of yellow spots (each is identical
GAPDH probe). In the lower third of the image,
probe carryover resulting from reduced vacu-
um pressure during tip cleaning is seen in spots
adjacent to those comprising the diagonals by
virtue of a diminishing yellow characteristic not
observed in B. B: Same array location as in A,
but from a print batch not affected by carry-
over contamination. C and D: Examples of miss-
ing spots (C, second row, eight consecutive
missing spots) and merging spots (D, lower half)
owing to print pin clogging.
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repository, a strictly adhered to sample collection protocol, a
uniform microarray platform, and consistent experimental pro-
cedures are needed to maximize the use and reuse of experi-
ment results. At the Genome Institute of Singapore, we conform
to this principle of a “perpetual array platform” whereby all
microarray experiments performed use the same comprehen-
sive microarrays, protocols, and pooled reference RNA, render-
ing the composite data crossreferable. Thus, over time, we will
amass a transcriptional database ideally suited for hypothesis
generation.
Gene features on microarrays: Annotation of meaning
through database mining
Critical to the interpretation of array data is an understanding of
the function and biological characteristics of the gene elements
represented on a microarray. Database-integrated information
regarding gene functions, domains, interactions, and pathways
is useful in deciphering signaling components of biological sys-
tems. The detailed functional annotation of these genes
requires interrogating a large number of disparate databases,
many available in the public domain. For a comprehensive list of
databases that are useful for microarray design and analysis,
see Supplemental Table S1 at http://www.cancercell.org/cgi/
content/full/2/5/353/DC1.

Importance of quality assurance: Garbage in, garbage out
The caveat “garbage in, garbage out” is an apt concern in
microarray experiments. It is intuitive that if the quality of the
arrays, probes, or samples is poor, the results and conclusions
will be suspect. The challenge with microarrays lies in the diffi-
culty in identifying these errors and their sources in such a mas-
sively parallel and multiprocess platform (see Table 1 for com-
mon sources of technical variance). Thus, a primary, but often
neglected, consideration in array analysis is attention to quality
control measures in the production and hybridization of arrays.

For spotted arrays, we separate the issues of quality assur-
ance into two categories: manufacturing quality of the arrays

and RNA quality. Though cDNAs have been the major source of
probes, over time we and others discovered several troubling
facets: high clone set error rates stemming from clone cross-
contamination, mislabeling, missing inserts, and phage conta-
mination were persistent problems, particularly in large, com-
mercially available clone sets (Knight, 2001). Moreover, we
encountered situations where crosshybridization limited the
specificity of the probes, i.e., a cDNA probe would detect the
summed expression of a number of gene paralogs (Aprelikova
et al., 2001). As a result of such problems, many laboratories
have begun migrating from cDNA to oligonucleotide arrays. The
advantages of oligonucleotide probes are many and include
greater specificity, uniformity of hybridization, minimization of
contamination, and improved quality control measures; howev-
er, standard parameters for maximal sensitivity (e.g., oligo
length, spotting concentration, attachment chemistry, etc.) are
not yet well defined. We also find that oligo-based probes pro-
vide greater array design flexibility in that the availability of spe-
cific cDNA clones is not a limiting factor. Lastly, microarray
printing artifacts that give rise to batch-to-batch and lab-to-lab
variation are a common problem and should be considered
when planning experiments (see Figure 2, Table 1). To mini-
mize the disruption of experimental continuity, microarrays
from the same print batch should be used for a given study
when possible. Though this problem is more acute for “in-
house” spotted arrays, similar caution should be used for all
commercially available arrays. (For a comprehensive review of
the microarray printing process and discussion of the technical
challenges, see Eisen and Brown, 1999.) Similarly, it appears
important to use consistent methods for RNA isolation and
generation of labeled cDNA target (Wildsmith et al., 2001).

Perhaps one of the most important determinants of microar-
ray data quality is the quality and quantity of the input RNA.
Degraded, contaminated, or diluted RNA samples give rise to
ineffective target with poor signal and reduced dynamic range. In
these cases, attempts to salvage the data by statistical manipu-

Figure 3. High variance in expression ratio measurements correlates with low signal intensities and higher ratios

A: Shown is the distribution of the CVs for replicate expression ratio measurements (vertical axis) for 9000 cDNA probes as a function of mean spot signal
intensity (horizontal axis; using the average of Cy3 and Cy5 signals) where CV and mean intensity are derived from eight replicate array experiments. The
red line shows the trend of the average CV at different intensity ranges. B: Using the same data set described in A, the median CV of ratio measurements
(vertical axis) for probes belonging to six mean fold difference (ratio) bins (horizontal axis; bins are: 1.0 ≤ 1.8, >1.8 ≤ 2.6, >2.6 ≤ 3.4, >3.4 ≤ 4.2, >4.2 ≤ 5.0, >5.0 ≤
10) is plotted at three mean signal intensity ranges (<1,000, >1,000 ≤ 5,000, >5,000 ≤ 52,590 signal units). The CV standard error is shown for each ratio bin at
each signal intensity range.
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lations are rarely helpful and the experiment should be discard-
ed. When RNA is limiting and RNA integrity cannot be physically
assessed, RNA integrity can be estimated by array performance.
We have found that the standard deviation of the log signal inten-
sity in the target (e.g., tumor) channel is a good indicator of the
normal diversity of gene expression seen in biological systems.
When the standard deviation is less than 0.25–0.30, the RNA is
generally unreliable (Assersohn et al., 2002).

In cases where it is known that the RNA quantity is insuffi-
cient for a single hybridization, an effective solution is linear
RNA amplification. Most amplification approaches to date are
derivatives of the T7-based method developed by the J.
Eberwine laboratory (Van Gelder et al., 1990). Whereas 20 µg
or more of total RNA is generally needed for a traditional
microarray hybridization (or 5–10 µg for Affymetrix arrays), only
0.1–1 µg is required as starting material with amplification.
Here, the linearity of the amplification reaction is of critical
importance, for biases in the reaction that skew relative tran-
script ratios, even by a small amount, would render expression
measurements unreliable. Independent evaluations have large-
ly found the Eberwine amplification technique to be reliable for

microarray use (Wang et al., 2000; Hu et al., 2002). In more in-
depth comparisons of amplified versus unamplified RNA, we
have detected only subtle biasing of the array readout from
these amplification approaches. We found an overall compres-
sion of ratios such that the magnitude but not the direction of the
differences is reduced. The net effect is that if standard cutoffs
for outlier detection are used, the number of putative outliers
may decrease by 8%–15% (Wang et al., 2000). Importantly,
however, the variance of expression measurements does not
appear to be increased following amplification. When taken
together, RNA amplification does not appear to alter the struc-
ture of class distinctions and only marginally reduces the outlier
determination for the purposes of individual gene discovery. It is
worthwhile to recognize that the standard Affymetrix array plat-
form routinely amplifies the RNA using the T7-based method
and remains comparable to spotted arrays.

Understanding sources of variance in expression data
The ultimate goal of many microarray studies is to make biolog-
ical inferences from gene expression patterns derived from pop-
ulation data. The robustness of the biological inference will be

Figure 4. Dye swapping improves data reliability and increases confidence in the determination of outlier genes

A: Array images demonstrating the principle of dye swapping. The Cy dye labeling scheme used for one array (upper image) is reversed for the second
array (lower image). B: Clustergram of 382 genes having mean ratios indicating fold change between 1.2 and 2.0 (eight replicates, labeled F) but do not
reciprocate in dye swap experiments (eight replicates, labeled R) and therefore likely represent false positives owing to dye bias. C: Clustergram of 212
genes having mean fold change between 1.2 and 1.8 (arrays labeled F). Means were derived as described in B and were used to order the genes (see
scale on left). Eight dye swap hybridizations (labeled R) show reciprocating ratios and thus provide added confidence that these results do not represent
dye bias effects. Note, for clustergrams, columns represent array experiments and rows represent probes. The direction of expression ratios is indicated by
red and green, and the magnitude of the ratios is reflected by the degree of color saturation (see color scale at bottom).
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dependent on the “noise” within the system that confounds the
true differences between distinct biological populations. In
expression genomics, the contributions to variance can be
found in physical-chemical noise of molecular technologies and
in the diversity of expression found in populations.The physical-
chemical noise comes from RNA extraction, labeled target
preparation, hybridization, or scanning and represents within
sample variation. There are, however, gene expression varia-
tions from individual to individual within any population (organis-
mal variation) that may have an impact on the outcome of the
analysis. An example of such population variance is that despite
identical experimental parameters, the same organs from iso-
genic mice will show distinct and detectable variability in
expression (Pritchard et al., 2001). This form of “organismal”
noise can only be assessed by multiple repeats at the organis-
mal level (i.e., multiple mice for each biological group). Thus, in
repeating array measurements, replicating at the level of indi-
vidual samples is far better than repeating multiple arrays on the
same sample. More specifically, RNA from ten different tumors,
each subjected to a microarray analysis, provides more biologi-
cal information than ten replicate arrays run on a single batch of
RNA extracted from either a single tumor or pooled tumors.

Microarray experiments often seek to identify genes that
vary significantly between biological states that are detectable
above the background “noise.” These are often referred to as
“outlier” genes. One criterion for outlier detection uses an arbi-
trarily fixed cutoff, which is commonly in the range of 1.8- to 
3-fold change. Lower ratios can sometimes be used to define
outliers if there is sufficient replication and the variances of the
system are taken into account. In replicate microarray
hybridizations, it has been widely observed that the magnitude
of the variance in signal is inversely correlated with the level of
gene expression. Signals in the upper ranges are generally
more reproducible and result in fairly stable expression ratios
when measured across replicate hybridizations. In contrast, flu-
orescence intensities in the low range of detection (i.e., close to
background) tend to be less reproducible and give rise to
expression ratios that may fluctuate with considerable variance
(Figure 3A). Interestingly, in our experience, we find that the
highest variance at all signal intensities is associated with
probes that report higher expression ratios, especially those
greater than 4-fold difference (Figure 3B). Conversely, the most
stable data are at ratios less than 2-fold at all signal intensities.
This suggests that differences at lower ratios, even between 1-
and 2-fold, have greater inherent accuracy. This finding has
implications in the selection of the appropriate reference RNA.
In microarray studies that seek to compare multiple tissues
(e.g., tumor samples) via a common reference RNA, it is advis-
able to use a reference RNA that will target as many of the rele-
vant arrayed probes as possible. If the reference channel has
some baseline signal on the majority of the probe spots, then
the magnitude of the expression ratios will be relatively limited
(i.e., the denominator will infrequently approach zero).Thus, the
variance in the ratio measurements will be kept low, resulting in
more robust statistical analyses.

A corrective measure to identify and filter signal biases in
spotted arrays is an experimental approach called dye swap-
ping. Here, microarray hybridizations are performed in duplicate
with the exception that the Cy3-Cy5 target labeling scheme is
reversed or swapped between hybridizations, such that an out-

lier with a ratio in the “red” direction on one array should have a
ratio in the “green” direction when the dyes are swapped, i.e.,
there is reciprocation (Figure 4A).This strategy is more rigorous
than straight replication—which may otherwise identify dye bias
artifacts as reproducible outliers. Through dye swapping, out-
liers on one array that fail to reciprocate on the other can be
identified and flagged as unreliable (Figure 4B). The causes of
this data unreliability may be related to signal intensity since
nonreciprocating spots tend to have lower signal intensities.
However, this approach also uncovers a small number of out-
liers that do not reciprocate despite having relatively high signal
intensities. Without dye swapping, these spots may be counted
as significant outliers. We routinely eliminate these nonrecipro-
cating spots from further analysis. By combining dye swapping
and filtering out spots with signal intensities near background
(e.g., <2 SD above background), we can detect highly repro-
ducible differential expression of genes with ratios as low as
1.2-fold (Figure 4C).

Can microarrays be used as a clinical test?
In the current format, expression profiling using microarrays is
not sufficiently reliable to be used in making clinical decisions.
This is because of the problems in standardization and perfor-
mance as outlined above. Clearly, given the technical variance
in these hybridization-based systems, precise and quantitative
measurement of single genes using microarrays is not expect-
ed. However, the collective expression behavior of a set of gene
classifiers, albeit imprecise, can provide valuable diagnostic
information. This suggests that the more important approach to
clinical diagnostics is to focus on algorithms that can integrate a
large number of diagnostic markers into a clinically meaningful
term, rather than on the exact technical platform that extracts
this multiplex information. Even if the technical problems are
solved, important conceptual questions remain: what is the con-
tribution of stromal and infiltrating inflammatory cells? Will
tumor heterogeneity affect the consistency of the results? How
will the regulatory agencies evaluate a diagnostic where the
individual determinations may have 20%–30% variance? We
anticipate that these questions will be answered, but a concert-
ed effort by the clinical trials community will be necessary.

Concluding remarks
The optimal analysis of microarray data should not only be
focused on the statistical analysis of the array output, but also
take into account quality control issues, study design factors,
and database applications. As with any maturing technology,
the applications and the approaches will migrate over time. Our
prediction for the future is that dense arrays covering not only all
possible genes but also noncoding RNAs will be in demand. In
addition, the number of arrays used for each experiment will
increase significantly so as to better address the scientific ques-
tions and refine the analyses. The linkage of these experiments
into a relational database will require different data retrieval and
analysis approaches, exchangeable formatting, and greater
computational capabilities. All these predictions will require
array costs to be dramatically reduced and the hybridization-
scanning cycle to be automated—standard demands as a
genomic tool advances. Given the power of this technology in
speed and in permitting higher-order structuring of data, the
possibilities are immense.
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