
Morphing Spectral Envelopes Using Audio Flow

Tony Ezzat†, Ethan Meyers†, Jim Glass‡

Tomaso Poggio†

Center for Biological and Computational Learning† &
Computer Science and Artificial Intelligence Laboratory‡

Massachusetts Institute of Technology, Cambridge, MA
tonebone@mit.edu, emeyers@mit.edu, glass@mit.edu, tp@ai.mit.edu

Abstract
We present a method for morphing between smooth spectral
magnitude envelopes of speech. An important element of our
method is the notion ofaudio flow, which is inspired by similar
notions ofoptical flowcomputed between images in computer
vision applications. Audio flow defines the correspondence be-
tween two smooth spectral magnitude envelopes, and encodes
the formant shifting that occurs from one sound to another. We
present several algorithms for the automatic computation of au-
dio flow from a small 20 second corpus of speech. In addition,
we present an algorithm for morphing smoothly between any
two spectral magnitude envelopes, given the computed audio
flow between them.

1. Introduction
In various speech processing applications, there is a need to in-
terpolate smoothly between two sounds. These applicationsin-
clude speech synthesis, where there is a need to reduce the spec-
tral mismatch at concatenation join points; in speech compres-
sion, where there is a need to interpolate between two decoded
spectra; and speech recognition, where there may be a need to
interpolate between different people’s phonemes for adaptation
purposes.

We focus in this work on interpolatingsmoothed spectral
magnitude envelopes[1] instead of complete sound spectra, de-
ferring the problems of interpolating residuals to future work.
Smooth spectral magnitude envelopes (see Figure 1) capturethe
formant resonances of the vocal tract, and, as such, different en-
velopes for different sounds will exhibit different formant loca-
tions, shapes, and amplitudes.

In this work, we present amorphing algorithmwhich
morphs smoothly between any two spectral magnitude en-
velopesS1(f) andS2(f) of speech. In doing so, the morph-
ing algorithm smoothly interpolates formant locations, shapes,
and amplitudes between the two envelopes. As in the image
case [2], morphing transformations between two envelopes oc-
cur as awarp of the first envelope into the second, a similar
inverse warpof the second envelope into the first, and a final
cross-dissolveor blendof the warped envelopes.

The difficulty with morphing approaches is that the spec-
ification of the warp requires establishingcorrespondencebe-
tween the envelopes. Establishing correspondence ensuresthat
the warping process preserves the desired alignment between
the geometric attributes of the objects as they are morphed.For
example, we would want the first formant in one envelope to
map to the first formant in the other envelope, the second for-
mant in one envelope to map to the second formant in the sec-

ond envelope, and so on. Consequently, this correspondence
between the envelopes needs to be specified.

In this work, we have resorted toaudio flow methodsto es-
timate correspondence. The notion of audio flow is inspired by
the analogous notion ofoptical flowfrom computer vision. Op-
tical flow, originally formulated by Horn & Schunck [3], mea-
sures the motion of objects between two images. Similarly,
audio flow measures motion between two smoothed envelopes.
Here we represent audio flow as a one-dimensional vector field
∆f(f) that describes how spectral energy at each frequency bin
f has moved between two envelopesS1(f) andS2(f).

In Sections 4 through 7, we present several algorithms for
audio flow computation, each one successively improving on
the previous one and culminating in our final algorithm. The
final audio flow algorithm isautomatic, requiring no hand-
labelling; it is dense, assigning correspondence for each fre-
quency bin; it isnonparametric, requiring no parametric repre-
sentation of the envelopes; finally, it isdata-driven, estimating
correspondence from natural transition paths extracted from a
small 20-second data corpus. In section 8 we present our mor-
phing algorithm which uses the computed audio flow.

2. Previous Work

The simplest way to interpolate two envelopes is to linearly
cross-fade between them [4], but this technique does not ac-
count for proper formant shifting between two sounds. Linearly
cross-fadingalternative representationsof the envelopes (such
as line spectral frequencies [5]) also does not account for proper
formant shifting (as was shown in [6] [7]).

Sinusoidal methods [8] utilize a nearest neighbor corre-
spondence estimation procedure which trackspartials across a
spectrogram. However, tracking partials is difficult due totheir
noisy nature, and partial movement is affected by pitch changes
as well as formant changes.

The pole-shifting method of Goncharoff & Kaine-Krolak
[9] attempts to establish correspondence between poles in an
LPC representation of the envelopes, but pole-matching is adif-
ficult process, and the relationship between poles and formants
is not one-to-one.

The approach closest to ours is the Pfitzinger’s dynamic fre-
quency warping (DFW) approach [7], in which DFW is used to
establish correspondence non-parametrically between twoLPC
envelopes, and a morphing algorithm is used to generate the in-
termediate envelopes. We defer our discussion of this approach
until the last section of our paper.



0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

Frequency (Hz)

M
ag

ni
tu

de
 (

ab
s)

Figure 1: Smoothed spectral envelopeSt(f) overlayed on top
of its corresponding magnitude spectrum‖Rt(f)‖.

3. Smooth Spectral Magnitude Envelope
Computation

Our spectral envelopes are obtained from a 20-second audio
database consisting of 9 Harvard List sentences sampled at
16Khz. All of the sentences were STFT-analyzed using a
48msec Hamming window with a 2ms frame rate and a ze-
ropadding factor of 4, yielding a total of 9000 3072-dimensional
audio frames{Rt(f)}9000

t=1 for the entire database.
For each frame, we extracted the smooth spectral magni-

tude envelopeSt(f) using acepstralmethod [1]: first, a dis-
crete cosine transform (DCT) is performed on the log magni-
tude of the spectrum; the DCT coefficients are then truncated
to 104 coefficients; finally, the DCT is inverted back into fre-
quency. Figure 1 shows an example of a smoothed spectrum
St(f) overlayed on top of its corresponding original magnitude
spectrum‖Rt(f)‖.

4. Direct Audio Flow
Given two smoothed spectral magnitude envelopesS1(f) and
S2(f), thedirect audio flowalgorithm computes an audio flow
estimate∆f(f) directly from the spectral envelopes, without
any recourse to other data.

In order to be able to estimate flow independent of any ar-
bitrary multiplicative gains in the envelopes, we estimateflow
from thederivative of the log magnitudes. More formally, we
estimate flow betweenS1(f) andS2(f), where

S1(f)
.
=

d(log10S1(f))

df
, S2(f)

.
=

d(log10S2(f))

df
(1)

To solve for∆f(f), we first make thesmoothnessassumption
that the audio flow islocally similar over a frequency region R,
and formulate an error objective based on thel2 norm:

E(f) =
X

R

(S1(f + ∆f) − S2(f))2 (2)

Furthermore, we make the assumption that the audio flow is
small, allowing us to expand the first term on the right hand
side above using a Taylor series and discard the higher order
terms:

S1(f + ∆f) = S1(f) + S1
′

(f)∆f (3)

Combining Equations 2 and 3, we can solve for an estimate of
the flow at each point by taking the derivative and setting to
zero:

∆f(f) =

P

R S1
′

(f)(S2(f) − S1(f))
P

R
S1

′

(f)2
(4)

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

ab
s)

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

ab
s)

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

Frequency (Hz)

M
ag

ni
tu

de
 (

ab
s)

Figure 2: Two envelopes and the audio flow computed between
them. Top: Flow computed using the direct flow algorithm.
Middle: Flow computed using the coarse-to-fine flow algo-
rithm. Bottom: Flow computed using concatenation along a
path extracted from the corpus graph.

The above Equation is the famous Lucas-Kanade [10] equation
which frames the audio flow in terms of thefrequencyderivative
S1

′

(f) and thetemporalderivativeS2(f)− S1(f). In our case
the width of region R is set to 5. In addition, the flow∆f is set
to 0 if the denominator term

P

R
S1

′

(f)2 is smaller than10−5.
Equation 4 is solved for all 3072 frequency bins, although half
as many values need to be computed since the envelope is sym-
metric.

Shown in the top part of Figure 2 is the audio flow estimated
between two envelopes. Experimentally, we have found that
in many cases the direct audio flow algorithm produces noisy
and inaccurate motion estimates between various spectral mag-
nitude envelopes, as may be seen for the case of the first and
second formants in top part of the figure. This is because au-
dio flow displacements between spectral magnitude envelopes
can be significantly large, so the small motion assumption of
Equation 3 is violated, and the direct audio flow algorithm fails.

5. Coarse-to-Fine Audio Flow
In order to overcome the problems with large motions between
envelopes, it is possible to embed the audio flow estimation
procedure in a multiscale pyramidal framework, in which each
envelope is reduced in resolution using a Gaussian pyramid
[11] [12]. Reducing the resolution reduces the magnitude of
the motion that has occurred between the envelopes, prevent-
ing the small motion assumption of Equation 3 from being vio-
lated. Audio flow displacement estimates are initially obtained
at coarse resolutions, and then propagated to higher resolution
levels of the pyramid.

Our coarse-to-fine audio flowalgorithm mirrors the algo-
rithm presented by Bergen et al [11] for the image case. In-
cluded as a subroutine in the algorithm is the direct flow algo-
rithm from Section 4. Typically we create a 4-level pyramid
for the 3072-bin envelopes in our dataset. Pseudocode for our
algorithm is presented on our web page [13].

Shown in the middle of Figure 2 is the result of the mul-
tiresolution flow estimation procedure. The multiresolution al-



0 1000 2000
0

2

4

6

8

10

12

14

16

18

20

Frequency (Hz)

Mag
nitu

de (
abs

)

0 1000 2000
0

2

4

6

8

10

12

14

16

18

20

Frequency (Hz)
0 1000 2000

0

2

4

6

8

10

12

14

16

18

20

Frequency (Hz)
0 1000 2000

0

2

4

6

8

10

12

14

16

18

20

Frequency (Hz)

Figure 3: The process of morphing two envelopes with significant second formant movement. Far left: Forward warpingS1(f) without
hole-filling. Middle left: Forward warpingS1(f) with hole-filling. Middle right: Forward warpingS2(f) with hole-filling. Far right:
MorphingS1(f) andS2(f).

gorithm produces smoother flow estimates than the direct flow
algorithm. Despite this, the multiresolution algorithm isstill
not able to estimate reliable motion estimates when formantmo-
tions are very large. This is illustrated in Figure 2 for the second
formant (which moves to the right).

6. Concatenated Audio Flow

In cases where the coarse-to-fine audio flow between two en-
velopes is not sufficient, we have found that aconcatenation
procedure improves estimates further. Since the 20-secondau-
dio corpus is analyzed at 500 fps, there are many intermediate
frames that lie between any two chosen envelopesS1(f) and
S2(f). A series of consecutive audio flow vectors between each
intermediate frame and its successor may be computed andcon-
catenatedinto one large audio flow vector that defines the global
transformation between the chosen envelopes.

Our flow concatenation algorithm works as follows: Given
a series of consecutive framesS0, S1, . . . Sn, we would like to
construct the audio flow∆f0(n) relatingS0 to Sn. We focus on
the case of the 3 envelopesSi−1, Si, Si+1 since the concatena-
tion algorithm is simply an iterative application of this 3-frame
base case.

Audio flow is first computed between the consecutive
frames to yield∆f(i−1)i and∆fi(i+1). Both flows are com-
puted using the coarse-to-fine audio flow algorithm of Section
5. Then, to place all flows in the same reference frame, the au-
dio flow ∆fi(i+1) is backwards warpedalong∆f(i−1)i to cre-
ate∆f

warped

i(i+1) . Finally,∆f
warped

i(i+1) and∆f(i−1)i are both added
to produce an approximation to the desired concatenated audio
flow. Additional pseudocode for our concatenation procedure is
provided in [13].

Concatenation produces good audio flow only when the
number of frames betweenS1(f) andS2(f) are small in num-
ber. However, since any two envelopes are usually very far apart
in the corpus, repeated concatenation that would be involved
across the hundreds or thousands of intermediate frames leads
to a considerably degraded final flow. A method is needed to
figure out how to compute ashort path fromS1(f) to S2(f),
to avoid repeated concatenation over hundreds or thousandsof
intermediates frames.

7. Audio Flow through a Graph
We obtain short paths between any two envelopes by construct-
ing the corpus graphrepresentation of the corpus: A corpus
graph is an N-by-N sparse adjacency graph matrix in which
each frame{St(f)}N

t=1 in the corpus is represented as a node
in a graph connected tok nearest frames. Thek nearest frames
are chosen using thek-nearest neighborsalgorithm, and the dis-
tance metricd used is the log Euclidean distance:

d(S1(f), S2(f)) = ‖log10S1(f) − log10S2(f)‖ (5)

We setk = 250 in this work.
After the corpus graph is computed, theDijkstra shortest

path algorithm is used to compute the shortest path between the
envelopesS1(f) andS2(f). Each shortest path produced by the
Dijkstra algorithm is a list of envelopes from the corpus that cu-
mulatively represent the shortest deformation path fromS1(f)
to S2(f) as measured by the log Euclidean distance. Concate-
nated flow fromS1(f) to S2(f) is then computed along the
intermediate envelopes as in Section 6.

Compared to all the methods described in Sections 4
through 6, we have found that computing audio flow through
a corpus graph is our best method to establish correspondence
between any two envelopes. Shown in the bottom of Figure 2 is
the audio flow estimated between the two envelopes in the top
using a 20-second corpus graph. As may be seen, the flow cor-
rectly estimates the difficult movement of the second formant.

8. Morphing
Given two envelopesS1(f) andS2(f), the first step of our mor-
phing algorithm is to compute audio flow∆f12 between them
using the algorithm presented in Section 7.

The second step of our algorithm is toforward warpS1(f)
along∆f12. Our forward warping algorithm “pushes” the val-
ues ofS1(f) along the flow∆f12. By scaling∆f12 uniformly
by a constantα between 0 and 1, one can produce a series of
warped intermediate frames which approximate the transfor-
mation betweenS1(f) andS2(f). Several such intermediate
warps are shown in Figure 3 (far left). Notationally, we denote
the forward warping operation as an operatorW(S,∆f) that
operates on an envelopeS and audio flow∆f .

Theholeswhich appear in the intermediate frames shown
in Figure 3 (far left) occur in cases where a destination fre-



Frames

F
re

qu
en

cy
 (

H
z)

20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

4000

Frames
20 40 60 80 100 120

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 4: Real /ay/ transition spectrogram (left) along a mor-
phed /ay/ transition spectrogram. The first and last frames of
both sounds are identical.

quency bin was not filled in with any source bin value. The
reason for this is that the forward warping algorithm roundsto
the nearest integer when it decides which destination bin tofill,
in addition to the fact the envelope transformations themselves
exhibit nonzero divergence. We use a hole-filling algorithmthat
traverses the warped envelope in left-to-right order and fills in
the holes by interpolating linearly between their non-holeend-
points. Figure 3 (middle left) shows the same set of warped
intermediates as in Figure 3 (far left), but with the holes filled
in using our algorithm.

Since the second warp in a morph is a warp ofS2(f) to-
wardsS1(f), aninverse flow∆f21 from S2(f) to S1(f) needs
to be computed. In this work, the inverse flow is computed us-
ing the same algorithm presented in Section 7. Figure 3 (middle
right) depicts the set of envelopes generated as a result of warp-
ing S2(f) along the inverse flow fromS2(f) to S1(f).

Finally, the morphing algorithm synthesizes an intermedi-
ate envelopeSmorph(α) at positionα by cross-dissolvingor
blendingthe warped intermediates:

Smorph(α) = (1 − α)W(S1(f), α∆f12) +

αW(S2(f), (1 − α)∆f21) (6)

By interpolating the blending parameterα appropriately the
morph “fades out” the warped versions ofS1(f) and “fades in”
the warped versions ofS2(f). A final morph sequence is shown
in Figure 3 (far right). The parameterα is interpolatedlinearly
between0.0 and1.0. See [13] for more details on our morphing
algorithm.

9. Results & Discussion & Future Work
A whole array of morphs from various envelopes in our corpus
are presented in [13]. We have found that audio flow morph-
ing is capable of successfully handling a wide variety of en-
velope phenomena such as formant shifts, amplitude changes,
and formant appearances/disappearances. Experimentally, the
audio flow algorithm presented in Section 7 works the most re-
liably.

Shown in Figure 4 is a real/ay/ transition along with a
morphed/ay/ transition for comparison. As may be seen, our
morphing algorithm islinear, in the sense that the formant tra-
jectories follow linear paths, and bandwidths change linearly as
well. As such, our algorithm does not account for the nonlin-
ear trajectory and bandwidth changes which occur during sound
transitions.

One important factor in algorithm performance is the size of
the corpus: if the corpus is too small, there will not be enough
data to generate smooth paths through the graph. Empirically
we have found that a 20 second corpus is sufficiently large, al-
though it sometimes produces incorrect results and needs tobe
enlarged (as may be seen in [13]).

Pfitzinger’s DFW algorithm [7] also produces good audio
flow estimates between envelopes. The difference between the
algorithms is that the DFW algorithm isdirect, making no re-
course to any data, while our algorithm isdata-driven, relying
on a small corpus to extract natural transition paths between
envelopes. Our data-driven approach yields more natural flow
estimates in certain cases, although it is also possible to embed
the DFW algorithm in a coarse-to-fine and data-driven frame-
work.

Future work will focus on interpolatingcompletesounds
rather than just envelopes, as well as evaluating the perceptual
quality of the morphs.

10. References
[1] D. Schwarz and X. Rodet, “Spectral envelope estimation

and representation for sound analysis-synthesis,” inPro-
ceedings of ICMC, Beijing, China, October 1999.

[2] T. Beier and S. Neely, “Feature-based image metamorpho-
sis,” in Computer Graphics (Proceedings of ACM SIG-
GRAPH 92), vol. 26(2). Chicago, IL: ACM, 1992, pp.
35–42.

[3] B. K. P. Horn and B. G. Schunck, “Determining optical
flow,” Artificial Intelligence, vol. 17, pp. 185–203, 1981.

[4] M. C. M. Slaney and B. Lassiter, “Automatic audio mor-
phing,” in Proc. ICASSP, Atlanta Georgia, 1996.

[5] K. Paliwal, “Interpolation properties of linear predic-
tion parametric representations,” inProceedings of Eu-
rospeech, vol. 2, Madrid, 1995, pp. 1029–1032.

[6] D. T. Chappell and J. H. L. Hansen, “A comparison of
smoothing methods for segment concatenation,”Speech
Communication, vol. 36, pp. 343–374, 2002.

[7] H. R. Pfitzinger, “Dfw-based spectral smoothing for con-
catenative speech synthesis,” inProceedings of ICSLP,
vol. 2, Korea, October 2004, pp. 1397–1400.

[8] R. McAulay and T. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representation,”IEEE Trans. Acous-
tics, Speech and Signal Processing, vol. Vol. ASSP-34,
no. 4, pp. 744–754, August 1986.

[9] V. Goncharoff and M. Kaine-Krolak, “Interpolation of
lpc spectra via pole-shifting,” inProceedings of ICASSP,
vol. 1, Detroit, May 1995, pp. 780–783.

[10] B. Lucas and T. Kanade, “An iterative image registration
technique with an application to stero vision,” inProc.
DARPA Image Understanding Workshop, 1981, pp. 121–
130.

[11] J. Bergen and R. Hingorani, “Hierarchical motion-based
frame rate conversion,” David Sarnoff Research Center,
Princeton, New Jersey, Tech. Rep., Apr. 1990.

[12] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani, “Hi-
erarchical model-based motion estimation,” inProceed-
ings of the European Conference on Computer Vision,
Santa Margherita Ligure, Italy, 1992, pp. 237–252.

[13] [Online]. Available:
http://cuneus.ai.mit.edu:8000/research/audioflow/


