Mor phing Spectral Envelopes Using Audio Flow

Tony Ezzdt Ethan Meyers Jim Glas$
Tomaso Poggio

Center for Biological and Computational Learnir&y
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA

t onebone@rit. edu, eneyers@rit. edu,

Abstract

We present a method for morphing between smooth spectral
magnitude envelopes of speech. An important element of our
method is the notion ciudio flow which is inspired by similar
notions ofoptical flowcomputed between images in computer
vision applications. Audio flow defines the corresponderee b

glass@rit.edu, tp@i.nmt.edu

ond envelope, and so on. Consequently, this correspondence
between the envelopes needs to be specified.

In this work, we have resorted tudio flow method® es-
timate correspondence. The notion of audio flow is inspined b
the analogous notion afptical flowfrom computer vision. Op-
tical flow, originally formulated by Horn & Schunck [3], mea-

tween two smooth spectral magnitude envelopes, and encodes Sures the motion of objects between two images. Similarly,

the formant shifting that occurs from one sound to another. W
present several algorithms for the automatic computati@ue

dio flow from a small 20 second corpus of speech. In addition,
we present an algorithm for morphing smoothly between any
two spectral magnitude envelopes, given the computed audio
flow between them.

1. Introduction

In various speech processing applications, there is a eied t
terpolate smoothly between two sounds. These applicatisns
clude speech synthesis, where there is a need to reduceettie sp
tral mismatch at concatenation join points; in speech cesyr
sion, where there is a need to interpolate between two ddcode

spectra; and speech recognition, where there may be a need to

interpolate between different people’s phonemes for adiapt
purposes.

We focus in this work on interpolatingmoothed spectral
magnitude envelopds] instead of complete sound spectra, de-
ferring the problems of interpolating residuals to futurerkv
Smooth spectral magnitude envelopes (see Figure 1) capture
formant resonances of the vocal tract, and, as such, differe
velopes for different sounds will exhibit different forntdaca-
tions, shapes, and amplitudes.

In this work, we present anorphing algorithmwhich
morphs smoothly between any two spectral magnitude en-
velopesS:(f) and Sa2(f) of speech. In doing so, the morph-
ing algorithm smoothly interpolates formant locationsasés,
and amplitudes between the two envelopes. As in the image
case [2], morphing transformations between two envelopes o
cur as awarp of the first envelope into the second, a similar
inverse warpof the second envelope into the first, and a final
cross-dissolver blendof the warped envelopes.

The difficulty with morphing approaches is that the spec-
ification of the warp requires establishiegrrespondencée-
tween the envelopes. Establishing correspondence erthates
the warping process preserves the desired alignment betwee
the geometric attributes of the objects as they are morghed.
example, we would want the first formant in one envelope to
map to the first formant in the other envelope, the second for-
mant in one envelope to map to the second formant in the sec-

audio flow measures motion between two smoothed envelopes.
Here we represent audio flow as a one-dimensional vector field
Af(f) that describes how spectral energy at each frequency bin
f has moved between two envelopgd f) andS2(f).

In Sections 4 through 7, we present several algorithms for
audio flow computation, each one successively improving on
the previous one and culminating in our final algorithm. The
final audio flow algorithm isautomati¢ requiring no hand-
labelling; it is dense assigning correspondence for each fre-
guency bin; it isnonparametri¢ requiring no parametric repre-
sentation of the envelopes; finally, itdsta-driven estimating
correspondence from natural transition paths extracieu fx
small 20-second data corpus. In section 8 we present our mor-
phing algorithm which uses the computed audio flow.

2. Previous Work

The simplest way to interpolate two envelopes is to linearly
cross-fade between them [4], but this technique does not ac-
count for proper formant shifting between two sounds. Lilyea
cross-fadingalternative representationsf the envelopes (such

as line spectral frequencies [5]) also does not accountrégrey
formant shifting (as was shown in [6] [7]).

Sinusoidal methods [8] utilize a nearest neighbor corre-
spondence estimation procedure which trae&sials across a
spectrogram. However, tracking partials is difficult duehteir
noisy nature, and partial movement is affected by pitch ghan
as well as formant changes.

The pole-shifting method of Goncharoff & Kaine-Krolak
[9] attempts to establish correspondence between poles in a
LPC representation of the envelopes, but pole-matchinglifs a
ficult process, and the relationship between poles and fasma
is not one-to-one.

The approach closest to ours is the Pfitzinger's dynamic fre-
quency warping (DFW) approach [7], in which DFW is used to
establish correspondence non-parametrically betweeh R@
envelopes, and a morphing algorithm is used to generat@the i
termediate envelopes. We defer our discussion of this appro
until the last section of our paper.

Magnitude (abs)

S N
3000 4000
Frequency (Hz)

L

5000

L I
6000 7000

2000

8000

Figure 1: Smoothed spectral envelofi€ f) overlayed on top
of its corresponding magnitude spectr{ii; (f)||.

3. Smooth Spectral Magnitude Envelope
Computation

Our spectral envelopes are obtained from a 20-second audio
database consisting of 9 Harvard List sentences sampled at
16Khz. All of the sentences were STFT-analyzed using a
48msec Hamming window with a 2ms frame rate and a ze-
ropadding factor of 4, yielding a total of 9000 3072-dimensil
audio frameq R, (f)};2%° for the entire database.

For each frame, we extracted the smooth spectral magni-
tude envelopes: (f) using acepstralmethod [1]: first, a dis-
crete cosine transform (DCT) is performed on the log magni-
tude of the spectrum; the DCT coefficients are then truncated
to 104 coefficients; finally, the DCT is inverted back into-fre
quency. Figure 1 shows an example of a smoothed spectrum
St(f) overlayed on top of its corresponding original magnitude

spectrum/| R; (f)]]-

4. Direct Audio Flow

Given two smoothed spectral magnitude envelofigs’) and
Sa(f), thedirect audio flowalgorithm computes an audio flow
estimateA f(f) directly from the spectral envelopes, without
any recourse to other data.

In order to be able to estimate flow independent of any ar-
bitrary multiplicative gains in the envelopes, we estimfites
from thederivative of the log magnitudesMore formally, we
estimate flow betweef; (f) andSz(f), where

. d(log10S1(f)) &/ 4 - d(logroS2(f))
=T S2(f) = @

To solve forAf(f), we first make thesmoothnesassumption
that the audio flow isocally similar over a frequency region R,
and formulate an error objective based onitheorm:

Si(f) @)

E(f)=>(Si(f +Af) = Sa(f))’
R
Furthermore, we make the assumption that the audio flow is
small allowing us to expand the first term on the right hand
side above using a Taylor series and discard the higher order
terms:

@)

Si(f+Af) =Si(f) + ST ())AS 3)

Combining Equations 2 and 3, we can solve for an estimate of
the flow at each point by taking the derivative and setting to
Zero:

_ ZRS (D) =)
> 51 (f)?

AF(S) (4)

Magnitude (abs)
N w

o o

5 T

I

i
o

=)

1500 2000
Frequency (Hz)
T

3500

W
S
T
I

N
=]

Magnitude (abs)
[
o

i/

000

Frequency (Hz)
T

o

N w

=] S
T
I

Magnitude (abs)
i
o
T

1500 200
Frequency (Hz)

o

1 \ / /]
1000 2500 3000 3500

Figure 2: Two envelopes and the audio flow computed between
them. Top: Flow computed using the direct flow algorithm.
Middle: Flow computed using the coarse-to-fine flow algo-
rithm. Bottom: Flow computed using concatenation along a
path extracted from the corpus graph.

The above Equation is the famous Lucas-Kanade [10] equation
which frames the audio flow in terms of tfrequencyderivative

Sy’ (f) and thetemporalderivativeSs (f) — S1(f). In our case

the width of region R is set to 5. In addition, the flayf is set

to 0 if the denominator terfy_,, Sy’ (f)? is smaller tharl0~°.
Equation 4 is solved for all 3072 frequency bins, althougli ha

as many values need to be computed since the envelope is sym-
metric.

Shown in the top part of Figure 2 is the audio flow estimated
between two envelopes. Experimentally, we have found that
in many cases the direct audio flow algorithm produces noisy
and inaccurate motion estimates between various specaigd m
nitude envelopes, as may be seen for the case of the first and
second formants in top part of the figure. This is because au-
dio flow displacements between spectral magnitude envelope
can be significantly large, so the small motion assumption of
Equation 3 is violated, and the direct audio flow algorithitsfa

5. Coarse-to-Fine Audio Flow

In order to overcome the problems with large motions between
envelopes, it is possible to embed the audio flow estimation
procedure in a multiscale pyramidal framework, in whichteac
envelope is reduced in resolution using a Gaussian pyramid
[11] [12]. Reducing the resolution reduces the magnitude of
the motion that has occurred between the envelopes, prevent
ing the small motion assumption of Equation 3 from being vio-
lated. Audio flow displacement estimates are initially aied

at coarse resolutions, and then propagated to higher t&solu
levels of the pyramid.

Our coarse-to-fine audio flowalgorithm mirrors the algo-
rithm presented by Bergen et al [11] for the image case. In-
cluded as a subroutine in the algorithm is the direct flow -algo
rithm from Section 4. Typically we create a 4-level pyramid
for the 3072-bin envelopes in our dataset. Pseudocode for ou
algorithm is presented on our web page [13].

Shown in the middle of Figure 2 is the result of the mul-
tiresolution flow estimation procedure. The multiresauntal-

20

p={e}

is - —

is |- —

16

1a

-

10

Magnitude (ahs)

A

20

20

18 - — is —

o 1000
Frequency (Hz)

2000 o 1000 2000

Frequency (Hz)

o 1000 2000 o
Frequency (Hz)

1000 2000
Frequency (Hz)

Figure 3: The process of morphing two envelopes with sigaifisecond formant movement. Far left: Forward wargingf) without
hole-filling. Middle left: Forward warping (f) with hole-filling. Middle right: Forward warping (f) with hole-filling. Far right:

Morphing S1(f) andSz(f).

gorithm produces smoother flow estimates than the direct flow
algorithm. Despite this, the multiresolution algorithmsitll

not able to estimate reliable motion estimates when formment
tions are very large. Thisis illustrated in Figure 2 for teeend
formant (which moves to the right).

6. Concatenated Audio Flow

In cases where the coarse-to-fine audio flow between two en-
velopes is not sufficient, we have found that@ncatenation
procedure improves estimates further. Since the 20-seaond
dio corpus is analyzed at 500 fps, there are many intermeediat
frames that lie between any two chosen envelofgsf) and
Sa(f)- A series of consecutive audio flow vectors between each
intermediate frame and its successor may be computedamnd
catenatednto one large audio flow vector that defines the global
transformation between the chosen envelopes.

Our flow concatenation algorithm works as follows: Given
a series of consecutive fram#s, S1, ... S», we would like to
construct the audio flow fy(,,) relatingSo to S,,. We focus on
the case of the 3 envelopfs_1, .S;, Si+1 since the concatena-
tion algorithm is simply an iterative application of thifizame
base case.

Audio flow is first computed between the consecutive
frames to yieldA f(;_1); and A f;;+1). Both flows are com-
puted using the coarse-to-fine audio flow algorithm of Sectio
5. Then, to place all flows in the same reference frame, the au-
dio flow A f;(;+1) is backwards warpedlongA f(;_1); to cre-
ateA [7Y, Finally, A f07177 andA f; 1), are both added
to produce an approximation to the desired concatenated aud
flow. Additional pseudocode for our concatenation procedsir
provided in [13].

Concatenation produces good audio flow only when the
number of frames betwee$y (f) andS2(f) are small in num-
ber. However, since any two envelopes are usually very fartap
in the corpus, repeated concatenation that would be ingolve
across the hundreds or thousands of intermediate framés lea
to a considerably degraded final flow. A method is needed to
figure out how to compute short path fromS1(f) to Sa2(f),
to avoid repeated concatenation over hundreds or thousdnds
intermediates frames.

7. Audio Flow through a Graph

We obtain short paths between any two envelopes by construct
ing the corpus graphrepresentation of the corpus: A corpus
graph is an N-by-N sparse adjacency graph matrix in which
each frame{S;(f)}#L, in the corpus is represented as a node
in a graph connected tonearest frames. Thenearest frames
are chosen using thenearest neighboralgorithm, and the dis-
tance metriel used is the log Euclidean distance:

d(S1(f), S2(f)) = [lleg10S1(f) — logioS2(f)|l

We setk = 250 in this work.

After the corpus graph is computed, tBbgkstra shortest
path algorithm is used to compute the shortest path betvween t
envelopess: (f) andS2(f). Each shortest path produced by the
Dijkstra algorithm is a list of envelopes from the corpud tha
mulatively represent the shortest deformation path f&rtf)
to S2(f) as measured by the log Euclidean distance. Concate-
nated flow fromS,(f) to S2(f) is then computed along the
intermediate envelopes as in Section 6.

Compared to all the methods described in Sections 4
through 6, we have found that computing audio flow through
a corpus graph is our best method to establish correspoadenc
between any two envelopes. Shown in the bottom of Figure 2 is
the audio flow estimated between the two envelopes in the top
using a 20-second corpus graph. As may be seen, the flow cor-
rectly estimates the difficult movement of the second fortman

©)

8. Morphing

Given two envelopes (f) andSz(f), the first step of our mor-
phing algorithm is to compute audio flotx f1> between them
using the algorithm presented in Section 7.

The second step of our algorithm isftoward warp.S1 (f)
along A f12. Our forward warping algorithm “pushes” the val-
ues ofS1 (f) along the flowA fi2. By scalingA f12 uniformly
by a constantx between 0 and 1, one can produce a series of
warped intermediate frames which approximate the transfor
mation betweert; (f) and Sz(f). Several such intermediate
warps are shown in Figure 3 (far left). Notationally, we deno
the forward warping operation as an opera¥®i(S, A f) that
operates on an envelogeand audio flowA f.

The holeswhich appear in the intermediate frames shown
in Figure 3 (far left) occur in cases where a destination fre-

4000

3000

e

500

0

20 40 60 80 100 120

6
i

Figure 4: Real /ay/ transition spectrogram (left) along a-mo
phed /ay/ transition spectrogram. The first and last franfes o
both sounds are identical.

quency bin was not filled in with any source bin value. The
reason for this is that the forward warping algorithm routals
the nearest integer when it decides which destination biifi to
in addition to the fact the envelope transformations thévese
exhibit nonzero divergence. We use a hole-filling algorithat
traverses the warped envelope in left-to-right order arslifil
the holes by interpolating linearly between their non-herhe-
points. Figure 3 (middle left) shows the same set of warped
intermediates as in Figure 3 (far left), but with the holeledil
in using our algorithm.

Since the second warp in a morph is a warpSef f) to-
wardsS; (f), aninverse flowA f2; from Sa(f) to S1(f) needs
to be computed. In this work, the inverse flow is computed us-
ing the same algorithm presented in Section 7. Figure 3 (lmidd
right) depicts the set of envelopes generated as a resulimpfw
ing S2(f) along the inverse flow frons (f) to S1(f).

Finally, the morphing algorithm synthesizes an intermedi-
ate envelopeS,.-pr () at positiona by cross-dissolvingor
blendingthe warped intermediates:

Smorph(@) = (1 —) W(S1(f), aAfi2) +

aW (S(f),(1 = a)Afa) (6)
By interpolating the blending parameter appropriately the
morph “fades out” the warped versions$f(f) and “fades in”
the warped versions ¢f2 (f). A final morph sequence is shown
in Figure 3 (far right). The parameteris interpolatedinearly
betweer0.0 and1.0. See [13] for more details on our morphing
algorithm.

9. Results & Discussion & Future Work

A whole array of morphs from various envelopes in our corpus
are presented in [13]. We have found that audio flow morph-
ing is capable of successfully handling a wide variety of en-
velope phenomena such as formant shifts, amplitude changes
and formant appearances/disappearances. Experimenitaly
audio flow algorithm presented in Section 7 works the most re-
liably.

Shown in Figure 4 is a redlay/ transition along with a
morphed ay/ transition for comparison. As may be seen, our
morphing algorithm idinear, in the sense that the formant tra-
jectories follow linear paths, and bandwidths change liyess
well. As such, our algorithm does not account for the nonlin-
ear trajectory and bandwidth changes which occur duringgou
transitions.

One important factor in algorithm performance is the size of
the corpus: if the corpus is too small, there will not be eroug
data to generate smooth paths through the graph. Empjricall
we have found that a 20 second corpus is sufficiently large, al
though it sometimes produces incorrect results and nedus to
enlarged (as may be seen in [13]).

Pfitzinger's DFW algorithm [7] also produces good audio
flow estimates between envelopes. The difference between th
algorithms is that the DFW algorithm direct, making no re-
course to any data, while our algorithmdata-driven relying
on a small corpus to extract natural transition paths beatwee
envelopes. Our data-driven approach yields more natusal flo
estimates in certain cases, although it is also possibletmed
the DFW algorithm in a coarse-to-fine and data-driven frame-
work.

Future work will focus on interpolatingompletesounds
rather than just envelopes, as well as evaluating the peraep
quality of the morphs.

10. References

[1] D. Schwarz and X. Rodet, “Spectral envelope estimation
and representation for sound analysis-synthesisProt
ceedings of ICMCBeijing, China, October 1999.

[2] T.BeierandS. Neely, “Feature-based image metamorpho-
sis,” in Computer Graphics (Proceedings of ACM SIG-
GRAPH 92) vol. 26(2). Chicago, IL: ACM, 1992, pp.
35-42.

B. K. P. Horn and B. G. Schunck, “Determining optical
flow,” Artificial Intelligence vol. 17, pp. 185-203, 1981.

M. C. M. Slaney and B. Lassiter, “Automatic audio mor-
phing,” in Proc. ICASSPAtlanta Georgia, 1996.

K. Paliwal, “Interpolation properties of linear predic
tion parametric representations,” Proceedings of Eu-
rospeechvol. 2, Madrid, 1995, pp. 1029-1032.

D. T. Chappell and J. H. L. Hansen, “A comparison of
smoothing methods for segment concatenati®@péech
Communicationvol. 36, pp. 343—-374, 2002.

H. R. Pfitzinger, “Dfw-based spectral smoothing for con-
catenative speech synthesis,” Broceedings of ICSLP
vol. 2, Korea, October 2004, pp. 1397-1400.

R. McAulay and T. Quatieri, “Speech analysis/synthesis
based on a sinusoidal representatidBEE Trans. Acous-
tics, Speech and Signal Processingl. Vol. ASSP-34,
no. 4, pp. 744-754, August 1986.

[9] V. Goncharoff and M. Kaine-Krolak, “Interpolation of
Ipc spectra via pole-shifting,” iffroceedings of ICASSP
vol. 1, Detroit, May 1995, pp. 780-783.

B. Lucas and T. Kanade, “An iterative image registnatio
technique with an application to stero vision,” Rroc.
DARPA Image Understanding Workshd®81, pp. 121—
130.

J. Bergen and R. Hingorani, “Hierarchical motion-kdse
frame rate conversion,” David Sarnoff Research Center,
Princeton, New Jersey, Tech. Rep., Apr. 1990.

J. Bergen, P. Anandan, K. Hanna, and R. Hingorani, “Hi-
erarchical model-based motion estimation,”Rmceed-
ings of the European Conference on Computer Vision
Santa Margherita Ligure, Italy, 1992, pp. 237-252.

[Online]. Available:
http://cuneus.ai.mit.edu:8000/research/audioflow/

(3]
(4]
(5]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

