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Opportunity for Facial Recognition (Klontz & Jain 2013)



Unconstrained face recognition



Unconstrained face recognition
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Janus Program Concept

Advance the state-of-the-art in face recognition from using mugshots
to working with operationally relevant image sources (i.e., media in
the wild) using model-based recognition




Unconstrained face recognition

FR Performance “Factors such as aging, pose,
illLumination, and expression (A-PIE)
FR System can not only decrease performance,
HA EB they can cause its catastrophic
failure”
WC ®mD - (IARPA JANUS announcement)
WE
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Negative impact on performance (higher better) when

changing just a single factor (yaw)
- NIST Multiple Biometric Evaluation 2010



Transformations
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Transformations

Posterior ventral
stream areas
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Subtasks of unconstrained face

recognition

A collection of synthetic datasets constituting a partial
decomposition of the unconstrained problem into subtasks
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Subtasks of unconstrained face

recognition

A collection of synthetic datasets constituting a partial
decomposition of the unconstrained problem into subtasks

- 400 faces
- All rendered under specific transformation conditions for each

“subtask”
- Same-different tasks (like Labeled
N
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Faces in the Wild).




Subtasks of unconstrained face

recognition

A collection of synthetic datasets constituting a partial
decomposition of the unconstrained problem into subtasks

- 400 faces
- All rendered under specific transformation conditions for each

“subtask”
- Same-different tasks (like Labeled
9

Faces in the Wild).

Unit tests for unconstrained
face recognition



Affine subtasks

- Translation
- Scaling
- In-plane rotation




Non-affine subtasks

- Yaw rotation
- Pitch rotation
- lllumination




Clutter subtasks
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Alternative subtasks

Detection

Alignment

Recognition




Alternative subtasks

Detection

Alignment

Recognition

Labeled faces
in the wild

-Huang et al. 2008
-Leibo et al. 2014



Alternative subtasks

Detection

Alignment

- »| Recognition

Labeled faces
in the wild

- Aligned

95+ of 123 papers on LFVV indexed
by Google Scholar actually used
LFW-a, closely cropped

-Huang et al. 2008
-Leibo et al. 2014
-Taigman et al. Etc.



SUFR-in the Wild (SUFR-W)

- A new benchmark we proposed.

- Comparable to LFW.

-13,661 images to LFW's 13,233
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SUFR-in the Wild (SUFR-W)

- A new benchmark we proposed.

- Comparable to LFW. 60
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Conclusion

* We advocate an algorithm development approach combining both synthetic and
natural, unconstrained data.

* Even if you will ultimately be working within a DAR pipeline, recognition
systems that can handle transformation invariance is useful for recovering from
errors of alignment. No single point of failure.

* More explicit connections with neuroscience and other parts of computer vision.
* The next paper we wrote after this one was entitled:
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Can a biologically-plausible hierarchy effectively replace face detection, alignment,

recognition pipelines?

(available on arxiv)
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All datasets available from CBMM.MIT.EDU
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