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VIII. FROM UNDERSTANDING COMPUTATION TO 
UNDERSTANDING NEURAL CIRCUITRY: 

D.C. Marr and T. Poggio 

Modern neurophysiology has learned much about the operation 
of the individual neurons but little about the meaning of the circuits 
they compose. The reason' for this can be attributed, at least in part, to 
a failure to recognize what it means to understand a complex information­
processing system. 

Complex systems cannot be understood as simple extrapola­
tions of the properties of their elementary components. One does not 
formulate a description of thermodynamic effects using a large set of 
wave equations, one for each of the particles involved. One describes 
such effects at their own level and tries to show that, in principle, the 
microscopic and macroscopic descriptions are consistent with one 
another. 

The core of the problem is that a system as complex as a ner-
vous system or a developing embryo must be analyzed and understood 
at several different levels. For a system that solves an information­
processing problem, we may distinguish four important levels of 
description. At the lowest, there is basic component and circuit analysis 
-how do transistors, neurons, diodes, and synapses work? The second 
level is that of particular mechanisms: adders, multipliers, and memories 
accessed by address or by content. The third level is that of the algo­
rithm, and the top level contains the theory of the overall computation. 
For example, take the case of Fourier analysis. The computational 
theory of the Fourier transform is well understood and is expressed 
independently of the particular way in which it is computed. One level 
down, there are several algorithms for implementing a Fourier 
transform-the Fast Fourier Transform (FFT) (Cooley and Tukey, 
1965), which is a serial algorithm, and the paTane] "spatial" algorithm, 
which is based on the mechanisms of laser optics. All these algoritruns 
carry out the same computation, and the choice of which one to use 
depends upon the particular mechanisms that are available. If one has 
fast digital memory, adders, and multipliers, one will use the FFT; if 
one has a laser and photographic plates, one will use an "optical" algo­
rithm. In general, mechanisms are strongly determined by hardware, the 
nature of the computation is determined by the problem, and the algo­
rithms are determined by the computation and the available 
mechanisms. 

Each of these four levels of description has its place in the 
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eventual understanding of perceptual informatien precessing and it is 
impertant te keep them separate. Of ceurse, there are legical and causal 
relatienships ameng them, but the impertant peint is that these levels 
of descriptien are .only leosely related. Too .often in attempts te relate 
psychephysical preblems te physiolegy there is confusien about the 
level at which a preblem arises: Is it related mainly te biophysics (like 
afterimages) or primarily to infermatien processing (like the ambiguity 
of the. Necker cube)? More disturbingly, although the top level is the 
most neglected, it is alse the most impertant. This is because the 
structure of the computations that underlie perception depends more 
upon the compu tatienal preblems that have to be selved than on the 
particular hardware in which their solutions are implemented. There is 
an analog of this in physics, where a thermodynamic appreach 
represented, at least historically, the first stage in the study of matter. 
A descriptien in terms of mechanisms or elementary cemponents 
usuaIJy appears later. 

The main point, then, is that the tepmost of the feur levels, 
that at which the necessary structure of computation is defined, is a 
crucial but neglected .one. Its study is separate from the study .of par­
ticular algorithms, mechanisms, or hardware; and the techniques needed 
to pursue it are new. Marr and Poggio summarize some examples of 
vision theeries at the different levels described and illustrate the types 
of prediction that can emerge from each. 

Examples of Computational Theories 

Orientation Behavior of the Fly 

The flight behavier .of heuseflies requires an elaberate visual 
flight centrel system. Heuseflies perceive motien relative te the 
envirenment and thereby stabilize their flight ceurse; they lecate and 
fly teward preminent .objects; they are able te track meving targets and 
te chase other flies; they discriminate or prefer some specific visual pat­
terns. Werk at the Max-Planck-Institut ever the last few years has pre­
vided a geed understanding .of part .of this centrel system, especially 
the appreach of Reichardt and Peggie (1976), which represents an ex­
ample .of a theery at the tepmest, cemputatienal level. The overall 
cemputatien is defined and accessible te experimentation, since it 
invelves a complete input-eutput transductien, frem the .optical input 
to the behavioral metor .output. The theeretical descriptien and mest 
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of the related experiments are as yet restricted to a specific part of the 
orientation behavior of illes. However, the theory accounts in a quanti~ 
tative way for orientation, chasing, and spontaneous pattern preference 
behavior, at least in either one or two degrees of dynamical freedom. 
Although connections with physiological and anatomical data are being 
established, the theory is based on behavioral data. The theory leads to 
the following equation, which quantitatively describes and "predicts" 
the angular trajectory ~(t) of a fly fixating or tracking an object 
moving with angular speed tJ;U): 

e ~(t) + k~(t) + kw (t) = D [tJ;(t)] - r~(t) + N(t) (1) 

where the angular error ~(t) represents the instantaneous position of 
the pattern on the retina of the fly. The tenus on the left-hand side 
represent the flight dynamics (8 is the moment of inertia of the fly) k is 
a rotational friction constant, w(t) is the angular speed of the object). 
The right-hand side describes the instantaneous torque of the fly; the 
term N(t) is a zero-mean random process and is independent of the 
visual input; r~(t), a velocity-dependent optomotor response, is the 
result of a "movement computation"; D [~] carries the position in­
formation, acquired from the visual input by a "position computation" 
and represents the "attractiveness" profile associated with the specific 
pattern. All these terms have been characterized quantitatively through 
independent experiments. For instance, D[1JI(t») can be measured as 
the mean torque generated by a fixed, flying fly when the image of the 
given object is flickered (to avoid a stabilized image) on the retina at 
position tJ;. (-D[tJ;(t)] is shown in Figure 68.) 

Through Equation ] (and natural extensions of it) the theory 
predicts a rather complex behavior: fixation of several different pat­
terns, various instances of tracking, and some simple cases of pattern 
'(discrimination" (Poggio and Reichardt, 1973b; Reichardt and Poggio, 
1975). Figure 72 gives two examples of behavior that is quantitative-
1y explained by this approach. In summary, the theory outlines the 
basic logical organization of the visual control system of the fly. It 
holds that the nervous system perfonns two main computations on the 
visual input, one extracting movement information (the term rti;(t», the 
other providing position information (the term D ['" J ), and that these 
two terms determine the (closed-loop) behavior described by Equation 1. 

There is an approximate rule for determining the D ["'] and the 
r that are associated with a given pattern. The rule states that the 
"attractiveness" D [t/J ] of a pattern that can be decomposed into 
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Figure 72. a. The distributions of the error angJe 'IJI (t) during stationary fixation of two-stripe 
patterns (lower figure). The varying parameter is the angular separation of the two black, vertj­
cal stripes. Upper figure : corresponding histograms obtained from Equation 1. The fly fixates 
the center line of the pattern for separation values smaller than about 40° but either one of the 
two stripes for values larger than 40° . A typical phase transition occurs in the stationary ftxation 
distribution for a value of the parameter between 40° and 60°. The nonlinear superposi­
tion of very simple, local mechanisms (see Figure 76b) leads to such a symmetry breaking. An 
open loop analysis (for instance via. electrophysiology) cannot predict this closed loop behavior 
without the phenomenological theory. (Reichardt and Poggio, 1976] b. The same phase transi­
tion behavior can be observed in the fixation of the MueUer-Lyer figures. The histograms ex­
tend from -180° to 180° and show the fraction of time the fly gazed at any part of the two 
figures. The results conform to ihe theory's predictions. [Geiger and Poggio, 19751 A fly fix­
ates (in the horizontal degree of freedom) the "illusory" vertical line arising at the boundary be­
tween the two sets of parallel horizontal lines in the upper pattern (c). There is no horizontal 
fixation, however, of a similar illusory, vertical line in the lower pattern. The phenomenological 
theory correctly predicts these results. [Poggio and Geiger, unpublished 1 



474 Neuronal Mechanisms in Visual Perception 

several vertica1 edges or stripe segments can be derived) to a first 
approximation, from the linear superposition of the "attractiveness" 
profiles of each component. The precise justification for this rule and 
its range of validity must depend on the neural interactions that com­
pute D [l/J] and r ~. A later section describes briefly this leve1 of analysis 
(the "algorithm" level). 

A general remark is worth making here. The quantitative de­
scription of Equation 1 could not have beep obtained from single-cell 
recordings or from histology. This is a rather clear example where there 
seems to be little predictive extrapolation from the "component" level 
to the "computational" level. Extrapolation in the other direction is, 
however) somewhat easier: Equation 1 is probably a prerequisite of any 
full understanding at the level of circuitry. For instance, it provides a 
few suggestions abou t the modular organization of the underlying 
nervous network and several criteria for a physiological localization of 
functionally separated modules (Reichardt and Poggio, 1976). 

More Complex Visual Systems 

Since the early 1950's, there has been considerable progress in 
the study of vertebrate, and especially mammalian, visual systems. The 
technology of single-cell recording initiated what is widely regarded as a 
breakthrough in visual neurophysiology (Hubel and Wiesel, 1962). The 
use of the computer in psychophysics allowed lulesz (1971) to con­
struct random-dot stereograms, and very recently it made it possible for 
Shepard (1975) and his collaborators to explore with precision the phe­
nomena of "mental rotation." 

Interesting and important though these findings are, one must 
sometimes be allowed the lUXUry of pausing to reflect upon the overall 
trends that they represent in order to take stock of the kind of knowl­
edge that is accessible to these techniques. This' Bulletin is itself an 
attempt at examining the link between the two current approaches, 
neurophysiology and psychophysics. We would also like to know the 
limitations of these approaches and how to compensate for their 
deficiencies. 

Perhaps the most striking feature of these disciplines at present 
is their phenomenological character. They describe the behavior of cells 
or of subjects but do not explain it. What is area 17 actually doing? 
What are the problems in doing it that need explaining, and at what 
level of description should such explanations be sought? 
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In trying 'to come to grips with these problems, Marr has 
adopted a point of view that regards visual perception as a problem 
primarily in infonnation processing. The problem commences with a 
large, gray-level intensity array, and it culminates in a description that 
depends on that array and on the purpose that the viewer brings to it. 
Viewed in this light/ a theory of visual infonnation processing will 
exhibit the four levels of description that, as we saw, are attached to 
any device that solves an information-processing problem; and the first 
task of a theory of vision is to examine the top level. What exactly is 
the underlying nature of the computations being performed during 
visual perception? 

The empirical findings of the last 20 years, together with related 
anatomical (Zeki, }971a,b; Allman et aI., 1972, 1973; Allman and 
Kaas, 1974a,b,c) and cJinical (e.g., Critchley, 1966; Vinken and Bruyn, 
1969; Luria, 1970) experience, have strengthened a view for which 
widespread indirect evidence previously existed, namely that the 
cerebral cortex is divided into many different areas that are distin­
guished structurally) functionally, and by their anatomical connections. 
This suggests that, as a first approximation, visual information processing 
can be thought of as having a modular structure, a view that is strongly 
supported by evolutionary arguments. If this is true, the task of a top­
level theory of vision is clear: What are the modules, what does each do, 
and how? 

The approach of the M.LT. Artificial Intelligence Laboratory to 
the vision problem rests on these assumptions. It is believed that the 
principal problems at present are (1) to formulate the likely modulari­
zaticn and (2) to understand the computational problems each module 
presents. Unlike the case of the fly, the first step is the most difficult, 
just as fonnulating a problem in physics is often more difficult for a 
skilled mathematician than solving it . Nevertheless a variety of clues is 
available, from psychophysics and neurophysiology to the wide and 
interesting range of deficits reported in the literature of clinical neurol­
ogy. Those cases in which a patient lacks a particular highly circum­
scribed faculty are especially interesting (Efron, 1969; Warrington and 
Taylor, 1973); but more general impairments can also be informative, 
particularly the agnosias in which higher level analysis and interpreta­
tion are damaged while leaving other functions, like texture discrimina­
tion and figure-ground separation, relatively unimpaired. Such evidence 
must be treated with due caution, but it encourages us to examine ways 
of squeezing the last ounce of information from an image before taking 
recourse to the descending influence of high-level interpretation on early 



476 Neuronal Mechanisms in Visual Perception 

processing. Computational evidence can also be useful in suggesting tha t 
a certain module may exist. For example, Ullman (1976) showed that 
fluorescence may often be detected in an image using only local cues, 
and the method is so simple that one would expect something like it to 
be incorporated as a computational module in the visual system, even 
though there does not seem to be any supporting evidence, either 
clinical, physiological, or psychological. The same may be true of other 
visual qualities, like glitter and wetness, just as it is generally believed to 
be true for color, motion, and stereopsis. 

In order to introduce the reader to this approach, the next few 
sections present brief summaries of a particular modularization and the 
associated theories that have been studied over the last two years. The 
investigators are aware that the particular decomposition chosen here 
may not be exactly correct, and even if it is, the separation of modules 
is certainly not complete. All of the modules described here have been 
implemented in computer programs demonstrating that this particular 
scheme works for a number of natural images. Alternative decomposi­
tions that have been tried, in particular those that rely on much more 
interaction between low-level processing and high-level interpretation 
of an image (e.g., Shirai, 1973; Freuder, 1975), have not hitherto led 
to such satisfactory and promising results. 

The Primal Sketch 

It is a commonplace that a scene and a drawing of a scene ap­
pear very similar, despite the completely different gray-level images to 
which they give rise. This suggests that the artist's local symbols corre­
spond in some way to natural symbols that are computed out of the 
image during the nonnal course of its interpretation. The first part of 
the visual information-processing theory presented here therefore 
asserts that the first operation on an image is to transform it into its 
primal sketch, which is a primitive but rich representation of the in­
tensity changes that are present, and the local geometric relations 
between them (Figure 74, below, shows an example). In order to obtain 
this description, approximations to the first- and second-directional de­
rivatives of intensity are measured at several orientations and on several 
scales everywhere in the image, and these measurements are combined 
to fonn local descriptive assertions. The process of computing the 
primal sketch involves five important steps, the first of which can be 
compared with the measurements that are apparently made by simple 
cells in the visual cortex. One prediction made by this part of the 
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theory is that a given intensity change itself determines which simple­
cell measurements are used to describe it. This is in direct contrast to 
theories that assert that each simple cell acts as a "feature-detector" 
whose output is freely available to subsequent processes. If this is true, 
it requires that a well-defined interaction take place between simple­
cell-like measurements made at the same orientation and position in 
the visual field but with different receptive field sizes (Marr, 1976c). 
Geometrical relations between neighboring items in the image are 
represented in the primal sketch by "virtual" lines joining them (Marr 
1976c). 

Stereopsis 

Suppose that images of a scene are available, taken from two 
nearby points at the same horizontal level. In order to compute stereo­
scopic disparity, the following steps must be carried out: (1) a particular 
location on a surface in the scene must be chosen from one image; (2) 
that location must be identified in the other image; and (3) the relative 
positions of the two images of that location must be measured. Notice 
that methods based on gray-level correlation between images fail to 
satisfy these conditions because a gray-level measurement does not 
define a point on a physical surface independently of the optics of the 
imaging device. The matching must be based on objective markings 
that lie on a physical surface, and so one has to use predicates that cor­
respond to changes in reflectance. One way of doing this is to obtain a 
primitive description of the intensity changes that exist in each image 
and then to match these descriptions. Line and edge segments, blobs, 
and edge termination points correspond quite closely to boundaries and 
reflectance changes on physical surfaces. 

The stereo problem may thus be reduced to that of matching 
two primitive descriptions, one from each eye. One can think of 
elements of these descriptions as having only position information, like 
the black points in a random-dot stereogram, although in practice there 
exist some rules about which matches between descriptive elements are 
possible, and some which are not. There are physical constraints that 
translate into two rules for how the left and right descriptions are com­
bined: (1) The uniqueness condition. Each item from each image may 
be assigned at most one disparity value. This condition rests on the 
premise that the items to be matched have a physical existence and can 
be in only one place at a time. (2) Continuity. Disparity varies smooth­
ly almost everywhere. This condition is a consequence of the cohesive-
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Figure 73. The geometry. of constraints on the computation ofbinocuJar disparity. A. The con­
straints for the case of a one-dimensional image . Lx and Rx represent the positions of descrip­
tive eJements from the left and right views. and the horizontal and vertical lines indicate the 
range of disparity values that can be assigned to left-eye and right-eye elements. The uniqueness 
condition states that only one disparity value may be assigned to each descriptive element. That 
is, only one disparity value may be "on" along each horizontal or vertical line. The continuity 
condition states that we seek soLutions in which disparity values vary smoothly almost every­
where. That is, solutions tend to spread along the dotted diagonals, which are lines of constant 
disparity, and between adjacent diagonals. B shows how this geometry appears at each inter­
section point. The constraints may be implemented by a network with positive and negative 
interactions that obey this geometry, because the stable states of such a network are precisely 
the states that satisfy the constraints on the computation. C. The constraint geometry for a 
two-dimensional image. The negative interactions remain essentially unchanged, but the positive 
ones now extend over a smaIL two-dimensional neighborhood . A network with this geometry 
was used to perform the compu tatian exhibited in Figure 77 . [Marr and Poggio J 
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ness of matter, and it states that only a relatively smalI fraction of the 
area of an image is composed of boundaries. These conditions on the 
computation are represented geometrically in Figure 73A. Later, a net­
work is exhibited that implements these conditions, and an illustration 
of how it solves random-dot stereograms is given. 

In this case the computational problem is rather well defined, 
essentially because of lulesz's (1971) demonstration that random-dot 
stereograms, containing no monocular information, yield stereopsis. It 
is not yet completely clear, however, what mechanisms are actually 
available for implementing this computation (for instance, do eye 
movements playa critical role?). As a consequence, it is an open ques­
tion whether the cooperative algorithm introduced later is used or 
whether simpler "serial" scanning algorithms may actually be imple­
menting the stereopsis computation (Marr and Poggio, 1976). 

a b 

i 
, -,~. 

c d e 

Figure 74. In a, the image of a toy bear, printed in a font with 16 gray levels. is shown. In b, 
the intensity at each point is represented along the z-axis. The spatial component of the raw 
primal sketch as obtained from this image is illustrated in c. Associated with each Jine segment 
are measures of contrast, type, and extent of the intensity change, position, and orientation. 
This image is so simple tha t purely local grouping processes suffice to extract the major forms 
from the primal sketch. These forms are exhibited in d, e, and f. [Marr and Poggio] 
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Grouping and Texture Vision 

The primal sketch of an image is, in general, a large and unwieldy 
collection of data. This is an unavoidable consequence of the irregular­
ity and complexity of natural images. The next important computational 
problem is how to decode the primal sketch. For most images, it 
appears unnecessary to invoke specific hypotheses about what is there 
until considerably later in the processing. The theory next applies a 
number of general selection and grouping processes to elements in the 
primal sketch. The purpose of these processes is to organize the local 
descriptive elements into forms and regions, which are closed contour 
groups that are obtained in various ways. Regions may be defined by 
their boundaries, which have been formed by grouping together some 
set of edge, line, or place-tokens; or they may be defined by a first­
order predicate operating on the primal sketch elements within it. This 
second method corresponds to the definition of a region by a texture, 
and it leads to a theory of the processes on which texture discrimina­
tion is based. 

It is important to realize that the descriptive items that may be 
grouped here can be very abstract-like tokens for the end of a line, a 
blob, or a constructed line that joins two blobs. Tokens are created for 
each new group, and these tokens themselves become subject to the 
operation of the same or similar grouping processes as operated on ele­
ments of the raw primal sketch. The grouping processes are very con­
servative. They satisfy a principle that seems to have general application 
to recognition problems, called the principle of least commitment, 
which states that nothing should be done that may later have to be 
undone. Only obvious groupings are made, and where there is doubt be­
tween two possible groupings, both are constructed and held pending 
subsequent selection. Figure 74 illustrates some results of applying 
these grouping processes. 

3-D Representation of Shape (Marr and Nishihara, 1977) 

The last two components of the theory concern the representa­
tion of three-dimensional shapes. One component deals with the nature 
of the representation system that is used, and the other with how to ob­
tain it from the types of description that can be delivered from the 
primal sketch. The key ingredients of the representation system are: 

1. The deep structure of the three-dimensional representation of 
an object consists of a stick figure, where in formal terms each stick 
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represents one or more axes in the object's generalized cone representa­
tion} as illustrated in Figure 75. In fact, a hierarchy of stick figures 
exists that allows one to describe an object on various scales with vary­
ing degrees of detail. 

2. Each stick figure is defined by a propositional data base 
called a 3-D model. The geometrical structure of a 3-D model is speci­
fied by storing the relative orientations of pairs of connecting axes. This 
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Figure 75. Analysis of a contour. The outline was obtained from a primal sketch just as Fig­
ure 74d was obtained from 74a. This contour is smoothed and then divided fito convex and 
concave components (b). The outline is searched for deeply concave points or segments, which 
correspond to main segmentation points. There are usually several possible matches for each 
such segmentation point, but the correct mates for each may be found by eliminating relatively 
poor candidates. The resuJt of this is the segmentation shown in c. Once these segments have 
been deftned, corresponding axes are easy to obtain (d). They do not usually connect but may 
be related to one another by intermediate lines which are called embedding relations (e). The 
resulting stick figure is shown in f, which, according to the theory, is the deep structure on 
which interpretation of this image is based. [Man and Poggio] 
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specification is local rather than global, and it contrasts with schemes in 
which the position of each axis is specified in isolation, using some 
circumscribing frame of reference. 

3. When a 3-D model is being used to interpret an image, the 
geometrical relationships in the model are interpreted by a computa­
tionally simple mechanism called the image-space processor, which 
may be thought of as a device for representing the positions of two 
vectors in 3-D space, and for computing their projections onto the 
image. 

4. During recognition, a sophisticated interaction takes place 
between the image, the 3-D model, and the image-space processor. This 
interaction gradually relaxes the stored 3-D model onto the axes com­
puted from the image. Some facets of this process resemble the compu­
tation of a 3-D rotation, but a simple computer graphics metaphor is 
misleading. In fact, the rotations take place on abstract vectors (the 
axes) that are not even present in the original image; at any moment, 
only two such vectors are explicitly represented. 

The essence of this part of the theory is a method for represent­
ing the spatial disposition of the parts of an object and their relation to 
the viewer. 

2~-D Analysis of an Image 

In simple images, the forms delivered from the primal sketch 
correspond to the contours of physical objects. Finally, therefore, we 
need to bridge the gap between such forms and the beginning of the 
3-D analysis described in the previous section. We call this "2Y2-
dimensional analysis," and it consists largely of assigning to contours 
labels that reflect aspects of their 3-D configuration before that configu­
ration has been made explicit. The most powerful single idea here is the 
distinction between convex and concave edges and contour segments. 
One can show that these distinctions are preserved by orthogonal pro­
jections and that they can be made the basis of a segmenting technique 
that decomposes a figure into 2-D regions that correspond to the 
appropriate 3-D decomposition for a wide range of viewing angles (see 
Figure 75). Marr (1976a) has proved that the assumptions that are im­
plicit in the use of the convex-concave distinction to analyze a contour 
are equivalent to assuming that the viewed shapes are composed of 
generalized cones. This gives additional support for using the stick-figure 
scheme based on generalized cones to represent 3-D shapes. The theory 
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assigns many alternating figure effects like the Necker cube to the exis­
tence of alternative, self-consistent labelings computed at this stage. 

It is perhaps worth mentioning one interesting point that has 
emerged from this way of recognizing and representing 3-D shapes. 
Warrington and Taylor (1973) described patients with right parietal 
lesions who had difficulty in recognizing objects see!1 in unconventional 
views-like the view of a waterpail seen from above. They did not 
attempt to define what makes a view unconventional. According to our 
theory, the most troublesome views of an object will be those in which 
its stick-figure axes cannot easily be recovered from the image. The 
theory therefore predicts that unconventional views in the Warrington 
and Taylor sense will correspond to those views in which an important 
axis in the object's generalized cylinder representation is foreshortened. 
Such views are by no means uncommon-if a 35 mm camera is directed 
toward one, one sees an unconven tional view of it since the axis of its 
lens is foreshortened. 

Examples of Algorithms and Mechan~ms 

Between the top and bottom of our four levels lie descriptions of 
algorithms and descriptions of mechanisms. The distinction between 
these two levels is rather subtle, since they are often closely related. 
The form of a specific algorithm can impose strong constraints on the 
mechanisms, and vice versa. Let us consider three examples. 

"Simple" Algorithms 

An algorithm operates on some kind of input and yields a cor­
responding output. In formal terms, an algorithm can be thought of as a 
mapping between the input and the output space. Perhaps the simplest 
of all nonlinear operators on a linear space are the so-called polynomial 
operators. They encompass a broad spectrum of applications including 
all linear problems, and they approximate all sufficiently smooth, non­
linear operators. For this particular class of "simple" algorithms (i.e., 
representable through a "smooth" operator), polynomial representa­
tions provide a canonical decomposition in a series of simpler, multi­
linear operators (Palm and Poggio, 1977). Figure 76 shows this 
decomposition in terms of interactions, or "graphs," of various orders; 
in this wayan algorithm, or its network implementation, may be de-
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Figure 76. Graphical representation (a) of the decomposition of a "simple" nonlinear, n-input 
"algorithm" in to a sum of interactions of various order. The functional representation 

s { .. . x/O ... };: L(o) + L iLfI) {Xj(t)} + L: ik L(~) { xj(t)xh(l) } + ... 

where L(n) is an n-linear mapping, can be read from an appropriate sequence of such elemen­
tary graphs_ (b) The graphs that implement the fly's orientation behavior, studied by Reichardt 
and Poggio. Several fmdings suggest that they may correspond to separate physiological mod­
ules. Characteristic functional and computational properties can be associ:,ted with each inter­
action type. IPoggio and Reichardt, 1976] 

composed into an additive sequence of simple, canonical terms, just as, 
in another context, a function can be conveniently characterized by 
its various Fourier terms. Moveover, functional and computational 
properties can be associated with interactions of a given order and type. 



Neurosciences Res. Prog. Bull., Vol. 15, No.3 485 

Poggio and Reichardt (1976) used the polynomial representa­
tion of functions to classify the algorithms underlying movement, 
position, and figure-ground computation in the fly's visual system. The 
idea was to identify which terms, among the diversity of the possible 
ones, are implied by the experimental data. Figure 76 shows the graphs 
that play a significant role in the fly's control of flight and, in this 
sense, characterize the algorithms involved. The notion that seems to 
capture best the computational complexity of these simple, smooth 
mappings is the notion of p-order (perception-order, see Poggio and 
Reichardt, 1976). Movement computation in the fly is of order 2, and 
figure-ground discrimination in the simple case of relative motion de­
pends on fourth-order graphs, but possibly with p-order 2. A closed, or 
Type 1 (Marr, 1976b), theory of this kind may be a useful way of 
characterizing preprocessing operations in nervous systems. The 
approach has a rather limited validity, however, since it does not apply 
to the large and important class of "nonsmooth" algorithms, where 
cooperative effects, decisions, and symbols play an essential role. While 
an arbitrarY' number of mechanisms and circuits may implement these 
"smooth" algorithms, it is clear that "forward" interactions between 
neurons are the most natural candidates. 

Although the various levels of description are only loosely re­
lated, knowledge of the computation and of the algorithm may some­
times admit inferences at the lowest level of anatomy and physiology. 
The description of the visual system of the fly at the computational 
and functional level suggests, for instance, that different, separate 
neural structures may correspond to the various computations. Recent 
data support this conjecture. Movement computation (the tenn r~(t) of 
Equation 1 and the second order graph of Figure 76) seems to depend 
mainly on receptor system 1-6, while the position computation (the 
term D[~(t)] of Equation 1 and the "self-graph" of Figure 76 seems 
dependent on receptor system 7-8 (Wehrhahn, 1976*). Mutants of 
Drosophila, normal with respect to the movement algorithm, are 
apparently disturbed in the position algorithm.t 

"Coopera tive" Algorithms 

A more general and not precisely definable class of algorithms 
includes what one might call "cooperative algorithms." Such algorithms 

* Also C. Wehrhahn, manuscript in preparation. 
tM. Heisenberg, unpublished results. 
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may describe bifurcations and phase transitions in dynamic systems. 
An essential feature of a cooperative algorithm is that it operates on 
many "input" elements and reaches a global organization via local but 
highly interactive constraints. An apparently cooperative' algorithm 
plays a major role in binocular depth perception (Julesz, 1971). The 
stereopsis computation defined by Figure 73A applies many local con­
straints to many local inputs to yield a final state consistent with these 
constraints. Various mechanisms could implement this type of algo­
rithm. Parallel, recurrent, nonlinear interactions, both excitatory and 
inhibitory, seem to represent a natural implementation. In the stereopsis 
case, such a mechanism is illustrated in the rest of Figure 73. This 
mechanism may be realized through many different components and 
circuitries. In the nervous system, however, there are certain very ob­
vious candidates, which allow some definite predictions. For instance, 
one is led to conjecture the existence of disparity columns (actually 
layers) of cells with reciprocal excitatory short-range interactions on 
each layer and loni-range inhibitory interactions between layers with 
the characteristic orthogonal geometry of Figure 73. Figure 77 shows 
that this algorithm successfully extracts depth information from 
random-dot stereograms. The algorithm exhibits typical cooperative 
phenomena, like hysteresis and disorder-order transitions. It is im­
portant to stress that it is the computational problem that detennines 
the structure of the excitatory and inhibitory interactions and not 
"hardware" considerations about neurons or synapses. The apparent 
success of this cooperative algorithm in tackling the stereo problem 
suggests that other perceptual computations may be easy to implement 
in similar ways. Likely candidates are "filling-in" phenomena, subjec­
tive contours, figural reinforcement, some kinds of perceptual grouping, 
and associative retrieval. In fact, the associative retrieval network de­
scribed by Man (1971) in connection with a theory of the hippocampal 
cortex implements a cooperative algorithm. 

Procedural Algorithms 

Still another and larger class of algorithms is represented by the 
specification of procedures and the construction and manipulation of 
explicit symbolic descriptions. For example, the 3-D representation 
theory described in the previous section explains how the stick figure 
representation of a viewed object may be obtained from an image and 
manipulated during recognition. The detailed specification of the algo­
rithms involved here is carried out by defining the data structures that 
are created to represent the situation and by specifying procedures that 
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Figure 77. A pair of random-dot stereograms (left and right), the initial state of a network that 
implements the algorithm illustrated in Figure 73, and the rust 9 iterations of the network 
operating on this stereo pair. To understand how the figures represent states of the network, 
imagine looking down on it from above. The different disparity layers in the network are in 
parallel planes spread out horizontally, and the viewer is looking down through them. In each 
plane, some nodes are on and some are off. Each layer in the network has been assigned a dif­
ferent gray level, so that a node that is switched on in the lowest layer contributes a dark point 
to the image and one that is switched on in the top layer contributes a lighter point. Initially 
(iteration 0) the network is disorganized, but in the final state order has been achieved (itera­
tion 9) . The central square has a convergent disparity of 2 relative to the background , and it 
therefore appears lighter. The density of the original random-dot stereogram was 50%, but the 
algorithm succeeds in extracting disparity values at densities down to less than 5%. Let C de.. 
note the state of a ceU (either 0 or 1) in the 3-D array of Figure 738 at the nth iteration. Then 
the algorithm used here reads 

c = ~{ L C - (Y. L C + {i L C } 

where ~(x) = 0 if x < 0, and x = 1 otherwise; S(ijh) is a neighborhood of cell (ijh) on the same 
disparity layer; O(ijh) represents the neighborhood of cell (ijh) defined by the "orthogonal" 
directions shown in Figure 73B. Excitation between parallel disparity layers may also be pres­
ent. IMarr and Poggio J 
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operate on these data structures in accordance with the information 
currently being delivered from the image and that available from stored 
models. 

This way of specifying an algorithm is very general and power­
ful, although, unlike the two other ways discussed, it is a far cry from 
the circuitry level of description at which neurophysiological experi­
ments are carried out. In a digital computer, one does not try to bridge 
the gap between these two levels in one step. Instead, a basic instruc­
tion set, an assembler, a high-level language (LISP, ALGOL), and a com­
piler are interposed to ease the burden of passing from the description 
of a computation down to the specification of a particular pattern of 
current flow. 

We may eventually expect a similar intermediate vocabulary to 
be developed for describing the central nervous system. Hitherto, only 
one nontrivial "machine-codeH operation has been studied in the con­
text of neural hardware, namely simple storage and retrieval functions 
(Brindley, 1969; Marr, 1969, 1971). 


