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Representations that are invariant to translation, scale and other
transformations, can considerably reduce the sample complexity of
learning, allowing recognition of new object classes from very few
examples—a hallmark of human recognition. Empirical estimates of
one-dimensional projections of the distribution induced by a group
of affine transformations are proven to represent a unique and invari-
ant signature associated with an image. We show how projections
yielding invariant signatures for future images can be learned au-
tomatically, and updated continuously, during unsupervised visual
experience. A module performing filtering and pooling, like sim-
ple and complex cells as proposed by Hubel and Wiesel, can com-
pute such estimates. Under this view, a pooling stage estimates
a one-dimensional probability distribution. Invariance from observa-
tions through a restricted window is equivalent to a sparsity property
w.r.t. to a transformation, which yields templates that are a) Gabor
for optimal simultaneous invariance to translation and scale or b)
very specific for complex, class-dependent transformations such as
rotation in depth of faces. Hierarchical architectures consisting of
this basic Hubel-Wiesel module inherit its properties of invariance,
stability, and discriminability while capturing the compositional or-
ganization of the visual world in terms of wholes and parts, and
are invariant to complex transformations that may only be locally
affine. The theory applies to several existing deep learning con-
volutional architectures for image and speech recognition. It also
suggests that the main computational goal of the ventral stream
of visual cortex is to provide a hierarchical representation of new
objects/images which is invariant to transformations, stable, and
discriminative for recognition—and that this representation may be
continuously learned in an unsupervised way during development and
natural visual experience.

Invariance | Hierarchy ‘ Convolutional networks | Visual cortex

‘We propose a theory of hierarchical architectures and,
in particular, of the ventral stream in visual cortex. The
initial assumption is that the computational goal of the
ventral stream is to compute a representation of objects
which is invariant to transformations. The theory shows
how a process based on high-dimensional dot products can
use stored ”movies” of objects transforming, to encode
new images in an invariant way. Theorems show that in-
variance implies several properties of the ventral stream
organization and of the tuning of its neurons. Our main
contribution is a theoretical framework for the next phase
of machine learning beyond supervised learning: the unsu-
pervised learning of representations that reduce the sam-
ple complexity of the final supervised learning stage.

It is known that Hubel and Wiesel’s original proposal [1]
for visual area V1-—of a module consisting of complex cells
(C-units) combining the outputs of sets of simple cells (S-
units) with identical orientation preferences but differing reti-
nal positions—can be used to construct translation-invariant
detectors. This is the insight underlying many networks for vi-
sual recognition, including HMAX [2] and convolutional neu-
ral nets [3, 4]. We show here how the original idea can be
expanded into a comprehensive theory of visual recognition
relevant for computer vision and possibly for visual cortex.
The first step in the theory is the conjecture that a repre-
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Fig. 1: A hierarchical architecture built from HW-modules. Each
red circle represents the signature vector computed by the associated
module (the outputs of complex cells) and double arrows represent
its receptive fields — the part of the (neural) image visible to the
module (for translations this is also the pooling range). The “im-
age” is at level 0, at the bottom. The vector computed at the top
of the hierarchy consists of invariant features for the whole image
and is usually fed as input to a supervised learning machine such
as a classifier; in addition signatures from modules at intermediate
layers may also be inputs to classifiers for objects and parts.

sentation of images and image patches, with a feature vector
that is invariant to a broad range of transformations—such
as translation, scale, expression of a face, pose of a body, and
viewpoint—makes it possible to recognize objects from only
a few labeled labeled examples, as humans do. The second
step is proving that hierarchical architectures of Hubel-Wiesel
(‘HW’) modules (indicated by A in Fig. 1) can provide such
invariant representations while maintaining discriminative in-
formation about the original image. Each A-module provides
a feature vector, which we call a signature, for the the part
of the visual field that is inside its “receptive field”; the sig-
nature is invariant to (R?) affine transformations within the
receptive field. The hierarchical architecture, since it com-
putes a set of signatures for different parts of the image, is
invariant to the rather general family of locally affine trans-
formations (which includes globally affine transformations of
the whole image). This remarkable invariance of the hierar-

Reserved for Publication Footnotes

L At the time of our writing, the working monograph [5] contains the most up-to-date account of
the theory. The current monograph evolved from one that first appeared in July 2011 ([5]). Shorter
papers describing isolated aspects of the theory have also appeared: [6, 7, 5]. The present paper is
the first time the entire argument has been brought together in a short document.
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chies we consider, follows from the key property of covariance
of such architectures for image transformations and from the
uniqueness and invariance of the individual module signatures.
The basic HW-module is at the core of the properties of the
architecture. This paper focuses first on its characterization
and then outlines the rest of the theory, including its connec-
tions with machine learning, machine vision and neuroscience.
Most of the theorems are in the supplementary information,
where in the interest of telling a complete story we quote some
results which are described more fully elsewhere®.

Invariant representations and sample complexity

One could argue that the most important aspect of intelligence
is the ability to learn. How do present supervised learning
algorithms compare with brains? One of the most obvious
differences is the ability of people and animals to learn from
very few labeled examples. A child, or a monkey, can learn a
recognition task from just a few examples. The main motiva-
tion of this paper is the conjecture that the key to reducing
the sample complexity of object recognition is invariance to
transformations. Images of the same object usually differ from
each other because of simple transformations such as transla-

100 4

80 1

accuracy (%)

60

HH ....................... e l

1.2 3 4

10 20
Number of examples per class
Rectified
1

o @ s 'i [ "SI PG

Not rectified

Cg % o:ﬂ > - ’x

- g om B ¥ K,

S , g ! < « X 3¢

1
1
1
1
1
1
1
1
1
1
1
1
L

Fig. 2: Sample complezity for the task of categorizing cars vs air-
planes from their raw pizel representations (no preprocessing). A.
Performance of a nearest-neighbor classifier (distance metric = 1 -
correlation) as a function of the number of examples per class used
for training. Each test used 74 randomly chosen images to evaluate
the classifier. Error bars represent +/- 1 standard deviation com-
puted over 100 training/testing splits using different images out
of the full set of 440 objects X number of transformation condi-
tions. Solid line: The rectified task. Classifier performance for the
case where all training and test images are rectified with respect
to all transformations; example images shown in B. Dashed line:
The unrectified task. Classifier performance for the case where
variation in position, scale, direction of illumination, and rotation
around any azis (including rotation in depth) is allowed; example
images shown in C. The images were created using 3D models from
the Digimation model bank and rendered with Blender.
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tion, scale (distance) or more complex deformations such as
viewpoint (rotation in depth) or change in pose (of a body)
or expression (of a face).

The conjecture is supported by previous theoretical work
showing that almost all the complexity in recognition tasks
is often due to the viewpoint and illumination nuisances that
swamp the intrinsic characteristics of the object [8]. It implies
that in many cases, recognition—i.e., both identification, e.g.,
of a specific car relative to other cars—as well as categoriza-
tion, e.g., distinguishing between cars and airplanes—would
be much easier (only a small number of training examples
would be needed to achieve a given level of performance), if
the images of objects were rectified with respect to all trans-
formations, or equivalently, if the image representation itself
were invariant.

The case of identification is obvious since the difficulty in
recognizing exactly the same object, e.g., an individual face,
is only due to transformations. In the case of categorization,
consider the suggestive evidence from the classification task in
Fig. 2. The Fig. shows that if an oracle factors out all trans-
formations in images of many different cars and airplanes,
providing “rectified” images with respect to viewpoint, illu-
mination, position and scale, the problem of categorizing cars
vs airplanes becomes easy: it can be done accurately with
very few labeled examples. In this case, good performance
was obtained from a single training image of each class, using
a simple classifier. In other words, the sample complexity of
the problem seems to be very low.2 We argue in this paper
that the ventral stream in visual cortex tries to approximate
such an oracle, providing a quasi-invariant signature for im-
ages and image patches.

Invariance and uniqueness

Consider the problem of recognizing an image, or an image
patch, independently of whether it has been transformed by
the action of a group like the affine group in R?. We would
like to associate to each object/image I a signature, i.e. a
vector which is unique and invariant with respect to a group
of transformations, but our analysis, as we will see later, is
not restricted to the case of groups. In the following, we
will consider groups that are compact and, for simplicity, fi-
nite (of cardinality |G|). We indicate, with slight abuse of
notation, a generic group element and its (unitary) represen-
tation with the same symbol g, and its action on an image as
gI(z) = I(¢g7'z) (e.g. a tramslation, geI(z) = I(z — €)). A
natural mathematical object to consider is the orbit Or—i.e.,
the set of images gl generated from a single image I under the
action of the group. We say that two images are equivalent
when they belong to the same orbit: I ~ I’ if 3g € G such
that I’ = gI. This equivalence relation formalizes the idea
that an orbit is invariant and unique. Indeed, if two orbits
have a point in common they are identical everywhere. Con-
versely, two orbits are different if none of the images in one
orbit coincide with any image in the other (see also [9]).
How can two orbits be characterized and compared?
There are several possible approaches. A distance between
orbits can be defined in terms of a metric on images, but its
computation is not obvious (especially by neurons). We fol-
low here a different strategy: intuitively two empirical orbits
are the same irrespective of the ordering of their points. This
suggests that we consider the probability distribution Pr in-
duced by the group’s action on images I (g can be seen as

2A similar argument involves estimating the cardinality of the universe of possible images gener-
ated by different viewpoints—such as variations in scale, position and rotation in 3D—versus true
intraclass variability, e.g. different types of cars. With reasonable assumptions on resolution and
size of the visual field, the first number would be several orders of magnitude larger than the, say,
10° distinguishable types of cars.
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a realization of a random variable). It is possible to prove
(see theorem 1 in SI Appendix section 1) that if two orbits
coincide then their associated distributions under the group
G are identical, that is

I~ = O =0p < P;=Pyp. [1]

The distribution P; is thus invariant and discriminative
but it also inhabits a high-dimensional space and is therefore
difficult to estimate. In particular, it is unclear how neurons
or neuron-like elements could estimate it.

As argued later, simple operations for neurons are (high-
dimensional) inner products, (-, -), between inputs and stored
“templates” which are neural images. It turns out that clas-
sical results (such as the Cramer-Wold theorem [10], see The-
orem 2 section 1 in SI Appendix) ensure that a probabil-
ity distribution Pr can be almost uniquely characterized by

K one-dimensional probability distributions P< 1,t%) induced

by the (one-dimensional) results of projections <I Lt >, where
t* k= 1,..,K are a set of randomly chosen images called
templates. A probability function in d variables (the image
dimensionality) induces a unique set of 1-D projections which
is discriminative; empirically a small number of projections
is usually sufficient to discriminate among a finite number of
different probability distributions. Theorem 3 in SI Appendix
section 1 says (informally) that an approximately invariant
and unique signature of an image I can be obtained from
the estimates of K 1-D probability distributions P< 1tk for

k=1,---,K. The number K of projections needed to dis-
criminate n orbits, induced by n images, up to precision e
(and with confidence 1 — §%) is K > 5log %, where c is a
universal constant.

Thus the discriminability question can be answered pos-
itively (up to €) in terms of empirical estimates of the one-
dimensional distributions P(I,tk> of projections of the image

onto a finite number of templates t*, k = 1, ..., K under the
action of the group. . .

Memory-based learning of invariance

Notice that the estimation of P< 1,ek) requires the observation

of the image and “all” its transforms gI. Ideally, however, we
would like to compute an invariant signature for a new object
seen only once (e.g., we can recognize a new face at different
distances after just one observation). It is remarkable and al-
most magical that this is also made possible by the projection
step. The key is the observation that (gI,t") = (I,g~'t").
The same one-dimensional distribution is obtained from the
projections of the image and all its transformations onto a
fixed template, as from the projections of the image onto all
the transformations of the same fixed template. Indeed, the
distributions of the variables <I,g_1tk> and <gI,tk> are the
same. Thus it is possible for the system to store for each
template t* all its transformations gt* for all g € G and later
obtain an invariant signature for new images without any ex-
plicit understanding of the transformations g or of the group
to which they belong. Implicit knowledge of the transforma-
tions, in the form of the stored templates, allows the system
to be automatically invariant to those transformations for new
inputs (see eq. [7] in SI Appendiz).

An estimate of the one-dimensional Probability Density
Functions (PDFs) P< 14%) can be written in terms of his-

tograms as pf (1) = 1/|G] Z'ﬁ‘l mn({I,g:t")), where n,, n =
1,---, N is a set of nonlinear functions (see SI Appendix sec-
tion 1). A visual system need not recover the actual prob-
abilities from the empirical estimate in order to compute a
unique signature. The set of ¥ (I) values is sufficient, since
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it identifies the associated orbit (see box 1 in SI Appendix).
Crucially, mechanisms capable of computing invariant repre-
sentations under affine transformations for future objects can
be learned and maintained in an unsupervised automatic way
by storing and updating sets of transformed templates which
are unrelated to those future objects.

A theory of pooling

The arguments above make a few predictions. They re-
quire an effective normalization of the elements of the in-
k I,gitk
(1, 9:t") = n<1uugnk}u
<gI,tk> = <I,g_1tk> to be valid (see section 0 of SI Ap-
pendix). Notice that invariant signatures can be computed
in several ways from one-dimensional probability distribu-
tions. Instead of the uﬁ(]) components representing directly
the empirical distribution, they may represent the moments
mE(I) =1/|G| le(:;‘l«[, git*))™ of the same distribution [11].
Under weak conditions, the set of all moments uniquely char-
acterizes the one-dimensional distribution P< 1,6k) (and thus

ner product (e.g. ) for the property

Pr). n =1 corresponds to pooling via sum/average (and is
the only pooling function that does not require a nonlinear-
ity); n = 2 corresponds to ”energy models” of complex cells
and n = oo is related to the max-pooling. In our simulations,
using just one of these moments seems to usually provide suffi-
cient selectivity to a hierarchical architecture (see ST Appendix
section 5). Other nonlinearities are also possible; see [5]. The
arguments of this section may begin to provide a theoretical
understanding of “pooling”, giving insight to the search for
the “best” choice in any particular setting—something which
is normally done empirically for each application (e.g., [12]).
According to this theory, these different pooling functions are
all invariant, each one capturing part of the full information
contained in the PDF's.

Implementations

There are other interesting and surprising results beyond
the core of the theory described above. We sketch some of
the main ones — the supplementary information provides the
mathematical statements. Here it is important to stress that
the theory has strong empirical support from several specific
implementations which have been shown to perform well on
a number of databases of natural images. The main set of
tests is provided by HMAX| an architecture in which pooling
is done with a max operation and invariance, to translation
and scale, is mostly hardwired (instead of learned). Its per-
formance on a variety of tasks is summarized in SI Appendix
section 5. Strong performance is also achieved by other very
similar architectures (again special cases of the theory) such
as [13]. High performance for non-affine and even non-group
transformations allowed by the hierarchical extension of the
theory (see below) has been shown on large databases of face
images, where our latest system advances the state-of-the-art
on several tests [7]. Deep learning convolutional networks are
another case of architectures that have achieved very good
performance and are probably special cases of the theory even
if they do not incorporate all of the possible invariances or
their unsupervised learning ([14, 15], but see [16]).

Extensions of the Theory

Invariance Implies Localization and Sparsity. The core of the
theory applies without qualification to compact groups such
as rotations of the image in the image plane. Translation and
scaling are however only locally compact, and in any case,
each of the modules of Fig. 1 observes only a part of the
transformation’s full range. Each A-module has a finite pool-
ing range, corresponding to a finite “window” over the orbit
associated with an image. Fzact invariance for each module
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is equivalent to a condition of localization/sparsity of the dot
product between image and template (see Theorem 5 and Fig.
2 in section 1 of SI Appendix). In the simple case of a group
parametrized by one parameter r the condition is:

<I7g7-tk> =0 |r|>a. [2]

Since this condition is a form of sparsity of the generic im-
age I w.r.t. to a dictionary of templates t* (under a group),
this results provides a powerful justification for sparse encod-
ing in sensory cortex (e.g. [17]).

It turns out that localization yields the following surpris-
ing result (Theorem 6 and 7 in SI Appendix): optimal in-
variance for translation and scale implies Gabor functions as
templates. Since a frame of Gabor wavelets follows from nat-
ural requirements of completeness, this may also provide a
general motivation for the Scattering Transform approach of
Mallat based on wavelets [18].

The same Equation 2, if relaxed to hold approximately,
that is <Ic,grtk> ~ 0 |r| > a, becomes a sparsity condition
for the class of Ic wrt the dictionary t* under the group G
when restricted to a subclass I¢ of similar images. This prop-
erty (see SI Appendix at the end of section 1), which is simi-
lar to compressive sensing “incoherence” (but in a group con-
text), requires that I and t* have a representation with rather
sharply peaked autocorrelation (and correlation). When the
condition is satisfied, the basic HW-module equipped with
such templates can provide approximative invariance to non-
group transformations such as rotations in depth of a face or
its changes of expression (see Proposition 8, section 1, SI Ap-
pendix). In summary, condition Equation 2 can be satisfied in
two different regimes. The first one, exact and valid for generic
I, yields optimal Gabor templates. The second regime, ap-
proximate and valid for specific subclasses of I, yields highly
tuned templates, specific for the subclass. Note that this ar-
guments suggests generic, Gabor-like templates in the first
layers of the hierarchy and highly specific templates at higher
levels (note also that incoherence improves with increasing
dimensionality).

Hierarchical architectures. We focused so far on the basic HW-
module. Architectures consisting of such modules can be
single-layer as well as multi-layer (hierarchical) (see Fig. 1).
In our theory, the key property of hierarchical architectures
of repeated HW-modules—allowing the recursive use of single
module properties at all layers—is the property of covariance:
the neural image at layer n transforms like the neural image
at layer n — 1, that is, calling X,(I) the signature at the £*"
layer, £1(gZe—1(I)) = g7 '3e(Ze—1 (1)), Vg € G, I € X (see
Proposition 9 in section 2, SI Appendix).

One-layer networks can achieve invariance to global trans-
formations of the whole image (exact invariance if the trans-
formations are a subgroup of the affine group in R?) while
providing a unique global signature which is stable with re-
spect to small perturbations of the image, (see Theorem 4
SI Appendix and [5]). The two main reasons for a hierarchi-
cal architecture such as Fig. 1 are a) the need to compute
an invariant representation not only for the whole image but
especially for all parts of it which may contain objects and
object parts and b) invariance to global transformations that
are not affine (but are locally affine, that is, affine within the
pooling range of some of the modules in the hierarchy)® Fig.
3 show examples of invariance and stability for wholes and
parts. In the architecture of Fig. 1, each A-module provides
uniqueness, invariance and stability at different levels, over in-
creasing ranges from bottom to top. Thus, in addition to the
desired properties of invariance, stability and discriminabil-
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ity, these architectures match the hierarchical structure of the
visual world and the need to retrieve items from memory at
various levels of size and complexity. The results described
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Fig. 3: Empirical demonstration of the properties of invariance,
stability and uniqueness of the hierarchical architecture (see Theo-
rem 12) in a specific 2 layers implementation (HMAX). Inset (a)
shows the reference image on the left and a deformation of it (the
eyes are closer to each other) on the right; (b) shows an HW-
module at layer 2 (c2) whose receptive fields contain the whole face
provides a signature vector which is (Lipschitz) stable with respect
to the deformation. In all cases, the Figure shows just the FEu-
clidean morm of the signature vector. Notice that the c1 and ca
vectors are not only invariant but also selective. Error bars repre-
sent 1 standard deviation. Two different images (c¢) are presented
at various location in the visual field. The Euclidean distance be-
tween the signatures of a set of HW-modules at layer 2 with the
same receptive field (the whole image) and a reference vector is
shown in (d). The signature vector is invariant to global transla-
tion and discriminative (between the two faces). In this example
the HW-module represents the top of a hierarchical, convolutional
architecture. The images we used were 200x 200 pizels

2

Fig. 4: A neuron (green) can easily perform high-dimensional in-
ner products between inputs on its dendritic tree and stored synapse
weights.

30f course, one could imagine local and global one-layer architectures used in the same visual sys-
tem without a hierarchical configuration, but there are further reasons favoring hierarchies including
compositionality and reusability of parts. In addition to the issues of sample complexity and connec-
tivity, one-stage architectures are unable to capture the hierarchical organization of the visual world
where scenes are composed of objects which are themselves composed of parts. Objects (i.e., parts)
can move in a scene relative to each other without changing their identity and often changing only
in a minor way the scene (i.e., the object). Thus global and local signatures from all levels of the
hierarchy must be able to access memory in order to enable the categorization and identification of
whole scenes as well as of patches of the image corresponding to objects and their parts.

Footline Author



here are part of a general theory of hierarchical architectures
which is beginning to take form (see [5, 18, 19, 20]) around
the basic function of computing invariant representations.

The property of compositionality discussed above is re-
lated to the efficacy of hierarchical architectures vs. one-layer
architectures in dealing with the problem of partial occlusion
and the more difficult problem of clutter in object recognition.
Hierarchical architectures are better at recognition in clutter
than one-layer networks [21], because they provide signatures
for image patches of several sizes and locations. However,
hierarchical feedforward architectures cannot fully solve the
problem of clutter. More complex (e.g. recurrent) architec-
tures are likely needed for human-level recognition in clutter
(see for instance [22, 23, 24]) and for other aspects of human
vision. It is likely that much of the circuitry of visual cortex
is required by these recurrent computations, not considered
in this paper.

Visual Cortex

The theory described above effectively maps the computation
of an invariant signature onto well-known capabilities of cor-
tical neurons. A key difference between the basic elements of
our digital computers and neurons is the number of connec-
tions: 3 vs. 10°—10* synapses per cortical neuron. Taking into
account basic properties of synapses, it follows that a single
neuron can compute high-dimensional (103 . 104) inner prod-
ucts between input vectors and the stored vector of synaptic
weights [25]. A natural scenario is then the following (see
also Fig. 4). Consider an HW-module of “simple” and “com-
plex” cells [1] looking at the image through a window defined
by their receptive fields (see SI Appendix, section 1). Sup-
pose that images of objects in the visual environment undergo
affine transformations. During development—and more gen-
erally, during visual experience—a set of |G| simple cells store
in their synapses an image patch ¢* and its transformations
git*, ...,g‘G‘tk—one per simple cell. This is done, possibly at
separate times, for K different image patches t* (templates),
k=1,---,K. Each gt* for ¢ € G is a sequence of frames,
literally a movie of image patch t* transforming. There is a
very simple, general, and powerful way to learn such uncon-
strained transformations. Unsupervised (Hebbian) learning is
the main mechanism: for a “complex” cell to pool over sev-
eral simple cells, the key is an unsupervised Foldiak-type rule:
cells that fire together are wired together. At the level of com-
plex cells this rule determines classes of equivalence among
simple cells — reflecting observed time correlations in the real
world, that is transformations of the image. Time continuity,
induced by the Markovian physics of the world, allows asso-
ciative labeling of stimuli based on their temporal contiguity.

Later, when an image is presented, the simple cells com-
pute (I, g;t*) for i = 1,...,|G|. The next step, as described
above, is to estimate the one-dimensional probability distri-
bution of such a projection, that is the distribution of the
outputs of the simple cells. It is generally assumed that com-
plex cells pool the outputs of simple cells. Thus a complex cell
could compute pk (1) = 1/|G| 219 o((I, g:it*) +nA) where o
is a smooth version of the step function (o(z) = 0 for < 0,
o(z) =1for x > 0) and n = 1,..., N. Each of these N com-
plex cells would estimate one bin of an approximated CDF
(cumulative distribution function) for P, 1.4+ Following the

theoretical arguments above, the complex cells could compute,
instead of an empirical CDF, one or more of its moments.
n = 1 is the mean of the dot products, n = 2 corresponds
to an energy model of complex cells [26]; very large n corre-
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sponds to a max operation. Conventional wisdom interprets
available physiological data to suggest that simple/complex
cells in V1 may be described in terms of energy models, but
our alternative suggestion of empirical histogramming by sig-
moidal nonlinearities with different offsets may fit the diver-
sity of data even better.

As described above, a template and its transformed ver-
sions may be learned from unsupervised visual experience
through Hebbian plasticity. Remarkably, our analysis and em-
pirical studies[5] show that Hebbian plasticity, as formalized
by Oja, can yield Gabor-like tuning—i.e., the templates that
provide optimal invariance to translation and scale (see SI
Appendix section 1)*.

The localization condition (Equation 2) can also be satis-
fied by images and templates that are similar to each other.
The result is invariance to class-specific transformations. This
part of the theory is consistent with the existence of class-
specific modules in primate cortex such as a face module and
a body module [32, 33, 6]. It is intriguing that the same lo-
calization condition suggests general Gabor-like templates for
generic images in the first layers of a hierarchical architec-
tures and specific, sharply tuned templates for the last stages
of the hierarchy®. This theory also fits physiology data con-
cerning Gabor-like tuning in V1 and possibly in V4 (see [5]).
It can also be shown that the theory, together with the hy-
pothesis that storage of the templates takes place via Hebbian
synapses, also predicts properties of the tuning of neurons in
the face patch AL of macaque visual cortex [5, 34].

From the point of view of neuroscience, the theory makes
a number of predictions, some obvious, some less so. One of
the main predictions is that simple and complex cells should
be found in all visual and auditory areas, not only in V1.
Our definition of simple cells and complex cells is different
from the traditional ones used by physiologists, which do not
quite capture the different role in the theory of simple and
complex cells. Simple cells represent the result of dot prod-
ucts between image and (transformed) templates: they are
therefore linear. Complex cells represent invariant measure-
ments associated with histograms of the outputs of simple
cells or of moments of it. Probably the simplest and most
useful moment is the average of the simple cells output: the
corresponding complex cells are linear (contrary to common
classification rules)®. The theory implies that invariance to
all image transformations can be learned during development
and adult life. This is however consistent with the possibility
that the basic invariances may be genetically encoded by evo-
lution but also refined and maintained by unsupervised visual
experience. Studies on the development of visual invariance in
organisms such as mice raised in virtual environments could
test these predictions and their boundaries.

Discussion

The goal of this paper is to introduce a new theory of learn-
ing invariant representations for object recognition which cuts

4There is psychophysical and neurophysiological evidence that the brain employs such learning rules
(e.g. [28, 30] and references therein). A second step of Hebbian learning may be responsible for
wiring a complex cells to simple cells that are activated in close temporal contiguity and thus cor-
respond to the same patch of image undergoing a transformation in time [27]. Simulations show
that the system could be remarkably robust to violations of the learning rule's assumption that
temporally adjacent images correspond to the same object [31]. The same simulations also suggest
that the theory described here is qualitatively consistent with recent results on plasticity of single
IT neurons and with experimentally-induced disruptions of their invariance [30].

5These incoherence properties of visual signatures are attractive from the point of view of informa-
tion processing stages beyond vision, such as memory access.

1t is also important to note that simple and complex units do not need to always correspond
to different cells: it is conceivable that a simple cell may be a cluster of synapses on a dendritic
branch of a complex cell with nonlinear operations possibly implemented by active properties in the
dendrites.
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across levels of analysis [5, 35]. At the computational level, it
gives a unified account of why a range of seemingly different
models have recently achieved impressive results on recog-
nition tasks. HMAX [2, 36, 37], Convolutional Neural Net-
works [3, 4, 38, 39] and Deep Feedforward Neural Networks
[14, 15, 16] are examples of this class of architectures—as is,
possibly, the feedforward organization of the ventral steam.
In particular, the theoretical framework of this paper may
help explain the recent successes of hierarchical architectures
of convolutional type on visual and speech recognition tests
e.g. [15, 14]). At the algorithmic level, it motivates the devel-
opment, now underway, of a new class of models for vision and
speech which includes the previous models as special cases. At
the level of biological implementation, its characterization of
the optimal tuning of neurons in the ventral stream is consis-
tent with the available data on Gabor-like tuning in V1 ([5])
and the more specific types of tuning in higher areas such as
in faces patches.

Despite significant advances in sensory neuroscience over
the last five decades, a true understanding of the basic func-
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tions of the ventral stream in visual cortex has proven to be
elusive. Thus it is interesting that the theory of this paper is
directly implied by a simple hypothesis for the main compu-
tational function of the ventral stream: the representation of
new objects/images in terms of a signature which is invariant
to transformations learned during visual experience, thereby
allowing recognition from very few labeled examples—in the
limit, just one. A main contribution of our work to machine
learning is a novel theoretical framework for the next major
challenge in learning theory beyond the supervised learning
setting which is now relatively mature: the problem of repre-
sentation learning, formulated here as the unsupervised learn-
ing of invariant representations that significantly reduce the
sample complexity of the supervised learning stage.
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0. Setup and Definitions

Let X be a Hilbert space with norm and inner product de-
noted by ||-|| and (-,-), respectively. We can think of X as
the space of images (our images are usually “neural images”).
We typically consider X = R? L*(R), L*(R?). We denote
with G a (locally) compact group and with an abuse of no-
tation, we denote by g both a group element in G and its
action/representation on X.

When useful we will make the following assumptions which
are justified from a biological point of view.

Normalized dot products of signals (e.g. images or “neural
activities”) are usually assumed throughout the theory, for
convenience but also because they provide the most elemen-
tary invariances — to measurement units (origin and scale).
We assume that the dot products are between functions or
vectors that are zero-mean and of unit norm. Thus (I,t)
I'-1 t'—¢
(= o=l
malization stage before each dot product is consistent with
the convention that the empty surround of an isolated image
patch has zero value (which can be taken to be the average
“grey” value over the ensemble of images). In particular the
dot product of a template — in general different from zero —
and the “empty” region outside an isolated image patch will
be zero. The dot product of two uncorrelated images — for
instance of random 2D noise — is also approximately zero.

sets I =

with (-) the mean. This nor-

Remarks:

1. The k-th component of the signature associated with a
simple-complex module is (see Equation [10]) uk(I) =

ﬁ deGo Nn ( <g[7 tk>) where the functions 7, are such

that Ker(n,) = {0}: in words, the empirical histogram es-
timated for <gI, tk> does not take into account the 0 value,
since it does not carry any information about the image
patch. The functions 7, are also assumed to be positive
and invertible.

2. Images I are inputs to the modules of later one and
have a maximum total possible support corresponding to
a bounded region B C R?, which we refer to as the visual
field, and which corresponds to the spatial pooling range
of the module at the top of the hierarchy of Figure 1 in the
main text. Neuronal images also written as I are inputs to
the modules in higher layers and are usually supported in
a higher dimensional space R, corresponding to the signa-
ture components provided by lower layers modules; isolated
objects are images with support contained in the pooling
range of one of the modules at an intermediate level of the
hierarchy. We use the notation v([I), u(I) respectively for
the simple responses <gI, tk> and for the complex response

uk (1) = |G1—0‘ deGo nn(<g1,tk>). To simplify the nota-
tion we suppose that the center of the support of pe(I)
coincides with the center of the poolin% range.

3. The domain of the dot products <th > corresponding to
templates and to simple cells is in general different from

the domain of the pooling deGo‘ We will continue to use

www.pnas.org/cgi/doi/10.1073/pnas.0709640104

the commonly used term receptive field — even if it mixes
these two domains.

4. The main part of the theory characterizes properties of the
basic HW module — which computes the components of an
invariant signature vector from an image patch within its
receptive field.

5. It is important to emphasize that the basic module is always
the same throughout the paper. We use different mathe-
matical tools, including approximations, to study under
which conditions (e.g. localization or linearization, see end
of section 1) the signature computed by the module is in-
variant or approximatively invariant.

6. The pooling deGo is effectively over a pooling window in
the group parameters. In the case of 1D scaling and 1D
translations, the pooling window corresponds to an inter-
val, e.g. [a?,a’t*], of scales and an interval, e.g. [—Z,Z],
of x translations, respectively.

7. All the results in this paper are valid in the case of a dis-
crete or a continuous compact group: in the first case we
have a sum over the transformations, in the second an inte-
gral over the Haar measure of the group. In the following,
for convenience, the theorems are proved in the continuous
setting.

8. Normalized dot products also eliminate the need of the ex-
plicit computation of the determinant of the Jacobian for
affine transformations (which is a constant and is simpli-
fied dividing by the norms) assuring that (AI, At) = (I, t),
where A is an affine transformation.

1. Basic Module

Compact Groups (fully observable). Given an image I € X
and a group representation g, the orbit Oy = {I' € Xs.t.I' =
gI,g € G} is uniquely associated to an image and all its trans-
formations. The orbit provides an invariant representation of
I,i.e. Or = Oyg for all g € G. Indeed, we can view an orbit as
all the possible realizations of a random variable with distri-
bution Pr induced by the group action. From this observation,
a signature X(I) can be derived for compact groups, by using
results characterizing probability distributions via their one
dimensional projections.
In this section we study the signature given by

o tB(D) = (i), ey s o 1 v (D),
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where each component u’“ (I e RY is a histogram correspond-
ing to a one dimensional projection defined by a template
t* € X. In the following we let X = R%.

Orbits and probability distributions. If G is a compact group,
the associated Haar measure dg can be normalized to be a
probability measure, so that, for any I € R?, we can define
the random variable,

Zr:G =R Zi(g) =gl

The corresponding distribution P; is defined as Pr(A) =

dg(Z;'(A)) for any Borel set A C R? (with some abuse of
notation we let dg be the normalized Haar measure).

Recall that we define two images, I,I’ € X to be equivalent
(and we indicate it with I ~ [I’) if there exists g € G s.t.
I = gI'. We have the following theorem:

Theorem 1. The distribution Pr is invariant and unique i.e.
I~I & Pr=Pp.

Proof:

We first prove that I ~ I’ = P; = Pp. By defini-
tion Pr = Pp iff [, dPi(s) = [,dPp(s), VA C X, that is

fZI—I(A) dg = fz;l(A) dg, where,

ZiN(A) ={g€G st gl CA}
ZM(A)={geGst gl € Ay ={gecq st ggl C A},

VACX. Notethat VAC Xifgl € A = g5 lgl =
g7 'I' € A, sothat g € Z;'(A) = g3 ' € Z;'(A),
ie. Z7'(A) C Z;'(A). Conversely g € Z;,'(A) = gg €
Z;'(A), so that Z; '(A) = Z;,'(A)g, VA. Using this obser-
vation we have,

/ dg :/ dg :/ dg
zZ7 N4 (Z;, (A3 Z51A)

where in the last integral we used the change of variable
§ = ¢g§ ' and the invariance property of the Haar measure:
this proves the implication.

To prove that P = P = [ ~ I’, note that Pr(A)—
P (A) =0,V AC X, is equivalent to

/ dg—/ dg:/ dg=0,VAe X
ZM(A) zZ7hA) z7 M A2z, (A)

where A denotes the symmetric difference.
Z7 N (A)AZM(A) = 0 or equivalently

This implies

ZiNA) =Z"(A),VAex

In other words of any element in A there exist ¢’, g” € G such
that g¢'T = ¢”I'. This implies I = g'ilg”I' =gl', g= g/flg”7
ie. I ~1I. QED.

Random Projections for Probability Distributions.. Given the
above discussion, a signature may be associated to I by con-
structing a histogram approximation of Pr, but this would
require dealing with high dimensional histograms. The fol-
lowing classic theorem gives a way around this problem.

For a template t € S(R?), where S(R?) is unit sphere in R%,
let I — (I,t) be the associated projection. Moreover, let
P11y be the distribution associated to the random variable
g — (gI,t) (or equivalently g — <I7gfl7§>7 if g is unitary).
Let £ = [t € S(RY), s.t. Pryy = Q1]

2 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

Theorem 2. (Cramer-Wold, [1]) For any pair P,Q of probabil-
ity distributions on R?, we have that P = Q if and only if
& =S(RY).

In words, two probability distributions are equal if and only if
their projections on any of the unit sphere directions is equal.
The above result can be equivalently stated as saying that the
probability of choosing ¢ such that P = Q¢ is equal to
1 if and only if P = @ and the probability of choosing ¢ such
that Py = Q) is equal to 0 if and only if P # Q (see
Theorem 3.4 in [2]). The theorem suggests a way to define a
metric on distributions (orbits) in terms of

d(Pr, Pr) = /do(Pa,t),P(I/,t))dk(t)v VI,I' € X,

where do is any metric on one dimensional probability distri-
butions and dA(t) is a distribution measure on the projections.
Indeed, it is easy to check that d is a metric. In particular
note that, in view of the Cramer Wold Theorem, d(P,Q) = 0
if and only if P = @. As mentioned in the main text, each
one dimensional distribution P(; ;) can be approximated by a
suitable histogram u'(I) = (4, (I))n=1,...~v € R", so that, in
the limit in which the histogram approximation is accurate

AP Pr) ~ [ (D NN, VLT € X, (1]

where d, is a metric on histograms induced by dpo.

A natural question is whether there are situations in which
a finite number of projections suffice to discriminate any two
probability distributions, that is Pr # P; < d(Pr, Py/) # 0.
Empirical results show that this is often the case with a small
number of templates (see [3] and HMAX experiments, sec-
tion 5). The problem of mathematically characterizing the
situations in which a finite number of (one-dimensional) pro-
jections are sufficient is challenging. Here we provide a partial
answer to this question.
We start by observing that the metric [1] can be approxi-
mated by uniformly sampling K templates and considering

(P Pr) = ¢ S duli" (Do ), 2]

where p* = ,utk. The following result shows that a finite num-
ber K of templates is sufficient to obtain an approximation
within a given precision €. Towards this end let

a0l (1) = [ =it - 18]

RN

where ||-||g~ is the Euclidean norm in RY. The following the-
orem holds:

Theorem 3. Consider n images X, in X. Let K > Slog%,
where ¢ is a universal constant. Then

|d(Py, Pp) — dic (Pr, Pr)| <, [4]

with probability 1 — 6%, for all I,I' € X,,.

Proof:

The proof follows from an application of Hoeffding inequality
and a union bound.

Fix I,I' € X,. Define the real random variable Z : S(R%) —
R

)

Z(t*) = Huk(I) - ,ﬁm” L k=1,...,K.

RN
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From the definitions it follows that ||Z] < ¢ and E(Z) =
d(Pr, Pr/). Then Hoeffding inequality implies

Z(t")| > e,

K
5 1
|d(Pr, Prr) = dic(Pr, Pro)| = |5 ;E(m -
with probability at most e’k A union bound implies a
result holding uniformly on X, ; the probability becomes at

most n2e~°<"X. The desired result is obtained noting that

this probability is less than 62 as soon as nZe K < §2 that
is K> Slog%. QE.D.

The above result shows that the discriminability question
can be answered in terms of empirical estimates of the one-
dimensional distributions of projections of the image and
transformations induced by the group on a number of tem-
plates t* k=1,..., K.

Theorem 3 can be compared to a version of the Cramer
Wold Theorem for discrete probability distributions. Theo-
rem 1 in [4] shows that for a probability distribution con-
sisting of k atoms in R%, we see that at most k + 1 direc-
tions (di = d2 = ... = di+1 = 1) are enough to characterize
the distribution, thus a finite — albeit large — number of one-
dimensional projections.

The signature (1) = (ui(I),..., X (I)) is obviously in-
variant (and unique) since it is associated to an image and
all its transformations (an orbit). Each component of the sig-
nature is also invariant — it corresponds to a group average.
Indeed, each measurement can be defined as

uﬁ(1)=|fé|z7)n(<glytk>)» [5]

for G finite group, or equivalently

u5(1)=/cdgnn(<glltk>) =/Gdgnn(<f,g’ltk>)7 (6]

when G is a (locally) compact group. Here, the non linearity
7 is chosen to define an histogram approximation. Then, it
is clear that from the properties of the Haar measure we have

pi(gl) = ph(I), VgeG,I€eX. [7]

Boz 1: computing an invariant signature p(I)

1: procedure S1GNATURE(])
Given K templates {gt*|Vg € G}.
2: for k=1,...,K do
3: Compute <I,gtk>, the normalized dot products
of the image with all the transformed
templates (all g € G).
Pool the results: POOL({(Z, gt*)|Vg € G}).
5: end for
6: return p(I) = the pooled results for all k.
> wu(l) is unique and invariant if there are enough
templates.
7. end procedure

Stability. With X(I) € RV¥ denoting as usual the signature
of an image, and d(X(I),X(I')), I,I' € X, a metric, we say

Footline Author

that a signature X is stable if it is Lipschitz continuous (see
[7]), that is

dx(I),s(I) < L|I-TI|,, L>0, VI,LI'eXx. [8]

In our setting we let

K
1
d(2(1),%(I') = 7= > du(pt (1), 1
k=1
and assume that pb(I) = [dg . ((gI,t")) forn =1,...,N
and k = 1,...,K. If L < 1 we call the signature map con-
tractive. The following theorem holds.

Theorem 4. Assume the templates to be normalized and L, =
maxp (Ly, ) s.t. NL, <1, where Ly, is the Lipschitz constant
of the function n,. Then

a(s(I), s(I'

(1),

)< lT=l,, [9]

forall I,I' € X.

Proof:

By definition, if the non linearities 7, are Lipschitz contin-
uous, for all n = 1,..., N, with Lipschitz constant L,,,, it
follows that for each & component of the signature we have

Hz’“(z) 0

‘IRN

N
< S0 (3t b ) — gy
i\ &=\ 2
1 N
S a2 B S = 1
‘G| n=1 geaG

where we used the linearity of the inner product and Jensen’s
inequality. Applying Schwartz’s inequality we obtain

ZZIII I'|* lg=t+)*

n=1geqG

(PROESNS)

‘RN - \G|

where L, = maxyn(Ly,,). If we assume the templates and
their transformations to be normalized to unity then we fi-
nally have,

HE’“(I) — SR

TR

from which we obtain [8] summing over all K components
and dividing by 1/K. In particular if NL, < 1 the map is
non expansive and summing each component we have eq. [9].
Q.E.D.

The above result shows that the stability of the empirical
signature

S(I) = (pi(D),. .., un(I) € RNE,

provided with the metric [2] (together with [3]) holds
for nonlinearities with Lipschitz constants L,, such that
Nmazn(Ly,) < 1.

Partially Observable Groups. This section outlines invariance,
uniqueness and stability properties of the signature obtained
in the case in which transformations of a group are observ-
able only within a window “over” the orbit. The term POG
(Partially Observable Groups) emphasizes the properties of
the group — in particular associated invariants — as seen by
an observer (e.g. a neuron) looking through a window at a
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part of the orbit. Let G be a finite group and Go C G a
subset (note: Gy is not usually a subgroup). The subset of
transformations Go can be seen as the set of transformations
that can be observed by a window on the orbit that is the
transformations that correspond to a part of the orbit. A lo-
cal signature associated to the partial observation of G can be
defined considering

pn(I) = @g;onn(@f,t’“»,

and g, (I) = (4% (I))n.x. This definition can be generalized
to any locally compact group considering,

i =5 [ (o1 )do. Vo= [ dg 1)

Note that the constant V{ normalizes the Haar measure, re-
stricted to Go, so that it defines a probability distribution.
The latter is the distribution of the images subject to the
group transformations which are observable, that is in Go.
The above definitions can be compared to definitions [5] and
[6] in the fully observable groups case. In the next sections we
discuss the properties of the above signature. While stability
and uniqueness follow essentially from the analysis of the pre-
vious section, invariance requires developing a new analysis.

[10]

POG: Stability and Uniqueness. A direct consequence of The-
orem 1 is that any two orbits with a common point are iden-
tical. This follows from the fact that if gI,¢'I’ is a common
point of the orbits, then

gI'=gl = I = (g/)_lgf.

Thus the two images are transformed versions of one another
and O[ = O[!,

Suppose now that only a fragment of the orbits — the part
within the window — is observable; the reasoning above is still
valid since if the orbits are different or equal so must be any
of their “corresponding” parts.

Regarding the stability of POG signatures, note that the rea-
soning in the previous section can be repeated without any
significant change. In fact, only the normalization over the
transformations is modified accordingly.

POG: Partial Invariance and Localization. Since the group is
only partially observable we introducethe notion of partial in-
variance for images and transformations Gy that are within
the observation window. Partial invariance is defined in terms
of invariance of

pn (1) = Vio ; dgnn(<gf,t'“>)-
0

We recall that when gI and t* do not share any common
support on the plane or I and t are uncorrelated, then
(g1,t*) = 0. The following theorem, where Go corresponds to
the pooling range states a sufficient and necessary condition
for partial invariance:

[12]

Theorem 5. Invariance and Localization. Let I,t € H a
Hilbert space, nn, : R — RY a set of bijective (positive) func-
tions and G a locally compact group. Let Go C G and suppose
supp(<g[,tk>) C Go. Then for any given g€ G, t* T € X

() =ut(gD) & (g1,t") =0, Vg € G/(Go N gGo),

<g1’“,t> #0, Vg € GoNgGo. [13]
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L supp((glt)) |

g6y
supp((gIlt)SGo N g6y

Fig. 1: Necessary and sufficient condition for local invariance: if
the support of (gl,t) is sufficiently localized it will be completely
contained in the pooling interval even if the image is group shifted,
or, equivalently (as shown in the Figure), if the pooling interval is
group shifted by the same amount.

Proof:
If uk(I) — pk(gI) = 0 by definition we have

[ (o)) =l ast )
/G AGG 99 7]n(<gl’tk>)
/G/(GOW?GO) 4 ’7"( <g1’ tk> )

where A is the symbol for symmetric difference (AAB =
(AUB)/(ANB) A,B sets) and the last equality holds if
supp(<g[, tk>) C Gy. Since the functions 7, are positive and
bijective, eq. [14] implies (gI, tk> =0, g € G/(Go N gGo).
See Fig. above for a visual explanation. Q.E.D.

Condition in eq. [14] is a localization condition on the prod-
uct of the transformed image and the template (see Fig. be-
low for a pictorial intuitive example in the case of translation
group). In the next paragraph we will see how localization
conditions for scale and translation transformations implies a
specific form of the templates.

0

(14]

gat gst get g7t gst got giot
. =7

b

o Ity
&/

b gatgatgat ¢ git gt y_s_’_‘ b
[ P |
t +

3\ It

</

Fig. 2: An HW-module pooling the dot products of trans-
formed templates with the image. The input image I is shown
centered on the template t; the same module is shown above for
a group shift of the input image, which now localizes around
the transformed template g-t. Images and templates satisfy
the localization condition (I,Tyt) # 0, |z| > a with a = 3.
The interval [—b, b] indicates the pooling window. The shift in
x shown in the Figure is a special case: the reader should con-
sider the case in which the transformation parameter, instead
of x, is for instance rotation in depth.
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The Localization condition: Translation and Scale In
this section we identify Gy with subsets of the affine group.
In particular, we study separately the case of scale and trans-
lations (in 1D for simplicity).

In the following it is helpful to assume that all images I
and templates ¢ are strictly contained in the range of transla-
tion or scale pooling, P, since image components outside it are
not measured. We will consider images I restricted to P: for
translation this means that the suw of I is contained in P,
for scaling, since gsI = I(sz) and I(sz) = (1/5) [(w/s) (where
* indicates the Fourier transform), assuming a scale pooling
range of [s.,, sar], implies a range [wl,,wl], [wk,, whs] (m and
M indicates maximum and minimum) of spatial frequencies
for the maximum support of I and t. As we will see because
of Theorem 5 invariance to translation requires spatial local-
ization of images and templates and less obviously invariance
to scale requires bandpass properties of images and templates.
Thus images and templates are assumed to be localized from
the outset in either space or frequency. The corollaries be-
low show that a stricter localization condition is needed for
invariance and that this condition determines the form of the
template. Notice that in our framework images and templates
are bandpass because of being zero-mean. Notice that, in ad-
dition, neural “images” which are input to the hierarchical
architecture are spatially bandpass because of retinal process-
ing.

We now state the result of Theorem 5 for one dimensional
signals under the translation group and — separately — under
the dilation group.

Let I,t € L*(R), (R,4) the one dimensional locally com-
pact group of translations and T : L*(R) — L*(R) a uni-
tary representation of the translation operator. Let, e.g.,
Go = [-b,b], b > 0 and suppose supp(t) C supp(I) C [-b,].
Further suppose supp({TI,t)) C [—b,b]. Then eq. [13] spe-
cializes to

Corollary 1: Localization in the spatial domain is neces-
sary and sufficient for translation invariance. For any fixed
t,I € X we have:

pn (1) =

with £ > 0.

[15]

Similarly let G = (RY,-) be the one dimensional locally com-
pact group of dilations and denote with D, : L?(R) — L*(R)
a unitary representation of the dilation operator. Let Gy =
[1/S,5], S > 1 and suppose supp((DsI,t)) C [1/S,S]. Then
eq. [13] gives

Corollary 2: Localization in the spatial frequency domain is
necessary and sufficient for scale invariance. For any fixed
t,I € X we have:

WA = 15 (Do), s € [1,8] & (DI,t) £0, Vs € [g, s).

[16]
with § > 1.

Localization conditions of the support of the dot product for
translation and scale are depicted in Fig. 3,a),b).

As shown by the following Lemma 1 Eq. [15] and [16] gives
interesting conditions on the supports of ¢ and its Fourier
transform #. For translation, the corollary is equivalent to
zero overlap of the compact supports of I and ¢. In particular
using Theorem 5, for I = ¢, the maximal invariance implies
the following localization conditions on ¢

(gt,t) =0 g€ GL CG [17]

Footline Author

pE(To D), Vo € [0,5] < (To1,t) #0, Vo € [—b+Z,b].

which we call self-localization. For 1D translations it has the
simple form (T,¢,t) =0 |z| > a, a > 0.

For scaling we consider the support of the Fourier transforms
of I and ¢t. The Parseval theorem allows to rewrite the dot
product (DI, t) which is in L*(R?) as <D5L f> in the Fourier
domain. . .
In the followmg we suppose that the support of t and [ is
respectively [w’,,wh;] and [w!,,wl;] where w’ could be very
close to zero (images and templates are supposed to be zero-
mean) but usually are bigger then zero.

Note that the effect of scaling I with (typically s = 27 with
j <0) is to change the support as supp(D 1) = s(supp(])).
This change of the support of I in the dot product <D 1 t>

gives non trivial conditions on the intersection with the sup-
port of ¢ and therefore on the localization w.r.t. the scale
invariance. We have the following Lemma;:

Lemma 1. Invariance to translation in the range [0,Z], T > 0
s equivalent to the following localization condition of t in
space

supp(t) C [-b— Z,b] — supp(I), I € X. [18]

Separately, invariance to dilations in the range [1,5], § > 1
is equivalent to the following localization condition of € in fre-
quency w

supp(f) C [~we — AT, —wi + AT]U [we — Al wr + A]
% s wh —wfn
Al = Swp —whr g, we = [19]
Proof:
To prove that supp(t) C [-b+ T, b] — supp(I) note that eq.

[15] implies that supp((Tw1,t)) C [—b+ Z, b] (see Fig. 3, a)).

Being supp(T. 1)) = supp(l + £) C supp(I) + supp(t) we
have supp(t) C [-b— = b} — supp(I).
To prove the condition in eq. [19] note that eq.
equivalent in the Fourier domain to

— 1 W 3

(DsI,t) = <DSI,t> = /dw I(g)t(w) #0 Vs €[5, 5]
(20]
The situation is depicted in Fig. 3 b') for S big enough: in

[16] is

this case in fact we can suppose the support of Ds/sI to be
on an interval on the left of that of supp(f) and DsI on the

supp((T,I1t))

a) —b E Eb
-b+% | i b+x

b 1 i supp((Dsl|t) |

Ty A

supp(t)

b) —

0 . _

supp(DL%I) supp(DsI)
Fig. 3: a),b): if the support of the dot product between the im-

age and the template is contained in the intersection between
the pooling range and the group translated (a) or dilated (b)
pooling range the signature is invariant. In frequency condi-
tion b) becomes b’): when the Fourier supports of the dilated
image and the template do not intersect their dot product is
z€ero.
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right; the condition supp(<5:1,f>) C [5/S,S] is in this case
equivalent to

<wh, why <wls [21]

Oz\w

I
Wh
which gives

¢t -
A} = Maz(Ay) = Max(%) = Swh —wh 2

s [22]

and therefore eq. [19].Q.E.D.

Note that for some s € [5/S, S] the condition that the Fourier
supports are disjoint is only sufficient and not necessary for
the dot product to be zero since cancelations can occur. How-
D.I,t
(unless some pathological examples of the function I) implies
disjointness of the supports, since I(w/s) # I(w/s’), s # &'
unless I has constant spectrum in the interval [5/S5,S5]. A
similar reasoning is valid for the translation case.

ever to have < > = 0 on a continuous interval of scales,

The results above lead to a statement connecting invari-
ance with localization of the templates:

Theorem 6. Mazimum translation invariance implies a tem-
plate with minimum support in the space domain (x); maz-
imum scale invariance implies a template with minimum sup-
port in the Fourier domain (w).

Proof:

We illustrate the statement of the theorem with a simple ex-
ample. In the case of translations suppose, e.g., supp(I) =
[-b,b], supp(t) = [—a,a], a <V <b. Eq. [18] reads

[~a,a] C[~b+z+b,b—1]

which gives the condition —a > —b + b + Z, ie. ™% =
b — b — a; thus, for any fixed b,b’ the smaller the template
support 2a in space, the greater is translation invariance.
Similarly, in the case of dilations, increasing the range of in-
variance [1,3], § > 1 implies a decrease in the support of ¢
as shown by eq. [22]; in fact noting that |supp(f)| = 2A, we
have

disupp()| _ 2k _
ds S
i.e. the measure, |- |, of the support of f is a decreasing func-

tion w.r.t. the measure of the invariance range [1,5]. Q.E.D.

Because of the assumption of maximum possible support
of all I being finite there is always localization for any choice
of I and ¢ under spatial shift. Of course if the localization sup-
port is larger than the pooling range there is no invariance.
For a complex cell with pooling range [—b,b] in space only
templates with self-localization smaller than the pooling range
make sense. An extreme case of self-localization is t(z) = 6(x),
corresponding to maximum localization of tuning of the sim-
ple cells.

Invariance, Localization and Wavelets. The conditions equiv-
alent to optimal translation and scale invariance — maximum
localization in space and frequency — cannot be simultane-
ously satisfied because of the classical uncertainty principle: if
a function t(z) is essentially zero outside an interval of length
Az and its Fourier transform I (w) is essentially zero outside
an interval of length Aw then

Az - Aw > 1. [23]

6 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

In other words a function and its Fourier transform cannot
both be highly concentrated. Interestingly for our setup the
uncertainty principle also applies to sequences (see [5]).

It is well known that the equality sign in the uncertainty
principle above is achieved by Gabor functions (see [6]) of the
form

Vg o (T) =€ 2027, 0, €RT, wo R [24]

The uncertainty principle leads to the concept of “opti-
mal localization” instead of exact localization. In a simi-
lar way, it is natural to relax our definition of strict invari-
ance (e.g. p%(I) = uf(g'I)) and to introduce e-invariance as

pE(I) — pf(g'I) < e. In particular if we suppose, e.g., the
following localization condition
_a? _s?
(T.I,t)y=e °%, (DsI,t)=e¢ °%, 04,0 ER [25]
we have

W (TS T) = do (1) = %\/E(erf([—b, DA+ 2,b+1]))
(D) = %\/a(erf([—us, SJAs/S,53]) ).

where erf is the error function. The differences above, with
an opportune choice of the localization ranges o5, 0, can be
made as small as wanted.

We end this paragraph by a conjecture: the optimal
e—invariance is satisfied by templates with non compact sup-
port which decays exponentially such as a Gaussian or a Ga-
bor wavelet. We can then speak of optimal invariance mean-
ing “optimal e-invariance”. The reasonings above lead to the
theorem:

i (DsT) —

Theorem 7. Assume invariants are computed from pooling
within a pooling window with a set of linear filters. Then the
optimal templates (e.g. filters) for mazimum simultaneous in-
variance to translation and scale are Gabor functions

t(z) = e 20207, [26]

Remarks

1. The Gabor function ¢, wo( ) corresponds to a Heisenberg

bo:r which has a z-spread o2 = J z?|g(z)|dz and a w spread

= [w?|§(w)|dw with area o,0.,. Gabor wavelets arise

under the action on % (x) of the translation and scaling

groups as follows. The function ¢ (z), as defined, is zero-
mean and normalized that is

[ wlardo =

(@) = 1.

A family of Gabor wavelets is obtained by translating and
scaling 1):

[27]
and

(28]

r—u

Yu,s(x) = I L )- [29]
Under certain conditions (in particular, the Heisenberg
boxes associated with each wavelet must together cover the
space-frequency plane) the Gabor wavelet family becomes
a Gabor wavelet frame.
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2. Optimal self-localization of the templates (which follows
from localization), when valid simultaneously for space and
scale, is also equivalent to Gabor wavelets. If they are a
frame, full information can be preserved in an optimal quasi
invariant way.

Approximate Invariance and Localization. In the previous sec-
tion we analyzed the relation between localization and invari-
ance in the case of group transformations. By relaxing the re-
quirement of exact invariance and exact localization we show
how the same strategy for computing invariants can still be ap-
plied even in the case of non-group transformations if certain
localization properties of (T'I,t) holds, where T is a smooth
transformation.

We first notice that the localization condition of the-
orems 5 and 7 — when relaxed to approximate localiza-
tion — takes the (e.g. for the 1D translations group) form
<I,thk> < 0 Vz st. |z| > a, where § is small in the or-
der of 1/y/n (where n is the dimension of the space) and
<gI,tk> ~1 Vst |z|<a.

We call this property sparsity of I in the dictionary t* un-
der GG. This condition can be satisfied by templates that are
similar to images in the set and are sufficiently “rich” to be
incoherent for “small” transformations. Note that form the
reasoning above the sparsity of I in t* under G is expected to
improve with increasing n and with noise-like encoding of I
and t* by the architecture.

Another important property of sparsity of I in t* (in ad-
dition to allowing local approximate invariance to arbitrary
transformations, see later) is clutter-tolerance in the sense
that if n1,n2 are additive uncorrelated spatial noisy clutter
<I+n1,gtk +n2> ~ (I, gt).

Interestingly the sparsity condition under the group is related
to associative memories for instance of the holographic type
(see [8] and [9]). If the sparsity condition holds only for I = ¢*
and for very small set of g € G, that is, it has the form
<I,gtk> = 6(g)dr 4 it implies strict memory-based recogni-
tion ( see non-interpolating look-up table in the description
of [10]) with inability to generalize beyond stored templates
or views.

While the first regime — exact (or e—) invariance for
generic images, yielding universal Gabor templates — applies
to the first layer of the hierarchy, this second regime (spar-
sity) — approximate invariance for a class of images, yielding
class-specific templates — is important for dealing with non-
group transformations at the top levels of the hierarchy where
receptive fields may be as large as the visual field.

Several interesting transformations do not have the group
structure, for instance the change of expression of a face or
the change of pose of a body. We show here that approximate
invariance to transformations that are not groups can be ob-
tained if the approximate localization condition above holds,
and if the transformation can be locally approximated by a
linear transformation, e.g. a combination of translations, ro-
tations and non-homogeneous scalings, which corresponds to
a locally compact group admitting a Haar measure.

Suppose, for simplicity, that the smooth transformation
T, at least twice differentiable, is parametrized by the param-
eter r € R. We approximate its action on an image [ with a

Footline Author

Taylor series (around e.g. 7 = 0) as:
T = T+ (%) (et RO [30]

= 1+ (%) mr+R)

= I+ JY(I)r+RU)=[e+rJ'|I)+ R()
LA(1) + R(1)

where R(I) is the reminder, e is the identity operator, J! the
Jacobian and LI = e + J'r is a linear operator.

Let R be the range of the parameter r where we can approxi-
mately neglect the remainder term R(I). Let L be the range of
the parameter r where the scalar product (71, t) is localized
ie. (TI,t) =0, Vr ¢ L. If L C R we have

(ToI,t) ~ <L£1, t>, [31]

If the above linearization holds, we have the following:

Proposition 8. Let I,t € H a Hilbert space, n, : R — R a set
of bijective (positive) functions and T a smooth transforma-
tion (at least twice differentiable) parametrized by r € R. Let
L = supp((T:1,t)), P the pooling interval in the r parameter
and R C R defined as above. If L C P C R and

(T, I,t) =0, Vr e R/(T-P N P)

then i (T 1) = (1)
Proof:
We have

WE(TD) = /Pdr nn(<TTT;I,t>):/Pdr nn(<L£L£1,t>)
/Pdr nn(<Li+th>) = pn(I)

where the last equality is true if (T-1,t) = <L£I7t> =0, r¢e
R/(T+P N P). Q.E.D.

As an example, consider the transformation induced on the
image plane by rotation in depth of a face: it can be decom-
posed into piecewise linear approximations around a small
number of key templates, each one corresponding to a spe-
cific 3D rotation of a template face. Each key template corre-
sponds to a complex cell containing as (simple cells) a number
of observed transformations of the key template within a small
range of rotations. Each key template corresponds to a differ-
ent signature which is invariant only for rotations around its
center. Notice that the form of the linear approximation or
the number of key templates needed does not affect the algo-
rithm or its implementation. The templates learned are used
in the standard dot-product-and-pooling module. The choice
of the key templates — each one corresponding to a complex
cell, and thus to a signature component — is not critical, as
long as there are enough of them. For one parameter groups,
the key templates correspond to the knots of a piecewise lin-
ear spline approximation. Optimal placement of the centers —
if desired — is a separate problem that we leave aside for now.

Summary of the argument: Different transformations can
be classified in terms of invariance and localization.

Compact Groups: consider the case of a compact group
transformation such as rotation in the image plane. A com-
plex cell is invariant when pooling over all the templates which
span the full group 6 € [—m, +7]. In this case there is no re-
striction on which images can be used as templates: any tem-
plate yields perfect invariance over the whole range of trans-
formations (apart from mild regularity assumptions) and a
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single complex cell pooling over all templates can provide a
globally invariant signature.

Locally Compact Groups and Partially Observable Com-
pact Groups: consider now the POG situation in which the
pooling is over a subset of the group: (the POG case always
applies to Locally Compact groups (LCG) such as transla-
tions). As shown before, a complex cell is partially invariant
if the value of the dot-product between a template and its
shifted template under the group falls to zero fast enough
with the size of the shift relative to the extent of pooling. In
the POG and LCG case, such partial invariance holds over a
restricted range of transformations if the templates and the
inputs have a localization property that implies wavelets for
transformations that include translation and scaling.

General (non-group) transformations: consider the case of
a smooth transformation which may not be a group. Smooth-
ness implies that the transformation can be approximated by
piecewise linear transformations, each centered around a tem-
plate (the local linear operator corresponds to the first term
of the Taylor series expansion around the chosen template).
Assume — as in the POG case — a special form of sparsity
— the dot-product between the template and its transforma-
tion fall to zero with increasing size of the transformation.
Assume also that the templates transform as the input im-
age. For instance, the transformation induced on the image
plane by rotation in depth of a face may have piecewise linear
approximations around a small number of key templates cor-
responding to a small number of rotations of a given template
face (say at £30°,+£90°,£120°). Each key template and its
transformed templates within a range of rotations corresponds
to complex cells (centered in £30°%,+90°, £120°). Each key
template, e.g. complex cell, corresponds to a different signa-
ture which is invariant only for that part of rotation. The
strongest hypothesis is that there exist input images that are
sparse w.r.t. templates of the same class — these are the im-
ages for which local invariance holds.

Remarks:

1. We are interested in two main cases of POG invariance:

® partial invariance simultaneously to translations in z,y,
scaling and possibly rotation in the image plane. This
should apply to “generic” images. The signatures
should ideally preserve full, locally invariant informa-
tion. This first regime is ideal for the first layers of the
multilayer network and may be related to Mallat’s scat-
tering transform, [7]. We call the sufficient condition for
for LCG invariance here, localization, and in particular,
self-localization given by Equation [17].

® partial invariance to linear transformations for a subset
of all images. This second regime applies to high-level
modules in the multilayer network specialized for spe-
cific classes of objects and non-group transformations.
The condition that is sufficient here for LCG invariance
is given by Theorem 5 which applies only to a specific
class of I. We prefer to call it sparsity of the images
with respect to a set of templates.

2. For classes of images that are sparse with respect to a
set of templates, the localization condition does not im-
ply wavelets. Instead it implies templates that are

® similar to a class of images so that <I, gotk> ~ 1 and

® complex enough to be “noise-like” in the sense that
<I,gtk> ~ 0 for g # go.
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3. Templates must transform similarly to the input for ap-
proximate invariance to hold. This corresponds to the as-
sumption of a class-specific module and of a nice object
class [11, 12].

4. For the localization property to hold, the image must be
similar to the key template or contain it as a diagnostic fea-
ture (a sparsity property). It must be also quasi-orthogonal
(highly localized) under the action of the local group.

5. For a general, non-group, transformation it may be impos-
sible to obtain invariance over the full range with a single
signature; in general several are needed.

6. It would be desirable to derive a formal characterization of
the error in local invariance by using the standard module
of dot-product-and-pooling, equivalent to a complex cell.
The above arguments provide the outline of a proof based
on local linear approximation of the transformation and on
the fact that a local linear transformation is a LCG.

2. Hierarchical Architectures

So far we have studied the invariance, uniqueness and stabil-
ity properties of signatures, both in the case when a whole
group of transformations is observable (see [5] and [6]), and
in the case in which it is only partially observable (see [10]
and [11]). We now discuss how the above ideas can be iter-
ated to define a multilayer architecture. Consider first the case
when G is finite. Given a subset Go C GG, we can associate a
window gGo to each g € G. Then, we can use definition [10]
to define for each window a signature X(I)(g) given by the
measurements,

WD) = 5 3 m((rart)).

g€9Go

Note that, for reasons that will be clear later, the average
in the integral is done for transformed templates and not on
transformed images. We will keep this form as the definition of
signature. For fixed n, k, a set of measurements correspond-
ing to different windows can be seen as a |G| dimensional
vector. A signature X(I) for the whole image is obtained as
a signature of signatures, that is, a collection of signatures
(3(I)(g1),---,2(I)(g)¢) associated to each window.
Since we assume that the output of each module is made zero-
mean and normalized before further processing at the next
layer, conservation of information from one layer to the next
requires saving the mean and the norm at the output of each
module at each level of the hierarchy.
We conjecture that the neural image at the first layer is
uniquely represented by the final signature at the top of the
hierarchy and the means and norms at each layer.

The above discussion can be easily extended to continuous
(locally compact) groups considering,

w0 =z [ dm((1at)). vo= [ o

where, for fixed n, k, u¥ (I) : G — R can now be seen as a func-
tion on the group. In particular, if we denote by Ko : G — R
the indicator function on Gy, then we can write

pn(I)(g) = Vio/ad§Ko(§’lg)nn(<I,§tk>)-

The signature for an image can again be seen as a collection
of signatures corresponding to different windows, but in this
case it is a function (1) : G — RV¥ | where X(I)(g) € RVX,
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is a signature corresponding to the window Go “centered” at
geq.

The above construction can be iterated to define a hierar-
chy of signatures. Consider a sequence G1 C Ga,...,C G =
G. For h : G — R?, p € N with an abuse of notion we let
gh(g) = h(g7'g). Then we can consider the following con-
struction.

We call complex cell operator at layer ¢ the operator that
maps an image I € X to a function pe(I) : G — RV where

n, _ 1 _
D6 = g 2 om (MD@), (32

g€9Gy

and simple cell operator at layer ¢ the operator that maps an
image I € X to a function ve(I) : G — R¥
k k

v (1)(9) = (pe-a(1), gt} ) [33]

with t§ the k*" template at layer £ and uo(I) = I. Several
comments are in order:

® beside the first layer, the inner product defining the
simple cell operator is that in L*(G) = {h : G —
R | [dg|h(g)* < oo};

® The index ¢ corresponds to different layers, corresponding
to different subsets Gy.

¢ At each layer a (finite) set of templates Tz = (t},...,t5) C
L*(G) (To C &) is assumed to be available. For simplicity,
in the above discussion we have assumed that |7¢| = K, for
all £ =1,...,L. The templates at layer £ can be thought
of as compactly supported functions, with support much
smaller than the corresponding set G,. Typically templates
can be seen as image patches in the space of complex op-
erator responses, that is t, = ,uz_l(ﬂ for some t € X.

® Similarly we have assumed that the number of non linear-
ities nn, considered at every layer, is the same.

Following the above discussion, the extension to continu-
ous (locally compact) groups is straightforward. We collect it
in the following definition.

Definition 1. (Simple and complex response) For{=1,...,L, let
Te = (t},...,t&) C L*(G) (and To C X) be a sequence of tem-
plate sets. The complex cell operator at layer £ maps an image
I € X to a function c,(I) : G — RVX; in components

WMD) = [ dakita 9m (F(D@), 96 (34

where Ky is the indicator function on G¢, Vi, = fG/ dg and
where 4

vE(D)(g) = (per(Dsgth), g€ G [35]
(1o (I) = I) is the simple cell operator at layer £ that maps an
image I € X to a function ve(I) : G — R¥.

un(g) ugh(gg)
[ . mm g

Fig. 4: Covariance: the response for an image I at position g
is equal to the response of the group shifted image at the shifted
position.

Footline Author

Remark Note that eq. [34] can be written as:

uiF (1) = Ko %o (vF (I))

where * is the group convolution.

[36]

Property 1: covariance. We call the map ¥ covariant iff

Y(gl) =g 'S(I), VgeG,IcX.

In the following we show the covariance property for the ,u?’k
response (see Fig. 4). An inductive reasoning then can be
applied for higher order responses. We assume that the archi-
tecture is isotropic in the relevant covariance dimension (this
implies that all the modules in each layer should be identi-
cal with identical templates) and that there is a continuum of
modules in each layer.

Proposition 9. Let G a locally compact group and g € G. Let
pi " as defined in 34. Then pi"*(gI)(g) = pi* ()G g).
Proof:

Using the definition 34 we have

V%/GdgKl(g’lg)nn ((ar.9t*))

_ Vil GdgKl(g‘lg)nn (<L§_1§tk>>

= vil/gdgm(@‘lé‘lmn ((r.a))
= uEI(G )

where in the third line we used the change of variable § = g
and the invariance of the Haar measure. Q.E.D.

1 (GI)(g)

Remarks

1. The covariance property described in proposition 9 can be
stated equivalently as u*(I)(g) = u2*(gI)(gg). This last
expression has a more intuitive meaning as shown in Fig.
4.

2. The covariance property described in proposition 9 holds
both for abelian and non-abelian groups. However the
group average on templates transformations in definition
of eq. 34 is crucial. In fact, if we define the signature aver-
aging on the images we do not have a covariant response:

pitan(g) = Vil/cdgKl(sTlg)nn (<§§I,t’“>)

/GdgKl(éfflg)nn (<§I=tk>)

where in the second line we used the change of variable

§ = § ' and the invariance of the Haar measure. The
last expression cannot be written as u}"*(I)(g'g) for any
/

g €G.

3. With respect to the range of invariance, the following prop-
erty holds for multilayer architectures in which the output
of a layer is defined as covariant if it transforms in the
same way as the input: for a given transformation of an
image or part of it, the signature from complex cells at a
certain layer is either invariant or covariant with respect
to the group of transformations; if it is covariant there will
be a higher layer in the network at which it is invariant
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(more formal details are given in theorem 11), assuming
that the image is contained in the visual field. This prop-
erty predicts a stratification of ranges of invariance in the
ventral stream: invariances should appear in a sequential
order meaning that smaller transformations will be invari-
ant before larger ones, in earlier layers of the hierarchy (see

[13)).

Property 2: partial and global invariance (whole and parts).
We now find the conditions under which the functions u, are
locally invariant, i.e. invariant within the restricted range of
the pooling. We further prove that the range of invariance
increases from layer to layer in the hierarchical architecture.
The fact that for an image, in general, no more global invari-
ance is guaranteed allows, as we will see, a novel definition of
“parts” of an image.

The local invariance conditions are a simple reformulation of
Theorem 5 in the context of a hierarchical architecture. In
the following, for sake of simplicity we suppose that at each
layer we only have a template ¢ and a non linear function 7.

Proposition 10. Invariance and Localization: hierarchy.
Let I,t € H a Hilbert space, n: R — RT a bijective (positive)
functions and G a locally compact group. Let G; C G and
suppose supp({gue—1(I),t)) C Ge. Then for any given g € G

<g;u271(])7t> = 07 g S G/(G@ n gG€)7
<g/u‘2—1(j)7t> #0, g € GeNgGy. [37]

pe(I) = pe(gl) <=

The proof follows the reasoning done in Theorem 5 with I sub-
stituted by pe—1(I) using the covariance property pe—1(gl) =
gre—1(I). QE.D.

We can give now a formal definition of object part as the subset
of the signal I whose complex response, at layer /¢, is invari-
ant under transformations in the range of the pooling at that
layer.

This definition is consistent since the invariance is increasing
from layer to layer (as formally proved below) therefore allow-
ing bigger and bigger parts. Consequently for each transfor-
mation there will exists a layer ¢ such that any signal subset
will be a part at that layer. We can now state the following:

Theorem 11. Whole and parts. Let I € X (an image or
a subset of it) and pe the complex response at layer €. Let
GoC---CGrC---C G =G a set of nested subsets of the
group G. Suppose n is a bijective (positive) function and that
the template t and the complex response at each layer has fi-
nite support. Then Vg € G, pe(I) is invariant for some £ = ¢,

T

AAREARRARAAR

Fig. 5: An image I with a finite support may or may not be fully
included in the receptive field of a single complex cell at layer n
(more in general the transformed image may not be included in the
pooling range of the complex cell). However there will be a higher
layer such that the support of its neural response is included in the
pooling range of a single complex cell.

10 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

i.€.
pmn(GI) = pm(I), 32 s.t. ¥Ym > L.

The proof follows from the observation that the pooling range
over the group is a bigger and bigger subset of G with growing
layer number, in other words, there exists a layer such that the
image and its transformations are within the pooling range at
that layer (see Fig. 5). This is clear since for any g € G the
nested sequence

GoNgGo C...CGNgG, C...CGLNgGr =G.
will include a set Gy N gG7 such that
(gre_1(I),t) #0 Vg € Gz N Gy
being supp({guz_1(I),t)) C G. Details are reported in [14].

Property 3: stability. Using the definition of stability given in
[9], we can formulate the following theorem characterizing
stability for the complex response:

Theorem 12. Stability. Let I,I' € X and e the complex re-
sponse at layer l. Let the nonlinearity  a Lipschitz function
with Lipschitz constant Ly, < 1. Then

pe(I) = pe(I)|| < I =T'||, V&, VI, I € X. [38]
The proof follows from a repeated application of the reasoning
done in Theorem 9. See details in [14].

Comparison with stability defined by Mallat [7]. The same
definition of stability we use (Lipschitz continuity) was re-
cently given by [7], in a related context. Let I,1I’ € L?(R?)
and ® : L?(R?) — L?*(R?) a representation. & is stable if it is
Lipschitz continuous with Lipschitz constant L < 1, i.e., is a
non expansive map:
/ / / 2 2

o) — o), <||I-T|,, VI,I'e L*(R?).  [39]
In particular in [7] the author is interested in stability of group
invariant scattering representations to the action of small dif-
feomorphisms close to translations. Consider transformations
of the form I'(x) = L,I(x) = I(x — 7(x)) (which can be
though as small diffeomorphic transformations close to trans-
lations implemented by a displacement field 7 : R* — R?). A
translation invariant operator ® is said to be Lipschitz con-
tinuous to the action of a C*(R?) diffeomorphisms if for any
compact Q C R? there exists C' such that for all I € L*(R?)
supported in Q C R? and 7 € C?(R?)

(1) = ®(L- 1), <
< C |1, (supsers|V7(x)| + supscss | HT(x)] )

[40]

where H is the Hessian and C' a positive constant.

Condition [40] is a different condition then that in eq. [38]
since it gives a Lipschitz bound for a diffeomorphic transfor-
mation at each layer of the scattering representation.

Our approach differs in the assumption that small (close to
identity) diffeomorphic transformations can be well approxi-
mated, at the first layer, as locally affine transformations or,
in the limit, as local translations which therefore falls in the
POG case. This assumption is substantiated by the follow-
ing reasoning in which any smooth transformation is seen as
parametrized by the parameter ¢ (the r parameter of the T
transformation in section 1), which can be thought as time.
Let T C R be a bounded interval and Q C RY an open set
and let & = (®1,...,0n) : T x Q@ — RY be Cz (twice dif-
ferentiable), where ® (0,.) is the identity map. Here RY is
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assumed to model the image plane, intuitively we should take
N = 2, but general values of N allow our result to apply
in subsequent, more complex processing stages, for example
continuous wavelet expansions, where the image is also pa-
rameterized in scale and orientation, in which case we should
take N = 4. We write (¢, z) for points in T x 2, and interpret
® (t,x) as the position in the image at time ¢ of an observed
surface feature which is mapped to z = ® (0, z) at time zero.
The map & results from the (not necessarily rigid) motions
of the observed object, the motions of the observer and the
properties of the imaging apparatus. The implicit assumption
here is that no surface features which are visible in €2 at time
zero are lost within the time interval T'. The assumption that
® is twice differentiable reflects assumed smoothness proper-
ties of the surface manifold, the fact that object and observer
are assumed massive, and corresponding smoothness proper-
ties of the imaging apparatus, including eventual processing.
Now consider a closed ball B C Q2 of radius é > 0 which models
the aperture of observation. We may assume B to be centered
at zero, and we may equally take the time of observation to
beto=0€T. Let

2

w@(t,x)

2

Ke= ~sup Dot

(t,z)eETxB

, Kz = sup
RN z€B

@ (0,z)

Here (9/0x) is the spatial gradient in RM, so that the last
expression is spelled out as

=g (23 (2 m00) )

Of course, by compactness of T' x B and the Cz-assumption,
both K; and K, are finite. The following theorem is due to
Maurer and Poggio:

Theorem 13. There exists V € RY such that for all (t,z) €
T x B

1/2

t2

||(I>(t,$) - 2

The proof reveals this to be just a special case of Taylor’s the-

orem.
Proof: Denote V (t,z) = (V1,..., Vi) (t,z) = (9/0t) @ (t,x),
V(t,x) = (Vl,,Vl) (t,z) = (9%/0t*) @ (t,z), and set V :=

V (0,0). For s € [0,1] we have with Cauchy-Schwartz

2 2
H%V(O,sx) i = ;;((8 " l(O,sx)) xl)
< KG el < K26
whence
[ (¢, x) =[x+ tV]|

_ /tV(s,x)dsftV(0,0)H

- /[/Vrﬂc)dT—FV(Ox)}dS—tV(OO)H

= //8152 r,x drdert/ —VOsmd

V (0, sx)

(r,x) ds

81&2

IN

Kt S K, 1t] .
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RN XN

Q.E.D.

Of course we are more interested in the visible features them-
selves, than in the underlying point transformation. If I :
RY — R represents these features, for example as a spatial dis-
tribution of gray values observed at time ¢ = 0, then we would
like to estimate the evolved image I (P (¢,z)) by a translate
I (z+tV) of the original I. It is clear that this is possible
only under some regularity assumption on I. The simplest
one is that I is globally Lipschitz. We immediately obtain the
following

Corollary 14. Under the above assumptions suppose that I :
RY — R satisfies

I (z) = I ()] < cllz—yl

for some ¢ > 0 and all x,y € RY. Then there exists V € RY
such that for all (t,z) € I x B

(@ (t,2) — f (o +0V)] <o (Kz " 6+Kt%) .

Theorem 13 and corollary 14 gives a precise mathematical mo-
tivation for the assumption that any sufficiently smooth (at
least twice differentiable) transformation can be approximated
in an enough small compact set with a group transformation
(e.g. translation), thus allowing, based on eq. 9, stability
w.r.t. small diffeomorphic transformations.

Approximate Factorization: hierarchy. In the first version of
[14] we conjectured that a signature invariant to a group of
transformations could be obtained by factorizing in successive
layers the computation of signatures invariant to a subgroup of
the transformations (e.g. the subgroup of translations of the
affine group) and then adding the invariance w.r.t. another
subgroup (e.g. rotations). While factorization of invariance
ranges is possible in a hierarchical architecture (theorem 11),
it can be shown that in general the factorization in successive
layers for instance of invariance to translation followed by in-
variance to rotation (by subgroups) is impossible (see [14]).
However, approximate factorization is possible under the same
conditions of the previous section. In fact, a transformation
that can be linearized piecewise can always be performed in
higher layers, on top of other transformations, since the global
group structure is not required but weaker smoothness prop-
erties are sufficient.

Why Hierarchical architectures: a summary.

1. Optimization of local connections and optimal reuse of com-
putational elements. Despite the high number of synapses
on each neuron it would be impossible for a complex cell to
pool information across all the simple cells needed to cover
an entire image.

2. Compositionality. A hierarchical architecture provides sig-
natures of larger and larger patches of the image in terms
of lower level signatures. Because of this, it can access
memory in a way that matches naturally with the linguis-
tic ability to describe a scene as a whole and as a hierarchy
of parts.

3. Approzimate factorization. In architectures such as the
network sketched in Fig. 1 in the main text, approxi-
mate invariance to transformations specific for an object
class can be learned and computed in different stages.
This property may provide an advantage in terms of the
sample complexity of multistage learning [15]. For in-
stance, approximate class-specific invariance to pose (e.g.
for faces) can be computed on top of a translation-and-
scale-invariant representation [12]. Thus the implementa-
tion of invariance can, in some cases, be “factorized” into
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different steps corresponding to different transformations.
(see also [16, 17] for related ideas).

Probably all three properties together are the reason evolution
developed hierarchies.

3. Synopsis of Mathematical Results

List of Theorems

® Orbits are equivalent to Pr and both are invariant and
unique.

Theorem 1. The distribution Pr is invariant and unique i.e.
I~ & Pr = Pyr.

® P can be estimated within € in terms of 1D probability
distributions of gI,t".

Theorem 2. Consider n images Xy in X. Let K > 5 log %,
where ¢ 1s a universal constant. Then

|d(Pr, Prr) — di (Pr, Pp)| <,
with probability 1 — 62, for all I,I' € X,.

® Invariance from a single image based on memory of tem-
plate transformations. The simple property

(gf,t") = (1,g7"")

implies (for compact groups without any additional
property) that the signature components upf(I) =

|7é'\ dec in ( <], gtk> ), calculated on templates transfor-

mations are invariant that is u* (I) = p® (gI).

® Invariance for Partially Observable Groups (observed
through a window) is equivalent to condition in eq. [17]
on the dot product between image and template)

Theorem 3. Let I,t € H a Hilbert space, n : R — RT «
bijective (positive) function and G a locally compact group.
Let Go C G and suppose supp({gl,t)) C Go. Then

p'(I) =p'(gl) & (91,t) =0, g € G/(Go N gGo)
(gI,t) #0, g€ GoNgGo

® Condition in [17] is equivalent to a localization or sparsity
property of the dot product between image and template
((I,gt) =0 for g € Gr). In particular

Proposition 4. Localization is mecessary and sufficient for
translation and scale invariance. Localization for trans-
lation (respectively scale) invariance is equivalent to the
support of t being small in z (respectively in w).

® Optimal simultaneous invariance to translation and scale
can be achieved by Gabor templates.

Theorem 5. Assume invariants are computed from pooling
within a pooling window a set of linear filters. Then
the optimal templates of filters for maximum simultane-
ous invariance to translation and scale are Gabor functions

2
t(x) = e 207 giW0T

12 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

Approximate invariance can be obtained if there is approx-
imate sparsity of the image in the dictionary of templates.
Approximate localization (defined as (t, gt) < ¢ for g & G,
where ¢ is small in the order of & —- and (t,gt) ~ 1 for

g € G 1) is satisfied by templates (vectors of dimensionality
n) that are similar to images in the set and are sufficiently
“large” to be incoherent for “small” transformations.
Approximate invariance for smooth (non group) transfor-
mations.

Proposition 6. 1% (1) is locally invariant if
— I is sparse in the dictionary t*;

— I and t* transform in the same way (belong to the same
class);

— the transformation is sufficiently smooth.

Sparsity of I in the dictionary t* under G increases with
size of the neural images and provides invariance to clutter.
The definition is (I, gt) < 6 for g € G, where § is small in
the order of = ﬁ and (I, gt) ~ 1 for g € Gr.

Sparsity of I in ¢* under G improves with dimensionality
of the space n and with noise-like encoding of I and t.

If n1,n2 are additive uncorrelated spatial noisy clutter
(I +n1, gt +n2) = (I, gt).

Covariance of the hierarchical architecture.

Proposition 7. The operator e is covariant with respect to
a non abelian (in general) group transformation, that is

pe(Tol) = Topue(I).

Factorization:invariance to separate subgroups of affine
group cannot be obtained in a sequence of layers while
factorization of the ranges of invariance can (because of
covariance). Invariance to a smooth (non group) transfor-
mation can always be performed in higher layers, on top of
other transformations, since the global group structure is
not required.

Uniqueness of signature. Conjecture:the neural image at
the first layer is uniquely represented by the final signature
at the top of the hierarchy and the means and norms at
each layer.

. General Remarks on the Theory

. The second regime of localization (sparsity) can be consid-

ered as a way to deal with situations that do not fall under
the general rules (group transformations) by creating a se-
ries of exceptions, one for each object class.

. Whereas the first regime “predicts” Gabor tuning of neu-

rons in the first layers of sensory systems, the second regime
predicts cells that are tuned to much more complex fea-
tures, perhaps similar to neurons in inferotemporal cortex.

. The sparsity condition under the group is related to prop-

erties used in associative memories for instance of the holo-
graphic type (see [8]). If the sparsity condition holds only
for I = t* and for very small a then it implies strictly
memory-based recognition.

. The theory is memory-based. It also view-based. Even

assuming 3D images (for instance by using stereo infor-
mation) the various stages will be based on the use of 3D
views and on stored sequences of 3D views.
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5. The mathematics of the class-specific modules at the top of
the hierarchy — with the underlying localization condition —
justifies old models of viewpoint-invariant recognition (see
[15]).

6. The remark on factorization of general transformations im-
plies that layers dealing with general transformations can
be on top of each other. It is possible — as empirical results
by Leibo and Li indicate — that a second layer can improve
the invariance to a specific transformation of a lower layer.

7. The theory developed here for vision also applies to other
sensory modalities, in particular speech.

8. The theory represents a general framework for using rep-
resentations that are invariant to transformations that are
learned in an unsupervised way in order to reduce the sam-
ple complexity of the supervised learning step.

9. Simple cells (e.g. templates) under the action of the affine
group span a set of positions and scales and orientations.
The size of their receptive fields therefore spans a range.
The pooling window can be arbitrarily large — and this
does not affect selectivity when the CDF is used for pool-
ing. A large pooling window implies that the signature
is given to large patches and the signature is invariant to
uniform affine transformations of the patches within the
window. A hierarchy of pooling windows provides signa-
ture to patches and subpatches and more invariance (to
more complex transformations).

10. Connections with the Scattering Transform.

® Qur theorems about optimal invariance to scale and
translation implying Gabor functions (first regime) may
provide a justification for the use of Gabor wavelets by
Mallat [7], that does not depend on the specific use of
the modulus as a pooling mechanism.

® Qur theory justifies several different kinds of pooling of
which Mallat’s seems to be a special case.

® With the choice of the modulo as a pooling mechanisms,
Mallat proves a nice property of Lipschitz continuity on
diffeomorphisms. Such a property is not valid in gen-
eral for our scheme where it is replaced by a hierarchical
parts and wholes property which can be regarded as an
approximation, as refined as desired, of the continuity
w.r.t. diffeomorphisms.

® Our second regime does not have an obvious correspond-
ing notion in the scattering transform theory.

11. The theory characterizes under which conditions the signa-
ture provided by a HW module at some level of the hierar-
chy is invariant and therefore could be used for retrieving
information (such as the label of the image patch) from
memory. The simplest scenario is that signatures from
modules at all levels of the hierarchy (possibly not the low-
est ones) will be checked against the memory. Since there
are of course many cases in which the signature will not
be invariant (for instance when the relevant image patch is
larger than the receptive field of the module) this scenario
implies that the step of memory retrieval/classification is
selective enough to discard efficiently the “wrong” signa-
tures that do not have a match in memory. This is a non-
trivial constraint. It probably implies that signatures at
the top level should be matched first (since they are the
most likely to be invariant and they are fewer) and lower
level signatures will be matched next possibly constrained
by the results of the top-level matches — in a way similar
to reverse hierarchies ideas. It also has interesting im-
plications for appropriate encoding of signatures to make
them optimally quasi-orthogonal e.g. incoherent, in order
to minimize memory interference. These properties of the
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representation depend on memory constraints and will be
object of a future paper on memory modules for recogni-
tion.

5. Empirical support for the theory

Several computational vision models in recent literature can
be considered instances of the theory described here. HMAX,
trained convolutional networks, and the feedforward networks

)

25% 10"
—C1 - RF contains the entire deformation| 0.06)

C1 Response [arbitrary units]
Difterence in C2 response [arbitrary units]

1 2«

10 15 5 10 5
Eye displacement [pixel] Eye displacement [pixel]

(b)

(d)

« Same Indvidual
o Distractor

Difference in C2 response [arbitrary units]

Yansaton oon
(e)
Fig. 6: Empirical demonstration of the properties of invariance,
stability and uniqueness of the hierarchical architecture (see Theo-
rem 12) in a specific 2 layers implementation (HMAX). Inset (a)
shows the reference image on the left and a deformation of it (the
eyes are closer to each other) on the right; (b) shows that an HW-
module in layer 1 whose receptive fields covers the left eye provides
a signature vector (c1) which is invariant to the deformation; in
(¢) an HW-module at layer 2 (c2) whose receptive fields contain
the whole face provides a signature vector which is (Lipschitz) sta-
ble with respect to the deformation. In all cases, the Figure shows
just the Euclidean morm of the signature vector. Notice that the
c1 and cg vectors are not only invariant but also selective. Error
bars represent £1 standard deviation. Two different images (d) are
presented at various location in the visual field. The Euclidean dis-
tance between the signatures of a set of HW-modules at layer 2 with
the same receptive field (the whole image) and a reference vector
is shown in (e). The signature vector is invariant to global trans-
lation and discriminative (between the two faces). In this example
the HW-module represents the top of a hierarchical, convolutional
architecture. The images we used were 200x 200 pizels
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of N. Pinto et al. all consist of hierarchically stacked modules
of simple and complex cells. However, only the most recent
of these — variants of HMAX that incorporate invariances to
complex transformations learned from video — have been de-
signed with this theory explicitly in mind.

In [12], we showed that our approach of pooling over stored
views of template faces undergoing the transformation can be
used to recognize novel faces robustly to rotations in depth
from a single example view. More recently, we applied the
same idea to unconstrained face recognition benchmarks: La-
beled Faces in the Wild and PubFig83, and showed that they
yield a system that performs comparably to the state of the
art with considerably less engineering.

In versions of HMAX developed prior to this theory, and
in some related models, rather than arbitrary invariances be-
ing learned from video, specific invariances to local transla-
tion (and sometimes scaling) are built in to the architecture.
A convolutional architecture which by design computes re-
sponses to the same set of templates at every position (and
scale) is equivalent to a model which learned to do this by
seeing videos of each template object translating (and scal-
ing) through every position.

The best-performing version of HMAX for generic object
categorization is an improved version of [19] which scores 74%
on the Caltech 101 dataset, competitive with the state-of-the-
art for a single feature type. The original version achieved a
near-perfect score on the UIUC car dataset. Another HMAX
variant added a time dimension for action recognition [20],
outperforming both human annotators and a state-of-the-art
commercial system on a mouse behavioral phenotyping task.
An HMAX model [21] was also shown to account for human
performance in rapid scene categorization.

One of the observations that inspired our theory is that in
convolutional architectures, random features perform nearly
as well as features learned from objects [22, 23]. This includes
models other than HMAX: [24] found that a convolutional
network with randomized weights performed only 3% worse
than the same network after training via backpropagation.
[25] also found feature learning to be the least significant of
several variables contributing to the performance of a hierar-
chical architecture.

A simple illustrative empirical demonstration of the
HMAX properties of invariance, stability and uniqueness is
in Fig. 6.

6.Unsupervised learning of the template orbit

While the templates need not be related to the test images (in
the affine case), during development, the model still needs to
observe the orbit of some templates. We conjectured that this
could be done by unsupervised learning based on the temporal
adjacency assumption [26, 27]. One might ask, do “errors of
temporal association” happen all the time over the course of
normal vision? Lights turn on and off, objects are occluded,
you blink your eyes — all of these should cause errors. If tem-
poral association is really the method by which all the images
of the template orbits are associated with one another, why
doesn’t the fact that its assumptions are so often violated lead
to huge errors in invariance?

The full orbit is needed, at least in theory. In practice
we have found that significant scrambling is possible as long
as the errors are not correlated. That is, normally an HW-
module would pool all the (I, g;t"). We tested the effect of,

for some i, replacing t* with a different template t*'. Even
scrambling 50% of our model’s connections in this manner
only yielded very small effects on performance. These exper-

14 | www.pnas.org/cgi/doi/10.1073/pnas.0709640104

iments were described in more detail in [28] for the case of
translation. In that paper we modeled Li and DiCarlo’s ”in-
variance disruption” experiments in which they showed that a
temporal association paradigm can induce individual IT neu-
rons to change their stimulus preferences under specific trans-
formation conditions [29, 30]. We also report similar results on
another "non-uniform template orbit sampling” experiment
with 3D rotation-in-depth of faces in [31].
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Abstract

This paper explores the theoretical consequences of a simple assump-
tion: the computational goal of the feedforward path in the ventral stream
—from V1, V2, V4 to IT - is to discount image transformations, after learn-
ing them during development.

Part I assumes that a basic neural operation consists of dot products be-
tween input vectors and synaptic weights — which can be modified by
learning. It proves that a multi-layer hierarchical architecture of dot-product
modules can learn in an unsupervised way geometric transformations of
images and then achieve the dual goals of invariance to global affine trans-
formations and of stability. The basic module, which estimates a unique,
invariant signature, has a surprisingly elegant implementation in terms of
idealized simple and complex cells, which are predicted to perform respec-
tively (random) projections and group averages, followed by a sigmoidal
nonlinearity. These hierarchical architectures learn in an unsupervised way
to be automatically invariant to transformations of a new object, achieving
the goal of recognition with one or very few labeled examples. The the-
ory of Part I should apply to a varying degree to a range of hierarchical
architectures such as HMAX, convolutional networks and related feedfor-
ward models of the visual system and formally characterize some of their
properties.

A linking conjecture in Part II assumes that storage of transformed tem-
plates during development — a stage implied by the theory of Part I — takes
place via Hebbian-like developmental learning at the synapses in visual
cortex. It follows that the cells” tuning will effectively converge during de-
velopment to the top eigenvectors of the covariance of their inputs. The
solution of the associated eigenvalue problem is surprisingly tolerant of
details of the image spectrum. It predicts quantitative properties of the
tuning of cells in the first layer — identified with simple cells in V1; in par-
ticular, they should converge during development to oriented Gabor-like
wavelets with frequency inversely proportional to the size of an elliptic
Gaussian envelope — in agreement with data from the cat, the macaque
and the mouse. A similar analysis leads to predictions about receptive field
tuning in higher visual areas — such as V2 and V4 - and in particular about
the size of simple and complex receptive fields in each of the areas.

For non-affine transformations of the image — for instance induced by
out-of-plane rotations of a 3D object or non-rigid deformations — it is possi-
ble to prove that the dot-product module of Part I can provide approximate
invariance for certain classes of objects. Thus Part III considers modules
that are class-specific — such as the face, the word and the body area — and
predicts several properties of the macaque cortex face patches character-
ized by Freiwald and Tsao, including a patch (called AL) which contains
mirror symmetric cells and is the input to the pose-invariant patch (AM).

Taken together, the results of the papers suggest a computational role
for the ventral stream and derive detailed properties of the architecture and
of the tuning of cells, including the role and quantitative properties of neu-
rons in V1. A surprising implication of these theoretical results is that the
computational goals and several of the tuning properties of cells in the ven-
tral stream may follow from symmetry properties (in the sense of physics) of



the visual world through a process of unsupervised correlational learning,
based on Hebbian synapses.



Contents

1 Summary

2 Introduction

2.1

Planofthepaper . ... .. ... ... .. ... ... .. .. ...

3 Part I: Memory-based Learning of Invariance to Transformations

3.1

3.2

3.3

34

3.5

3.6
3.7
3.8
3.9

Recognition is difficult because of image transformations . . . .
3.1.1 Suggestive empirical evidence . . ... ... ... ... ..
3.1.2 Intraclass and viewpoint complexity . . . . . ... .. ..
3.1.3 Invariant representations and bounds on learning rates .
Templates and signatures . . . .. ... ..............
3.2.1 Preliminaries: resolution and size . . ... .. ... ...
322 Templatesets. . . . ... .. ... . ... ... .. .....
3.2.3 Transformations and templatebooks . . . . .. ... ...
Invariance and discrimination . . . . . ... ... .o
3.3.1 Theinvariancelemma . .. ... ... ... ... .....
332 Orbits . ... ... .
Invariant and unique signatures . . . ... ... ... ... ...
3.4.1 Orbits and probability distributions . . . . .. ... ...
3.42 Empirical measurements of probabilities of projections .
3.43 Computations by simple and complexcells . . . . .. ..
344 Atheoryofpooling. . ... ... ... ... ... ... ..
345 Stablesignatures . . ... ................ ..
3.4.6 Signatures for Partially Observable Groups (POG): In-

variance, Uniqueness and Stability . . . . ... ... ...
3.4.7 Approximate Invariance of Signatures associated to POG
3.4.8 Uniqueness and Stability for POG signatures . . . . . . .
Hierarchical architectures . . . ... ... ... .. ... .. ...
3.5.1 The basicidea: wholesand parts . . . .. .........
3.5.2 Hierarchical Architectures . . . .. .. ... .. ... ...
3.5.3 Property 1 :covariance of the ¢, response . . . ... ...
3.5.4 Property 2: partial and global invariance of ¢, response

(wholeand parts) . . .. .......... ... .. .. ....
3.5.5 Property 3: stability of the ¢, response . . . . . ... ...
3.5.6 A hierarchical architecture: locally compact groups . . .
Factorization of Invariances . . . . . ... .............
Preliminaries . . . . . ... ... ... ... ... . ... ... ...
Factorization of transformations . . . .. ... ... ... .. ..
Factorization of Invarianceranges . . ... ............

3.10 Approximate Factorization for Invariances in Object Classes . .
3.11 A mathematical summary (incomplete) . . . . .. ... ... ...

9

12
12

17
17
17
20
21
21
22
24
27
28
28
30
31
31
32
35
35
36

38
39
40
40
42
44
47

48
50
52
53
53
54
56
57
58



4 PartII: Learning Transformations and Spectral Properties

41 Apertures and Stratification . . . ... ... oo
41.1 Translation approximation for small apertures . . . . . .

4.2 Linking conjecture: developmental memory is Hebbian . . . . .
421 Hebbiansynapsesand Ojaflow. . ... ... .......

4.3 Spectral properties of the templatebook covariance operator: cor-
ticalequation . . ... ... ... ... ... L

4.3.1 Eigenvectors of the covariance of the template book for

the translationgroup . . . . . ... ... ..o oL

4.4 Retina to V1: processing pipeline . . . .. ... ... ... ...,
44.1 Spatial and temporal derivatives in the retina. . . . . . .

4.5 Cortical equation: predictions for simple cellsin V1 . . . .. ..
4.6 Complex cells: wiring and invariance . ... ... ........
4.6.1 Complex cells invariance properties: mathematical de-
scription . . .. L. L

4.6.2 Hierarchical frequency remapping . . . . ... ... ...

47 Beyond V1 . ... ... .. ...
471 Almost-diagonalization of non commuting operators . .

4.7.2 Independent shifts and commutators . . ... ... ...

4.7.3 Hierarchical wavelets: 4-cube wavelets . . ... ... ..
474 PredictionsforV2,V4,IT ... ... ... ... ......

5 Part III: Class-specific Transformations and Modularity
5.1 Approximate invariance to non-generic transformations
52 3Drotation is class-specific. . . . .. ... ... ... 0L
521 The?2D transformation . . . . ... ... ..........
522 An approximately invariant signature for 3D rotation . .
5.3 Empirical results on class-specific transformations . . . . . . . .
5.4 The macaque face-processing network . . . . .. ... ... ...

60
60
61
64
64

67

70
74
75
76
90

90
91
92
92
93
93
94

99
99
99
101
102

107

54.1 Principal components and mirror-symmetric tuning curves110

5.4.2 Models of the macaque face recognition hierarchy . . . .
5.5 Other class-specific transformations: bodies and words . . . . .
5.6 Invariance to X and estimationof X . . . . ... ... ... ...

6 Discussion

6.1 Someofthemainideas . . . ... ... ... ............
6.2 Extended model and previousmodel . . . . . ... ... ... ..
6.3 Whatisunderthecarpet . . . . ... ... ... . ... ... ..
6.4 Directions for futureresearch . . . ... ... ... .. ......
6.4.1 Associativememories . . . ... ... ... ... .. ..
6.4.2 Invariance and Perception . . . . .. ... ... ... ..

643 Thedorsalstream . . ... ... ...............
6.44 Visual “concepts” . . ... ... ... oL
6.4.5 Is the ventral stream a cortical mirror of the invariances

of the physical world? . . ... ... ............

111
111



7

8

10

11

12

13

Appendix: background from previous work

Appendix: memory-based model and invariance

81 Invariancelemma . .. ... ... ... ... ... ... ...,
8.1.1 Old, original version of the Invariance Lemma . . . . . .
8.1.2 Example: affine group and invariance . . . ... ... ..
8.1.3 More on Group Averages . . . ... ............
8.14 More on Templatebooks . . . ... .. ... ... .....

82 Moreongroupsandorbits . . . ... ... ... o L L

Appendix: stratification lemma

9.1 Subgroups and invariances factorization . . . . . ... ... ...

9.2 Factorization of Invariances and Hierarchies . . ... ... ...

9.3 Transformations: Stratification and Peeling Off . . . . . ... ..
9.3.1 Class-specific transformations . . ... ... ... ....

Appendix: invariant discriminability
10.1 Premise . . . . ... .. ... ...
10.1.1 Basic Framework . . . . .. ... ... ... ... .....
10.2 Similarity Among Orbits . . . ... ... ... ... ......
10.3 (Group) Invariance . . . ... ... ...... .. ... ......
10.4 Discrimination . . . . ... ... ... ... .. 0 L
10.4.1 (Non Linear) Measurements. . . . . . ... ........
10.4.2 Pooling functions as moments . . ... ... .......
10.4.3 Abstract measurements of probability distributions . . .
10.4.4 Comparing probability distributions . . . . . ... .. ..
1045 Moments . . . . .. ... ... ... .. L
10.5 Random projections and invariants: an extensionof ]-L . . . . .
10.5.1 Frames and random projections . . .. ... .......
10.6 Discriminability, invariance and robustness to diffeomorphisms
10.6.1 Templates and diffeomorphisms: from global to local . .
10.7 Complex cells invariance: SIM(2) group . . . ... .......

Appendix: whole and parts

Appendix: hierarchical frequency remapping
12.1 Information in bandpasssignals . . ... ... ..........
12.2 More on uniqueness of modulosquare . . . . . . ... ... ...
12.2.1 Information canbe preserved . . . . ... ... ... ...
12.2.2 Another approach: direct wavelet reconstruction from
modulussquare . . . . ... ... ...
12.3 Predicting the size of the receptive field of simple and complex
cells . . . ..

136

137
137
138
139
140
141
141

142
142
143
144
145

145
145
146
146
147
148
148
149
150
152
152
152
153
154
154
157

160

161
162
163
163

164

Appendix: hierarchical representation and computational advantages168

131 Memory . .. ... .
13.2 Higherorderfeatures . . . . . ... .................

168



14 Appendix: apertures and transformations 168

14.1 Stratification . . . . . ... .. . L L oo 168
1411 Commutativity . .. .. ... ... ... .. ........ 171
14.2 Local approximation of global diffeomorphisms . . ... .. .. 173
1421 MethodI . . . . ... ... ... .. Lo 173
1422 MethodIl . ... ... ... ... ... .. ... ... ... 174
15 Appendix: differential equation 175
15.1 Derivation and solution . . . ... ... .............. 175
15.1.1 Case: l/wspectrum. . . . ... ... .. .......... 176
15.1.2 Apertureratio. . . ... .. .. ... oL 177
15.1.3 Initial conditions . . . ... ... ... .. .. .. .. ... 177
15.1.4 Two dimensional problem . . . . ... ... ... ... .. 177
15.1.5 Derivative in the motion direction . . ... ... ... .. 178
15.1.6 Fisher information and templatebook eigenfunctions . . 178

15.2 Special case: the covariance ¢®(x) consists of two Fourier com-
ponents . . . ... .. 178

15.3 Continuous spectrum: an alternative derivation of the differen-
tialequation . . ... ... ... ... L 179
15.3.1 Numerical and analytical study . . . . .. ... ... ... 184
15.3.2 Perturbative methods foreq. (139) . . . .. ... ... .. 186
16 Appendix: spectral properties of the templatebook 186
16.1 Spectral properties of the translation operator . . . . . . ... .. 186

16.1.1 Spectral properties of the uniform scaling and rotation
operators. . . . . ... ... 186
16.2 Single value decomposition of compact operators . . .. .. .. 187
16.3 Wavelet transform and templatebook operator . . . . ... ... 187
16.4 Fourier Transform on a compactgroup . . . . . .. ... ... .. 188
16.5 Diagonalizing the templatebook . . ... ... ... ....... 189
16.6 The choice of the square integrable functiont . . . . . ... ... 190
16.7 Diagonalizing the templatebook with different templates . . . . 190
16.8 Temporal and spatial filtering in the retinaand LGN . . . . . . . 190
16.8.1 Phase distribution of Gabor tuning functions . . . . . . . 191
16.8.2 Retinalfiltering . . . ... ....... ... ... ... ... 191
16.9 Optimizing signatures: the antislowness principle . . . . .. .. 191
16.9.1 Against a “naive slowness” principle . . ... ... ... 191
16.9.2 Ourselectionrule. . . . ... ... ... ... ... ... 191
17 Appendix: blue-sky ideas and remarks 198
17.1 Visual abstractions . . . ... .. .................. 198
17.2 Invariances and constraints . . . .. ... ... ... ... ... 199
17.3 Remarks and open problems . . .. ... ............. 199



18

19

20

Background Material: Groups 202
18.1 Whatisagroup? . .. ... ..................... 202
18.2 Group representation . . . . . .. .. ... ... ... ... 203
18.3 Few more definitions . . . . . ... ... ... .. .. ... ... 203
18.4 Affine transformationsinR%. . . ... ... ... ... ... ... 204
18.5 Similitude transformationsin R?* . . . . ... ... ... ..... 204

18.5.1 Discrete subgroups: any lattice is locally compact abelian 204
18.6 Lie algebra associated with the affinegroup . . . . . . ... ... 205

18.6.1 Affine group generators . . . . ... .. .......... 205

18.6.2 Lie algebra generators commutation relations . . . . . . 206

18.6.3 Associated characters . . . ... ... ... ........ 206

18.6.4 Mixing non commuting transformations . . ... .. .. 206
Background Material: Frames, Wavelets 207
191 Frames . . . . . ... ... ... .. e 207
19.2 Gabor and waveletframes . . . . ... ... ... ... ... ... 207
19.3 Gaborframes . ... ... ... ... ... Lo oL 208
19.4 Gaborwavelets . .. ... ... .. ... .. .. .. ... 208
19.5 Latticeconditions . . . ... ... ... .. ... o L 208
Background Material: Hebbian Learning 209
201 Oja’srule . . .. ... 209

20.1.1 Oja’s flow and receptive field aperture . . . . . .. .. .. 210
20.2 Foldiak trace rule: simple and complexcells. . . . .. ... ... 210



1 Summary

The starting assumption in the paper is that the sample complexity of (biolog-
ical, feedforward) object recognition is mostly due to geometric image trans-
formations. Thus our main conjecture is that the computational goal of the
feedforward path in the ventral stream — from V1, V2, V4 and to IT —is to
discount image transformations after learning them during development. A
complementary assumption is about the basic biological computational opera-
tion: we assume that

e dot products between input vectors and stored templates (synaptic weights)
are the basic operation (dot product in most of the paper refers to normal-
ized dot product: the normalization is often hidden in the equations;

e memory is stored in the synaptic weights through a Hebbian-like rule.

Part I of the paper describes a class of biologically plausible memory-based
modules that learn transformations from unsupervised visual experience. The
idea is that neurons can store during development “neural frames”, that is im-
age patches’ of an object transforming — for instance translating or looming. Af-
ter development, the main operation consists of dot-products of the stored tem-
plates with a new image. The dot-products are followed by a transformations-
average operation, which can be described as pooling. The main theorems
show that this 1-layer module provides (from a single image of any new object)
a signature which is automatically invariant to global affine transformations
and approximately invariant to other transformations. These results are de-
rived in the case of random templates, using the Johnson-Lindenstrauss lemma
in a special way; they are also valid in the case of sets of basis functions which
are a frame. Surprisingly the theory predicts that the group average by com-
plex cells should be followed by sigmoids and then by linear combination of
a bank of complex cells. This one-layer architecture, though invariant, and
optimal for clutter, is however not robust against local perturbations (unless
a prohibitively large set of templates is stored). A multi-layer hierarchical ar-
chitecture is needed to achieve the dual goal of local and global invariance.
A Kkey result of Part I is that a hierarchical architecture of the modules intro-
duced earlier with “receptive fields” of increasing size, provides global invari-
ance and stability to local perturbations (and in particular tolerance to local
deformations). Interestingly, the whole-parts theorem implicitly defines “object
parts” as small patches of the image which are locally invariant and occur of-
ten in images. The theory predicts a stratification of ranges of invariance in
the ventral stream: size and position invariance should develop in a sequential
order meaning that smaller transformations are invariant before larger ones, in
earlier layers of the hierarchy. Translations would be the transformation asso-
ciated with small apertures.

Part II studies spectral properties associated with the hierarchical architec-
tures introduced in Part I. The motivation is given by a Linking Conjecture: in-
stead of storing a sequence of frames during development, it is biologically



plausible to assume that there is Hebbian-like learning at the synapses in vi-
sual cortex. We will show that, as a consequence, the cells will effectively com-
putes online the eigenvectors of the covariance of their inputs during develop-
ment and store them in their synaptic weights. Thus the tuning of each cell is
predicted to converge to one of the eigenvectors. We assume that the develop-
ment of tuning in the cortical cells takes place in stages — one area — often called
“layer” — at the time. We also assume that the development of tuning starts in
V1 with Gaussian apertures for the simple cells. Translations are effectively
selected as the only learnable transformations during development by small
apertures — e.g. small receptive fields — in the first layer. The solution of the as-
sociated eigenvalue problem predicts that the tuning of cells in the first layer —
identified with simple cells in V1 — can be approximately described as oriented
Gabor-like functions. This follows in a parameter-free way from properties
of shifts, e.g. the translation group. Further, rather weak, assumptions about
the spectrum of natural images imply that the eigenfunctions should in fact be
Gabor-like with a finite wavelength which is proportional to to the variance of
the Gaussian in the direction of the modulation. The theory also predicts an
elliptic Gaussian envelope. Complex cells result from a local group average of
simple cells. The hypothesis of a second stage of hebbian learning at the level
above the complex cells leads to wavelets-of-wavelets at higher layers repre-
senting local shifts in the 4—cube of x,y, scale, orientation learned at the first
layer. We derive simple properties of the number of eigenvectors and of the
decay of eigenvalues as a function of the size of the receptive fields, to predict
that the top learned eigenvectors — and therefore the tuning of cells — become
increasingly complex and closer to each other in eigenvalue. Simulations show
tuning similar to physiology data in V2 and V4.

Part III considers modules that are class-specific. For non-affine transfor-
mations of the image — for instance induced by out-of-plane rotations of a 3D
object or non-rigid deformations — it is possible to prove that the dot-product
technique of Part I can provide approximate invariance for certain classes of
objects. A natural consequence of the theory is thus that non-affine transfor-
mations, such as rotation in depth of a face or change in pose of a body, can be
approximated well by the same hierarchical architecture for classes of objects
that have enough similarity in 3D properties, such as faces, bodies, perspective.
Thus class-specific cortical areas make sense for invariant signatures. In partic-
ular, the theory predicts several properties of the macaque cortex face patches
characterized by Freiwald and Tsao ([100, 101]), including a patch (called AL)
which contains mirror symmetric cells and is the input to the pose-invariant
patch (AM, [21]) — again because of spectral symmetry properties of the face
templates.

A surprising implication of these theoretical results is that the computa-
tional goals and several of the tuning properties of cells in the ventral stream
may follow from symmetry properties (in the sense of physics) of the visual
world? through a process of unsupervised correlational learning, based on

2A symmetry - like bilateral symmetry - is defined as invariance under a transformation.

10



Hebbian synapses. In particular, simple and complex cells do not directly care
about oriented bars: their tuning is a side effect of their role in translation in-
variance. Across the whole ventral stream the preferred features reported for
neurons in different areas are only a symptom of the invariances computed
and represented.

The results of each of the three parts stand on their own independently of
each other. Together this theory-in-fieri makes several broad predictions, some
of which are:

e invariance to small translations is the main operation of V1;

e invariance to larger translations and local changes in scale and scalings
and rotations takes place in areas such as V2 and V4;

e class-specific transformations are learned and represented at the top of
the ventral stream hierarchy; thus class-specific modules — such as faces,
places and possibly body areas — should exist in IT;

e tuning properties of the cells are shaped by visual experience of image
transformations during developmental (and adult) plasticity and can be
altered by manipulating them;

e while features must be both discriminative and invariant, invariance to
specific transformations is the primary determinant of the tuning of cor-
tical neurons.

e homeostatic control of synaptic weights during development is required
for hebbian synapses that perform online PCA learning.

e motion is key in development and evolution;

e invariance to small transformations in early visual areas may underly
stability of visual perception (suggested by Stu Geman);

e the signatures (computed at different levels of the hierarchy) are used
to retrieve information from an associative memory which includes la-
bels of objects and verification routines to disambiguate recognition can-
didates. Back-projections execute the visual routines and control atten-
tional focus to counter clutter.

The theory is broadly consistent with the current version of the HMAX
model. It provides theoretical reasons for it while extending it by providing
an algorithm for the unsupervised learning stage, considering a broader class
of transformation invariances and higher level modules. We suspect that the
performance of HMAX can be improved by an implementation taking into ac-
count the theory of this paper (at least in the case of class-specific transforma-
tions of faces and bodies [57]) but we still do not know.

The theory may also provide a theoretical justification for several forms
of convolutional networks and for their good performance in tasks of visual

11



recognition as well as in speech recognition tasks (e.g. [50, 52, 47, 73, 6, 49]);
it may provide even better performance by learning appropriate invariances
from unsupervised experience instead of hard-wiring them.

The goal of this paper is to sketch a comprehensive theory with little regard
for mathematical niceties: the proofs of several theorems are only sketched. If
the theory turns out to be useful there will be scope for interesting mathemat-
ics, ranging from group representation tools to wavelet theory to dynamics of
learning.

2 Introduction

The ventral stream is widely believed to have a key role in the task of object
recognition. A significant body of data is available about the anatomy and the
physiology of neurons in the different visual areas. Feedforward hierarchical
models (see [85, 90, 92, 91] and references therein, see also section 7—in the
appendix), are faithful to the anatomy, summarize several of the physiologi-
cal properties, are consistent with biophysics of cortical neurons and achieve
good performance in some object recognition tasks. However, despite these
empirical and the modeling advances the ventral stream is still a puzzle: Until
now we have not had a broad theoretical understanding of the main aspects
of its function and of how the function informs the architecture. The theory
sketched here is an attempt to solve the puzzle. It can be viewed as an ex-
tension and a theoretical justification of the hierarchical models we have been
working on. It has the potential to lead to more powerful models of the hi-
erarchical type. It also gives fundamental reasons for the hierarchy and how
properties of the visual world determine properties of cells at each level of the
ventral stream. Simulations and experiments will soon say whether the theory
has some promise or whether it is nonsense.

Asbackground to this paper, we assume that the content of past work of our
group on models of the ventral stream is known from old papers [85, 90, 92, 91]
to more recent technical reports [58, 59, 55, 56]. See also the section Background
in Supp. Mat. [79]. After writing previous versions of this report, TP found
a few interesting and old references about transformations, invariances and
receptive fields, see [75, 34, 44]. It is important to stress that a key assumption
of this paper is that in this initial theory and modeling it is possible to neglect
subcortical structures such as the pulvinar, as well as cortical backprojections
(discussed later).

2.1 Plan of the paper

Part I begins with the conjecture that the sample complexity of object recog-
nition is mostly due to geometric image transformations, e.g. different view-
points, and that a main goal of the ventral stream — V1, V2, V4 and IT - is to
learn-and-discount image transformations. Part I deals with theoretical results
that are independent of specific models. They are motivated by a one-layer
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architecture “looking” at images (or at “neural images”) through a number
of small “apertures” corresponding to receptive fields, on a 2D lattice or layer.
We have in mind a memory-based architecture in which learning consists of “stor-
ing” patches of neural activation. The argument of Part I is developed for this
“batch” version; a biologically plausible “online” version is the subject of Part
II. The first two results are

1. recording transformed templates - together called the templatebook — pro-
vides a simple and biologically plausible way to obtain a 2D-affine invari-
ant signature for any new object, even if seen only once. The signature —a
vector — is meant to be used for recognition. This is the invariance lemma
in section 3.3.1.

2. several aggregation (eg pooling) functions including the energy function
and the the max can be used to compute an invariant signature in this
one-layer architecture (see 3.3.1).

Section ?? discusses limitations of the architecture, with respect to robust-
ness to local perturbations. The conclusion is that multilayer, hierarchical ar-
chitectures are needed to provide local and global invariance at increasing
scales. In part II we will shows that global transformations can be approxi-
mated by local affine transformations. The key result of Part I is a character-
ization of the hierarchical architecture in terms of its covariance and invariance
properties.

Part II studies spectral properties associated with the hierarchical architec-
tures introduced in Part I. The motivation is given by a Linking Conjecture: in-
stead of storing frames during development, learning is performed online by
Hebbian synapses. Thus the conjecture implies that the tuning of cells in each
area should converge to one of the eigenvectors of the covariance of the in-
puts. The size of the receptive fields in the hierarchy affects which transforma-
tions dominate and thus the spectral properties. In particular, the range of the
transformations seen and “learned” at a layer depends on the aperture size:
we call this phenomenon stratification. In fact translations are effectively se-
lected as the only learnable transformations during development by the small
apertures, e.g. small receptive fields, in the first layer. The solution of the as-
sociated eigenvalue problem — the cortical equation —predicts that the tuning of
cells in the first layer, identified with simple cells in V1, should be oriented Ga-
bor wavelets (in quadrature pair) with frequency inversely proportional to the
size of an elliptic Gaussian envelope. These predictions follow in a parameter-
free way from properties of the translation group. A similar analysis lead to
wavelets-of-wavelets at higher layers representing local shifts in the 4-cube of
X,y, scale, orientation learned at the first layer. Simulations show tuning similar
to physiology data in V2 and V4. Simple results on the number of eigenvec-
tors and the decay of eigenvalues as a function of the size of the receptive fields
predict that the top learned eigenvectors, and therefore the tuning of cells, be-
come increasingly complex and closer to each other in eigenvalue. The latter
property implies that a larger variety of top eigenfunctions are likely to emerge
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during developmental online learning in the presence of lateral inhibition (see
section 4.2.1).

Together with the arguments of the previous sections this theory provides
the following speculative framework. From the fact that there is a hierarchy
of areas with receptive fields of increasing size, it follows that the size of the
receptive fields determines the range of transformations learned during devel-
opment and then factored out during normal processing; and that the trans-
formation represented in an area influences — via the spectral properties of the
covariance of the signals — the tuning of the neurons in the area.

Part I1I considers modules that are class-specific. A natural consequence of
the theory of Part I is that for non-affine transformations such as rotation in
depth of a face or change in pose of a body the signatures cannot be exactly
invariant but can be approximately invariant. The approximate invariance can
be obtained for classes of objects that have enough similarity in 3D proper-
ties, such as faces, bodies, perspective scenes. Thus class-specific cortical areas
make sense for approximately invariant signatures. In particular, the theory
predicts several properties of the face patches characterized by Freiwald and
Tsao [100, 101], including a patch containing mirror symmetric cells before the
pose-invariant patch [21] — again because of spectral properties of the face tem-
plates.

Remarks

e Recurrent architecture, bottom-up and top-down The ventral stream is
a recurrent architecture, bottom-up and top-down, at the level of connec-
tivity between cortical areas (in addition to the recurrent circuits within
each area). Anatomy and psychophycs point clearly in this direction,
though physiology is less clear. The theory here is very much based on
the assumption of a recurrent circuitry (in the same spirit, digital comput-
ers are recurrent architectures). Our hypothetical architecture involves
memory access from different levels of the hierarchy as well as top-down
attentional effects, possibly driven by partial retrieval from an associative
memory. The neural implementation of the architecture requires local
feedback loops within areas (for instance for normalization operations).
Thus the architecture we propose is hierarchical; its most basic skele-
ton is feedforward. The theory is most developed for the feedforward
skeleton which is probably responsible for the first 100 msec of percep-
tion/recognition. This is the part of the theory described in this paper.

e Memory access A full image signature is a vector describing the “full
image” seen by a set of neurons sharing a “full visual field” at the top
layer, say, of the hierarchy. Intermediate signatures for image patches —
some of them corresponding to object parts — are computed at intermedi-
ate layers. All the signatures from all level are used to access memory for
recognition. The model of figure 1 shows an associative memory module
that can be also regarded as a classifier.
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Figure 1: Signatures from every level access associative memory modules.

o Identity-specific, pose-invariant vs identity-invariant, pose-specific rep-
resentation Part I develops a theory that says that invariance to a trans-
formation can be achieved by pooling over transformed templates mem-
orized during development. Part Il says that an equivalent, more biolog-
ical way to achieve invariance to a transformation is to store eigenvectors
of a sequence of transformations of a template for several templates and
then to pool the moduli of the eigenvectors.

In this way different cortical patches can be invariant to identity and spe-
cific for pose and vice-versa. Notice that affine transformations are likely
to be so important that cortex achieves more and more affine invariance
through several areas in a sequence (= 3 areas).

e Generic and class-specific transformations We distinguish (as we did in
past papers, see [82, 85]) between generic image-based transformations
that apply to every object, such as scale, 2D rotation, 2D translation, and
class specific transformations, such as rotation in depth for a specific class
of objects such as faces. Affine transformations in R? are generic. Class-
specific transformations can be learned by associating templates from the
images of an object of the class undergoing the transformation. They can
be applied only to images of objects of the same class — provided the
class is “nice” enough. This predicts modularity of the architecture for
recognition because of the need to route — or reroute — information to
transformation modules which are class specific [56, 57].

e Memory-based architectures, correlation and associative learning The
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architectures discussed in this paper implement memory-based learning
of transformations by storing templates (or principal components of a
set of templates) which can be thought of as frames of a patch of an ob-
ject/image at different times of a transformation. This is a very simple,
general and powerful way to learn rather unconstrained transformations. Un-
supervised (Hebbian) learning is the main mechanism at the level of sim-
ple cells. For those “complex” cells which may pool over several simple
cells, the key is an unsupervised Foldiak-type rule: cells that fire together
are wired together. At the level of complex cells this rule determines classes
of equivalence among simple cells — reflecting observed time correlations in
the real world, that is transformations of the image. The main function of
each (simple + complex) layer of the hierarchy is thus to learn invari-
ances via association of templates memorized during transformations in
time. There is a general and powerful principle of time continuity here,
induced by the Markovian (eg low-order differential equations) physics
of the world, that allows associative labeling of stimuli based on their
temporal contiguity®.

e Subcortical structures and recognition We neglect the role of cortical
backprojections and of subcortical structures such as the pulvinar. It is
a significant assumption of the theory that this can be dealt with later,
without jeopardizing the skeleton of the theory. The default hypothesis
at this point is that inter-areas backprojections subserve attentional and
gaze-directed vision, including the use of visual routines, all of which is
critically important to deal with recognition in clutter. In this view, back-
projections would be especially important in hyperfoveal regions (less
than 20 minutes of visual angle in humans). Of course, inter-areas back-
projections are likely to play a role in control signals for learning, general
high-level modulations, hand-shakes of various types. Intra-areas feed-
back are needed even in a purely feed-forward model for several basic
operations such as for instance normalization.

3There are many alternative formulations of temporal contiguity based learning rules in the
literature. These include: [18, 107, 97, 39, 64, 19]. There is also psychophysics and physiology
evidence for these [10, 106, 61, 60]
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3 Part I: Memory-based Learning of Invariance to
Transformations

Summary of Part I. Part [ assumes that an important computational primitive in cor-
tex consists of normalized dot products between input vectors and synaptic weights.
It shows that the following sequence of operation allows learning invariance to trans-
formations for an image. During development a number of objects (templates) are
observed during affine transformations; for each template a sequence of transformed
images is stored. At run-time when a new image is observed its dot-products with the
transformed templates (for each template) are computed; then the moduli of each term
are pooled to provide a component of the signature vector of the image. The signature
is an invariant of the image. Later in Part I we show that a multi-layer hierarchi-
cal architecture of dot-product modules can learn in an unsupervised way geometric
transformations of images and then achieve the dual goal of invariance to global affine
transformations and of robustness to image perturbations. These architectures learn in
an unsupervised way to be automatically invariant to transformations of a new object,
achieving the goal of recognition with one or very few labeled examples. The theory of
Part I should apply to a varying degree to hierarchical architectures such as HMAX,
convolutional networks and related feedforward models of the visual system and for-
mally characterize some of their properties.

3.1 Recognition is difficult because of image transformations

Summary. This section motivates the main assumption of the theory: a main difficulty
of recognition is dealing with image transformations and this is the problem solved
by the ventral stream. We show suggestive empirical observation and pose an open
problem for learning theory: is it possible to show that invariances improve the sample
complexity of a learning problem?

The motivation of this paper is the conjecture that the “main” difficulty, in
the sense of sample complexity, of (clutter-less) object categorization (say dogs
vs horses) is due to all the transformations that the image of an object is usu-
ally subject to: translation, scale (distance), illumination, rotations in depth
(pose). The conjecture implies that recognition — i.e. both identification (say
of a specific face relative to other faces) as well as categorization (say distin-
guishing between cats and dogs and generalizing from specific cats to other
cats) — is easy (eg a small number of training example is needed for a given
level of performance), if the images of objects are rectified with respect to all
transformations.

3.1.1 Suggestive empirical evidence

To give a feeling for the arguments consider the empirical evidence — so far just
suggestive and at the anecdotal level — of the “horse vs dogs” challenge (see
Figures 3 and 2). The figure shows that if we factor out all transformations in
images of many different dogs and many different horses — obtaining “normal-
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Figure 2: Images of dogs and horses, in the wild, with arbitrary viewpoints (and clutter, eg
background).The performance of a reqularized least squares classifier (linear kernel, as in the
next figure) is around chance. There are 60 images in total (30 per class) from Google. The x axis
gives the number of training examples per class. Both clutter and viewpoint are likely to make
the problem difficult. This demonstration leaves unclear the relative role of the two.
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Figure 3: Images of dogs and horses, ‘normalized” with respect to image transformations. A
reqularized least squares classifier (linear kernel) tested on more than 150 dogs and 150 horses
does well with little training. Error bars represent +/- 1 standard deviation computed over 100
train/test splits. This presegmented image dataset was provided by Krista Ehinger and Aude
Oliva.
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ized” images with respect to viewpoint, illumination, position and scale — the
problem of categorizing horses vs dogs is very easy: it can be done accurately
with few training examples — ideally from a single training image of a dog
and a single training image of a horse — by a simple classifier. In other words,
the sample complexity of this problem is — empirically — very low. The task
in the figure is to correctly categorize dogs vs horses with a very small num-
ber of training examples (eg small sample complexity). All the 300 dogs and
horses are images obtained by setting roughly the same viewing parameters
— distance, pose, position. With these “rectified” images, there is no signifi-
cant difference between running the classifier directly on the pixel representa-
tion versus using a more powerful set of features (the C1 layer of the HMAX
model).

3.1.2 Intraclass and viewpoint complexity

Additional motivation is provided by the following back-of-the-envelope esti-
mates. Let us try to estimate whether the cardinality of the universe of possible
images generated by an object originates more from intraclass variability — eg
different types of dogs — or more from the range of possible viewpoints — in-
cluding scale, position and rotation in 3D. Assuming a granularity of a few
minutes of arc in terms of resolution and a visual field of say 10 degrees, one
would get 10% — 10° different images of the same object from z, y translations,
another factor of 10® —10° from rotations in depth, a factor of 10—10? from rota-
tions in the image plane and another factor of 10 — 10? from scaling. This gives
on the order of 108 — 10 distinguishable images for a single object. On the
other hand, how many different distinguishable (for humans) types of dogs
exist within the “dog” category? It is unlikely that there are more than, say,
10% — 103. From this point of view, it is a much greater win to be able to factor
out the geometric transformations than the intracategory differences.

Thus we conjecture that the key problem that determined the evolution of
the ventral stream was recognizing objects — that is identifying and catego-
rizing — from a single training image, invariant to geometric transformations.
In computer vision, it has been known for a long time that this problem can
be solved if the correspondence of enough points between stored models and
a new image can be computed. As one of the simplest results, it turns out
that under the assumption of correspondence, two training images are enough
for orthographic projection (see [103]). Recent techniques for normalizing for
affine transformations are now well developed (see [109] for a review or [?, ?]
for a novel method in transformations estimations). Various attempts at learn-
ing transformations have been reported over the years (see for example [83, 47]
and for additional references the paper by Hinton [33]).

Our goal here is instead to explore approaches to the problem that do not
rely on explicit correspondence operations and provide a plausible biological
theory for the ventral stream. Our conjecture is that the main computational goal
of the ventral stream is to learn to factor out image transformations. We show here
several interesting consequences follow from this conjecture such as the hier-
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archical architecture of the ventral stream. Notice that discrimination without
any invariance can be done very well by a classifier which reads the pattern of
activity in simple cells in V1 - or, for that matter, the pattern of activity of the
retinal cones.

3.1.3 Invariant representations and bounds on learning rates

Open Problem It seems obvious that learning/using an input representation which
is invariant to natural transformations (eg contained in the distribution) should re-
duce the sample complexity of supervised learning. It is less obvious what is the best
formalization and proof of the conjecture in the framework of learning theory.

Theorem

The key observation is that we can estimate the compression coefficient as-
sociated with an invariant representation and that there are results connection
compression coefficient of the training set and probability of test error (see Vap-
nik around p226)

more here!!!!

3.2 Templates and signatures

Summary. In this section we argue for another assumption in the theory: a primitive
computation performed by neurons is a (normalized) dot product. This operation can
be used by cortex to compute a signature for any image as a set of dot products of the
image with a number of templates stored in memory. It can be regarded as a vector of
similarities to a fixed set of templates. Signatures are stored in memory: recognition
requires matching a signature with an item in memory.

The theory we develop in Part I is informed by the assumption that a basic
neural operation carried by a neuron can be described by the dot product be-
tween an input vectors and a vector of synaptic weights on a dendritic tree.
Part II will depend from the additional assumption that the vector of synaptic
weights can be stored and modified by an online process of Hebb-like learning.
These two hypothesis are broadly accepted.

In this paper we have in mind layered architectures of the general type
shown in Figure 5. The computational architecture is memory-based in the
sense that it stores during development sensory inputs and does very little in
terms of additional computations: it computes normalized dot products and
pooling (also called aggregation) functions. The results of this section are inde-
pendent of the specifics of the hierarchical architecture and of explicit refer-
ences to the visual cortex. They deal with the computational problem of in-
variant recognition from one training image in a layered, memory-based archi-
tecture.

The basic idea is the following. Consider a single aperture. Assume a mech-
anism that stores “frames”, seen through the aperture, as an initial pattern “out
in the world” transforms from ¢ = 1 to ¢t = N under the action of a spe-
cific transformation (such as rotation). For simplicity assume that the set of
transformations is a group. This is the “developmental” phase of learning the
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Figure 4: A neuron receives on its dendritic tree in the order of 10° — 10* synaptic inputs from
other neurons. To a first approximation each synapse contributes a current which depends on
the product of the input signal and the synapse. Since the soma of the neuron can be regarded
as summating all these contributions, the neuron computes xt which is then encoded in spike
trains.

templates. At run time an image patch is seen through the aperture, and a set
of normalized dot products with each of the stored templates (eg all transfor-
mations of each template) is computed. A vector called “signature” is then
produced by an aggregation function — typically a group average over non-
linear functions of the dot product with each template. Suppose now that at
some later time (after development is concluded) the same image is shown,
transformed in some way. The claim is that if the templates are closed under
the same group of transformations then the signature remains the same. Sev-
eral aggregation functions, such as the average or even the max (on the group),
acting on the signature, will then be invariant to the learned transformation.

3.2.1 Preliminaries: resolution and size

The images we consider here are functions of two spatial variables z, y and time
t. The images that the optics forms at the level of the retina are well-behaved
functions, in fact entire analytic functions in R?, since they are bandlimited by
the optics of the eye to about 60 cycles/degree (in humans). The photoreceptors
sample the image in the fovea according to Shannon’s sampling theorem on a
hexagonal lattice with a distance between samples equal to the diameter of the
cones (which are tightly packed in the fovea) which is 27 seconds of arc. The
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Figure 5: Hierarchical feedforward model of the ventral stream — a modern interpretation of the
Hubel and Wiesel proposal (see [84]). The theoretical framework proposed in this paper provides
foundations for this model and how the synaptic weights may be learned during development
(and with adult plasticity). It also suggests extensions of the model such as class specific modules
at the top.
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sampled image is then processed by retinal neurons; the result is transmitted
to the LGN and then to primary visual cortex through the optic nerve, consist-
ing of axons of the retinal ganglion cells. At the LGN level there are proba-
bly two neural “images” in the fovea: they may be roughly described as the
result of DOG (Difference-of-Gaussian or the similar Laplacian-of-Gaussian)
spatial filtering (and sampling) of the original image at two different scales
corresponding to the magno and the parvo system. The parvo or midget sys-
tem is spatially bandpass (but with a DC component). There is also high-pass
filtering in time at the level of the retina which can be approximated by a time
derivative component or more accurately as a filter providing, in the Fourier
domain, SF (wg,wy,w:) + iws F(ws, wy,w:) where F' is the fourier transform of
the image. Thus the neural image seen by the cortex is bandpass in space and
time. The finest grain of it is set by the highest spatial frequency (notice that if
Ay corresponds to the highest spatial frequency then sampling at the Shannon

rate, eg on a lattice with edges of length 2+ preserves all the information.)

3.2.2 Templatesets

Since the goal of visual recognition in the brain is not reconstruction but identi-
fication or categorization, a representation possibly used by the ventral stream
and suggested by models such as Figure 5, is in terms of an overcomplete set
of measurements on the image, a vector that we will call here a measurement.

It is interesting to notice that the nature of the measurements may not be terri-
bly important as long as they are reasonable and there are enough of them. A
historical motivation and example for this argument is provided by OCR al-
gorithms based on counting intersections of characters with a random, fixed
set of lines (see 6. A more mathematical motivation is provided by a theorem
due to Johnson and Lindenstrauss. Their classic result says informally that
any set of n points in d-dimensional Euclidean space can be embedded into k-
dimensional Euclidean space where £ is logarithmic in n» and independent of d
via random projections so that all pairwise distances are maintained within an
arbitrarily small factor. The theorem will be discussed later together with more
classical approximate embeddings as provided by finite frames. We mention it
here as a suggestion that since there are no special conditions on the projections
(though the assumption of randomness is actually strong) most measurements
will work to some degree, as long as there are enough independent measure-
ments (but still with £ << n in most cases of interest). Notice for future use
that the discriminative power of the measurements depends on k.

In summary we assume

e The ventral stream computes a representation of images that supports the
task of recognition (identification and categorization). It does not need to
support image reconstruction.
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Figure 6: Number of intersection per line (out of an arbitrary, random but fixed set) provides
an effective set of measurements for OCR.

e The ventral stream provides a signature which is invariant to geometric
transformations of the image and to deformations that are locally approx-
imated by affine transformations

e Images (of objects) can be represented by a set of functionals of the image,
eg measurements. Neuroscience suggests that a natural way for a neuron
to compute a simple image measurements is a (possibly normalized) dot
product between the image and a vector of synaptic weights correspond-
ing to the tuning of the neuron.

Before showing how to built and invariant signature let us give a few defini-
tions:

Definition 1. Space of images: X C L*(R?) ( or RY) where
L*(R?) = {I:R? 5 R, s.t. / | I(x,y) |? dedy < oo}

(1.0) = [ 1)t dedy, Tre x

the space of square integrable functions equipped with dot product.

Definition 2. Template set: T C X, (or R%): a set of images (or, more generally,
image patches)

Given a finite template set (|7] = K < oo) we define a set of linear func-
tionals of the image I:
(It"y, k=1,.. K.

which we call measurements.
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Definition 3. The image I can be represented in terms of its measurement vector
defined with respect to the templateset T

Ap = (I, tN, (L2, .., (I tE)T

We consider here two examples for choosing a set of templates. Both ex-
amples are relevant for the rest of the paper. Consider as an example the set
of images in X € R%. The obvious choice for the set of templates is to be an
orthonormal basis in the space of “images patches”, eg in R?. Our first exam-
ple is a variation of this case: the templateset 7 is assumed to be a frame (see
Appendix 19.1) for the n-dimensional space X’ spanned by n chosen images in
R?, that is the following holds

T
AlI|P <Y | < It* > ? < BJ|I|)? (1)

k=1
where I € R? and A < B. We can later assume that A =1 —cand B =1+ ¢

where € can be controlled by the cardinality T of the templateset 7. In this
example consider for instance n < T' < d.

This means that we can represent n images by projecting them from I € R?
to R” by using templates. This map F : R? — R” is such that for all I, I’ € X
(where X is a n-dimensional subspace of R?)

Al T-T|<| FI-FI'"|[<B[I-I"].

IfA=1-cand B < 1+ e where ¢ = ¢(T) the projections of I and I’ in R”
maintains the distance within a factor e: the map is a quasi-isometry and can
be used for tasks such as classification. The second example is based on the
choice of random templates and a result due to Johnson and Lindenstrauss (J-L).

Proposition 1. For any set V of n points in RY, there exists a map P : R® — RT
such that forall I,1' € V

A= I-T" || PI=PI'[[<(1+e) | T-1"]

where the map P is a random projection on RT and

i)
w

kC(e) > In(n), C(e) = %(% -9

The JL theorem suggests that good representations for classification and
discrimination of n images may be provided by K dot products with random
templates since they provide a quasi-isometric embedding of images.

Remarks
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e The dimensionality of the measurement vector given by JL depends on n
but not on d;

e The dimensions of the measurement vector are logarithmic in n;

e The fact that random templates are sufficient suggests that the precise
choice of the templates is not important, contrary to the present folk wis-
dom of the computer vision community.

e The Johnson-Lindenstrauss result implies that if I and I’ are very close
(thatis ||I —I'|| < ¢), their projections P(I) and P(I’) are very close in ev-
ery norm, in particular component-wise (that is maxy|P(I); — P(I')] <
9).

3.2.3 Transformations and templatebooks

The question now is how to compute a measurement vector that is capable not
only of discriminating different images but is also invariant to certain transfor-
mations of the images. We consider geometric transformations of images due
to changes in viewpoints.

We define as geometric transformations of the image I the action of the operator
U(T) : L*(R?) — L?*(R?) acting as:

[U(D)1)(z,y) = H(T " (x,y)) = I(«',y), I€L*R?)

where T : R? — R? is a coordinate change.
In general U(T) : R — R? isn’t a unitary operator. However it can be made
unitary defining

[U(T))(z,y) = |Jr| "2 1T~ (z,y))

where |Jr| is the determinant of the Jacobian of the transformation. Unitarity
of the operator will be useful in the next paragraph.
A key example of T is the affine case, eg

x' = Ax + t«

where A € GL(2,R) the linear group in dimension two and tx € R

In fact, in most of this paper we will consider transformations that corre-
spond to the affine group Aff(2,R) which is an extension of GL(2,R) (the
general linear group in R?) by the group of translations in R%. Consider a finite
group G whose elements we indicate with g;, i = 1,...,|G| and a finite set of
templates, t*, k = 1, ..., K. Let us now define a key object of the paper:
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Definition 4. Suppose the set of templates are closed under the action of a group of
transformations, i.e.

gith =t', 3Ivi=1,.,|G|, k=1,.. K.

We assume that the basic element of our architecture, the memory based module, stores
(during development) sequences of transformed templates for each template in the tem-
plateset. We define the Templatebook as

got1, gotz, -5 gotT
gic|t1; gigite, - gigitr

the collection of all transformed templates. Each row corresponds to the orbit of the
template under the transformations of G.

3.3 Invariance and discrimination

Summary. If a signature is a dot product between the image and a template, then the
average of any function of the dot product between all the transformations of the image
and the template is an invariant. Under some assumptions this is equivalent to the av-
erage of any function of the dot product of the image and all the transformations of the
template. Thus an invariant can be obtained from a single image. However, invariance
is not enough: discrimination is also important. Thus we start considering the full
orbit induced by the action of the group on the image. For compact groups if two orbits
have a point in common then they are the same orbit. A distribution Py induced by the
group acting on the image I is associated to each orbit: the distribution is invariant and
discriminant. Thus the discriminability question is answered if the distribution can be
characterized uniquely by a set of empirical averages. This section shows that group av-
eraging of projections followed by sigmoidal nonlinearities can be used for an empirical
estimation of one-dimensional projections of Py. In turns, such estimators characterize
uniquely the distribution, according to J-L type results for distributions. Thus a set of
estimators provides a discriminant signature vector with invariant components. The
biologically elegant prediction is that linear combinations of complex-like cells with a
sigmoidal nonlinearity can provide discriminative and invariant signatures.

We start with a rather idealized situation (group is compact, the image does
not contain clutter) for simplicity. We will make our framework more realistic
in section ??. For a more mathematically formal description of the problem and
an alternative formulation see appendix 9 and10.

3.3.1 The invariance lemma

Consider the dot products of all transformation of an image with one compo-
nent of the templateset ¢

AG,I = (<90I’t>7 <gljvt>"‘7 <g\G‘I’t>)T
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Clearly, if the transformation is unitary (i.e. " = g~1)
AG,I = (<9017t>a <gllv t)? ) <g\G|I7 t>)T = (<I7 g(;lt>7 <[’ g;1t> <] g\ G| >>T

where g~! is the inverse transformation of g and A ; is the measurement vec-
tor of the image w.r.t the transformations of one template, that is the orbit ob-
tained by the action of the group on the dot product. Note that the following
is mathematically trivial but important from the point of view of object recog-
nition. To get measurements of an image and all its transformations it is not
necessary to “see” all the transformed images: a single image is sufficient pro-
vided a templatebook is available. In our case we need for any image, just one
row of a templatebook, that is all the transformations of one template:

Tt = (gotvgltv 7g\G|t)T

Note that the orbits A; ¢ and Ay; ¢ are the same set of measurements apart
from ordering). The following invariance lemma follows.

Proposition 2. (Invariance lemma) Given A ¢ for each component of the tem-
plateset an invariant signature 3 can be computed as the group average of a nonlinear
function, n : R — R, of the measurements which are the dot products of the image
with all transformations of one of the templates, for each template:

Z (I,gt*)), k=1,.., K. 2)

geqG

e

A classical example of invariantis (-) = | - |?, the energy

Other examples of invariant group functionals are

e Max: pu*(I) = maz;(I, git*)

o Average: i (I) = i .4 (T, 0it")
We call the functions x in eq. 2 pooling or aggregation functions. The original
HMAX model uses a maz of I o g;t* over i or the average of I o g;t* over i or
the average of (I o g;t*)? over i. In convolutional networks the pooling func-
tion is often the average of 1) terms, where 7 is a sigmoidal function describing

the threshold operation of a neuron. Such aggregation operations can also be
approximated by the generalized polynomial

n
i=1
y= N
k + (Z .Q?Z'q)
i=1
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for appropriate values of the parameters (see [46]). Notice that by defining

the p-norm of z with ||z||, = (3 |o:i|p)%, it follows that maz(z) = ||z||e and
energy — operation(x) = ||z||2. in any case, the invariant signature,

is a vector which is invariant under the transformations g;.

Remarks

e Signature Notice that not all individual components of the signature (a
vector) have to be discriminative wrt a given image — whereas all have
to be invariant. In particular, a number of poorly responding templates
could be together quite discriminative.

o Group averages Image blur corresponds to local average of pixel values. It
is thus a (local) group average providing the first image moment.

3.3.2 Orbits

An invariant signature based on the arithmetic average is invariant but most of
the times not enough discriminative. As we will see later, signatures consisting
of ceratin nonlinear functions of the same dot products (instead of a single 1)
function are discriminant.

In the case of invariant recognition wrt a group of transformations the basic
object to be discriminated is the set of images generated by the group from a
single image — called an orbit (see 3.3.1. ). Two “objects” are different inde-
pendently of their transformation if their orbits are different. This makes sense
because if two orbits intersect in one point they are identical everywhere. Thus
equivalence of two orbits implies that at least one point, eg one image, is in
common — but then all are. In the same spirit, recall that iff a group is compact
then the quotient group is a metric space. This implies that a distance between
orbits can be defined (see Proposition 7).

How can two orbits be characterized and compared in a biologically plau-
sible way? Intuitively two empirical orbits are the same irrespectively of the
ordering of their points. Thus a natural approach in the finite case is to rank all
the points of the I set and do the same for the I’ set. Then a comparison should
be easy (computationally). The next two mathematical sections describe the
more general approach of comparing the probability distribution associated
with the I set with the distribution associated with the I’ set. We will discuss
the following axiom that we take as a definition of equivalence between the
orbits generated by G acting on the points I and I’,
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Definition 5.
Pr=Py <— I~ I

where P is the probability distribution induced by the group.

After the mathematical interlude of section 3.4.1 we will address in section
3.4.2 the key question of how to obtain empirical estimates of P; in a biological
plausible way.

3.4 Invariant and unique signatures

Let X be a Hilbert space with norm and inner product denoted by ||-|| and (-, -),
respectively. We can think of X as the space of images. We typically consider
X =R? L3(R), L*(R?). If G is a group with an abuse of notation, we denote
by g both a group element in G and its action/representation on X'.

Given an image I € X and a group representation g, the orbit O; = {I’ €
X st. I' = gI,g € G} is uniquely associated to an image and all its transfor-
mations. The orbit provides an invariant representation of I, i.e. Oy = Oy
for all ¢ € G. Indeed, we can view an orbit as the realization of a random
variable with distribution P; induced by the group action. From this observa-
tion, a (vector) signature can be derived for compact groups, by using results
characterizing probability distributions via their one dimensional projections.

In this section we discuss and study the signature given by

E(I) = (/,L%(I),,/.LI]\(,(I)) = (/’Ll(I)v"'vﬂk(I))a

where each vector ¢*(I) € R" is a histogram corresponding to a one dimen-
sional projection defined by a template t* € X. For the rest of this section we
let X = R9.

3.4.1 Orbits and probability distributions

If G is a compact group, the associated Haar measure dg can be normalized to
be a probability measure, so that, for any I € R¢, we can define the random
variable,

Zr:G — R4, Zi(g) =gl.

The corresponding distribution P; is defined as Pr(A) = dg(Z; *(A)) for any
Borel set A ¢ R? (with some abuse of notation we let dg be the normalized
Haar measure).

Recall that we define two images, I, I’ € X equivalent (and we indicate it with
I ~ I') if there exists g € G s.t. I = gI’; we have the following;:

Theorem 1. The distribution Py is invariant and unique i.e. I ~ I' < Py = Pyp.
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Proof. We first prove that I ~ I’ = P; = Pp. By definition P; = Pp iff
J4dPi(s) = [,dPr(s),¥Y AC X, thatis le_l(A) dg = fZI_/l(A) dg, where,

Z;YA)={g€Gst gl CA}
Z;MA)={g€Gst.gl' c Ay ={g€ G st ggl C A},

VACX NotethatV A C Xifgl € A = g5 lgl = gg-'I' € A, so
thatg € Z;*(A) = g5 ' € Z;,'(A), ie. Z;'(A) C Z;'(A). Conversely
g€ Z;M(A) = gg € Z;7Y(A), so that Z; ' (A) = Z;,'(A)g, VA. Using this
observation we have,

/ dg :/ dg :/ dg
Z;H(A) (27 (A)g Z51(A)

”
where in the last integral we used the change of variable § = gg~! and the
invariance property of the Haar measure: this proves the implication.
To prove that P = Py = I ~ I, note that P;(A)— Pp(A) =0,V ACAX,is
equivalent to

/ dgf/ dg:/ dg=0,VAe X
;51 (A) ZrH(4) Z; 1 (A)AZ(A)

I’

where A denotes the symmetric difference. This implies Z; ' (A)AZ} ' (A) = 0
or equivalently
ZiNA) =21 (A),VAeXx

In other words of any element in A there exist ¢/, ¢ € G such that ¢'I = ¢"I'.
This implies I = ¢ '¢"I' = gI', g=¢' 'g",ie. [ ~ I’ 0

3.4.2 Empirical measurements of probabilities of projections

Thus the distribution P; is invariant and then discriminative. How can neu-
rons obtain an empirical estimate — a signature that uniquely characterize P;?
Of course we are not interested in computing the probability distributions and
or compare them (see Appendix 10.4.4). We are interested in a set of measure-
ments that characterize uniquely the distribution. An approach which seems
relevant, though indirectly, for neuroscience is related to the characterization
of distributions in terms of (multivariate) moments. Notice that univariate mo-
ments can be estimated using pooling functions such as in Equation (2) with
appropriate choices of the function n (but it is not clear how to biologically
estimate multivariate moments). In addition, a sufficient (possibly infinite)
number of moments uniquely characterizes a probability distribution (see Ap-
pendix 10.4.2). There is however a simpler and more elegant way (because of
biological plausibility) to obtain selective and invariant quantities in terms of
group averages such as Equation (2). We first show that empirical estimates
of lower dimensional projections of P; can be estimated using a surprisingly
simple and biologically plausible operation. We then show that such lower
dimensional estimates uniquely characterize P;.
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Probability distributions via one dimensional projections. Given the above
discussion a signature could be associated to I by constructing a histogram ap-
proximation of Pr, but this would require dealing with high dimensional his-
tograms. The following classic theorem gives a way around this problem.

For a template t € S(R?), where S(R?) is unit sphere in R?, let I — (I, t) be the
associated projection. Moreover, let P; ;) be the distribution associated to the
random variable g — (gI,t) (or equivalently g — <I , g_1t>, if g is unitary). Let
&= [t S S(Rd), s.t. P(I,t) = Q(I,t>]~

Theorem 2. (Cramer-Wold, [11]) For any pair P, () of probability distributions on
RY, we have that P = Q if and only if € = S(RY).

In words two probability distributions are equal if and only if their projec-
tions on any of the unit sphere directions is equal. The result can be equiva-
lently stated as follows.

Theorem 3. (consequence of Theorem 3.4 in [13]) Let P and @Q two probability dis-
tributions on R, Let \ be the normalized uniform measure on S(R?). We have that
ME) >0 P=Q.

The latter formulation implies in particular that the probability of choosing
tsuchthat Pi; ;) = Q7,1 isequal to 1ifand only if P = @ and the probability of
choosing t such that P; ;) = Q(; ) is equal to 0 if and only if P # Q. Moreover
it suggests to define a metric on distributions (orbits) as follows,

d(Pr,Pp) = /dO(P<I,t)7P(I’,t))d)‘(t)v VI,I' € X,

where dy is any metric on one dimensional probability distributions. Indeed,
it is easy to check that d is a metric. In particular note that, in view of Cramer
Wold Theorem, d(P,Q) = 0 if and only if P = Q. As discussed in the main
text, each one dimensional distribution P ;) can be approximated by a suitable
histogram pf(I) = (u%,(I))n=1,..n € RY, so that, in the limit in which the
histogram approximation is accurate

A1 P~ [ (D), (INNE), VLT € X, @)

where d,, is the metric on histograms induced by d,.

A natural question is whether there are situations in which a finite number
of projections suffice to discriminate any two probability distributions, that is
Pr # P; < d(Pr,Pp) # 0. Indeed, empirically it seems that this could be
the case with a small number of templates, as shown for instance in [12]. The
problem of characterizing mathematically situations in which a finite number
of (one-dimensional) projections is sufficient is challenging. The next result
provides a partial answer to this question.
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We start observing that the metric (4) can be approximated by uniformly sam-
pling K templates and considering

K
dg (Pr,Pp) = Z pk (1), 5)

k:

where p* = utk. The following result shows that a finite number K of tem-
plates is sufficient to obtain an approximation within a given precision e. To-
wards this end let

dy (P (1), p* (1)) = || (X) = (1) || g - (6)
The following result holds.

Theorem 4. Consider n images X,, in X. Let K > 5 log %, where c is a universal
constant. Then A
|d(Pr, Pr) — dg (Pr, Prr)| <'e, 7)

with probability 1 — &2, forall I, I' € X,,.

Proof. The proof follows from an application of Héeffding inequality and a
union bound.

Fix I,I' € X,. Define the real random variable Z : S(R?) — R, Z(t¥) =
|w*(I) = u*(I)||gw, with k& = 1,..., K. From the definitions it follows that
|1Z]] < cand E(Z) = d(Py, Pr+). Then Hoeffding inequality implies

K
. 1 .
|d(Pr, Pr) — dw (Pr, Pr)| = | 7= ;E(Z) —Z(tY)] = €,

with probability at most e~k A union bound implies a result holding uni-

formly on &,,; the probability becomes at most n?e="K_ The desired result is
obtained noting that this probability is less than §2 as soon as nZe~*" K < §2

thatis K > ﬁlog%. O

Thus the discriminability question can be answered in terms of empiri-
cal estimates of the one-dimensional distributions of projections of the image
and transformations induced by the group on a number of templates t*, k =
1 K.

PIREEY)

Remark 1. The above result can be compared to a version of Cramer Wold Theorem
for discrete probability distributions. Indeed, the following theorem holds [32].

Theorem 5. Let P be a discrete probability distribution on R? with a support made
with exactly k distinct atoms. Assume that Vi, ..., Vi.y1 are subspaces of R? of respec-
tive dimensions d, ..., dj+1 such that no couple of them is contained in a hyperplane
(i.e. no straight line is perpendicular to more than one of them). Then, for any proba-
bility distribution Q in R?, we have P = Q if and only if my, € E4,(P,Q), for every
1 <4 < k+ 1, where my, is the projector onto the subspace V; and E4, (P, Q) is the set
of subspaces of dimensionality d; with equal P and () projections.
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In particular, for a probability distribution consisting of k atoms in R?, we see that
at most k + 1 directions (dy = do = ... = dpy1 = 1) are enough to characterize the
distribution, thus a finite — albeit large — number of one-dimensional projections.

3.4.3 Computations by simple and complex cells

The approach described above map the computation of an invariant signature
onto well-known capabilities of cortical neurons. We start from an old obser-
vation. A key difference between the basic elements of our digital comput-
ers and neurons is the number of connections: 3 vs. 10° — 10? synapses per
cortical neuron. Taking into account basic properties of synapses, it follows
that a single neuron can compute high-dimensional (10® — 10?) inner prod-
ucts between input vectors and the stored vector of synaptic weights. A nat-
ural scenario is then the following (see also Fig. ??). Consider a module of
“simple” and “complex” cells [36] looking at the image through a window de-
fined by their common receptive fields. During development—and more gen-
erally, during visual experience—a set of |G| simple cells store in their synapses
an image patch t* and its transformations g1t*, ..., g/ t*—one transformation
step per simple cell. This is done for several image patches t* (templates),
k = 1,---,K. Later, when an image is presented, the simple cells compute
(I,g;t*) fori =1, ...,|G|. The next step is to estimate the one-dimensional prob-
ability distribution of such a projection—that is, the distribution of the outputs
of the simple cells. One idea is to compute a histogram. It is generally assumed
that complex cells pool the outputs of simple cells. Thus a complex cell could
compute z% (1) = 1/|G| 1€ o((I, g;t*) + nA) where o is a smooth version of
the step function (o(z) = 0forz < 0,0(z) =1forz > 0)andn =1,..., N. Each
of these N complex cells computes one bin of an approximated CDF (cumula-
tive distribution function) for P; ;+y. The CDF suits our purpose equally well,
with the measurements i (I) containing sufficient information for an empiri-
cal estimate of the distribution at resolution A. A visual system does not need
to recover the actual probabilities from the empirical estimate in order to com-
pute a unique signature. The set of u% (I) values is sufficient, since it uniquely
identifies the associated orbit (see box 1).

3.44 A theory of pooling

The arguments above make a few predictions. They require an effective nor-
<I 797‘,tk>

. . . k
malization of the elements of the inner product (e.g. <I , git > — W) for

the property (gI,t*) = (I,g7't*) to be valid. They also imply that pooling
in general requires a nonlinearity of the complex cells. These predictions, as
well as the overall scheme, are supported by physiological data. Notice that
invariant signatures can be computed in several ways from one-dimensional
probability distributions. Instead of the u(I) components representing di-
rectly the empirical distribution, complex cells could compute the moments

mk(I) = 1/|G) 21 (1, g:t*))™ of the same distribution [45]. Under some
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rather weak conditions, the set of all moments uniquely characterizes the one-
dimensional distribution P; 4+ (and thus Pr). n = 1 corresponds to pooling
via sum/average (and is the only pooling not requiring a nonlinearity). n = 2
corresponds to an energy model of complex cells [2]; very large n corresponds
to a max operation. In our simulations, using just one of these moments seems
to provide sufficient selectivity to a hierarchical architecture. Other nonlin-
earities are also possible; see [80]. Conventional wisdom interprets available
evidence to suggest that simple/complex cells in V1 and “simple” cells in the
macaque anterior lateral face patch may be described in terms of energy mod-
els, but our alternative suggestion of empirical histogramming by sigmoidal
nonlinearities with different offsets may fit the diversity of data even better.
The arguments of this section may begin to provide a comprehensive theory of
“pooling” and offer a possible explanation for the persistence of many differ-
ent pooling schemes—max vs sum vs sum-of-squares—in current deep convo-
lutional networks. Under our interpretation, these different pooling functions
all play the same role.

In summary learning invariance and computing an invariant representation for
a new image patch requires the following steps (see also box): 1. store, once for all,
one randomly chosen image t* (called template) and its |G| — 1 transformations for
a total of |G| stored images t',t1,- -+ ,tig; 2. to obtain an invariant signature for a
new image a) compute |G| dot products of the new image with each of the |G| stored
templates b) compute a statistics of these |G| numbers such as the histogram or one or
more of its moments such as the second moment. Repeat for other templates t2, - - - | .
The resulting signature is a vector which is invariant and arbitrarily selective for the
image patch. Step 1 corresponds to learning the tuning of the “simple” cells; step
2a corresponds to the response of each of the |G| simple cell to a new image; step 2b
corresponds to the output of one of the K complex cells.

3.4.5 Stable signatures

If ¥(I) € R? denotes the signature of an image, and || X(1) — X(I)|,, I, I' € &,
is a metric, we say that a signature 3 is stable if it is Lipschitz continuous (see [63]),
that is

12(I) —=(I)||, < LI -1, VI,I'cAX. (8)

I

In this section we study the stability of the empirical signature X(I) =
(pi(I),...,uR(I)) € R?,p = NK provided with the metric (5) (together with (6)).
In particular, we consider the case in which pf (1) is computed as in (2?),(2?).
For the sake of simplicity here we consider the group G to be finite. By defini-
tion,

(1) = (1) || o
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where (1) = (5 (1), .., 1y (1)).
If the non linearities 7, are Lipschitz continuous, for all n = 1,..., N, with
Lipschitz constant L, , it follows that

|6 (1) = (1) || g

(32 mllol, #9) — nallar 1))

IA
Q-
M=

n=1 geqG
1 N 2
< g 2 (2 Ll ol = o4 )
n=1 geqG
1 | 2
< E Z(ZLW <gI—I’7tk>|)
G\ = N =2
1 N
< SoL Z (I = 1), t9)))?,
G| =

1

3
I

where we used the linearity of the inner product and Jensen’s inequality. Ap-
plying Schwartz inequality we obtain

() = (1) [ < NZZM I g1+

n=1geG

where L, = max, (L, ). If we assume the templates and their transformations
to be normalize in the sense that H gtk || /N, ¥g € G then we finally have,

[15(0) = () |gw < Ly 1T = 1|

which is (8). In particular if L,, < 1 the map is non expansive. The same result
holds if we further sum over K templates and divide by 1/K and if a compact
group, rather than a finite group, is considered.

The above reasoning proves the following result.

Theorem 6. Let |X(I) — S(I')||, = d,(p* (1), u*(I")) and assume that pk(I) =
[ dgna({gI,t*)) forn = 1,...,Nand k = 1,..., K. Assume the templates to be
normalized so that ||g='t*|| /N, Vg € G and L,) = max,,(L,,) < 1. Then

=) ==, < 1T =1,
forall I,I' € X.

We note that above proof shows that it is important that the non-linearities
are Lipschitz continuous with constants such that L, < 1. Sigmoidal nonlin-
earities which are sufficiently smooth ensures stability, whereas their discon-
tinuous limit of a binary threshold function does not.
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Figure 7: A partially observable compact shift: an object is seen through a window in different
positions. The object is fully contained in the window and is isolated (blank background). A
compact group of periodic translations acts on it; only a part of the orbit is observable.

3.4.6 Signatures for Partially Observable Groups (POG): Invariance, Unique-
ness and Stability

This section outlines invariance, uniqueness and stability properties of the sig-
nature obtained in the case in which transformations of a (locally compact)
group are observable only within a window ( a receptive field) “over” the orbit.
The prototypical case is an object moving around the observer along a circle
(see Figure 7): then its image on the eye is subject to translation in the z,y
coordinates of the image plane. Let us assume that the image of the object is
fully contained within the window and is observable only within that window
[—0,+6]. The object is subject to transformations which can be regarded as
shifts in z on a torus: thus the group is compact but only partially observable.
Every x,y translation in the visual field can be modeled in this way.

Following the above discussion we let G be a finite group and Gy C G a
subset. The subset of transformations G can be seen as the set of transforma-
tions that can be observed. A local signature associated to the partial observation
of G can be defined considering

Wi (T) = |G3—O| S m (oL, 1Y), )

g€Go

and Y¢,(I) = (uX(I)), k. This definition can be generalized to any locally
compact group considering,

(1) = XI/O/GO m((g1,t*))dg, Vo = /GO dg. (10)

Note that the constant V;; normalizes the Haar measure, restricted to Gy, to de-
fine a probability distribution. The latter is the distribution of the images sub-
ject to the group transformations which are observable. The above definitions
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can be compared to definitions (??) and (??) in the fully observable groups case.
In the next paragraph we discuss the properties of the above signature. While
stability and uniqueness follow essentially from the analysis of the previous
section, invariance requires developing a new analysis.

3.4.7 Approximate Invariance of Signatures associated to POG

Since the group is only partially observable we cannot expect to have complete
invariance, but only a form of approximate invariance. The following lemma
makes the above statement precise.

Lemma 1. Let ¢’ € Gand Gy C G. If

1 ((g1,t%)) = 0,Yg € GoAg' ™' Gy (11)

then,

(1) = i (g'D)
Proof. Calculating the difference between the signature of the translated and
not translated image we have

pn (1) = 1 (9'T)
_ Vio/a nn(<gl,tk>)dg—/ m((99'T,t*))dg

Go

— Vio/(; nn(<gl,tk>)—/ ma((g1,t*))dg

g/—IGO
1

= V/ ({91, t*))dg.
0 GoAg/71G0

O

The above result and the meaning of condition (11) is better explained con-
sidering a specific example.

Invariance: a simple example with translations and images in 1D. Consider
1D signals and the group of translations so that ¥ c L?*(R), G = R. Let T} :
L*(R) — L*(R), (Tel)(r) = I(t — &), I € L*(R),£ € R Assume that Gy =
[—b,b], b > 0, then Eq. (10) becomes

b

W = g [ dem (T, ).

—b
For the sake of simplicity assume I,t* € X to be compactly supported
functions, with supp(I) = [—a,a], a < b and assume the support of ¢ to be

much smaller than that of I, so that uf(I) ~ 5 ffb déna(I1(€)). In this set-

ting we are interested into characterizing for which ¢ € R, uf(T.I) = uk(I).
Following Lemma 1, we have to ensure that 1, ((T¢I, t*)) ~ n,(I(£)) = 0 for
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€€ GoAg' ™ "Gy = [=b,b]U[—b—¢,b—c]. If we assume supp(n,, o I) ~ supp(),
then it is easy to see the condition is ensured for ¢ < b — a. In words, the 1* (1)
are invariant as long as the object is isolated, and fully viewed through the
observable window while undergoing small translations.

3.4.8 Uniqueness and Stability for POG signatures

A direct consequence of Theorem 1 is that any two orbits with a common point are
identical. This follows from the fact that if gI € Oy, ¢'I € Oy, 9,9 € Gisa
common point of the orbits, then

gI' =gl = I' = (g/)_lgl.

Thus the two images are one the transformed of the other: therefore Oy = Oy.
Suppose now that only a fragment of the orbits — the part within the window —
is observable; the reasoning above is still valid since if the orbits are different or
equal so must be any of their “corresponding” parts. In particular, it sufficient
to observe through the window one complete image of the object in one orbit:
if it is the same as a single image in another orbit (or part of another orbit) then
the two orbits are the same. The viceversa (when part of the orbit is different
from part of another orbit) implies that the orbits are different but only if the
parts correspond (as it is our case of a “fixed” window).

Finally, we discuss stability of POG signatures, noting that the reasoning in
3.4.5 can be repeated without any significative change in the case that a subset
of the transformations is considered. In fact, only the normalization over the
transformations is modified accordingly.

3.5 Hierarchical architectures

We focused so far on the basic “simple and complex cells” modules. Architec-
tures consisting of such modules can be single-layers as well as multi-layers
and hierarchical (see Fig. 3.5.5). One-layer networks can achieve invariance to
global transformations of the whole image (exact invariance if the transforma-
tions are a subgroup of the affine group in R?) while providing a unique global
signature which is stable with respect to small perturbations of the image. One
could imagine local and global one-layer architectures used in the same visual
system. We conjecture that: Hierarchical architectures, as depicted in Fig. 3.5.5, are
the only networks built from simple-complex modules satisfying simultaneously the
following set of properties:

1. Optimization of local connections and optimal reuse of computational ele-
ments. Despite the high number of synapses on each neuron it would
be impossible for a complex cell to pool information across all the simple
cells needed to cover an entire image.

2. Compositionality. A hierarchical architecture provides signatures of larger
and larger patches of the image in terms of lower level signatures. Be-
cause of this, it can access memory in a way that matches naturally with
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the linguistic ability to describe a scene as a whole and as a hierarchy of
parts.

3. Approximate factorization. In architectures such as the network sketched in
Fig. 3.5.5, approximate invariance to transformations specific for an ob-
ject class can be learned and computed in different stages. This property
may provide an advantage in terms of the sample complexity of multi-
stage learning [81]. For instance, approximate class-specific invariance to
pose (e.g. for faces) can be computed on top of a translation-and-scale-
invariant representation [57, 54]. Thus the implementation of invariance
can, in some cases, be“factorized” into different steps corresponding to
different transformations. (see also [4, 93] for related ideas).

Probably all three properties together are the reason evolution developed hier-
archies. It is interesting that with respect to the range of invariance the follow-
ing property holds (SI4 and [80]), for multilayer architectures such as in Fig.
3.5.5, in which the output of a layer is defined as covariant if it transforms in
the same way as the input. For a given transformation of an image or part of it, the
signature from complex cells at a certain layer is either invariant or covariant with re-
spect to the group of transformations; if it is covariant there will be a higher layer in the
network at which it is invariant. This property predicts a stratification of ranges of
invariance in the ventral stream: invariances should appear in a sequential or-
der meaning that smaller transformations will be invariant before larger ones,
in earlier layers of the hierarchy (see [40]). In addition to the issues of sample
complexity and connectivity, one-stage architectures are unable to capture the
hierarchical organization of the visual world where scenes are composed of ob-
jects which are themselves composed of parts. Objects (i.e. parts) can moveina
scene relative to each other without changing their identity and often changing
only in a minor way the scene (i.e., the object). Thus global and local signatures
from all levels of the hierarchy must be able to access memory in order to en-
able the categorization and identification of whole scenes as well as of patches
of the image corresponding to objects and their parts. Fig. 9 show examples of
invariance and stability for wholes and parts. Fig. 3.5.5 sketches a 1D hierarchi-
cal architecture of “simple-complex cells”: a /A module provides uniqueness,
invariance and stability at different levels over increasing ranges from bottom
to top. HMAX[85, 67, 91], Convolutional Neural Networks [22, 77, 51, 50, 52, 7]
and Deep Feedforward Neural Networks [1, 47, 48] are examples of this class
(see [94, 98]) of architectures—as is, possibly, the feedforward organization of
the ventral steam. Notice that the architecture based on the simple-complex
module cannot deal with non-affine transformations (in R?) such as rotations
in depth or changes of expression of a face. Approximate invariance, how-
ever, can be obtained with the same basic modules for certain “nice” classes of
objects that share a similar 3D structure [57, 54].

The property of compositionality discussed above is related to the efficacy
of hierarchical architectures vs one-layer architectures in dealing with the prob-
lem of partial occlusion and the more difficult problem of clutter and context in
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Figure 8: A hierarchical architecture built from simple-complex cell modules. Circles represent
complex cells and red double arrows pooling ranges at different layers, £ = 1,2, 3, 4.

object recognition. Hierarchical architectures are better at recognition in clutter
than one-layer networks [90]. However, hierarchical feedforward architectures
cannot fully solve the problem of clutter. More complex (e.g. recurrent) ar-
chitectures are needed for human-level recognition in clutter (see for instance
[8, 27, 26]) and for other aspects of human vision. It is likely that most of the
circuitry of the visual cortex is required by these recurrent computations, not
considered in this paper.

3.5.1 The basic idea: wholes and parts

Consider a hierarchical, 1D,“discrete” architecture such as in Figure 10. We
assume that each of the nodes /\ is invariant for shifts of a pattern within its re-
ceptive field; we also assume that the output layer at each level is covariant (see
later). Assume that the receptive field of each node overlaps by 3 the neigh-
boring ones on each side at each level of the architecture. Start from the highest
level. Assume that deformations are local translation of a patch. Consider now
the following examples. First assume that there is a minimal distance between
patches (A and B in the figure) of 3 pixels. It is easy to see that each of A and
B has a distinct signature at the first level in 2 different nodes. Each of A or B
can shift by arbitrary amounts without changing their signature. So each one
is an “object” at the first level in terms of their signatures, invariant to shifts.
They compose a new object (AB) at the second level if their distance is between
3 < d < 4 and so on for higher levels. This is a situation in which A and B
are each a part — like an eye and a mouth in a face, each part is invariant to
shifts, the object AB is also invariant and is tolerant to “small” deformations
(distance between A and B). There other cases. For instance, assume that the
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Figure 9: (a) shows the reference image on the left and a local deformation of it (the eyes are
closer to each other) on the right; (b) shows that a complex cell at layer 1 (c1) signature from
complex cells whose receptive fields covers the left eye is invariant to the deformation; in (c)
Complex cells at layer 2 (c) whose receptive fields contain the whole face are (Lipschitz) stable
with respect to the deformation. In all cases just the Euclidean norm of the response is shown on
the y axis; the c1 and ca vectors are not only invariant but also selective. Error bars represent
+1 standard deviation. Two stimuli (d) are presented at various location in the visual field.
We consider the response of a set of c2 cells with the same receptive field (the whole image) but
different tuning. The Euclidean distance between the cy response vector corresponding to the
two images and a reference response vector is reported (e). The response is invariant to global
translation and discriminative (between the two faces). In this example the co units represent
the top of a hierarchical, convolutional architecture. The images we used were 200x 200 pixels

43



AB

Figure 10: Each of the nodes )\ is invariant for shifts of a pattern within its receptive field; we
also assume that the output layer at each level is covariant.

distance between A and Bis 1 < d < 3. Then for each shift there is always a
/\ which “sees” A, another one which “sees” B and a third one which “sees”
AB. In this case AB are parts of an object AB, all represented in an invariant
way at the first level. However, the object AB is not tolerant to deformations
of the distance between A and B (this happens only if objects are represented
at higher levels than parts in the hierarchy). Finally, if the distance between A
and B is less than 1 then AB is always an object at all levels. It is intriguing to
conjecture that this kind of properties may be related to the minimal distances
involved in crowding.

3.5.2 Hierarchical Architectures

So far have studied the invariance, uniqueness and stability properties of sig-
natures both in the case when a whole group of transformations is observable
(see (2?) and (??)) as well as in the case in which it is only partially observable
(see (9) and (10)). We now discuss how the above ideas can be iterated to de-
fine a multilayer architecture. Consider first the case when G is finite. Given
a subset Gy C G, we can associate a window gGg to each g € GG. Then, we can
use definition (9) to define for each window a signature ¥(I)(g) given by the

measurements, 1
pn(I)(g) = Gol Z mn((gI,t*)).

g€g9Go
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For fixed n, k, a set of measurements corresponding to different windows can

be seen as a |G| dimensional vector. A signature ¥(I) for the whole image is ob-

tained as a signature of signatures, thatis a collection of signatures (3(1)(g1), - .., 2(I)(g/G)
associated to each window.

The above discussion can be easily extended to continuous (locally compact)

groups considering,

1 (1)(g) 1/ dgn.(gL.#)), Vo= [ dg,
Go

VO g Go

where, for fixed n, k, u*(I) : G — R can now be seen as a function on the
group. In particular, if we denote by Ky : G — R the indicator function on Gy,
then we can write

W () (g) = Vi / 45K o(g ™ ) (91, 1*)).

The signature for an image can again be seen as a collection of signatures
corresponding to different windows, but in this case it is a function (1) : G —
RNE, where ©(I)(g) € RVX, is a signature corresponding to the window G
"centered” at g € G.

The above construction can be iterated to define a hierarchy of signatures.
Consider a sequence G; C Ga,...,C G, = G. Forh : G — R?, p € Nwith an
abuse of notion we let gh(g) = h(g'g). Then we can consider the following
construction.

We call complex cell operator at layer £ the operator that maps animage I € X
to a function c¢(I) : G — RYE where

n 1 _
e (I)(g) = ren] ZG m (s5(1)(3)) . (12)

and simple cell operator at layer ¢ the operator that maps an image I € X' toa
function s,(I) : G — RE

si(I)(g) = (9ee—1 (D), t5) (13)

with t§ the k'" template at layer ¢ and co(I) = I. Several comments are in
order:

e beside the first layer, the inner product defining the simple cell operator
isthatin L?(G) = {h: G — RNX | [dg|h(g)]* < oo};

e The index ¢ corresponds to different layers, corresponding to different
subsets G.

e At each layer a (finite) set of templates T, = (t},...,t5) C L*(G) (To C
X) is assumed to be available. For simplicity, in the above discussion
we have assumed that |7;| = K, forall £ = 1,..., L. The templates at
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layer ¢ can be thought of as compactly supported functions, with support
much smaller than the corresponding set G,. Typically templates can be
seen as image patches in the space the complex operator response, that is
te = co—1(t) for somet € X.

¢ Similarly we have assumed that the number of non linearities 7;,, consid-
ered at every layer, is the same.

Following the above discussion, the extension to continuous (locally com-
pact) groups is straightforward. We collect it in the following definition.

Definition 6 (Simple and complex response). For{ =1,..., L, let T, = (t},...,tK) C
L*(G) (and Ty C X) be a sequence of template sets. The complex cell operator at layer
¢ maps an image I € X to a function co(I) : G — RNE; in components

(1) (g) = % / AgKu(g " 9)a (5(1)(@)) . 9 € C (14)

where Ky is the indicator function on Gy, Vi = |, C. dg and where

s§(I)(g) = (gee—1(I),t5), g€@ (15)

(co(I) = I) is the simple cell operator at layer ¢ that maps an image I € X toa
function sy(I) : G — RE.

Remark 2. Note that eq. (14) can be written as:

" (1) = K¢ = (sf (1))

where * is the group convolution.

Hierarchical architecture: 1D translation case. We specialize the above def-
initions to the case of images viewed as one dimensional signals X = L?(R)
and consider the transformations to be 1D translations, so that gI is given
by T:I(z) = I(x — 7). Note that in this case we can identify G = R and
L*(G) = L*(R) = X. Thesets G; C G2 C,...,C G = G can now be seen
as (centered) intervals Py C R, where Py_; C Pj,and V;, = |P|, V¢ = 1,..., L,
P, = R. In particular, we consider, for simplicity, the case where there is just
one template, ¢, and one non linear function, 7, per layer. In this case, we can
rewrite definition (6) as follows. The complex response operator ¢, : X — X,
is iteratively defined as,

(1) (€) = ﬁ / dr Ky — Tn(se(D)(7) (16)

and the simple response operator s, : X — X as
se(I)(§) = (Tecea (D), t), I, te X, E€R 17)

where ¢o(I) = 1.
For the sake of simplicity, in the reminder of this section we focus on the
above special case, however most results hold in the general setting.
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3.5.3 Property 1 :covariance of the ¢, response
We recall that a map is covariant iff
Y(gl) =g 'S(I), VgeG,IcAX.

In the one dimensional setting, discussed at the end of the previous section, we
have S(Te(I)) = T_¢(S(I)), VIE€ X, ( €R, with¥: X — X.
In this paragraph we prove a form of covariance for the complex response, i.e.

Proposition 3. The operator c, is covariant with respect to translations, that is
co(T=I) = T_z(ce(D)), Lodd VT € R
co(TrI) = Tr(ee(I)), Leven VT € R

The proof proceeds as following. For ¢ = 1 the covariance of the s;(I)
function follows from:

s1(TI) (1) = (T.Telt) = (Tryzl,t) = s1(1) (7 +7)
= (Tzs:(I))(7)

The covariance of the ¢ (I) follows from:

- ﬁ / Ky (r — 7)n(s: (D)7 + 7)d7

_ ﬁ / Ko(1+7 — P)n(s:1(I)(7))d?
= ca()ir+7)=T-zc1(I))(7)

where on the second line we used the covariance property of s; () and on the
third we used the change of variable 7 = 7 + 7.

Let us now calculate the complex and simple response at the second layer for
a translated image. For s3 (/) we have

so(To1)(7) = (Tyey(ToD),t) = (ToT_rcy (1), 1)
= Trso(I)(r) = so(D)(7 — 7) = Trsa(D)(7)

where we used the property ¢; (T5)(I) = T_zc1(I).
For co(1I)

c(T=I)(r) = |P2 /Kg n(s2(Tx1))(7)dT
- o [ Kalr = Do) - )7

- & / F)(s2(1)(7))d7
— () —7) = (Ta)r)
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Note that the covariance property of the complex response is different depend-
ing on the layer. The above calculation suggests to prove the theorem by in-
duction. We omit the proof since it is a straightforward repetition of the case
¢ =1,2 above.

3.5.4 Property 2: partial and global invariance of ¢, response (whole and
parts)

We now prove that the functions ¢, are locally invariant to translations, i.e.
invariant within the restricted range of the pooling if the non linearity 7 satis-
fies certain conditions. We further prove that the range of invariance increases
from layer to layer in the hierarchical architecture. The fact that for an image,
in general, no more global invariance is guaranteed allows, as we will see , a
novel definition of “parts” of an image.

Let us first reformulate the result in Lemma 1 in the context of a hierarchical
architecture.

Proposition 4. Let ¢, be the complex response at layer £ and I € X then:
c(TzI) (1) = co(I)(7), [€X, (18)

if

n(si(1)(1)) =n((Trce—1(I),t)) =0 7€ PAT:P,.
Proof. The proof follows the reasoning done in par. 3.4.7 with I substituted by
s1(I). We prove the statement for ¢ odd and use the covariance property found
in proposition 3. A similar proof holds for £ even.
Let the pooling at layer ! be achieved by a characteristic function on the interval
P;; we have

co(T=I) (1) — co(I)(7) = ce(I) (T + T) — ce(I)(T)
1 T T ~ ~ ~
- @/]R (Ke(T +7—7) = Ko(1 — 7'))77(3@([)(7-))6[7

_ |P1£|(/TTP n(sg([)(f‘))df'—/P n(sz(f)(?))d?)

- ﬁ [ s

1

== n({Trce-1(1),t))d7
|Pel Jp,ar, P,

where on the first line we used the covariance properties of the function ¢,(1).
The above expression is zero if n({(Trci—1(I),t)) = 0 V7T € PAT:Fy. O

We can give now a formal definition of object part as the subset of the signal
I whose complex response, at layer ¢, is invariant under transformations in the
range of the pooling at that layer.
This definition is consistent since the invariance is increasing from layer to
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layer (as formally proved below) therefore allowing bigger and bigger parts.
Consequently for each transformation there will exists a layer / such that any
signal subset will be a part at that layer. Before formulating this result in the
form of a theorem let us introduce a new definition: an operator f : X — X is
called r—invariant for I € X with respect to translations if:

S(Te(I)) =%(I), Véeo,r], reR.
We can now state the following:

Theorem 7. Whole and parts. Let I € X (an image or a subset of it) and ¢y : X — X
the complex response at layer {. Let Py C --- C P, C --- C P, = Ra set of nested
intervals. Suppose n(0) = 0 and that the template t and the complex response at each
layer has finite support. Then V7 € R ¢, is 7—invariant for some £ = {, i.e.

(T D) = c(I), 30 st. Ym >, V7 € [0,7].

Proof. We prove the statement for £ odd and use the covariance property found
in proposition 3. A similar proof holds for ¢ even. As proved in Lemma 1
the complex response ¢;(I)(0) (we choose 7 = 0 without loss of generality) is
invariant for a translation of the image in the range [0, 7] iff

’I]((TT/Cg,l(I),t» = 77((0471(]>7T,7—/t>) = 0, VT/ S PgAT;-Pg. (19)

Thus the theorem is proved if for any choice of 7 there exists an odd ¢ such that
the condition above is satisfied. Since Py C --- C P, C --- C P, = R there will
exists (see, e.g., Fig. 11 ), being the supports of ¢ and c,_; finite, for any fixed
7 € R*, an £ such that

supp(T_T/t) N Supp(CZ—l(I)) =0= <TT/CZ—1<I)’t> =0.

V7' € P;AT:P;. Being 1(0) = 0 we have n((Trc;_(I),t)) = 0,Vr' € P;AT:P;

,i.e. the response is invariant at layer /. O
Py
: TzP,
PIATzP; — 5 -
Piyy
T7Pryy
P41 TzP1q

Figure 11: Behavior of the symmetric difference for growing layer number .

The same proof can be repeated in the case of a locally compact group G.
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3.5.5 Property 3: stability of the ¢, response

Using the definition of stability given in 3.4.5, in the simple case where we
have one template, ¢, and one non linearity,  we can formulate the following
theorem characterizing stability for the complex response:

Theorem 8. Stability. Let I,I' € X and ¢, : X — X the complex response at layer
l. Let the nonlinearity n a Lipschitz function with Lipschitz constant L,y < 1. Then

llee(D) —ce(IN|| < [T =T'||, V4, VI, I €X. (20)

Proof. Using the definition of complex response in eq. (53) and remark 2 we
can write the Lh.s. of eq. (20) as:

1

llee(1) = ()| = 7]

1Ko [n(se(T)) = n(se(I)]I] -

Using the inequality |[f « g[| < [[f]l, 9]l f.9 € X,

1

l[ce(I) = co(I)]| < B 1K el In(se(I)) = nse(I))]] -
|

Since K is, by construction, the characteristic function of the interval P, we
have || K|/, /|P;| < 1 and being 1 a Lipschitz function

llee(T) = co(I)|| < [In(se(I)) = n(se(IN < Ly se() = se(I)]] -

Applying the definition of the simple response, s;(I)(7) = (Trci—1(I),t) =
(ce—1(I), T_,t) and the Schwartz inequality we have

llee(D) = eIl < L 1Tt llee-1 (1) = ce—1 (1)l

= L, llce—1(I) — CZ—I(I/)” :

where we used the invariance to translations of the norm and supposed nor-
malized templates, ||¢|| = 1.
Repeating the reasoning ! times we finally obtain:

llee(X) = ce(I)|| < LL T —T'||.
If L,, <1 the statement of the theorem follows. 0

Remark 3. The above definitions and the demonstrations in the next paragraphs are
done for one dimensional square integral signals undergoing translation transforma-
tions in one dimension. They can be generalized to square integral signals on locally
compact groups I € L*(G,dg) undergoing group transformations.

Pictorially, indicating each function ¢,, with a /A we can consider a network
composed by different receptive fields A:
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¢n is the complex cell response at layer n and o, may be equal or larger than
On—1-

Notice that the patch of the image seen at layer n is at least as large as the patch
seen at level n — 1, that is o7y, > ozf_fl. In general o}, increases (rapidly)

with n where with o, we mean the image part effectively seen by a complex
response at layer n.

Remark 4. Notice that many non-linear functionals are so-called space- or time-
invariant, e.g. NL-L systems, Volterra series, etc.. In this paper, we assume that
cortical layers in visual cortex can be modeled by linear convolutions, which are triv-
ially covariant, followed by memoryless non-linearities, which maintain covariance.

Remark 5. In principle, the arguments of these sections apply also to scale and ro-
tation under the assumption that the network is X-invariant (instead of simply shift-
invariant). If the network treats scale or rotation in the same way as x,y (with con-
volution and local pooling) the same arquments should apply. In practice, as we will
show, in the hierarchical architecture after the first layer all transformations can be
approximated as shifts within a 4-cube of wavelets (see later).

Remark 6. If in 4 instead of choosing the characteristic function of the interval P,, we
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use a Gaussian function exp(—x?/20,,) a similar result is obtained:

7:2

en(T=0)(T) = e (D)(7) + O<202

), V7 €[0,0,], T €R.

Remark 7. There are multiple scales (at each layer). We can think of them as different
resolution units corresponding to different sizes of complex cells — like multiple lattices
of photoreceptors of different sizes and different separations. The size of the complex
cells also increases from layer to layer and defines how large a part is at each layer
— from small parts in the first layer to parts of parts in intermediate layers, to whole
objects and scenes at the top. Notice that the term parts here really refers to patches of
the image. Notice that our theory may provide a novel definition of Part as a patch
which has an invariant signature — at some level of the architecture — under local affine
transformations. An interesting conjecture of invariance of signatures here is that the
signature of a part at some level of the architecture may remain the same at another
level when the part is seen under different conditions (think of an eye as part of a face
and the same eye in isolation, occupying the whole image). The question is about which
properties of the architecture are required for this.

3.5.6 A hierarchical architecture: locally compact groups

In the following we are going to extend the reasoning done in the previous
paragraphs to a general transformation of a locally compact group G imple-
mented by the operator

Ty: X/Y =Y, (Tyl)(r) = 1(97), I € X/Y, g € G.
where X’ and ) are defined below among other basic objects:

o X = L?(R?).

Y = L*(G,dg), where dg is the group invariant Haar measure.

T C X/Y,|T| < o, the template set.

7 :Y — Y anon-linear function.

K, : Y — Y the characteristic function of the intervals P; C ... C P,,
P; C Y or Gaussians with o, width.

The definitions of simple and complex response are similar to those given for
the one dimensional translation group. However there is a major difference,
although irrelevant for the covariance, invariance properties of the construc-
tion: the first simple response is an operator that maps the image space X into
Y; higher order responses instead are operators defined from ) into itself.

Definition 7. Simple and complex response
The complex response operator ¢y, : Y — Y, is iteratively defined as:

en(1)(€) = (Kn x1(sn(1)))(€) = (Kn, Tyn(sn(1))) (1)
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in terms of the simple response operator s, : X /Y — Y:
sp(I)(&) = (cn—1(1) *)(&) = (cn—1 (), Tet), t €T, I € X, g€ G (22)
where ¢o(I) = I.

Same kind of results obtained before for covariance, invariance and robust-
ness to local perturbations can be obtained. For details on invariance properties
of complex responses for the similitude group see 10.7.

3.6 Factorization of Invariances

The first version of [78] we conjectured that a signature invariant to a group of
transformations could be obtained by factorizing in successive layers the com-
putation of signatures invariant to a subgroup of the transformations (e.g. the
subgroup of translations of the affine group) and then adding the invariance
w.r.t. another subgroup (e.g. rotations). It also assumed that factorization of the
range of invariance was possible. The second version of the memo scrapped
the first conjecture while endorsing the second. We show here that with the
specific architecture we assume it is indeed mostly impossible to factorize ef-
fectively (to reduce number of templates to be learned) subgroups but that it
is possible to factorize the range of invariance. Questions that remains open
are (a) under which conditions approximate factorization is possible and (b)
whether factorization helps reducing the sample complexity of unsupervised
learning.

3.7 Preliminaries

We begin by considering an example where X C L?(IR?). We are interested in
invariance w.r.t. 2D translations. We show how invariance can be achieved by
first computing an invariant signature with respect to the x—translation and to
the y—translation and discuss how a similar strategy can be used with more
general groups (and subgroups). We then show that this factorization cannot
be used to learn separately x and y invariance through independent templates.
We consider an architecture composed by two layers. Each layer has an
associated set of templates, t!,...,t5 € X and #},...,t% € X (we assume for
simplicity the number of templates is the same). We also assume to have just
one non-linearity per layer and that the set of translations have been suitably
discretized. We denote by T},, T}, 2,y € R, the action of the translations on any
Iex.
The first layer defines a signature u : X — R¥ as

pF () =" (T t*), k=1,.. K. (23)
' eR
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where clearly (T,/I,t*) = (I,T,,'t"), since the representation of the transla-
tion is unitary. The signature at second layeris v : X — RF

I =) (T 1),s")), 1=1,..K (24)
y'eR
where the set of templates s', ..., sX can be thought of as a the signatures of

a set of templates with respect to the first layer i.e. s* = p(t?), for t* € X,
i=1,..., K, with s’ € RX.

Indeed, we can show that v is invariant to 2D translations v(I) = v(T,T,I).
Recalling equation (??), we note that, (1, T,I) = pu(T,I) since p is defined by
a group integration with respect to the z—translation. Then

T, I) = n((uw(TyT,D),s)) =V (T,1), 1=1,..K (25)

y' €R

and finally v(7,,T,I) = v/(T,,I) = v(I) since v is defined by a group integra-
tion with respect to the y—translation.

An inspection of the above reasoning shows that a similar factorization
holds for many transformations beyond translations. Indeed, we have the fol-
lowing result.

Lemma 2 (Factorization of Invariances). Let G, R be two locally compact groups
with Haar measures dg, dr respectively. Let 1 : X — R¥ and v : X — RL be defined

by,
pi(I) = /dgn(<gl7t'“>), V(I = /dm(<u(r1)»sl>)7 (26)
then v(grl) = v(I).
We add one final remark.

Remark 8. We briefly comment on the order in which transformations need to be ap-
plied to an image to still have invariance. Clearly, factorization of invariances happens
in the architecture with an order given by the group integration at each layer, so in gen-
eral it might not be true that v(rgl) = v(I). However, invariance clearly still holds
if the groups actions commute, rg = gr. Moreover it also holds under the weaker re-
quirement that for all (g,r) € G x R there exist (¢’,7") € G x R such that rg = ¢'r’.
The latter property holds for example if we take G, R to be 2-D translations and ro-
tations respectively. This is because the semidirect product of the abelian group R?
(which describes translations) and the group SO(2) of orthogonal 22 matrices (which
describes rotations and reflections that keep the origin fixed) is isomorphic to the Eu-
clidean group. The group of translations is a normal subgroup of the Euclidean group
and the Euclidean group is a semidirect product of the translation group and SO(2).

3.8 Factorization of transformations

The results above would be much more interesting if v of equation 24 were

“covariant” in the following sense: (1i(g, 1), s*)) = </L(I>, u(g;,lf")> which we
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rewrite for simplicity as

(u(rd), p(re)) = (u(D), () (27)

where r is the group element corresponding to g,-. If this were true then one
invariance could be learned via the templates t* and another could be learned
in the next layer via the templates s’. This covariance property however cannot
be expected for general 7.

We first sketch the “linear” situation: 7 is the identity function. We also
assume that the set of ¢ is an orthonormal basis. In this case

(u(rl), p(rt)) = dg (grI,t*) [ dg' {g'rt,t*

u(rl), Zk:/ 9 (g >/ 9 (g )

/dg/dglz<grl,tk><g’rf,tk>
3

and, if the transformations g and » do commute we have
(u(r), p(rt)) = / dg / dg' (g1, g'rt)
= /dg/dg' (91,9'r"'rt)

= /dg/dg' (91,4't)
(1), p(®)) (28)

Note that if the transformations g and r» do not commute the result in (28)
does not hold. Even a weaker result, i.e., (u(rI), u(rt)) = {(u(I), u(r't)) for
some 1/, does not hold. In fact, using Remark 8 we have that for each fixed
9,4, r there exists g, §,7'(g, ¢g') such that

(grl,g'rt) = (g1, gr'(9,9")t) .

However +’ is different for any choice of g, ¢’. Therefore we can neither obtain
the same result as in in the commutative case nor have a weaker form of it, i.e.
(u(rI), p(rt)y = (u(I), u(r't)) for some r’. We now sketch another case of prac-
tical interest in which n(z) = z2. We make the same simplifying assumptions.
Then

D), D) = 3 / dg (grT, t*))( / dg' (g'rE, %))
k
— /dg/dg’Z(<grl7tk>)2(<g’rﬂtk>)2.
k

This leads to consider the related expression

> (PyRx)P(PyR*y)?
k
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where we assume that R and R* are in principle different matrices. Typi-
cally R represents one of the elements of the SO(2) group (rotations). P is
the projection vector s.t. (P;)"z = (z),. Notice that >, (P, Rz)T (P.Ry) =
ST RT(Py)T (Py)Ry = 2T R[>, (Po)T (Py)]Ry = 2"RTRy = 27y since
> (Pe)™ (Py) = 1. We consider the important case of p = 2. Then

> (PeRz)*(PR*y)* = ") _(RTPR)ay” (R*T PRy
k k
= 2"Dy=> ajyiriri?
k

since D is a K x K diagonal matrix with elements D, ; = xkykrk2rz2 where
ry = Ry and R*y ,, = r}. Thus for the specific network here, factorization holds
only for functions » which are linear (or equivalently only for the first moment
of the distribution) and only for commutative groups.

Thus for the specific network here, factorization holds only for functions n
which are linear (or equivalently only for the first moment of the distribution)
and only for commutative groups.

3.9 Factorization of Invariance ranges

Here we quickly review Theorem 7 in the setting considered in this section.

A more interesting architecture would compute invariance to translations
at the level of the first layer over small ranges on a grid of p units (with dif-
ferent x, y positions). At the next layer invariance to rotations and scales ( and
possibly translations) over larger ranges is computed by another y layer con-
sisting of a sparser grid of p units. At the third level a still sparser grid of u
units could compute invariance to larger translations.

Here we show, as an example, how to built a sequence (“factorize”) of p
units (signature) invariant to larger and larger ranges of 1D translations. For
simplicity we assume we have only one template for each layer.

Theorem 9. Factorization of invariant ranges. Let I € X and py : X — X the
e unit at layer . Let supp(te) C supp(pe(I)) C Py, where respectively, Py is the
pooling range and t, the template at layer £. Then, for any ¢

/-W(TTI):/’LZ(I)7 vIex, TE[Ov'ﬂv J7eR

i.e. at each layer there is a range of transformations for which the p unit is invariant
and
w1 (Tpd) = per(I), VIie X, 7€0,7], 37 >7.

i.e. the invariance range is larger and larger with growing layer number.

Proof. We prove the statement for the fist two layers but the proof follows the
same steps for any two subsequent layers. Following the definitions of par. 3.7
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wecall y1 = p, us = vandty =t,ty =t.
For ¢ = 1 being

wi)(r) = [ drn({Tx1,1)) (29)
it is clear that if supp(t) C supp(I) there will be a 7 > 0 such that (T°-1,t) =
(I,T_-t) = (I,t),V 7 € [0, 7] and consequently p(T-I) = p(I).
We prove now that the response at the second layer has a bigger range of in-
variance. By definition, for £ = 2

V(I)(r) = / (T, (30)

Remember that by invariance of the x(I) unit we have v(T;1) = v(I), V7 €
[0, 7]. Note now that for any 7’ > 7 we can write

w(Tr 1) = p(Trire D) = Tore p(T71) = T pu(1) (31)

where 7% = 7/ — 7. Proceeding as before, being supp(t) C supp(u(I)), we have
that there exists 7 s.t. Vr € [0,7], (Tru(D),t) = (u(I), T—-t) = (u(I),t). We
can then choose for an opportune 7’ such that 7* = 7. This implies that the
invariance range at the second layer is larger than at the first layer. The same
argument provides a factorization of invariance to the whole range in layers of
growing invariant ranges. O

3.10 Approximate Factorization for Invariances in Object Classes

The first version of [78] we conjectured that a signature invariant to a group of
transformations could be obtained by factorizing in successive layers the com-
putation of signatures invariant to a subgroup of the transformations (e.g. the
subgroup of translations of the affine group) and then adding the invariance
w.rt. another subgroup (e.g. rotations). It can be shown that in general this
operation is impossible (see Theorem 4 and [?]). However, there are particular,
interesting situations in which approximate factorization is possible. In the fol-
lowing we show that this is the case if the templates are in the same nice object
class.

To fix ideas let us consider the example of a face rotating in depth. Assume
that at some level of the hierarchy the output is a single vector p(I) corre-
sponding to an input image I € X; for example assume that () is invariant
w.rt. translation of I in ,z,y. Now consider transformations (e.g. rotations
in depth) of one template ¢ (e.g. another face), that we indicate as T79¢ = tJ,
with j =1,--- , N denoting different rotations. If ;(I) and the set of templates
t/ belongs to the same object class (e.g. of faces) and there are enough tem-
plates, then it is reasonable to assume that for any specific transformation R of
the image, there exists j s.t. H w(RI) — u(tj)u < 4. This then implies that the
set of neurons each tuned to each template t* can represent an approximation
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of P,({u(I),t)) and that the probability is approximatively invariant to trans-
formations R of I, that is P,((u(I),t)) =~ P.({(u(RI),t)) (where the notation P,
indicates the distribution over the set of templates).

3.11 A mathematical summary (incomplete)

The theory just described has a simple mathematical structure, aside from the
biological details. We summarize it in this appendix.

1. Setting

Let (X, (-,-)) be a real separable Hilbert space, e.g. X = L?(R?). Let L(X)
be the space of linear operators to and from X.

A measurement is defined as a functional m : X — R. A signature is a map
¢ : X — (% and can be viewed as a collection of measurements.

2. Linear measurements: bases, frames and Johnson Lindenstrauss lemma

Claim: Linear measurements give rise to isometric or quasi-isometric sig-
natures.

Let 7 C X be countable and

s:X =02 s(I)=(I,t) teT.

If T is an orthonormal basis I = ), s:(I)t and ||s(1)||, = ||| where HS(I>||§ =
Zt St (I)2
If 7 is a frame, by definition, A ||I|| < ||s(1)||, < B||I||, with0 < A < B < oc.
Finally, if X is a set of n points in R and 7 a suitable finite set of p, possi-
bly random, vectors. by the Jonson and Lindenstrauss lemma (1 — ¢€) ||| <
lls(D)|l, < (1+¢€) ||, as soon as p > 8logn/e.

3. Invariant measurements via group integration

Claim: Invariant measurements can be obtained via local group integra-
tion.

Let G be a locally compact Abelian group and dg the associated Haar mea-
sure. LetT : G — B(X), T, = T(g) be a representation of G on X. Let
m,h: X = Rwithm(I) = [ h(T,I)dg. Then m is invariant:

m(Tyl) = / W(Ty T, )dg = / W(TyyT)dg = m(I),

foralllT e X,¢' € G.

Example 1. Let X = L*(R?), and (T,1)(I) = I(o, (1)), where o4 : R* — R?,
with g € G, is a representation of a group G. In particular we can consider G to be
the affine group so that oyr = Ar +band o;'r = A~'r — b, where b € R* and
A = R? — R? is a unitary matrix. It is easy to see that in this case T, is linear and
Tyx(r) = x(ogr) forallg € Gand r € R®. Moreover,redefining the representation
dividing by the transformation Jacobian we have T; T, = I so that g — T is a unitary
representation of G on X.
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Observation If ¢, I € X, and T is a unitary representation, then
(TyI,t) = (I, Tyty = (I, T, 't) = (I,Ty-st).

For o : R — R measurable, let
CiX SR, o) = / o (1, Tyt))dg,

then c is invariant.
4. Approximately invariant measurements via local group integration
Claim: Approximately invariant measurements can be obtained via local
group integration.

Lemma3. IfGo; = {¢' € G| MT,I) = 0,Yg € GoAg'~'Go}, then,

mo(I) =mo(TyI), Vg € Gor.

Proof. Let Gy C Gand mg, h: X — Rwithmo(I) = [ h(T,I)dg.
Clearly, in this case my is not invariant, but
mo(I) —mo(Tyl) = / MT,I)dg — / h(TyoI)
Go Go
= / MT,I)dg — / hTyI)dg = / h(TyI)dg.
Go 9’ 'Go GoAg' ~1Go
The statement is then clear. O

Example 2. The interpretation of Go ; can be made clear considering X = L?(R) and
R(I) = |f(z)]?, I € X. Let (T,.I)(x) = I[(x +7),I € X, 7 € Rand Gy = [-7, 7.
In this case, g’flgo =[-m—7,m—1]

5. Signature of approximately invariant measurements

Claim: A signature consisting of a collection of measurements obtained via
partial integration is covariant.

6. Discrimination properties of invariant and approximately invariant
signatures

Claim: If the considered group is compact, then it is possible to built (pos-
sibly countably many) nonlinear measurements that can discriminate signals
which do not belong to the same orbit.

7. Hierarchies approximately invariant measurements

Claim: An appropriate cascade of linear measurements and approximately
invariant measurements (obtained via partial integration) give rise to signa-
tures which are covariant and eventually invariant.

8. Whole vs parts and memory based retrieval Biological Conjecture: Sig-
natures obtained from complex cells at each level access an (associative) mem-
ory which also is involved in top-down control.
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4 PartlIl: Learning Transformations and Spectral Prop-
erties

Summary of Part IL. Part I proves that pooling over sequences of transformed images
stored during development allows the computation at run-time of invariant signatures
for any image. Part II assumes that storage of sequences of images is performed on-
line via Hebbian synapses. Because of this assumption, it is possible then to connect
invariances to tuning of cortical cells. We start by relating the size of the receptive
field — called aperture — and transformations “seen through the aperture”. During
development, translations are effectively the only learnable transformations by small
apertures — eg small receptive fields — in the first layer (see also appendix 14). We
then introduce a Linking Conjecture: instead of explicitly storing a sequence of frames
during development as assumed in the abstract framework of Part 1, it is biologically
more plausible to assume that there is Hebbian-like learning at the synapses in visual
cortex. We will show that, as a consequence, the cells will effectively store and com-
press input “frames” by computing online the eigenvectors of their covariance during
development and storing them in their synaptic weights. Thus the tuning of each cell
is predicted to converge to one of the eigenvectors. Furthermore, invariance is now
obtained by pooling nonlinear functions, such as the modulo, of the dot products be-
tween the eigenfunctions (computed over the transformation of interest) and the new
image. The section further shows that numerical simulations predict well quantitative
properties of the tuning of simple cells in V1 across different species. Further, at higher
cortical levels, similar developmental learning on the V1 representation generates 4-
dimensional wavelets. The prediction seems qualitatively consistent with physiology
data.

4.1 Apertures and Stratification

Summary. In this short section we argue that size and position invariance develop in
a sequential order, meaning that smaller transformations are invariant before larger
ones; size and position invariance are computed in stages by a hierarchical system that
builds invariance in a feedforward manner. The transformations of interest in-
clude all object transformations which are part of our visual experience. They
include perspective projections of (rigid) objects moving in 3D (thus transform-
ing under the action of the euclidean group). They also include nonrigid trans-
formations (think of changes of expression of a face or pose of a body): the
memory-based architecture described in part I can deal — exactly or approxi-
mately — with all these transformations.

Remember that the hierarchical architecture has layers with receptive fields
of increasing size. The intuition is that transformations represented at each
level of the hierarchy will begin with “small” affine transformations — that is
over a small range of translation, scale and rotation. The “size” of the trans-
formations represented in the set of transformed templates will increase with
the level of the hierarchy and the size of the apertures. In addition it seems in-
tuitive that only translations will be “seen” by small apertures with scale and
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Class specific modules

. Scale, translation, rotation

® Translations

Figure 12: The conjecture is that receptive field sizes affects not only the size but also the type of
transformations that is learned and represented by the templates. In particular, small apertures
(such as in V1) only “see” (small) translations.

orientation changes been relevant later in the hierarchy.

Let us be more specific. Suppose that the first layer consists of an array
of “small apertures” — in fact corresponding to the receptive fields of V1 cells
- and focus on one of the apertures. We will show that the only transforma-
tions that can be “seen” by a small aperture are small translations, even if the
transformation of the image is more complex.

41.1 Translation approximation for small apertures

The purpose of this section is to show that a twice differentiable flow, when
perceived for a sufficiently short time through a sufficiently small aperture, is
well approximated by a translation. Other two derivations of the same result
can be found in the Appendix 14.2.

Let I C R be a bounded interval and Q € RY an open set and let ¢ =
(®1,...,2n) : I x Q — RY be Cy, where @ (0, .) is the identity map. Here RY
is assumed to model the image plane, intuitively we should take N = 2, but
general values of N allow our result to apply in subsequent, more complex
processing stages, for example continuous wavelet expansions, where the im-
age is also parameterized in scale and orientation, in which case we should
take N = 4. We write (¢, z) for points in I x ©, and interpret ® (¢, z) as the
position in the image at time ¢ of an observed surface feature which is mapped
tox = @ (0, x) at time zero. The map ® results from the (not necessarily rigid)
motions of the observed object, the motions of the observer and the properties
of the imaging apparatus. The implicit assumption here is that no surface fea-
tures which are visible in ) at time zero are lost within the time interval I. The
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assumption that ® is twice differentiable reflects assumed smoothness prop-
erties of the surface manifold, the fact that object and observer are assumed
massive, and corresponding smoothness properties of the imaging apparatus,
including eventual processing.

Now consider a closed ball B C Q of radius § > 0 which models the aper-
ture of observation. We may assume B to be centered at zero, and we may
equally take the time of observation tobe to = 0 € I. Let

2

0

2

0
, Ko =sup |2 @ (0,2)

RN reB

Ky = sup
(t,x)eIxB

RN XN

Here (0/0z) is the spatial gradient in RY, so that the last expression is spelled

out as 12
2
Ko = smp (ZZ (gra ) ) -

Of course, by compactness of I x B and the C;-assumption, both K; and K,
are finite.
Theorem 10. (Poggio-Maurer) There exists V € RY such that for all (t,z) € I x B

t2

12t @) — o+ tV]llgw < Ko [t] + Ki o

As one might suspect, the proof reveals this to be just a special case of Taylor’s
theorem.

Proof. Denote V (t,z) = (Vi,..., Vi) (t,z) = (8/dt) ® (t,z), V (t,z) = (Vh vl) (t,z) =

(0%/0t*) @ (t,x), and set V := V (0,0). For s € [0,1] we have with Cauchy-
Schwartz

d 2 N 52 2
[ o] =23 (g ) =) < < xe
whence
|®(t,z) — [z + tV]|]
= /tV(s,x)ds—tV(0,0)H
Ot s
= /U V(r,:v)dr+V(0,x)]dstV(o,O)H
L y
= //pﬂr,x)drdwt/ 2.V (0,57)ds
(r,z) V (0, sx)|| ds
< K +K|t|5
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O

Of course we are more interested in the visible features themselves, than in
the underlying point transformation. If f : RY — R represents these features,
for example as a spatial distribution of gray values observed at time ¢ = 0,
then we would like to estimate the evolved image f (® (¢,x)) by a translate
f (x4 tV) of the original f. It is clear that this is possible only under some
regularity assumption on f. The simplest one is that f is globally Lipschitz.
We immediately obtain the following

Corollary 1. Under the above assumptions suppose that f : RN — R satisfies

[f (@) = f ()l <cllz -y

for some ¢ > 0 and all z,y € RN. Then there exists V. € RN such that for all
(t,x) e I x B

2
F@a) - e ml<e (KoK

An example As a simple example we take rigid rotation with angular veloc-
ity w about a point v in the image plane, observed in a neighborhood of radius
0 about the origin. Then

ot = (Sl ) (nIn)+ ()

and with some calculation we obtain the bounds K; < w? (||v]| + §) and K, <
V/2 |w|. The error bound in the theorem then becomes

(lo]l + 6) w?t?/2 + V2 |w| t6.

If we take v = 0, so that the center of rotation is observed , we see that we
considerably overestimate the true error for large ¢, but for ¢ — 0 we also see
that we have the right order in ¢ and that the constant is correct up to V2.

A one-layer system comprising the full image (a large aperture) would require
a memory-based module to store all the transformations induced by all ele-
ments g of the full group of transformations at all ranges. Because this should
include all possible local transformations as well (for instance for an object
which is a small part of an image), this quickly becomes computationally infea-
sible as a general solution. A hierarchical architecture dealing with small, local
transformations first — which can be assumed to be affine (because of Lemma
12) — can solve this problem and may have been evolution’s solution for the ver-
tebrate visual system. It is natural that layers with apertures of increasing size
learn and discount transformations — in a sequence, from local transformations
to more global ones. The learning of transformations during development in a
sequence of layers with increasing range of invariance corresponds to the term
stratification.
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4.2 Linking conjecture: developmental memory is Hebbian

Summary. Here we introduce the hypothesis that memory of transformations during
development is Hebbian. Thus instead of storing a sequence of frame of a template
transforming, synapses store online updates due to the same sequences.

We introduce here a biologically motivated Linking Conjecture: instead of
explicitly storing a sequence of frames during development as assumed in Part
I, we assume that there is Hebbian-like learning at the synapses in visual cortex.
The conjecture consists of the following points:

Linking Conjecture

e The memory in a layer of cells (such as simple cells in V1) is stored in the
weights of the connections between the neurons and the inputs (from the
previous layers).

e Instead of storing a sequence of discrete frames as assumed in Part I,
online learning is more likely, with synaptic weights being incrementally
modified.

e Hebbian-like synapses exist in visual cortex.

e Hebbian-like learning is equivalent to an online algorithm computing
PCAs.

e As a consequence, the tuning of simple cortical cells is dictated by the
top PCAs of the templatebook, since Hebbian-like learning such as the
Oja flow converges to the top PCA.

Input Vector =

4.2.1 Hebbian synapses and Oja flow

The algorithm outlined in part I in which transformations are “learned” by
memorizing sequences of a patch undergoing a transformation is an algorithm
similar to the existing HMAX (in which S2 tunings are learned by sampling and
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memorizing random patches of images and invariance is hardwired). A bio-
logically more plausible online learning rule is somewhat different: synapses
would change as an effect of the inputs, effectively compressing information
contained in the templates and possibly making signatures more robust to
noise. Plausible online learning rules for this goal are associative Hebbian-like
rules. As we will see later, Hebbian-like synaptic rules are expected to lead to
tuning of the simple cells according to the eigenvectors of the templatebooks.

We discuss here the specific case of the Oja’s flow. Oja’s rule [69, 42] defines
the change in presynaptic weights w given the output response y of a neuron
to its inputs to be

AW = W1 — Wy, = NYn(Xn — YnWy) (32)

where is the “learning rate” and y = w™ x. The equation follows from expand-
ing to the first order Hebb rule normalized to avoid divergence of the weights.
Its continuous equivalent is

W o= yy(x—yw) (33)

Hebb’s original rule, which states in conceptual terms that “neurons that
fire together, wire together”, is written as Aw = 7ny(x,)xy,, yielding synaptic
weights that approach infinity with a positive learning rate. In order for this
algorithm to actually work, the weights have to be normalized so that each
weight’s magnitude is restricted between 0, corresponding to no weight, and
1, corresponding to being the only input neuron with any weight. Mathemati-
cally, this requires a modified Hebbian rule:

w; +1y(x)T;
(S oy + e Je)

of which Oja’s rule is an approximation.

Several theoretical papers on Hebbian learning rules show that selective
changes in synaptic weights are difficult to achieve without building in some
homeostatic or normalizing mechanism to regulate total synaptic strength or
excitability. In the meantime, homeostatic control of synaptic plasticity — cor-
responding to the normalizing term in Oja equation — ([102]) is in fact experi-
mentally well established.

The above learning rules converge to the PCA with the largest eigenvalue
(see Appendix 20). It is a key conjecture of Part II of this paper that Oja’s
flow or some variation of it (with appropriate circuitry), may link the spectral
properties of the templatebook to receptive field tuning in visual areas. The
conjecture is based on Oja’s and other results, summarized by:

wi(n+1) = (34)

Proposition 5. The Oja flow (Equation 32) generates synaptic weights that converge
to the top real eigenvector of the input patterns covariance matrix, that is the covariance
matrix of the templatebook (in the noiseless case).
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In principle, local invariance to translation can be achieved by averaging a
function over a number of Principal Components for each aperture (ideally all,
in practice a small number) corresponding to the “movie” of one transforma-
tion sequence. The PCA do in fact span the variability due to the transforma-
tion (translation in the case of simple cells): thus this average is equivalent to
averaging over frames of the templatebook, as described in Part I. An empirical
observation is that most of the PCA for the translation case appear as quadra-
ture pairs (this is also true for the other subgroups of the affine group since the
characters are always Fourier components). It follows that the energy aggrega-
tion function is locally invariant (because |e*“"**%| = 1) to the transformation
(see Figure 21).

In the hypothesis of Oja-type online learning, one possible scenario is that
that different simple cells which “look” at the same aperture converge to a
single top principal component. Several Oja-like learning rules converge to
principal components [88, 70]. In the presence of lateral inhibition, different
cells with the same aperture may converge to different eigenvectors with the
same eigenvalue (such as the odd and even component of a quadrature pair
(see Figure 21). A complex cell then aggregates the square or the modulo of
two or more simple cells corresponding to different PCAs. Though diversity
in the PCAs to fit the observed RF of simple cells may come from online learn-
ing in the presence of various types of noise, it is much more likely that there
is lateral inhibition between nearby simple cells to avoid that they converge
to eigenvectors of the same order (nearby neurons may also be driven by local
interaction to converge to Gabor-like functions with similar orientation). In ad-
dition, Foldiak-type learning mechanisms (see Appendix 20.2) maybe respon-
sible for wiring simple cells with the “same” orientation to the same complex
cell.

It has been customary (for instance see [48] to state a single “slowness” max-
imization principle, formulated in such a way to imply both Oja’s-like learn-
ing at the level of simple cells and wiring of the complex cells according to a
Foldiak-like rule. Though such a principle does not seem to reflect any obvi-
ous biological plasticity property, it cannot be excluded that a single biological
mechanisms — as opposed to a single abstract optimization principle — deter-
mines both the tuning of the simple cells and their pooling into complex cells.
In a similar spirit, simple cells may be a group of inputs on a dendritic branch
of a complex cell.

Notice that a relatively small change in the Oja equation gives an online
algorithm for computing ICAs instead of PCAs [38]. Which kind of plasticity
is closer to the biology remains an open question. We expect ICAs to be similar
to PCAs described here but not identical. Our spectral analysis would not
carry over to ICAs — at least not exactly — and instead direct simulations of the
dynamic online equations will have to be done.

Let us summarize the main implications of this section in terms of tem-
plates, signatures and simple and complex cells. Notice that the templatebook
T is a tensor with 7; ; being an array. There are D PCA components for each
T: for instance retaining the first two PCA components shown in Figure 21
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corresponds to replacing T with T with 2 rows. From this point of view, what
do we expect it will happen during developmental learning using a Hebb-like
rule? Repeated exposure to stimuli sequences corresponding to the rows of the
T should induce, through the learning rule, simple cell tunings corresponding
for instance to the two PCA in quadrature pair of Figure 21. Simple cells tuned
to these Principal Components would be pooled by the same complex cell.

4.3 Spectral properties of the templatebook covariance opera-
tor: cortical equation

Summary. This section focuses on characterizing the spectral properties associated
with the covariance of the templatebook. It proposes a “cortical equation” whose solu-
tion provides the eigenfunctions of the covariance (the exact solution in some particular
cases can be found in 15 and more material on the templatebook spectral properties can
be found in 16). Hebbian synaptic rules imply that during development the tuning of
simple cells when exposed to inputs from the retina will converge to the top eigenfunc-
tion(s). We start with the 1D analysis; the 2D problem is somewhat more interesting
because of the “symmetry breaking” induced by motion.

We consider a layer of 2D “apertures” and the covariance of the template-
book associated with each aperture resulting from transformations of images
“seen” through one of these apertures. This will lead later to an explicit solu-
tion for the first layer in the case of translations.

For any fixed ¢t we want to solve the spectral problem associated to the
templatebook:

Tt = (got, glt, ceey g|G’\t7 )T
i.e. we want to find the eigenvalues \; and eigenfunctions 1); such that

T; T = Nthi, i =1,..,N (35)

To state the problem precisely we need some definitions. We start first with the
1D problem for simplicity

We show how to derive an analytical expression of the visual cortex cells
tuning based on the following hypothesis:

1. Observables: images, transforming by a locally compact group, looked
through an “aperture” better specified later.

2. Hebbian learning: hebbian like synapses exists in visual cortex.
We fix few objects:

e X space of signals: L*(C, dx).

e 7 C X the template set.

We will solve the eigenproblem associated to the continuous version of (35): in
this case the basic observable given by the operator 7' : X — X

(TH(y) = [t* M, I)(y) = / det(y — z)a(z)(z), t€T, a,l € X (36)
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where
(MoI)(z) = a(z)I(z), a € X

The equation (36) is the mathematical expression of the observable T" i.e. a
translating template ¢ looked through the function a which will be called the
aperture.

Remark 9. T is linear (from the properties of the convolution operator) and bounded

(from ||T|| = ST = [£ll [|al)-
Remark 10. M, is a selfadjoint operator.

The adjoint operator 7* : X — X is given by

(TI,I')

/ dy '(y) / dz t(y — x)a(2)I(x)
/ d I(z)a(z) / dy t(y - 2)F'(y) = (I, T°T)

which implies T*I = M,(t~ = I), t~(x) = t(—x). Note that [|t|| = |t7| =
|7 = ||T*]], i.e. ||T*|| is bounded.

Assuming Hebbian learning we have that the tuning of the cortical cells is
given by the solution of the spectral problem of the covariance operator as-
sociatedto T, T*T : X — X

[T*TIN(y) = Malt™ = (tx (Mal))|(y) = Ma[(t™ = t) x (Mal)](y)

M (% + (M. 1)) = aly) / dz a(z)t®(y — 2)I(z)

The above expression can be written as

T*T1)(y) = / dx K(z,9)I(z), K(x,y) = a(z)a(s)t®(y — o).

Being the kernel K Hilbert-Schmidyt, i.e.

Tr(K) = / d K (2,7) = / da a(2)t%(0) < oo

we have:
e the eigenfunctions corresponding to distinct eigenvalues are orthogonal.
o the eigenvalues are real and positive.

e there is at least one eigenvalues and one eigenfunctions (when K is al-
most everywhere nonzero) and in general a countable set of eigenfunc-
tions.
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In the following paragraphs we aim to find ¢,, € X and \,, € R such that

a(y) / dz a(2)t® (y — 2)pn(z) = Atbn(y) (37)

and study their properties. In particular in the next paragraphs we are going to
find approximate solutions and show that they are a Gabor-like wavelets. An
exact solution in some particular cases can be found in the appendix 15.

Remarks

o Square aperture, circulants and Fourier
We start from the simplest discrete “toy” case in which we assume pe-
riodic boundary conditions on each aperture (one in a layer of receptive
fields) resulting on a circulant structure of the templatebook.

Define as templatebook 7' the circulant matrix where each column rep-
resents a template ¢ shifted relative to the previous column. This corre-
sponds to assuming that the visual world translates and is “seen through
a square aperture” with periodic boundary conditions. Let us assume
in this example that the image is one dimensional. Thus the image seen
through an aperture

a(xz) st a(z) =1for 0 <z < Aand a(x) = 0 otherwise

is t(z — y)a(x) when the image is shifted by y. We are led to the following
problem: find the eigenvectors of the symmetric matrix 77T where T is
a circulant matrix*. If we consider the continuous version of the problem,
that is the eigenvalue problem

A
/0 dxi/}n(x)t®(y — l')dx = )\nwn(y)

with ¢®(z) being the autocorrelation function associated with ¢. The so-
lution is v, (v) = e~ %274 which is the Fourier basis between 0 and A.

o Translation invariance of the correlation function of natural images

In the toy example above the two point correlation function ¢(z,y) has
the form ¢(z,y) = t(z — y) because of shifting the vector ¢. In the case
of natural images, the expected two-point correlation function is always
translation invariant even if the images are sampled randomly [87] (in-
stead of being successive frames of a movie). In 1-D there is therefore no
difference between the continuous motion case of one image translating
and random sampling of different natural images (apart signal to noise
issues). As we will see later, sampling from smooth translation is how-
ever needed for symmetry breaking of the 2D eigenvalue problem —and
thus convergence of the eigenfunctions to directions orthogonal to the
direction of motion.

4This problem has also been considered in recent work from Andrew Ng’s group [89].
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o The sum of Gaussian receptive fields is constant if their density is large enough

Whatis 35 G(z — &)? If 32 G(z - &) = [ Gz — §)dE then we know that
J G(x — &)d¢ = 1 for normalized G and for —co < z < oc.

4.3.1 Eigenvectors of the covariance of the template book for the translation
group

As we mentioned, the linking conjecture connect the spectral properties to the
tuning of the cells during development. We study here the spectral properties
of the templatebook.

We consider a biologically realistic situation consisting of a layer of Gaussian
“apertures”. We characterize the spectral properties of the templatebook asso-
ciated with each aperture (corresponding to the receptive field of a “neuron”)
resulting from translations of images “seen” through one of these Gaussian
apertures. For the neuroscientist we are thinking about a Gaussian distribution
(wrt to image space) of synapses on the dendritic tree of a cortical cell in V'1 that will
develop into a simple cells.

Thus the image seen through a Gaussian aperture is t(x — s)g(x) when the
image is shifted by s. In the discrete case we are led to the following (PCA)
problem: find the eigenvectors of the symmetric matrix 77 GT GT where G is a
diagonal matrix with the values of a Gaussian along the diagonal.

In the following we start with the continuous 1D version of the problem.

The 2D version of equation (37) (see remark 12) is an equation describing
the development of simple cells in V'1; we call it “cortical equation” because,
as we will see later, according to the theory it describes development of other
cortical layers as well.

Notice that equation (37)

/ d2g(y)g(@)tn (2)® (y — 7) = Antin (v)

holds for all apertures defined by functions g(x).

Remark 11. Eq. (37) can be easily written in the case x € Y = L*(G, dg) being G a
locally compact group

T*T1)(g') = / dg K(9.)1(9), K(g.6) = alg)a(g)®(g~'¢"), 1€V, g.4' €G.

The convolution is now on the group G.

Remark 12. In 2D the spectral problem is:

/ dedng (e, )g(€ € — 2.1 — P)0n(€1) = Atn(z,y).  (38)

where t® =t @ t.
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Eigenfunctions: t(x) is a row os!‘a natural image
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Figure 13: Continuous spectrum of the covariance of the templatebook: Gabor-like eigenfunc-
tions for different o

Numerical simulations in 1D show Gabor-like wavelets (see Figure 13) as
eigenfunctions. This result is robust relative to the exact form of the correlation
t®(z). Other properties depend on the form of the spectrum (the Fourier trans-
form of t®(z)). All the 1D simulations have been made (without any retinal
processing) directly with natural images — which roughly have ¢® (w) o< ;.

In particular, the figures 14, 15 show that (in 1D) the eigenfunctions of the
cortical equation show the key signature of true gabor wavelets in which the fre-
quency is proportional to the o. Figure 16 shows that the Gaussian envelope is
smaller than the Gaussian aperture.

The following analysis of the eigenvalue equation provides some intuition
behind the results of the numerical simulations.

1D: t® (w,) approximately piecewise constant

We represent the template as:

1 ,
t®x:—/dwt®wewg’ 39
@) = = [ (@) )
Leta = 1/02, 3 =1 /Ji, and assume that the eigenfunction has the form

Yn(x) = e_§z2ei“’”, where  and w,, are parameters to be found.
With this assumptions eq. (37) reads:

1 a2 z2(a+8) . . 5y2
e 2Y dre 2 dw t® (w)e™W=2)in® — \(yy Ve~ 2 nY (40
e[ [ o=@ (wn) (40)
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A vs. 0, t{x)is a row of a natural image
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Figure 14: Continuous spectrum: X\ vs. oo for even symmetric patterns. The slope in this
figure is k where X\ = koa; k ~ 2 in this figure.

7vs. 0, t(x) is a row of a natural image
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Figure 15: Continuous spectrum: X vs. oa for odd symmetric patterns. The slope is ~ 2.4. In
1D, odd symmetric eigenfunctions tend to have a lower modulating frequency.
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4, V8. o, 1x)is a row of a natural image
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Figure 16: Continuous spectrum: o vs. og. The slope is ~ 2. Though 1D, this is consistent
with experimental data from [41] and [86] shown in fig. 22 where the slope is also roughly 2.

Collecting the terms in = and integrating we have that the L.h.s becomes:

2
/ dw 1 (w)eV e~ ST (41)
a+fp
With the variable change & = w — w,, and in the hypothesis that t® (@) ~ const
over the significant support of the Gaussian centered in 0, integrating in @ we
have: ) , ,
V21 const e~ 12 eV mF )\(wn)e*%ei‘””y. (42)
Notice that this implies an upper bound on § since otherwise ¢t would be white
noise which is inconsistent with the diffraction-limited optics of the eye.
The condition is that the above holds approximately over the relevant y interval
which is between —o;, and +o0,. The approximate eigenfunctions v, (egn = 1)
has frequency wg. the minimum value of wy is set by the condition that ¢, has to
be roughly orthogonal to the constant (this assumes that the visual input does
have a dc component, which implies that there is no exact derivative stage in
the input filtering by the retina).

. w2
(Y0, 4n) = /dm e~ gm0z ) = =BT~ 0 43)
271'0'
Using 27 fo = 7: = wy the condition above implies e (=39 & 0 which can

27ra,¢,

—( ?

be satisfied with oy, > Ag; oy ~ A¢ is enough since this implies e
—(2m)?
e .

A similar condition ensures more in general orthogonality of any pair of eigen-
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functions.
/dm U (x) b () = /dxe’(ﬁ)””Qei”“O””e*im“’ﬂx o e~ ((m=m)wo)*a,

which gives a similar condition as above. this also implies that A,, should in-
crease with oy, of the Gaussian aperture, which is a property of gabor wavelets!.

2D t® (wy, wy) approximately piecewise constant

We represent the template after retinal processing (but without motion) as:

1 .
t® (xvy) = %/dwxdwyt®(wz,wy)el(wm$+wyy) (44)
and assume the following ansatz: the eigenfunctions have the form ¢(z,y) =

e’gmze’%eri“’gm, where 3, v and w, are parameters to be found.
With this assumptions eq. 38 reads:

276—5(ﬂ+y2) /dfdn o Elete) _n(atn) /dwmdwy 9 (wy,w,)  (45)
T
giwn (1= gmiwyn giwgt A(wi,wi)e‘%y“’e—‘*ffawiw (46)

Supposing t® (w,,wy) = t®(w)t®(wy) and AMwf,wf) = Mwf)A(wd) (which is
the case if the spectrum is piecewise constant) we can separate the integral into
the multiplication of the following two expressions:

1 _%2/ _£2(atp) / ioo(m—g) iw? 822 e
e 2 d€ e 2 dwy 12 (wy)e™ @8 es = \(w9)e™ "z Wa®
VT ; () (@)
1 _a,? _ n%(aty) ® —iw, .2
\/ﬁe 2Y /dn e 2 /dwy t9(wy)e” v = Nwd)e 2Y
The first equation is exactly the 1D problem analyzed in 4.3.1, meanwhile the
second is satisfied if v = «.

Remark 13. note that o, < 0, and o, < 0, < 04, that is the “receptive fields” are
elliptic Gaussians. This prediction is very robust wrt parameters and is clearly verified
by the experimental data on simple cells across different species.

4.4 Retina to V1: processing pipeline

Summary. The image is processed by the retina and the LGN before entering V1.
Here we discuss how the spectrum of the image changes because of retinal processing.
The main properties of the eigenvectors do not depend on it but some of the important
quantitative properties — such as the linear relation between lambda and o —do. The
question now is: what is the actual spectrum of ¢t during development? Though
the main qualitative properties of the eigenvectors of the cortical equation do
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not depend on it, the quantitative relations do, since the kernel of the inte-
gral eigenvalue equation depends on ¢. In this section we describe models of
processing in the retina up to V1 that affect the spectral properties of natural
images and thereby determine the actual spectrum of . We should also note
that retinal waves may have a role in the development of cortex (c.f. [108])
in which case the spectrum of ¢t during development (or part of development)
may be independent of visual images and resemble more the simple case stud-
ied above of t = ¢y + cos(wx). It may be possible to expose developing animals
— for instance mice — to appropriately controlled artificial ¢,[25]. It is in any case
interesting to check what various choice of ¢ may yield.

44.1 Spatial and temporal derivatives in the retina

Let us start with the observation that the retina performs both a DOG-like spa-
tial filtering operation as well as a high-pass filtering in time, roughly similar to
a time derivative, probably to correct the slow signals provided by the photore-
ceptors. Natural images have a % spatial spectrum, bandlimited by the optical

cycles

point spread function at 60 zZ7=" (in humans). Additional spatial low-pass fil-
tering is likely to take place especially during development (in part because of
immature optics).

This means that the spectrum of the patterns in the templatebook is spa-

tially bandpass, likely with a DC component since the DOG derivative-like
operation is not perfectly balanced in its positive and negative components.
The temporal spectrum depends on whether we consider the faster magno or
the slower parvo ganglion cells. The parvo or midget ganglion cells are likely to
be input to the V1 simple cells involved in visual recognition. It is possible that
the somewhat temporal high-pass properties of the retina and LGN (see [14])
simply correct in the direction of motion for the spatially low-pass components
of the output of the retina (see Figure 17).
Consider as input to V1 the result f(x,y;t) of an image i(x,y) with a spatial
power spectrum ~ - filtered by the combination of a spatial low-pass filter
p(w) and then a bandpass dog. In this simple example we assume that we
can separate a temporal filtering stage with a high-pass impulse response h(t).
Thus in the frequency domain

fwa, wyiwi) ~ i(wg, wy; we)P(Wa, wy)dog(we, wy ).

Assume that f(x,y,t) is then filtered through h(t). For example, let us see the
implications of h(t) ~ %. Consider the effect of the time derivative over the
signal generated by the translation of an image f(z —vt), where x, v are vectors
in \2%
— =VI. v 47
dt v 47

assume for instance that the direction of motion is along the z axis, eg v, = 0.

Then
dI oI
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Figure 17: The sequence of processing stage from the retina with spatial low-pass and bandpass
(DOG) plus temporal d/dt derivative-like filtering to V1. Thus high-pass temporal filtering
compensates for the spatial blurring in the direction of motion.

Thus the prediction is that motion in the 2 direction suppresses spatial changes
in y, eg spatial frequencies in w,, and enhances components orthogonal to its
direction. This means that the time derivative of a pattern with a uniform spa-
tial frequency spectrum in a bounded domain w, as an effect of motion along
x, gives a templatebook with a spectrum in w which reflects the transformation
and not only the spectrum of the image and the filtering of the retina: iw, f (wg, wy ).
Notice that spatial and temporal filtering commute in this linear framework, so
their order (in the retina) is not important for the analysis. In particular, a high
pass time-filtering may exactly compensate for the spatial-low pass operation
in the direction of motion (but not in the orthogonal one). Interestingly, this argu-
ment is valid not only for translations but for other motions on the plane. From now
on, we assume the pipeline of figure 17. The 2D simulations are performed
with this pipeline using the low-pass filter of Figure 18.

Because of our assumptions, invariances to affine transformations are di-
rectly related to actual trajectories in R? of the image while transforming. These
are flows on the plane of which a classification exist (see Appendix18). We
have the following result for the solution of the 2D eigenfunction equation in
the presence of oriented motion:

Lemma 4. Selection rule
Assume that a templatebook is obtained after the Vg o -2 filtering of a “video” gener-
ated by a transformation which is a subgroup of the affine group Af f(2,R). Then the
components in the image spectrum orthogonal to the trajectories of the transformations
are preferentially enhanced.

4.5 Cortical equation: predictions for simple cells in V1

Summary. The numerical simulations predict surprisingly well, almost without any
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Figure 18: Spatial lowpass filter T In the frequency domain the filter is 1/ /w2 + wZ.
The filter is such that its effect is canceled in the direction of motion by the time derivative.

parameter fitting, quantitative properties of the tuning of simple cells in V1 across
different species.

Numerical simulations of the cortical equation in 2D using natural images
moving in one direction and the pipeline of Figure 17 show that the top eigen-
vectors are oriented Gabor-like wavelets. We are mostly interested in the top
three eigenvectors, since they are the ones likely to be relevant as solutions of
a Oja-type equation. Figures 19 and 20 shows that the solutions are very close
to actual Gabor wavelets. A number of other simulations (not shown here) to-
gether with the previous theoretical analysis suggests that the Gabor-like form
of the solution is robust wrt large changes in the form of the signal spectrum.

Some of the other more quantitative properties however seem to depend
on the overall shape of the effective spectrum though in a rather robust way. In
this respect the simulations agree with the astonishing and little known finding
that data from simple cells in several different species (see Figure 22) show very
similar quantitative features.

The most noteworthy characteristics of the physiology data are:

e the tuning functions show a A proportional to ¢ which is the signature of
wavelets;

e in particular ) is always finite;

e 0, > 0, always where z is the direction of motion and the direction of
maximum modulation.

The 2D simulations with the pipeline described earlier reproduce these
properties without any parameter fitting process. In particular, Figure 24 shows
that oy, > 0,. Figure 25 summarizes the main quantitative properties of the
simulations. Figure 26 shows that the simulations seem to be consistent with
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Figure 19: Simulation results for V1 simple cells learning via PCA. Each “cell” receives as
input all frames from a movie generated by a natural image patch undergoing a rigid translation
along the horizontal axis. A Gaussian blur filter, a Difference of Gaussians filter and the spatial
lowpass filter reported in Figure 18 are applied to every frame as a preprocessing step. A Gaus-
sian mask is then overlaid on each frame to model a cell’s receptive field. Lastly the weighted
difference between two subsequent frames is fed to the learning stage, to simulate and imperfect
temporal derivative (the weights we used are (-0.95, 1.00) so as not to suppress the DC compo-
nent of the frames completely). Each movie is gg%emted using 40 distinct patches go by one after
the other. Each cell then “learns” its weight vector extracting the principal components of its
input. For each row pairs: the top row shows the best Gabor fit (least squares) and the bottom
row shows the actual principal component vector; different columns represent different values
for the Gaussian mask aperture.



=134 h=int g=00
02=13.7 MG=133.8 B=-7

=147 h=int 4=60

=161 h=int d=80

=174 h=int p=E0

G2=150 MGE=149.8 B=vholibol) 1aEined WML E0RnR e 1040070 RuRMEilFLEE B10=—7

=187 h=int ¢=90
G2=187 hG=187.2 8=

>

. | . A
=0 080 pe=1 en=0024 pe=1 =042 pe=1 err=0.041 po=1 eri=0.086 po=1
=72 %=281 =178 o=7.5 %= 7 =179 =77 h=303 =179 =00 %=308 #=178 og=82 %=314 =178
o2=9.1 hG=29.0 6=—4 o2=0.8 hGE=20.2 G=-4 o2=10.5 MG=20.4 B=-4 g2=11.1 MG=296 6=-3 g2=118 AG=297 6=-3
AA=280 A=ze0 hA=28.0 MA=280 =300
\/;\b \/ﬁ-_ | \/F \/N \/N
en=0.022 pe=2 en=0.025 pe=2 err=0.027 pe=2 err=0.028 po=2 eri=0.030 pe=2

=06 h=235 ¢=89
G2=88 WG=24.3 B=-3
Aa=240

=05 h=kd 4 ¢=80
G2=04 WG=47 B=-3
hA=240

g=100 A=257 {=88
g2=101 hiG=251 B=-3
AA=p60

=102 A=260 {=88
g2=108 hG=256 6=-3
MA=280

=104 =267 ¢=87
g2=115 AG=263 B=-3
Aa=280

|/

VAV

Va

S

RAVAVA

eri=0.108 pe=3
oA=13.8

r=0.103 pe=3

oa=150

=008 pe=3

oA=16.2

em=0083 pe=3

oA=175

1=0.058 po=3

oA=188

Figure 20: 1D sections of the principal components sorted by eigenvalue (row) for different
Gaussian apertures (column). Red indicates best least square fit of a Gabor wavelet. The pipeline
is the same described in Figure 19.

Figure 21: A vertical slice through a quadrature pair (1st and 2nd eigenvector) from Figure 19
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Figure 22: Data from [41] (cat), [86] (macaque) and [68] (mouse). Here n, = o, f where o,
is the standard deviation of the Gaussian envelope along the modulated axis and f = 2T is the
frequency of the Gabor’s sinusoidal component. Likewise, n, = o, f where o, is the sigma of
the Gaussian envelope along the unmodulated axis.

the data across species. Notice that a better fitting may be obtainable with a
minimum of parameter optimization.

The form of the low-pass filtering — a spatial average that cancels the time
derivative in the direction of motion — seems to be important. When the filter is
replaced by a Gaussian low pass filter, the slope of A wrt o becomes too small
(see Appendix 16.8.2).

The image spectrum before the retinal processing matters. For instance,
if instead of natural images a white noise pattern is moved, the key properties
(see Figures 27 and 28 ) of the tuning functions are lost: A is essentially constant,
independent of o.

An interesting question arises about the actual role of motion in the de-
velopment of tuning in the simple cells. In our theoretical description, mo-
tion determines the orientation of the simple cells tuning. We cannot rule out
however the possibility that motion is not involved and orientations emerge
randomly (with orthogonal orientations for different eigenvectors, as in figure
29), in which different natural images, randomly chosen, were used as input
to the eigenvector calculation, instead of a motion sequence. It would be inter-
esting to examine experimentally predictions of these two possible situations.
The first one predicts that all the eigenvectors generated for a simple cell dur-
ing development have the same orientation; the second predicts orthogonal
orientations during learning. Unfortunately, verifying this prediction is exper-
imentally difficult. There is however another property — the relation between
A and o — that distinguish these two mechanisms allowed by the theory. The
prediction from our simulations is that motion yields finite A (see Figure 25)
whether absence of motion implies that some A go to infinity (see Figures 29
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Figure 23: Principal components of the template book. These are obtained using the pipeline
described in Figure 19. The pipeline consists of a Gaussian blur, a DoG filter, a spatial low-pass
filter 1/\/w2 + w2 and an imperfect temporal derivative. The principal components are sorted
by eigenvalue (row), different columns refer to different apertures of the receptive field.
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Figure 24: Width of the Gaussian envelope for the modulated and unmodulated directions in
cells learned using the pipeline described in Figure 19.

82



40

30

20

Jebel/cbel01/atacchetivi/results/20121006_110644_natimgfilterddt/pca_2d

1rtuns, 34 /38 PCs

Seeoeeeo

—©— SIN (2 =0.34CA +25.47)
COS (h =0.530A +17.58

0457
04

0.35

Xcycles (6 /A)
o o
e o n o
- o1 (4] w

g
o
a

10 15 20 25 30
GA

1runs, 34 /38 PCs

oo Pfg&@

=
&9

—©—8IN (6/4=0.010A+0.17)
COS (6/% = -0.006A +0.43,

=]
o

10 15 20 25 30
oA

1runs, 34 /38 PCs

1runs, 53 /57 PCs

DC (6 =1.050A-1.21)
—©— 8IN (0 = 0.260A +3.77)
COS (6 =0.186A +7.67

40 8
)
M 25
30 5
&
& 20
20 15
©
© 10
Srv
0
O SIN(h=1.330+20.37) 0
GOS (h = 2.966 -5.20)
-10 N
0 5 10 15 20 25 30 0
G
1runs, 34 /38 PCs
‘\
Ei
05 i
i
hy
hy
04 hy
< u
iy
® s i
@ +
° +
2 §
> 0.2
0.1

SIN
Ccos

0 0.1 0.2 0.3 0.4

Xcycles{G/2)

10 15 20 25
oA

Figure 25: Summary plots for 2D simulations of V1 cells trained according to the pipeline
described in Figure 19. Figures from top left to bottom right: a) sinusoid wavelength (\) vs.
Gaussian aperture width (o.). b) Sinusoid wavelength (\) vs. Gaussian envelope width on
the modulated direction (o). c) Gaussian envelope width for the modulated direction (o) vs.
Gaussian aperture width (o). d) Ratio between sinusoid wavelength and Gaussian envelope
width for the modulated direction (n,) vs. Gaussian aperture width (o). e) Ratio between
sinusoid wavelength and Gaussian envelope width on the unmodulated direction (n,) vs. ratio
between sinusoid wavelength and Gaussian envelope width for the modulated direction (ng).
The pipeline consists of a Gaussian blur, a DOG filter, a spatial low-pass filter 1/\/w2 + w?
and an imperfect temporal derivative. Parameters for all filters were set to values measured in

macaque monkeys by neurophysiologists.

83

30



1.51

DC
SIN
COs
O monkey
cat

mouse

n
®

Figure 26: This figure shows n, = %t vs. ny = %= for the modulated (x) and unmodulated
(y) direction of the Gabor wavelet. Notice that the slope is Z—i — a robust finding in the theory
and apparently also in the physiology data. Neurophysiology data from monkeys, cats and mice
are reported together with our simulations. Simulated cells learn their weight vector according
to the algorithm described in Figure 19.
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Figure 28: Properties of the eigenfunctions of the template book obtained translating a white
noise pattern and using the pipeline described in Figure 19, the template book learned for this
case is in Figure 27. Plots are ordered as in Figure 25.

and 30). Physiology data (see Figure 22) support then a key role of motion dur-
ing development! Further checks show that without motion X can be infinite
even without spatial low pass filtering (see Appendix ??).

Remarks

o Gabor-like wavelets and motion We have seen that motion is not necessary to
obtain Gabor-like wavelets but is required for the right properties, such
as finite A.

The story goes as follows. Originally the theory assumed that the covari-
ance of the 2D input has the form t®(z,y) = t®(y — x) with 2 € R* and
y € R? because of shifts in the input images (that is because of motion of
the recorded images).

However, it turns out that the empirical estimate of the covariance of
randomly sampled static images (assumed to be E[I(z)(y)] has the same,
shift-invariant structure without motion. For images of natural environ-
ments (as opposed to images of cities and buildings) the covariance is
approximately a radial function, eg t®(z,y) =~ t®(||z — y||), therefore in-
variant for shifts and rotations. Scale invariance follows from the approx-
imate 5 power spectrum of natural images [99]. Further, natural images
have a power spectrum |I(wy,wy)|? ~ 5, where w = (w2 + wj)_%. A
power spectrum of this form is invariant for changes in scale of the im-
age I(z,y) and is an example of a power law. A related open question

is whether these spectrum symmetries are reflected in the form of of the
eigenfunctions.

e The Appendix (section ??) collects a few notes about transformations and
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Figure 31: Eigenvalues behavior as a function of the aperture for general Hilbert-Schmidt
integral operators.

spectral properties of them.

o The hypothesis explored here, given our pipeline containing a time deriva-
tive and PCA, is related to maximization of the norm of the time deriva-
tive of the input patterns (or more precisely a high-pass filtered version
of it). This is related to — but almost the opposite of — the “slowness”
principle proposed by Wiskott ([107, 18]) and made precise by Andreas
Maurer.See also appendix 16.9.

o Receptive fields size and eigenvalues distribution. Simple properties of the
eigenfunctions of integral operators of the Hilbert-Schmidt type imply
two rather general properties of the receptive fields in different layers as
a function of the aperture:

Proposition 6. (Anselmi, Spigler, Poggio)

— Under the assumption of a power spectrum of the form t(w) o 3, the
eigenvalues obey the relation:

i(o)
i(7)
This suggests that the top eigenvalues are closer to each other for large

apertures, suggesting that in the presence of noise the eigenvector emerging
as the result of Oja’s flow may vary among the several top eigenvectors.

>

>1, o>o0.

>

— The number of eigenfunctions depends on the size of the receptive field: this
also suggests that the variety of tunings increases with the size of the RFs.
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4.6 Complex cells: wiring and invariance

Summary.We show that local PCA can substitute for templates in the sense that group
averages over nonlinear functions of the PCA may be invariant. This is true in partic-
ular for modulo square nonlinearities. The section analyzes the connection between the
simple complex cells stage of our theory and the first iteration of Mallat’s scattering
transform [63] (see also ?? for more details).

In the theory, complex cells are supposed to pool nonlinear functions of
(shifted) templates over a small bounded domain in x,y, representing a par-
tial group average. Clearly, pooling the modulo square of the top Gabor-like
eigenvectors over a z,y domain is completely equivalent (since the eigenvec-
tors are legitimate templates). Interestingly, pooling the modulo square of the
top Gabor-like wavelets is also equivalent to a partial group average over a
(small) domain. This can be seen (and proven) in a number of ways. The
intuition is that the Gabor-like eigenvectors capture the transformations seen
through the Gaussian windows (exact reconstructions of all the frames can be
achieved by using all the eigenvectors; optimal L? approximation by using a
smaller number). Thus pooling over the squares of the local eigenvectors is
equivalent to pooling the squares of the templates (eigenvectors are orthog-
onal), assuming that the templates are normalized, over the aperture used for
the eigenvector computation. This intuition shows that some invariance can be
obtained locally. In fact, local pooling of the modulo square (of simple cells at
the same z, y) increases invariance; extending the range of pooling to a domain
in z, y of course increases the range of invariance. Thus pooling over eigenvec-
tors In the case of Gabor wavelets the modulo square of the first quadrature
pair is sufficient to provide quite a bit of invariance: this is shown by a rea-
soning similar to Mallat’s [63]. The sum of the squares of the quadrature pair
is equal to the modulo of each complex wavelet which maps a bandpass fil-
ter portion of the signal into a low-pass signal. In the Fourier domain the low
pass signal is a Gaussian centered in 0 with the same o, as the wavelet (which
is roughly fwo, the peak frequency of the Fourier transform of the wavelet).
Thus a rapidly changing signal is mapped into a much slower signal in the
output of the C cells. There is in fact an almost perfect equivalence between
the simple complex stage of the theory here and the first iteration of the scat-
tering transform ([63]). We discuss related issues next.

4.6.1 Complex cells invariance properties: mathematical description
Let L*(G) ={F :G = R | [|F(g)|*dg < oo}, and
T, X —» L*(G),  (Tif)(9) = (f. Tyt) .

where t € X. Itis easy to see that 7} is a linear bounded and compact® operator,
if | T,t|| < co. Denote by (o;;u,v;); the singular system of T}, where (u;); and
(vi); are orthonormal basis for X and L?(G), respectively.

5Tn fact it is easy to see that 7" is Hilbert Schmidt, Tr(T;T%) = [ dg || Tyt||
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For o : R — R measurable, define (complex response)

c:X R, D)= o((Iu)).

i

If o(a) = |al?, a € R and T} /b, is an isometry, where b, is a constant possibly
depending on ¢ (see [30]), then ¢ invariant. Indeed,

1 1
o) = I = 35 1T gy = g [ 140, 10) P,
t t

forall I € X, and HTtIHiQ(g) = HTtTgJHiz forallg’ € G.

9)

Example 3 (Affine Group). If G is the affine group and X = L*(R), then under the
admissibility condition

/I (Tyt,t) | < oo,

it is possible to take by = \/Cy, with Cy = 27 [ de, where t denotes the Fourier
transform of t.

4.6.2 Hierarchical frequency remapping

The theory so far does not provide information about the size of the receptive
fields for the first layer S and C cells. Here we sketch an approach to this
question which is related to section 10.4. A main difference is that we consider
here the specific case of templates being Gabor wavelets and of pooling being
energy pooling over a bounded interval. Thus we consider a partial group
average of the squares.

We begin by considering one dimensional “images”. Let the image I(z) €
X. To analyze I(z) we use a wavelet centered in wo, = * ¢y, ,, Where oy is
the width ;5 of the wavelet Gaussian envelope, that is of the envelope of the
simple cells impulse response at fist layer. There are several such channels cen-
tered on different frequencies and with corresponding o resulting from Heb-
bian learning as described in previous sections such as 4.4.1. As an example
the highest frequency channel may be centered on a frequency wy that satisfies

Wimnaz < wo + 369 with maa?(supp(f)) = Wmaz-

The signal I can be reconstructed exactly — apart from its DC and low fre-
quencies around it — by combining a sufficiently large number of such bandpass
filters according to the identity [ G/(w — w')dw'I(w) = I(w).

The pooling operation, from simple to complex cells, starts with taking the
modulus square of the wavelet filtered signal. In Fourier space, the operation
maps the support of he Fourier transform of I+, , into one interval, centered
in 0.

A one-octave bandwidth — that we conjecture is the maximum still yield-
ing full information with a low number of bits (see Appendix 12.1)) — implies
a certain size of the receptive field (see above) of simple cells. Complex cells
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preserve information about the original image if the pooling region is in the or-
der of the support of the simple cells (thus in the order of 60), since we assume
that the sign of the signal is known (positive and negative parts of the signal
are carried by different neural channels, see Appendix 12.1). The same reason-
ing can be also applied to higher order simple cells learned on the 4-D cube
(see later) to obtain estimates of RF size at a fixed eccentricity. Interestingly,
these arguments suggest that if information is preserved by pooling (which is
not necessary in our case), then there the C cells pooling regions are very small
(in order of v/2 the simple cells receptive fields): most of the invariance is then
due to the RF of simple cells and the pooling effect of the modulo square (sum
over quadrature pairs).

4.7 Beyond V1

Summary. We show that the V1 representation — in terms of Gabor-like wavelets in
v,y,0,s — can locally approximate (within balls of radius r with 1 < 0 where R is
the retinal eccentricity) similitude transformations of the image as independent shifts
in a 4-dimensional space (the subgroup of translations is a 2-parameter group (trans-
lations in x, y); the subgroup of rotations and dilations is also a two parameters group
(p,0)). Thus learning on the V1 representation can be such to generate 4-dimensional
wavelets. This scenario — which is one of the several possible for processing stages
above V1 — seems consistent with physiology data. Assuming that R is retinal eccen-
tricity corresponds to assuming that most of the experienced and learned rotations and

loomings are centered in the fovea.

4.7.1 Almost-diagonalization of non commuting operators

Let us start from the fact that if (e;, = 1,..., N) is an orthonormal basis in any
finite Hilbert space, the matrix whose entries are a; ; = (Ae;, e;) is diagonal if
and only if each e; is an eigenfunction of the operator A:

a;; = (Ae;,e5) = A (e5,€5) = Xidy j

If another operator B acting on the Hilbert space is such that [A, B] = 0 the
two operators share the same eigenfunctions and can therefore be simultane-
ously diagonalize. For example in the case of the Fourier basis {¢* we can
say that the Fourier transform diagonalize any operator that commutes with
translation.

What can we say if we have two commuting operators, A, B? In this case we
cannot have simultaneous diagonalization but choosing a basis e; of the Hilbert

space we have
(Aei,ej) = a;j + A(A)i;
(Bei, ej) = b j + A(B)i;-
since the eigenvalues (the measurement results) cannot be determined with

infinite precision at the same time. In this case we can speak of almost si-
multaneous diagonalization of the operators A, B if there exists a basis #; that
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minimize simultaneously A(A); ;, A(B); ;, ¢ # j. This corresponds to find the
set of functions ¢ that minimize the uncertainty principle

(AypA)(AyB) > S|[A, Bly|

| —

Example 4. The Weyl-Heisenberg group in one dimension is generated by two non
commuting operators, the translation in frequency and space. The minimizers of the
associated uncertainty relations gives Gabor functions as solutions.

Example 5. The affine group in dimension two...

4.7.2 Independent shifts and commutators

(From [17])

Theorem 11. Given two Lie transformation groups, T, and Sy, acting on an image
f(z,y) € L*(R?), there exists a representation of the image g(u,v), (u = u(z,y),v =
v(z,y)) such that

Lou=1, Lyw=0
Lyu=0, Lv=1

where (L, Ly) are the lie generators of the transformations, if L, and Ly, are linearly
independent and the commutator [L,, L] = 0.

The last two equations state that, in the new coordinate system (u,v) the
transformations 7, and S, are translations along the v and v axes, respectively
(and each translation is independent from the other).

Example 6. In the case we consider dilation and rotation transformations we have
that there exists a coordinate change such that, in that coordinate system rotations,
and dilations are translations being L, independent from L, and [L,, L4] =0

4.7.3 Hierarchical wavelets: 4-cube wavelets

As a consequence of what found in the previous paragraphs a group trans-
formation in the image space X is a shift in the space L?(SIM (2)) where the
function ¢, () is defined. In this approximation the transformations at the sec-
ond layer can be written as direct product of translation group in the group
parameters:

G=R?>xS; xR (49)

The same reasoning applied at the first layer for the the translation group can
be repeated: the eigenfunctions will be Gabor-like wavelets in the parameter
group space.

The theoretical considerations above imply the following scenario. In the first
layer, exposure to translations determines the development of a set of receptive
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fields which are an overcomplete set of Gabor-like wavelets. The space of two-
dimensional images — functions of z, y — is effectively expanded into a 4-cube
of wavelets where the dimensions are z,y, 0, s, eg space, orientation and scale,
(see fig. 4.7.3).

The same online learning at the level of the second layer (52) with apertures
“looking” at a Gaussian ball in z, y, 6, s will converge to Gabor-like wavelet af-
ter exposure to image translations, which induce translations in z, y of the 4-
cube. Informally, the signature of a patch of image at the first layer within the
aperture of a S2 cell will consist of the coefficients of a set of Gabor wavelets at
different orientations and scales; after processing through the S2 second order
wavelets and the C2 aggregation function it will be invariant for local transla-
tions within the aperture.

In the example above of z,y translation of the image, the second-order
wavelets are wavelets parallel to the z,y plane of the 4-cube. For image mo-
tion that include rotations and looming, the resulting motion in the 4-cube is
mostly still locally a shift — but in general along a diagonal in the 4-cube. Thus,
in general, second-order wavelets are Gabor-like oriented along diagonals in-
hey are also x,y, 8, s (apart from a minority of polar wavelets near the fovea,
see below).

Of course, the argument above are recursive with higher levels behaving as
the second level. Not surprisingly, the tuning properties, seen from the image,
of higher order wavelets is more complex: for instance shifts in scale corre-
spond to receptive fields for which the preferred stimulus may be similar to
concentric circles.

The theory predicts that pooling within the 4-cube takes place over rela-
tively small balls in which rotations and expansions induce approximately uni-
form shifts in z, y together with uniform changes in orientations or scale. For
this to happen the radius of the ball has to decrease proportionally to the dis-
tance from the center of rotation. If this is assumed to be the fovea then we
derive the prediction that the size of receptive fields of complex cells should
increase linearly with eccentricity — a prediction consistent with data (see [20]).

Remarks

e Mallat also considers wavelets of wavelets [63]. In his case all the wavelets
are in z, y only with orientation and scale as parameters, whereas in the
simple cells of V2 or higher we expect wavelets on x, y, orientation and
scale.

e V1 (may be with V'2) diagonalize the affine group: how can we check this
prediction?
4,74 Predictions for V2, V4, IT

If during learning gaze is precisely maintained, then neurons which happen
to contain the center of rotation and looming could develop wavelets in polar
coordinates. The probability of this occurring is probably very low for any of
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Figure 32: Learning an S2 filter from C1 outputs (of a single scale only). Here the transfor-
mation is off-center rotation. The resulting S2 filters are Gabor filters in 3 dimensions: x; y, and
orientation. Left: the receptive field center is in the middle (central blue asterisk) but the center of
rotation is to the left (green asterisk). The green arrows show the speed of optical flow at various
places. Middle: the learned filters. Each row represents a single filter; since the filters are 3D,
we show a separate (x, y) plane for each orientation. However, in this view it is not easy to see
shifting along the orientation dimension. Right: here we show that the 3D Gabors also have a
sinusoidal component along the orientation dimension. We show a single slice, at the central X
position, for each filter. The slices are planes in (y, orientation).
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Figure 33: It is not easy to predict the optimal stimulus — in pixel space — of a 3D Gabor filter
computed in a space of 2D Gabor outputs. Here we test two model C2 units with stimuli used
in [24] to test neurons in Macaque V4. Simply by changing the 3D orientation of the filter we
are able to obtain a diversity of selectivities. Top: the S2 units’ sinusoid is along x. In other
words, it’s just like an S1 filter (except that it spans 3 dimensions). Bottom: the S2 units have
the sinusoid along 6.
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the small receptive fields in V1 but could be considerably higher for the larger
receptive fields in areas such as V4—close to the very center of the fovea. In
other words, in V2 and especially V4, some of the larger receptive fields could
contain the center of rotation or the focus of expansion. The corresponding
wavelets would be a mix of shifts in orientation and non-uniform translations
in z, y (circles around the center of rotation) with respect to the previous layer.
We expect quite a variety of wavelets — once projected back in image space.
This could explain variety of receptive fields seen in Gallant’s results [23].
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Figure 34: The effectiveness of the various stimulus subclasses for V4 vs. V2. Each cell from
either area was classified according the subclass to which its most effective grating or contour
stimulus belonged. The resulting distributions are shown here for grating stimuli (panel A) or
contour stimuli (panel B) for both V4 (top row) and V2. See [31].
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5 Part III: Class-specific Transformations and Mod-
ularity

Summary. Part Il shows that non-affine 2D image transformations can be well
approximated by the template and dot-product module described in Part I and II for
certain object classes, provided that the transformations of the templates capture class-
specific transformation. The theory explains several properties of face patches in macaque
cortex. It also suggests how pooling over transformations can provide identity-specific,
pose-invariant representations whereas pooling over identities (templates) provides
pose-specific, identity-invariant representations. Part III develops the theory of class-
specific invariant recognition to faces; it then describes initial work in other recognition
tasks involving bodies and words.

5.1 Approximate invariance to non-generic transformations

Affine transformations are generic—invariance to them can be learned from
any template objects and applied to any test objects. Many other important
transformations do not have this property. Non-generic transformations de-
pend on information that is not available in a single image. Perfect invariance
to non-generic transformations is not possible. However, approximate invari-
ance can still be achieved as long as the template objects transform similarly to
the test objects. One view of this is to say that the missing information in the ob-
ject’s 2D projection is similar between template and test objects. For example,
3D rotation is a non-generic transformation—as a map between projected 2D
images depends on the object’s 3D structure. If the template and test objects
have the same 3D structure then the transformation learned on the template
will apply exactly to the test object. If they differ in 3D structure then the error
incurred depends on the difference between their 3D structures.

Many non-generic transformations are class-specific. That is, there is a class
of objects that are similar enough to one another that good (approximate) in-
variance can be achieved for new instances of the class by pooling over tem-
plates of the same type. Faces are the prototypical example of objects that have
many class-specifc transformations. Faces are all similar enough to one an-
other that prior knowledge of how a small set of faces transform can be used to
recognize a large number of new faces invariantly to non-generic transforma-
tions like 3D rotations or illumination changes. We can extend our notion of a
non-generic transformation even further and consider transformations that are
difficult to parameterize like facial expressions or aging.

5.2 3D rotation is class-specific

There are many non-generic transformations. As an illustrative example we
consider 3D rotation and orthographic projection along the z-axis of 3-space
with the center of projection Cp at the origin (see figure 35). In homogenous
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Figure 35: Consider a situation where the center of projection Cp is at the origin in R* and
the projection is along the z-axis.

coordinates this projection is given by
1000
P=10100 (50)
0001

In 3D homogenous coordinates a rotation around the y-axis is given by

cos(0) 0 sin(0) 0
0 1 0 0

o = — sin(0) 0 cos(0) 0 (1)
0 0 0 1

Ahomogenous 4-vector X = (z,y, z,1)T representing a point in 3D is mapped
to homogenous 3-vector Z = (z,y, 1)T representing a point on the image plane
by & = PX. The composition of 3D rotation and orthographic projection is

x cos(0) + zsin(6)
PRyX = y (52)
1

Let ¢y, : R? — R? be the function that describes the 2D transformation of
the projection of one point undergoing a 3D rotation. Note: It depends on the
z-coordinate which is not available in the 2D image.

. (;) H( xcos(@);—zsin(@) > )
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Let 7 = {(z%,y%,2%,1)T} be the set of homogenous 4-vectors representing
points on a 3D template object. Likewise, define the test object f = {(2, 3¢, 2%,1)T}.
Assume that the two objects are in correspondence—every point in 7 has a cor-
responding point in f and vice-versa.

Just as in part 1, we use the stored images of the transformations of 7 to cre-
ate a signature that is invariant to transformations of f. However, in this case,
the invariance will only be approximate. The transformation of the template
object will not generally be the same as the transformation of the test object.
Thatis, tg ., # tg . unless z; = z.

If |z — 2| < e1is the difference in z-coordinate between two corresponding
points of 7 and F. The error associated with mapping the point in 2D using
ty -, instead of ¢y , is given by

o () = 0. () 1< Cesino)? (54)

5.2.1 The 2D transformation

So far this section has only been concerned with 3D transformations of a single
point. We are actually interested in the image induced by projecting a 3D object
(a collection of points). We define the rendering operator P,[f] that takes a set of
homogenous points in 3D and a texture vector ¢ and returns the image map that
puts the corresponding gray value at each projected point.

Definition: Let f = {(z%,y%, 2%, 1)T} be a set of N homogenous 4-vectors
representing points on a 3D object. Use the notation f* to indicate the i-th
element of f. Let ¢ € RN with ¢* € [0,1] fori = 1,..., N be the vector of texture
values for each point of f. Let P be the orthographic projection matrix. Define
the map P,[f] : R? — R such that Vv € R?:

P, [f)(v) = {qi i v=Pf (55)

0 otherwise

Remark 1: This definition of the rendering function assumes uniform light-
ing conditions. To address the general case that would allow for variations
in gray value over the rendered image arising from the lighting direction this
function would also have to depend on the object’s material properties as well
as other properties of the scene’s lighting.

Remark 2: This definition leaves ambiguous the case where more than one
point of the object projects to the same point on the image plane (the case where
Pfi = PfJ for some i # j). For now we assume that we are only considering
objects for which this does not happen. We will have additional comments on
the case where self-occlusions are allowed below.

Analogously to the single point case, we can write the 2D transformation

Ty > : L*(R?) — L*(R?) that maps an image of a 3D object to its image after a
3D rotation. It depends on a vector of parameters z € RV .

101



Ty 2[Py[f]] = Py[{Rog" :i=1,...,N}] (56)
Where ¢° is obtained by replacing the z-component of f? with z*. Thus

Ty [Py [f]] = Py[{Rof* :i=1,..,N}] if #* = the z-component of f* (Vi)

(57)
Ty » transforms individual points in the following way:
] 6 in(0

() = min( TR0 ) e

We can bound the error arising from mapping the image using z; obtained
from a template object 7 = {(z, 4%, 22, 1)T }—different from the test object f.
If |22 — 2%| < e (Vi) then

|1 To,z B[ /=B [{Rof* :i =1, . NY]|| < B} sin(0)—z}sin(0)* = gé;sin(e)f

5.2.2 An approximately invariant signature for 3D rotation

We now consider a range of transformations Ty - for § € [—m, 7. As in part
1 we define the template response (the S-layer response) as the normalized dot
product of an image with all the transformations of a template image.

<T_ 7z [Pq[TH ) Pq[f] >

Ar, ., (Pelf]) = : (60)
<Tr =z [Pq[TH > Pq[f] >

In the affine case we have that Ag -(f) = Ag ;(7) up to the ordering of the
elements. In that case this fact implies that the signature is invariant.

However, in the case of 3D rotation/projection the template response is
defined with respect to the 2D transformation that uses the parameters z; ob-
tained from the z-coordinates of 7. Therefore the analogous statement to the
invariance lemma of part 1 is false.

In the case of 3D rotation / projection there is only approximate invariance.
The closeness of the approximation depends on to which extent the template
and test object share the same 3D structure. We believe a statement like the
following can be proven:

If for all stored views of the template T, the difference between the z-coordinate of
each point and its corresponding point in the test object f is less than e. That is, if

|22 — 25| < e (Vi). (61)
Then there exists a permutation function S such that

S(Az, . 2,11 PalfD) = A, ; p,171(Bylr]) < N(esin(0))*T (62)
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This statement is not mathematically precise (we haven’t said how to define
the permutation function), but it is the approximate analog of the statement in
part I. From this it will follow that we can define an approximately invariant
signature. The approximate invariance of the signature defined in this way
depends on how similar the 3D structure of the template objects is to the 3D
structure of the test object. We will verify this claim empirically in the next
section.

Remark: On self-occlusions. Many 3D objects have multiple points that
project to the same point on the image plane. These are the places where one
part of the object occludes another part e.g. the back of a head is occluded by
its front. Since 3D rotation brings different points into view it immediately fol-
lows that invariance to 3D rotation from a single 2D example image can never
be perfect. Consider: It is never possible to predict a tattoo on someone’s left
cheek from a view of the right profile. On the other hand, this does not nec-
essarily impact the approximate invariance obtained from templates aquired
from similar objects. For example, a lot can be said about the likely appearance
of the back of someone’s head from a view of the front—e.g. the hair and skin
color remain the same. This makes it difficult to precisely formulate an approx-
imate version of the invariance lemma (except for the unrealistic case of objects
with no self-occlusions).

5.3 Empirical results on class-specific transformations

Class-specific transformations, like 3D rotation, can be learned from one or
more exemplars of an object class and applied to other objects in the class. For
this to work, the object class needs to consist of objects with similar 3D shape
and material properties. Faces, as a class, are consistent enough in both 3D
structure and material properties for this to work. Other, more diverse classes,
such as “automobiles” are not.

Figure 36 depicts an extension of the HMAX model that we used to empiri-
cally test this method of building signatures that are approximately invariant to
non-affine transformations. The signature at the top of the usual HMAX model
(C2 in this case) is not invariant to rotation in depth. However, an additional
layer (S3 and C3) can store a set of class-specific template transformations and
provide class-specific approximate invariance (see Figures 37 and 38).

Figures 37 and 38 show the performance of the extended HMAX model on
viewpoint-invariant and illumination-invariant within-category identification
tasks. Both of these are one-shot learning tasks. That is, a single view of a
target object is encoded and a simple classifier (nearest neighbors) must rank
test images depicting the same object as being more similar to the encoded
target than to images of any other objects. Both targets and distractors were
presented under varying viewpoints and illuminations. This task models the
common situation of encountering a new face or object at one viewpoint and
then being asked to recognize it again later from a different viewpoint.
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Figure 36:  Illustration of an extension to the HMAX model to incorporate class-specific
invariance to face viewpoint changes. Note: All simulations with this model (Figures 37, 38) use
a Gaussian radial basis function to compute the S2 and S3 layers as opposed to the normalized
dot product that is used in its S1 layer and elsewhere in this report.
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Figure 37: Viewpoint invariance. Bottom panel (II): Example images from three classes of
stimuli. Class A consists of faces produced using FaceGen (Singular Inversions). Class B is a
set of synthetic objects produced using Blender (Stichting Blender Foundation). Each object in
this class has a central spike protruding from a sphere and two bumps always in the same location
on top of the sphere. Individual objects differ from one another by the direction in which another
protrusion comes off of the central spike and the location/direction of an additional protrusion.
Class C is another set of synthetic objects produced using Blender. Each object in this class has
a central pyramid on a flat plane and two walls on either side. Individual objects differ in the
location and slant of three additional bumps. For both faces and the synthetic classes, there is
very little information to disambiguate individuals from views of the backs of the objects. Top
panel (I): Each column shows the results of testing the model’s viewpoint-invariant recognition
performance on a different class of stimuli (A,B or C). The S3/C3 templates were obtained from
objects in class A in the top row, class B in the middle row and class C in the bottom row.
The abscissa of each plot shows the maximum invariance range (maximum deviation from the
frontal view in either direction) over which targets and distractors were presented. The ordinate
shows the AUC obtained for the task of recognizing an individual novel object despite changes in
viewpoint. The model was never tested using the same images that were used to produce S3/C3
templates. A simple correlation-based nearest-neighbor classifier must rank all images of the
same object at different viewpoints as being more similar to the frontal view than other objects.
The red curves show the resulting AUC when the input to the classifier consists of C2 responses
and the blue curves show the AUC obtained when the classifier’s input is the C3 responses only.
Simulation details: These simulations used 2000 translation and scaling invariant C2 units
tuned to patches of natural images. The choice of natural image patches for S2/C2 templates had
very little effect on the final results. Error bars (+/- one standard deviation) show the results
of cross validation by randomly choosing a SitO example images to use for producing S3/C3
templates and testing on the rest of the images. The above simulations used 710 S3 units (10
exemplar objects and 71 views) and 10 C3 units.
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Figure 38: Illumination invariance. Same organization as in figure 3. Bottom panel (II):
Example images from three classes of stimuli. Each class consists of faces with different light
reflectance properties, modeling different materials. Class A was opaque and non-reflective like
wood. Class B was opaque but highly reflective like a shiny metal. Class C was translucent like
glass. Each image shows a face’s appearance corresponding to a different location of the source
of illumination (the lamp). The face models were produced using FaceGen and modified with
Blender. Top panel (I): Columns show the results of testing illumination-invariant recognition
performance on class A (left), B (middle) and C (right). S3/C3 templates were obtained from ob-
jects in class A (top row), B (middle row), and C (bottom row). The model was never tested using
the same images that were used to produce S3/C3 templates. As in figure 3, the abscissa of each
plot shows the maximum invariance range (maximum distance the light could move in either
direction away from a neutral position where the lamp is even with the middle of the head) over
which targets and distractors were presented. The ordinate shows the AUC obtained for the task
of recognizing an individual novel object despite changes in illumination. A correlation-based
nearest-neighbor “classifier” must rank all images of the same object under each illumination
condition as being more similar to the neutral view than other objects. The red curves show the
resulting AUC when the input to the classifier consists of C2 responses and the blue curves show
the AUC obtained when the classifier’s input is the C3 responses only. Simulation details: These
simulations used 80 translation and scaling invariant C2 units tuned to patches of natural im-
ages. The choice of natural image patches for S2/C2 templates had very little effect on the final
results. Error bars (+/- one standard deviation) show the results of cross validation by randomly
choosing a set of example images to use for producing S3/C3 templates and testing on the rest of
the images. The above simulations used 1200 S3 units (80 exemplar faces and 15 illumination
conditions) and 80 C3 units.
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The original HMAX model [92], represented here by the red curves (C2),
shows a rapid decline in performance due to changes in viewpoint and illu-
mination. In contrast, the C3 features of the extended HMAX model perform
significantly better than C2. Additionally, the performance of the C3 features
is not strongly affected by viewpoint and illumination changes (see the plots
along the diagonal in Figures 371 and 38I).

The C3 features are class-specific. Good performance on within-category
identification is obtained using templates derived from the same category (plots
along the diagonal in figures 37I and 38I). When C3 features from the wrong
category are used in this way, performance suffers (off-diagonal plots). In all
these cases, the C2 features which encode nothing specifically useful for tak-
ing into account the relevant transformation perform as well as or better than
C3 features derived from objects of the wrong class. It follows that in order
to accomplish within-category identification, then the brain must separate the
circuitry that produces invariance for the transformations that objects of one
class undergo from the circuitry producing invariance to the transformations
that other classes undergo.

Object classes that are important enough to require invariance to non-generic
transformations of novel exemplars must be encoded by dedicated circuitry.
Faces are clearly a sufficiently important category of objects to warrant this
dedication of resources. Analogous arguments apply to a few other categories;
human bodies all have a similar 3D structure and also need to be seen and
recognized under a variety of viewpoint and illumination conditions, likewise,
reading is an important enough activity that it makes sense to encode the vi-
sual transformations that words and letters undergo with dedicated circuitry
(changes in font, viewing angle, etc). We do not think it is coincidental that, just
as for faces, brain areas which are thought to be specialized for visual process-
ing of the human body (the extrastriate body area [15]) and reading (the visual
word form area [9, 5]) are consistently found in human fMRI experiments (See
section 5.5).

5.4 The macaque face-processing network

In macaques, there are 6 discrete face-selective regions in the ventral visual
pathway, one posterior lateral face patch (PL), two middle face patches (lateral-
ML and fundus- MF), and three anterior face patches, the anterior fundus (AF),
anterior lateral (AL), and anterior medial (AM) patches [100, 101]. At least
some of these patches are organized into a feedforward hierarchy. Visual stim-
ulation evokes a change in the local field potential ~ 20 ms earlier in ML/MF
than in patch AM [21]. Consistent with a hierarchical organization involving
information passing from ML/MF to AM via AL, electrical stimulation of ML
elicited a response in AL and stimulation in AL elicited a response in AM [65].
In addition, spatial position invariance increases from ML/MF to AL, and in-
creases further to AM [21] as expected for a feedforward processing hierarchy.

Freiwald et al. (2010) found that the macaque face patches differ qualita-
tively in how they represent identity across head orientations. Neurons in the

107



Posterior ventral
< <« <«
. . stream areas

Figure 39:  Layout of face-selective regions in macaque visual cortex, adapted from [21] with
permission.

middle lateral (ML) and middle fundus (MF) patches were view-specific; while
neurons in the most anterior ventral stream face patch, the anterior medial
patch (AM), were view invariant. Puzzlingly, neurons in an intermediate area,
the anterior lateral patch (AL), were tuned identically across mirror-symmetric
views. That is, neurons in patch AL typically have bimodal tuning curves e.g.,
one might be optimally tuned to a face rotated 45° to the left and 45° to the
right® (see figure 40).

In Part II of this paper, we argued that Hebbian plasticity at the synapses
in visual cortex causes the tuning of the cells to converge to the eigenvectors of
their input’s covariance. In this section we demonstrate that the same theory,
when applied to class-specific layers, yields cells with properties that closely
resemble those of the cells in the macaque face-processing network.

Suppose that AL receives neural representations of face images in differ-
ent poses during a developmental stage. This may require a neural “gate” ,
possibly in the posterior lateral face patch (PL), that is “on” only for face-like
images. If the synapses onto neurons in patch AL are updated by Oja’s rule
then they will converge to the eigenvectors of the covariance matrix of their
inputs. In this sense, the AL neurons receiving inputs from ML/MF are analo-
gous to simple cells in V1.

®Freiwald and Tsao (2010) found that 92 of the 215 AL cells in their study responded at least
twice as strongly to one of the two full-profiles as to frontal faces. These profile-selective cells
responded very similarly to both profiles. A subsequent test using face stimuli at more orienta-
tions found that 43 of 57 cells had view tuning maps with two discrete peaks at mirror symmetric
positions.
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Figure 40: Figure from [21]. Tuning of AL cells to a head randomly rotated in three di-
mensions. (A) Illustration of stimulus head and three axes of rotation. (B) View tuning in
four typical cells. Tuning to up-down angle versus left-right angle (responses averaged across
picture-plane angle). (Middle) Tuning to up-down angle versus picture-plane angle (responses
averaged across left-right angle). (Bottom) Tuning to picture-plane angle versus left-right angle
(responses averaged across up-down angle). Marginal tuning curves are also shown (vertical
lines indicate tuning peak position).
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5.4.1 Principal components and mirror-symmetric tuning curves

Define 7, ; as the i-th principal component (PC) of the templatebook obtained
from a single base template. For the following, assume that the templatebook
T is centered (we subtract its mean as a preprocessing step). The 7, ; are by
definition the eigenvectors of TTT: 7, ; is the first PC acquired from the n-th
base pattern’s transformation, 7;; , the second PC, and so on.

A frontal view of a face is symmetric about its vertical midline. Thus equal
rotations in depth (e.g., 45° to the left and 45° to the right) produce images that
are reflections of one another. Therefore, the templatebook T obtained from a
face’s 3D rotation in depth must have a special structure. For simplicity, con-
sider only “symmetric transformation sequences”, e.g., all the neural frames of
the rotation from a left 90° profile to a right 90° profile. For each neural frame
Tn,t there must be a corresponding reflected frame in the templatebook that we
will indicate as 7,,,_¢+. It will turn out that as a consequence of its having this
structure, the eigenfunctions of the templatebook will be even and odd. There-
fore, the templates obtained from compressing the templatebook as though
they were neural frames, are symmetric or anti-symmetric images (see figure
43).

Properties of the spectrum of the covariance of faces and their reflections

Let R : R? — R? denote the reflection operator. It is an involution i.e.
R%*(z) = = Va. For simplicity, consider a cell that has been exposed to just one
template 7 and its reflection R7.

Let Z = (7, R7) denote the matrix of transformed images (the template-
book), in this case consisting just of 7 and its reflection. In part 1 we also de-
fined the operators Az(z) = ZTz—called the template response—and ¥ =
P(Az(x))—the signature with aggregation function P.

We are interested in the eigenfunctions of the covariance operator ZZT.
Note: Azz+ acts on images by right-multiplying with its transpose, but this
is irrelevant since ZZT is symmetric (Azz+ is self-adjoint). We show that
ZZT commutes with the reflection operator R. Then, applying the fact that
whenever two operators commute they must have the same eigenfunctions,
we show that ZZT’s eigenfunctions must be even or odd functions.

We want to show that RZZT = ZZTR.

Notice that we can write the covariance operator as the sum of outer prod-
ucts of Z’s columns. ZZT = 777 + (R7)(R7)T. Thus:

RZZT = R777 + RR7(R7T)7T
= RrrT4+77TR
and
ZZTR = 717TR+ Rr(R7)"R
= T7TTR+ Rr77

110



Therefore RZZ™ = ZZTR, the covariance operator commutes with the re-
flection operator. Thus they must have the same eigenfunctions. Since the
eigenfunctions of R are even and odd, the eigenfunctions of ZZ7T (and of Azz+)
must also be even and odd.

5.4.2 Models of the macaque face recognition hierarchy

We have shown that models of the ventral stream that compute a signature rel-
ative to the principal components of the templatebooks acquired from rotation
of template faces must contain an intermediate step with identical tuning to
symmetric face faces. We propose to identify patch AL with the the projection
onto principal components and patch AM with the subsequent pooling stage.

These considerations alone do not completely constrain a model of the ven-
tral stream. In order to demonstrate the working of these models and perform
virtual electrophysiology experiments to test the properties of the simulated
cells, we must make some other parameter and architectural choices. We inves-
tigated several model architectures. Each one corresponds to different choices
we made about the processing of the visual signal prior to face patch AL (see
figure 41).

At run time, cells in the S-PCA layer compute the absolute value of the
normalized dot product of their stored PC with the input. Each cell in the C-
PCA layer pools over all the cells in the S-PCA layer with PCs from the same
templatebook.

In the developmental phase, the S-PCA templates are acquired by PCA of
the templatebooks. Each templatebook contains all the (vectorized) images of
the rotation (in depth) of a single face. All the 3D models used to produce
training and testing images were produced by FaceGen’ and rendered with
Blender®. Images of each face were rendered every 5 degrees, Each template-
book covered nearly the full range of orientations (0 — 355°).

Each experiment used 20 faces (templatebooks) in the developmental phase,
and 20 faces for testing. These training and testing sets were always indepen-
dent. No faces that appeared in the developmental phase ever appeared in the
testing phase.

Figure 44 compares three of these models to two different layers of the
HMAX model on a viewpoint-invariant face identification task. The proposed
model is considerably better able to recognize new views of a face despite
viewpoint changes. The results shown here use all the principal components
of each templatebook. In analogous simulations we showed that roughly the
same level of performance is achieved when only the first 5-10 PCs are used.

5.5 Other class-specific transformations: bodies and words

Many objects besides faces are nice in the sense that they have class-specific
transformations. Within the ventral stream there are also patches of cortex that

7Singular Inversions Inc.
8The Blender foundation
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Figure 41: Schematic of three possible models. Magenta: A model where the templatebooks
were raw pixels with no preprocessing. Blue: A model where the templatebooks were encoded in
an HMAX C1 layer (preprocessing with Gabor filtering and some limited pooling over position).
Green: A model where the templatebooks are encoded in the responses of an HMAX C2 layer
with large—nearly global—receptive fields and optimal tuning to specific views of faces.
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Figure 42: Sample tuning curves and principal components for the model that encodes all
inputs as HMAX C1 responses (the blue model in figures 41 and 44). Top row: the responses
of S-PCA layer cells to systematically varying the orientation of a randomly-chosen test face.
Below each tuning curve are 4 “slices” from the PC encoded by that cell. There are 4 slices
corresponding to each of the 4 orientations we used in the C1 layer (orientations shown in far
left column). The first and third PCs are clearly symmetric (even functions) while the second
is anti-symmetric (an odd function). These 3 PCs all came from the same templatebook (other
templatebooks give very similar results). They are ordered by their corresponding eigenvalue
with the largest eigenvalue on the left.
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Figure 43: More sample principal components. These were obtained from a model that does
PCA directly on pixel inputs. They are the first 4 PCs obtained from the rotation of one head
from —90° to 90°.
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Figure 44: Results from a test of viewpoint-invariant face identification. Test faces were pre-
sented on a black background. The task was to correctly categorize images by whether or not
they depict the same person shown in a reference image—despite changes in viewpoint. This is a
test of generalization from a single example view. The abscissa shows the maximum invariance
range (maximum deviation from the frontal view in either direction) over which targets and dis-
tractors were presented. The ordinate shows the area under the ROC curve (AUC) obtained for
the task of recognizing an individual despite changes in viewpoint (nearest neighbor classifier).
The model was never tested with any of the images that went into the templatebooks in the de-
velopmental phase. We averaged the AUC obtained from experiments on the same model using
all 20 different reference images and repeated the entire simulation (including the developmental
phase) 10 times with different training/test splits (for cross validation). The error bars shown
on this figure are 1 standard deviation, over cross validation splits. Magenta, blue and green
curves: results from the models that encoded templatebooks and inputs as raw pixels, HMAX
C1 responses, HMAX C2 (tuned to faces at different views) respectively. These are the same
models depicted in Figure 41. Red and black curves: Performance of the HMAX C1 and HMAX
C2 layers on this task (included for comparison).

115



Training phase Pose-invariant body-recognition
1
]
Training body #1 Training body #2 —
085 | =
X ¢ R [ S S S
nas|
& { Some bodies
? ﬁ 08F
S|
07
Y1-like model(HMAX C1)
nesk — MM-like modelHMAK C2)
All - Pixel templatebook
— 06k V1-like templatebook
IT-like tamplatabonk
Test phase
Reference body Testbody 0ssk + T 3
‘ osE N n n I \ . M 1 3
° ) 12 14 18 18 20 2z 24 26 il a0
J Same body? number of templates

Figure 45: Left: Images of human bodies in various poses were used to train and test the
model. 1280 3D object models of human body were created with DAZ 3D Studio and one
256%256 pixel greyscale image was rendered from each object automatically with blender. The
1280 objects consisted of 40 differently shaped human bodies in 32 poses. The 40 bodies were
either male or female, had varying degrees of fatness, muscularity, and limb proportion. The
32 poses were natural, commonly encountered poses such as waving, running, leaning, and
clinging. Right: Performance of class-specific models and HMAX control models on a pose-
invariant body recognition task. 10 bodies were used for testing. The abscissa is the number of
bodies used to train the model. Performance was averaged over 10 cross-validation runs. The
error bars correspond to standard deviations of AUC values over the cross-validation runs.

show BOLD responses for non-face objects. These include regions that respond
to scenes—the parahippocampal place area (PPA) [16]—written words—the vi-
sual word form area (VWFA) [9], and bodies—the extrastriate body area (EBA)
and the fusiform body area (FBA) [15, 72]. Many of these regions were shown
to be necessary for recognition tasks with the objects they process by lesion
studies ([53, 66]) and TMS ([104, 74]. We have begun to study transformations
of two of these: bodies (different poses, actions) and printed words (changes
in font, viewing angle, etc.) (See also the preliminary report of our work on
scenes: [43]).

Figures 45 and 46 show the results of class-specific invariant recognition
tasks for bodies—identification of a specific body invariantly to its pose—and
words—font-invariant word recognition. In both cases, the models that em-
ploy class-specific features (they pooling over templates depicting different
bodies or different fonts) outperform control HMAX models. Additional de-
tails on these models will soon be available in forthcoming reports from our
group.

Remark: Throughout this report we have held temporal contiguity to be
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Figure 46: Words (4-grams) were chosen from a fixed alphabet of 4 letters. A nearest-neighbor
classifier ranked each image—of a word in a particular font—by its similarity to the image of
a reference word. Templatebooks were obtained from translated and font-transformed images
of single letters, bigrams and trigrams. Red, blue and green curves: These used a version of
the compression-based model described in part II of this report. Black curve: An HMAX C2
model with global pooling (for comparison). The S2 dictionary consisted of 2000 patches of
natural images. The abscissa is the number of partial words (bigrams and trigrams) used in
the templatebook. Error bars are +/- 1 standard deviation, over 5 runs of the simulation using
different randomly chosen bigrams, trigrams and testing words. This simulation used 4 different
fonts.
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an important cue for associating the frames of the video of an object’s trans-
formation with one another. That approach cannot be taken to learn these
body/word recognition models. The former model requires the association
of different bodies under the same pose and the latter requires the same words
(rather: partial words) to be associated under a variety of fonts. A temporal-
contiguity based learning rule could not be used to learn the pooling domains
for these tasks. Additionally, in other sensory modalities (such as audition) rec-
ognizing temporally extended events is common. It is not clear how temporal
contiguity-based arguments could apply in those situations.

5.6 Invariance to X and estimation of X

So far we have discussed the problem of recognition as estimating identity
or category invariantly to a transformation X — such as translation or pose or
illumination. Often however, the key problem is the complementary one, of
estimating X, for instance pose, possibly independently of identity. The same
neural population may be able to support both computations as shown in IT
recordings [37] and model simulations [90]. We are certainly able to estimate
position, rotation, illumination of an object without eye movements, though
probably not very precisely. In the ventral stream this may require the use of
lower-level signatures, possibly in a task-dependent way. This may involve
attention.

Figure 47 shows the results on the task of recognizing the pose—out of a
set of 32 possibilities—of a body invariantly to which body is shown. Notice
that low-level visual features (HMAX C1) work just as well on this task as the
class-specific features.
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Figure 47: Left: These simulations used the same images as the one in figure 45. Right:
Performance of class-specific models and HMAX control models on a body-invariant pose recog-
nition task. 10 poses were used for testing. The abscissa is the number of poses used to train the
model. Performance was averaged over 10 cross-validation runs. The error bars correspond to
standard deviations of AUC values over the cross-validation runs.
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6 Discussion

This section gives first an overview of the various parts of the theory and then
summarizes some of its main ideas. We also discuss the new theory with re-
spect to the old model, list potential problems and weaknesses and finally dis-
cuss directions for future research.

6.1

Part I presents a theory in which transformations are learned during develop-
ment by storing a number of templates and their transformations. Invariant
signatures can be obtained by pooling dot products of a new image with the
transformed templates over the transformations for each template. A hierarchi-
cal architecture of these operations provides global invariance and stability to
local deformations.

Part II assumes that the storing of templates during biological development is
based on Hebbian synapses effectively computing the eigenvectors of the covari-
ance of the transformed templates. A cortical equation is derived which predicts
the tuning of simple cells in V1 in terms of Gabor-like wavelets. The predic-
tions agree with physiology data across different species. Instead of pooling a
template across its transformations, the system pools nonlinear functions, such
as modulo, of eigenfunctions. Furthermore, we show that the V1 representa-
tion diagonalizes the local representation (within balls of radius r with < k)
of similitude transformations of the image as independent shifts in a 4D space.
Thus learning at higher layers generates 4D wavelets. The prediction may be
consistent with physiology data

Part III shows that non-affine transformations on the image plane (such as the
image changes induced by 3D rotations of an object) can be well approximated
by the template and dot-product module described in Part I and II for certain ob-
ject classes, provided that the transformed templates capture class-specific trans-
formation. The theory explains several properties of faces patches in macaque
cortex. It also suggests how pooling over transformations can provide identity-
specific, pose-invariant representations whereas pooling over identities (tem-
plates) provides pose-specific, identity-invariant representations.

Some of the main ideas

There are several key ideas in the theoretical framework of the paper. We re-
count here ideas already mentioned in the paper.

1.

We conjecture that the sample complexity of object recognition is mostly
due to geometric image transformations (e.g. different viewpoints) and
that a main goal of the ventral stream — V1, V2, V4 and IT - is to learn-
and-discount image transformations.

The most surprising implication of the theory emerging from these spe-
cific assumptions is that the computational goals and detailed properties
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of cells in the ventral stream follow from symmetry properties of the visual
world through a process of correlational learning. The obvious analogy
is physics: for instance, the main equation of classical mechanics can be
derived from general invariance principles. In fact one may argue that
a Foldiak-type rule together with the physics of the world is all that is
needed by evolution to determine through developmental learning the
hierarchical organization of the ventral stream, the transformations that
are learned and the tuning of the receptive fields in each visual area.

3. Aggregation functions such as the modulo square or approximations of
it or the max (as in HMAX or in [47]) ensure that signatures of images are
invariant to affine transformations of the image and that this property is
preserved from layer to layer.

4. The theory assumes that there is a hierarchical organization of areas of the
ventral stream with increasingly larger receptive apertures of increasing
size determining a stratification of the range of invariances. At the small-
est size there are effectively only translations.

5. Memory-based invariances are related to the spectral properties of trans-
formed templates recorded by a memory-based recognition architecture
such as an (extended) HMAX.

6. Spectral properties of the input determine receptive field tuning via Hebbian-
like online learning rules that converge to the principal components of
the inputs.

7. Signatures from all layers access the associative memory or classifier mod-
ule and thus control iterations in visual recognition and processing. Of
course, at lower layers there are many signatures, each one in different
complex cell layer locations, while at the top layer there are only a small
number of signatures — in the limit only one.

The theory of this paper starts with this central computational problem in
object recognition: identifying or categorizing an object after looking at a sin-
gle example of it — or of an exemplar of its class. To paraphrase Stu Geman,
the difficulty in understanding how biological organisms learn — in this case
how they recognize — is not the usual n — oo but n — 0. The mathematical
framework is inspired by known properties of neurons and visual cortex and
deals with the problem of how to learn and discount invariances. Motivated
by the Johnson-Lindenstrauss theorem, we introduce the notion of a signature
of an object as a set of similarity measurements with respect to a small set of
template images. An invariance lemma shows that the stored transformations
of the templates allow the retrieval of an invariant signature of an object for
any uniform transformation of it such as an affine transformation in 2D. Since
any transformation of an image can be approximated by local affine transfor-
mations, corresponding to a set of local receptive fields, the invariance lemma
provides a solution for the problem of recognizing an object after experience
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with a single image — under conditions that are idealized but hopefully cap-
ture a good approximation of reality. Memory-based hierarchical architectures
are much better at learning transformations than non-hierarchical architectures
in terms of memory requirements. This part of the theory shows how the hi-
erarchical architecture of the ventral stream with receptive fields of increasing
size (roughly by a factor of 2 from V1 to V2 and again from V2 to V4 and from
V4 to IT) could implicitly learn during development different types of transfor-
mations starting with local translations in V1 to a mix of translations and scales
and rotations in V2 and V4 up to more global transformations in PIT and AIT
(the stratification conjecture).

Section 4 speculates on how the properties of the specific areas may be de-
termined by visual experience and continuous plasticity and characterizes the
spectral structure of the templatebooks arising from various types of transfor-
mations that can be learned from images. A conjecture — to be verified with
simulations and other empirical studies — is that in such an architecture the
properties of the receptive fields in each area are mostly determined by the
underlying transformations rather than the statistics of natural images. The
last section puts together the previous results into a detailed hypothesis of the
plasticity, the circuits and the biophysical mechanisms that may subserve the
computations in the ventral stream.

In summary, some of the broad predictions of this theory-in-fieri are:

e each cell’s tuning properties are shaped by visual experience of image
transformations during developmental and adult plasticity;

e the mix of transformations — seen from the retina — learned in each area
influences the tuning properties of the cells — oriented bars in V1+V2,
radial and spiral patterns in V4 up to class specific tuning in AIT (e.g.
face tuned cells);

e during evolution, areas above V1 should appear later than V1, reflect-
ing increasing object categorization abilities and the need for invariances
beyond translation;

e an architecture based on signatures that are invariant (from an area at
some level) to affine transformations may underly perceptual constancy
against small eye movements and other small motions’.

e invariance to affine transformations (and others) can provide the seed for
evolutionary development of “conceptual” invariances;

e the transfer of invariance accomplished by the machinery of the template-
books may be used to implement high level abstractions;

9There may be physiological evidence (from Motter and Poggio) suggesting invariance of sev-
eral minutes of arc at the level of V1 and above.
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e the preceding sections stressed that the statistics of natural images do
not play a primary role in determining the spectral properties of the tem-
platebook and, via the linking theorem the tuning of the cells in specific
areas. This is usually true for the early areas under normal development
conditions. It is certainly not true if development takes place in a de-
prived situation. The equations show that the spectrum of the images
averaged over the presentations affects the spectral content, e.g. the cor-
relation matrix and thus the stationary solutions of Hebbian learning.

e In summary, from the assumption of a hierarchy of areas with receptive
fields of increasing size the theory predicts that the size of the recep-
tive fields determines which transformations are learned during devel-
opment and then factored out during normal processing; that the trans-
formation represented in an area determines the tuning of the neurons
in the area; and that class-specific transformations are learned and repre-
sented at the top of the hierarchy.

6.2 Extended model and previous model

So far in this paper, existing hierarchical models of visual cortex — eg HMAX —
are reinterpreted and extended in terms of computational architectures which
evolved to discount image transformations learned from experience. From this
new perspective, I argue that a main goal of cortex is to learn equivalence
classes consisting of patches of images (that we call templates), associated to-
gether since they are observed in close temporal contiguity — in fact as a tempo-
ral sequence — and are therefore likely to represent physical transformations of
the same object (or part of the same object). I also conjecture that the hierarchy -
and the number of layers in it - is then determined by the need to learn a group
of transformations — such as the affine group. I prove that a simple memory-
based architecture can learn invariances from the visual environment and can
provide invariant codes to higher memory areas. I also discuss the possibil-
ity that the size of the receptive fields determines the type of transformations
which are learned by different areas of cortex from the natural visual world
— from local translations to local rotations and image-plane affine transforma-
tions up to almost global translations and viewpoint/pose/expression trans-
formations. Earlier layers would mostly represent local generic transforma-
tions such as translation and scale and other similitude transformations. Sim-
ilar considerations imply that the highest layers may represent class-specific
transformations such as rotations in depth of faces or changes in pose of bod-
ies.

e The present HMAX model has been hardwired to deal with 2 generic
transformations: translation and scale. The model performance on "pure”
translation tasks is perfect (apart from discretization noise), while it de-
clines quickly with viewpoint changes (+20 degrees is roughly the in-
variance range).
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6.3

As mentioned several times, the theory assumes that signatures from
several layers can be used by the associative memory- classifier at the
top, possibly under attentional or top-down control, perhaps via cortical-
pulvinar-cortical connections.

What matters for recognition is not the strong response of a population
of neurons (representing a signature) but the invariance of the response
in order to provide a signal, invariant as possible, to the classifier.

Untangling invariance Getting invariance is easy if many examples of the
specific object are available. What is difficult is getting invariance from
a single example of an object (or very few). Many of the discussions of
invariance are confused by failing to recognize this fact. Untangling in-
variance is easy!® when a sufficiently large number of previously seen
views of the object are available, by using smooth nonlinear interpola-
tion techniques such as RBFs.

What is under the carpet

Here is a list of potential weaknesses, small and large, with some comments:

“The theory is too nice to be true”. One of the main problems of the
theory is that it seems much too elegant — in the sense of physics — for
biology.

Backprojections are not taken into account and they are a very obvious
feature of the anatomy, which any real theory should explain. Backpro-
jections and top-down controls are however implied by the present the-
ory. The most obvious limitation of feedforward architectures is recog-
nition in clutter and the most obvious way around the problem is the
attentional masking of large parts of the image under top-down con-
trol. More in general, a realistic implementation of the present theory
requires top-down control signals and circuits, supervising learning and
possibly fetching signatures from different areas and at different loca-
tions in a task-dependent way. An even more interesting hypothesis is
that backprojections update local signatures at lower levels depending on
the scene class currently detected at the top (an operation similar to the
top-down pass of Ullman). In summary, the output of the feedforward
pass is used to retrieve labels and routines associated with the image;
backprojections implement an attentional focus of processing to reduce
clutter effects and also run spatial visual routines at various levels of the
hierarchy.

apart from self-occlusions and uniqueness problems. Orthographic projections in 2D of the
group Aff(3,R) are not a group; however the orthographic projections of translations in x,y, z
and rotations in the image plane are a group.
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e Subcortical projections, such as, for instance, projections to and from the
pulvinar, are not predicted by the theory. The present theory still is (un-
fortunately) in the “cortical chauvinism” camp. Hopefully somebody
will rescue it.

o Cortical areas are organized in a series of layers with specific types of cells
and corresponding arborizations and connectivities. The theory does not
say anything at this point about this level of the circuitry.

6.4 Directions for future research
6.4.1 Associative memories

In past work on HMAX we assumed that the hierarchical architecture performs
a kind of preprocessing of an image to provide, as result of the computation,
a vector (that we called “signature” here) that is then input to a classifier. This
view is extended in this paper by assuming that signature vectors not only at the
top of the hierarchy but at every complex cell level are input to an associative
memory. In this way a number of properties of the image (and associations)
can be recalled. Parenthetically we note that old associative memories can be
regarded as vector-valued classifiers — an obvious observation.

An associative architecture for retrieval: dot products primitives and matrix com-
putation by neurons

e aneuron and its 10® — 10* synapses provide the basic computational op-
eration: a dot product: the input f to the neuron gives the scalar ft as the
output where ¢ is the vector of synaptic weights.

e a set of K neurons (simple cells) computes the matrix operation M‘f,
where

got"
Mt = e
gkt

e Then the output of each complex cell ¢; is the average over i of M - f]|
which can be written as the dot product ¢ = eT|M? - f|, where

1

e The signature vector c is used to access an associative memory repre-
sented as a matrix A. Let us denote a specific vector ¢ as ¢/ and assume
that the element of the matrix M have stored by associating the j signa-
ture with a set of properties given by the vector p/: My ; = > ipe- I et
is noiselike then Mc"™ ~ p".
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There are interesting simulations and estimate of memory capacity, gener-
alization should be done, especially when associative retrieval is performed at
different levels for a single image.

Retrieving from an associative memory: optimal sparse encoding and recall There
are interesting estimates of optimal properties of codes for associative mem-
ories, including optimal sparsness (see [71, 76]). It would be interesting to
connect these results to estimated capacity of visual memory (Oliva, 2010).

Weak labeling by association of video frames Assume that the top associative
module associates together images in a video that are contiguous in time (apart
when there are clear transitions). This idea (mentioned to TP by Kai Yu) relies
on smoothness in time to label via association. It is a very biological semi-
supervised learning, essentially identical to a Foldiak-type rule. It is thus very
much in tune with our proposal of the S:C memory-based module for learning
invariances to transformations and with the ideas above about an associative
memory module at the very top.

Space, time, scale, orientation Space and time are in a sense intrinsic to images
and to their measurement. It seems that the retina is mainly dealing with those
three dimensions (z, y, t), though z,y are sampled according to the sampling
theorem in a way which is eccentricity-dependent forcing in later cortical layers
the development of receptive field with a size which increases with eccentricity
(spacing in the lattice and scale of receptive fields increase proportionally to
~ logr).

The theory assumes that at each eccentricity a set of receptive fields of dif-
ferent size (eg o) exist during development at the level of developing simple
cells, originating a set of scales. It is an open question what drove evolution to
discover multiresolution analysis of the image. Given finite channel resources
- eg bandwidth, number of fibers, number of bits — there is a tradeoff between
size of the visual field and scale (defined as the resolution in terms of spa-
tial frequency cutoff). Once multiple scales are superimposed on space (eg a
lattice of ganglion cells in each «,y) by a developmental program, our theory
describes how the orientation dimension is necessarily discovered by exposure
to moving images.

6.4.2 Invariance and Perception

Other invariances in visual perception may be analyzed in a parallel way. An
example is color constancy. Invariance to illumination (and color opponent
cells) may emerge during development in a similar way as invariance to affine
transformations. Thus we have a

Color constancy conjecture. The theory of Part I should be able to learn in-
variance to illumination by observing during development transformations in
the appearance of the same scene under changes of the illuminant — direction
and spectral composition. A natural conjecture emerging from the approach of
Part II is that eigenvectors of the covariance matrix of such transformations of
natural images may provide the spatial-chromatic tuning of different types of
color opponent cells in V1 and other areas.
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The idea that the key computational goal of visual cortex is to learn and ex-
ploit invariances extends to other sensory modalities such as hearing of sounds
and of speech. It is tempting to think of music as an abstraction (in the sense of
information compression and PCA) of the transformations of sounds. Classical
(western) music would then emerge from the transformations of human speech
(the roots of western classical music were based in human voice — Gregorian
chants).

6.4.3 The dorsal stream

The ventral and the dorsal streams are often portrayed as the what and the where
facets of visual recognition. It is natural to ask what the theory described here
implies for the dorsal stream.

In a sense the dorsal stream seems to be the dual of the ventral stream:
instead of being concerned about the invariances under the transformation in-
duced by a Lie algebra it seems to represent (especially in MST) the orbits of
the dynamical systems corresponding to the same Lie algebra.

6.4.4 Visual “concepts”

o “Concept” of parallel lines Consider an architecture using signatures. As-
sume it has learned sets of templates that guarantee invariance to all
affine transformations. The claim is that the architecture will appear to have
learned the concept of parallel lines from a single specific example of two parallel
lines. According to the theorems in the paper, the signature of the sin-
gle image of the parallel lines will be invariant to affine transformations
(within some range).

o Number of items in an image A classifier which learns the number five in
a way which is invariant to scale should be able to recognize five objects
independent of class of objects.

o Line drawings conjecture The memory-based module described in this pa-
per should be able to generalize from real images to line drawings when
exposed to illumination-dependent transformations of images. This may
need to happen at more than one level in the system, starting with the
very first layer (eg V1). Generalizations with respect to recognition of
objects invariant to shadows may also be possible.

6.4.5 Is the ventral stream a cortical mirror of the invariances of the physical
world?

It is somewhat intriguing that Gabor frames - related to the “coherent” states
and the squeezed states of quantum mechanics - emerge from the filtering op-
erations of the retina which are themselves a mirror image of the position and
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Figure 48: For a system which is invariant to affine transformations a single training
example (A) allows recognition of all other instances of parallel lines — never seen be-
fore.

momentum operator in a Gaussian potential. It is even more intriguing that in-
variances to the group SO2 x R? dictate, according to our theory, the computa-
tional goals, the hierarchical organization and the tuning properties of neurons
in visual areas. In other words: it did not escape our attention that the theory
described here implies that the brain function, structure and properties reflect
in a surprising direct way the physics of the visual world.
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