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Abstract

This paper explores the theoretical consequences of a simple assump-
tion: the computational goal of the feedforward path in the ventral stream
– from V1, V2, V4 and to IT – is to discount image transformations, after
learning them during development.

Part I assumes that a basic neural operation consists of dot products be-
tween input vectors and synaptic weights – which can be modified by
learning. It proves that a multi-layer hierarchical architecture of dot-product
modules can learn in an unsupervised way geometric transformations of
images and then achieve the dual goals of invariance to global affine trans-
formations and of robustness to diffeomorphisms. These architectures learn
in an unsupervised way to be automatically invariant to transformations of
a new object, achieving the goal of recognition with one or very few labeled
examples. The theory of Part I should apply to a varying degree to a range
of hierarchical architectures such as HMAX, convolutional networks and
related feedforward models of the visual system and formally characterize
some of their properties.

A linking conjecture in Part II assumes that storage of transformed tem-
plates during development – a stage implied by the theory of Part I – takes
place via Hebbian-like developmental learning at the synapses in visual
cortex. It follows that the cells’ tuning will effectively converge during de-
velopment to the top eigenvectors of the covariance of their inputs. The
solution of the associated eigenvalue problem is surprisingly tolerant of
details of the image spectrum. It predicts quantitative properties of the
tuning of cells in the first layer – identified with simple cells in V1; in par-
ticular, they should converge during development to oriented Gabor-like
wavelets with frequency inversely proportional to the size of an elliptic
Gaussian envelope – in agreement with data from the cat, the macaque
and the mouse. A similar analysis leads to predictions about receptive field
tuning in higher visual areas – such as V2 and V4 – and in particular about
the size of simple and complex receptive fields in each of the areas. For
non-affine transformations of the image – for instance induced by out-of-
plane rotations of a 3D object or non-rigid deformations – it is possible to
prove that the dot-product technique of Part I can provide approximate in-
variance for certain classes of objects. Thus Part III considers modules that
are class-specific – such as the face, the word and the body area – and pre-
dicts several properties of the macaque cortex face patches characterized
by Freiwald and Tsao, including a patch (called AL) which contains mirror
symmetric cells and is the input to the pose-invariant patch (AM).

Taken together, the results of the papers suggest a computational role
for the ventral stream and derive detailed properties of the architecture
and of the tuning of cells, including the role and quantitative properties of
neurons in V 1.

A surprising implication of these theoretical results is that the compu-
tational goals and several of the tuning properties of cells in the ventral
stream may follow from symmetry properties (in the sense of physics) of
the visual world through a process of unsupervised correlational learning,
based on Hebbian synapses.
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1 Summary

The starting assumption in the paper is that the sample complexity of (biolog-
ical, feedforward) object recognition is mostly due to geometric image trans-
formations. Thus our main conjecture is that the computational goal of the
feedforward path in the ventral stream – from V 1, V 2, V 4 and to IT – is to
discount image transformations after learning them during development. A
complementary assumption is about the basic biological computational opera-
tion: we assume that

• dot products between input vectors and stored templates (synaptic weights)
are the basic operation

• memory is stored in the synaptic weights through a Hebbian-like rule

Part I of the paper describes a class of biologically plausible memory-based
modules that learn transformations from unsupervised visual experience. The
idea is that neurons can store during development “neural frames”, that is im-
age patches’ of an object transforming – for instance translating or looming. Af-
ter development, the main operation consists of dot-products of the stored tem-
plates with a new image. The dot-products are followed by a transformations-
average operation, which can be described as pooling. The main theorems
show that this 1-layer module provides (from a single image of any new ob-
ject) a signature which is automatically invariant to global affine transforma-
tions and approximately invariant to other transformations. These results are
derived in the case of random templates, using the Johnson-Lindenstrauss
lemma in a special way; they are also valid in the case of sets of basis func-
tions which are a frame. This one-layer architecture, though invariant, and
optimal for clutter, is however not robust against local perturbations (unless
a prohibitively large set of templates is stored). A multi-layer hierarchical ar-
chitecture is needed to achieve the dual goal of local and global invariance. A
key result of Part I is that a hierarchical architecture of the modules introduced
earlier with “receptive fields” of increasing size, provides global invariance
and stability to local perturbations (and in particular tolerance to local defor-
mations). Interestingly, the whole-parts theorem implicitly defines “object parts”
as small patches of the image which are locally invariant and occur often in
images. The theory predicts a stratification of ranges of invariance in the ven-
tral stream: size and position invariance should develop in a sequential order
meaning that smaller transformations are invariant before larger ones, in ear-
lier layers of the hierarchy.

Part II studies spectral properties associated with the hierarchical architec-
tures introduced in Part I. The motivation is given by a Linking Conjecture: in-
stead of storing a sequence of frames during development, it is biologically
plausible to assume that there is Hebbian-like learning at the synapses in visual
cortex. We will show that, as a consequence, the cells will effectively computes
online the eigenvectors of the covariance of their inputs during development
and store them in their synaptic weights. Thus the tuning of each cell is pre-

8



dicted to converge to one of the eigenvectors. We assume that the development
of tuning in the cortical cells takes place in stages – one area, that we call of-
ten layer, at the time. We also assume that the development of tuning starts
in V1 with Gaussian apertures for the simple cells. Translations are effectively
selected as the only learnable transformations during development by small
apertures – e.g. small receptive fields – in the first layer. The solution of the as-
sociated eigenvalue problem predicts that the tuning of cells in the first layer –
identified with simple cells in V1 – can be approximately described as oriented
Gabor-like functions. This follows in a parameter-free way from properties
of shifts, e.g. the translation group. Further, rather weak, assumptions about
the spectrum of natural images imply that the eigenfunctions should in fact be
Gabor-like with a finite wavelength which is proportional to to the variance of
the Gaussian in the direction of the modulation. The theory also predicts an
elliptic Gaussian envelope. Complex cells result from a local group average of
simple cells. The hypothesis of a second stage of hebbian learning at the level
above the complex cells leads to wavelets-of-wavelets at higher layers repre-
senting local shifts in the 4−cube of x,y, scale, orientation learned at the first
layer. We derive simple properties of the number of eigenvectors and of the
decay of eigenvalues as a function of the size of the receptive fields, to predict
that the top learned eigenvectors – and therefore the tuning of cells – become
increasingly complex and closer to each other in eigenvalue. Simulations show
tuning similar to physiology data in V2 and V 4.

Part III considers modules that are class-specific. For non-affine transfor-
mations of the image – for instance induced by out-of-plane rotations of a 3D
object or non-rigid deformations – it is possible to prove that the dot-product
technique of Part I can provide approximate invariance for certain classes of
objects. A natural consequence of the theory is thus that non-affine transfor-
mations, such as rotation in depth of a face or change in pose of a body, can be
approximated well by the same hierarchical architecture for classes of objects
that have enough similarity in 3D properties, such as faces, bodies, perspective.
Thus class-specific cortical areas make sense for invariant signatures. In partic-
ular, the theory predicts several properties of the macaque cortex face patches
characterized by Freiwald and Tsao ([71, 72]), including a patch (called AL)
which contains mirror symmetric cells and is the input to the pose-invariant
patch (AM, [13]) – again because of spectral symmetry properties of the face
templates.

A surprising implication of these theoretical results is that the computa-
tional goals and several of the tuning properties of cells in the ventral stream
may follow from symmetry properties (in the sense of physics) of the visual
world2 through a process of unsupervised correlational learning, based on
Hebbian synapses. In particular, simple and complex cells do not directly care
about oriented bars: their tuning is a side effect of their role in translation in-
variance. Across the whole ventral stream the preferred features reported for
neurons in different areas are only a symptom of the invariances computed

2A symmetry – like bilateral symmetry – is defined as invariance under a transformation.
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and represented.
The results of each of the three parts stand on their own independently of

each other. Together this theory-in-fieri makes several broad predictions, some
of which are:

• invariance to small translations is the main operation of V1;

• invariance to larger translations and local changes in scale and scalings
and rotations takes place in areas such as V2 and V4;

• class-specific transformations are learned and represented at the top of
the ventral stream hierarchy; thus class-specific modules – such as faces,
places and possibly body areas – should exist in IT;

• tuning properties of the cells are shaped by visual experience of image
transformations during developmental (and adult) plasticity and can be
altered by manipulating them;

• while features must be both discriminative and invariant, invariance to
specific transformations is the primary determinant of the tuning of cor-
tical neurons.

• homeostatic control of synaptic weights during development is required
for hebbian synapses that perform online PCA learning.

• motion is key in development and evolution;

• invariance to small transformations in early visual areas may underly
stability of visual perception (suggested by Stu Geman);

• the signatures (computed at different levels of the hierarchy) are used
to retrieve information from an associative memory which includes la-
bels of objects and verification routines to disambiguate recognition can-
didates. Back-projections execute the visual routines and control atten-
tional focus to counter clutter.

The theory is broadly consistent with the current version of the HMAX
model. It provides theoretical reasons for it while extending it by providing
an algorithm for the unsupervised learning stage, considering a broader class
of transformation invariances and higher level modules. We suspect that the
performance of HMAX can be improved by an implementation taking into ac-
count the theory of this paper (at least in the case of class-specific transforma-
tions of faces and bodies [37]) but we still do not know.

The theory may also provide a theoretical justification for several forms
of convolutional networks and for their good performance in tasks of visual
recognition as well as in speech recognition tasks (e.g. [32, 33, 30, 51, 3, 31]);
it may provide even better performance by learning appropriate invariances
from unsupervised experience instead of hard-wiring them.
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The goal of this paper is to sketch a comprehensive theory with little regard
for mathematical niceties: the proofs of several theorems are only sketched. If
the theory turns out to be useful there will be scope for interesting mathemat-
ics, ranging from group representation tools to wavelet theory to dynamics of
learning.

2 Introduction

The ventral stream is widely believed to have a key role in the task of object
recognition. A significant body of data is available about the anatomy and the
physiology of neurons in the different visual areas. Feedforward hierarchical
models (see [59, 64, 66, 65] and references therein, see also section 7—in the
appendix), are faithful to the anatomy, summarize several of the physiologi-
cal properties, are consistent with biophysics of cortical neurons and achieve
good performance in some object recognition tasks. However, despite these
empirical and the modeling advances the ventral stream is still a puzzle: Until
now we have not had a broad theoretical understanding of the main aspects
of its function and of how the function informs the architecture. The theory
sketched here is an attempt to solve the puzzle. It can be viewed as an ex-
tension and a theoretical justification of the hierarchical models we have been
working on. It has the potential to lead to more powerful models of the hi-
erarchical type. It also gives fundamental reasons for the hierarchy and how
properties of the visual world determine properties of cells at each level of the
ventral stream. Simulations and experiments will soon say whether the theory
has some promise or whether it is nonsense.

As background to this paper, we assume that the content of past work of our
group on models of the ventral stream is known from old papers [59, 64, 66, 65]
to more recent technical reports [38, 39, 35, 36]. See also the section Background
in Supp. Mat. [55]. After writing previous versions of this report, TP found
a few interesting and old references about transformations, invariances and
receptive fields, see [53, 21, 28]. It is important to stress that a key assumption
of this paper is that in this initial theory and modeling it is possible to neglect
subcortical structures such as the pulvinar, as well as cortical backprojections
(discussed later).

2.1 Plan of the paper

Part I begins with the conjecture that the sample complexity of object recog-
nition is mostly due to geometric image transformations, e.g. different view-
points, and that a main goal of the ventral stream – V1, V2, V4 and IT – is to
learn-and-discount image transformations. Part I deals with theoretical results
that are independent of specific models. They are motivated by a one-layer
architecture “looking” at images (or at “neural images”) through a number
of small “apertures” corresponding to receptive fields, on a 2D lattice or layer.
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We have in mind a memory-based architecture in which learning consists of “stor-
ing” patches of neural activation. The argument of Part I is developed for this
“batch” version; a biologically plausible “online” version is the subject of Part
II. The first two results are

1. recording transformed templates - together called the templatebook – pro-
vides a simple and biologically plausible way to obtain a 2D-affine invari-
ant signature for any new object, even if seen only once. The signature – a
vector – is meant to be used for recognition. This is the invariance lemma
in section 3.3.1.

2. several aggregation (eg pooling) functions including the energy function
and the the max can be used to compute an invariant signature in this
one-layer architecture (see 3.3.1).

Section 3.5.1 discusses limitations of the architecture, with respect to ro-
bustness to local perturbations. The conclusion is that multilayer, hierarchical
architectures are needed to provide local and global invariance at increasing
scales. In part II we will shows that global transformations can be approxi-
mated by local affine transformations. The key result of Part I is a character-
ization of the hierarchical architecture in terms of its covariance and invariance
properties.

Part II studies spectral properties associated with the hierarchical architec-
tures introduced in Part I. The motivation is given by a Linking Conjecture: in-
stead of storing frames during development, learning is performed online by
Hebbian synapses. Thus the conjecture implies that the tuning of cells in each
area should converge to one of the eigenvectors of the covariance of the in-
puts. The size of the receptive fields in the hierarchy affects which transforma-
tions dominate and thus the spectral properties. In particular, the range of the
transformations seen and “learned” at a layer depends on the aperture size:
we call this phenomenon stratification. In fact translations are effectively se-
lected as the only learnable transformations during development by the small
apertures, e.g. small receptive fields, in the first layer. The solution of the as-
sociated eigenvalue problem – the cortical equation –predicts that the tuning of
cells in the first layer, identified with simple cells in V1, should be oriented Ga-
bor wavelets (in quadrature pair) with frequency inversely proportional to the
size of an elliptic Gaussian envelope. These predictions follow in a parameter-
free way from properties of the translation group. A similar analysis lead to
wavelets-of-wavelets at higher layers representing local shifts in the 4-cube of
x,y, scale, orientation learned at the first layer. Simulations show tuning similar
to physiology data in V 2 and V 4. Simple results on the number of eigenvectors
and the decay of eigenvalues as a function of the size of the receptive fields pre-
dict that the top learned eigenvectors, and therefore the tuning of cells, become
increasingly complex and closer to each other in eigenvalue. The latter prop-
erty implies that a larger variety of top eigenfunctions are likely to emerge dur-
ing developmental online learning in the presence of noise (see section 4.2.1).
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Together with the arguments of the previous sections this theory provides
the following speculative framework. From the fact that there is a hierarchy
of areas with receptive fields of increasing size, it follows that the size of the
receptive fields determines the range of transformations learned during devel-
opment and then factored out during normal processing; and that the trans-
formation represented in an area influences – via the spectral properties of the
covariance of the signals – the tuning of the neurons in the area.

Part III considers modules that are class-specific. A natural consequence of
the theory of Part I is that for non-affine transformations such as rotation in
depth of a face or change in pose of a body the signatures cannot be exactly
invariant but can be approximately invariant. The approximate invariance can
be obtained for classes of objects that have enough similarity in 3D proper-
ties, such as faces, bodies, perspective scenes. Thus class-specific cortical areas
make sense for approximately invariant signatures. In particular, the theory
predicts several properties of the face patches characterized by Freiwald and
Tsao [71, 72], including a patch containing mirror symmetric cells before the
pose-invariant patch [13] – again because of spectral properties of the face tem-
plates.

Remarks

• Memory access A full image signature is a vector describing the “full
image” seen by a set of neurons sharing a “full visual field” at the top
layer, say, of the hierarchy. Intermediate signatures for image patches –
some of them corresponding to object parts – are computed at intermedi-
ate layers. All the signatures from all level are used to access memory for
recognition. The model of figure 1 shows an associative memory module
that can be also regarded as a classifier.

• Identity-specific, pose-invariant vs identity-invariant, pose-specific rep-
resentation Part I develops a theory that says that invariance to a trans-
formation can be achieved by pooling over transformed templates mem-
orized during development. Part II says that an equivalent, more biolog-
ical way to achieve invariance to a transformation is to store eigenvectors
of a sequence of transformations of a template for several templates and
then to pool the moduli of the eigenvectors.

In this way different cortical patches can be invariant to identity and spe-
cific for pose and vice-versa. Notice that affine transformations are likely
to be so important that cortex achieves more and more affine invariance
through several areas in a sequence (≈ 3 areas).

• Feedforward architecture as an idealized description The architecture
we propose is hierarchical; its most basic skeleton is feedforward. The ar-
chitecture we advocate is however more complex, involving memory ac-
cess from different levels of the hierarchy as well as top-down attentional
effects, possibly driven by partial retrieval from an associative memory.
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Associative
 memory/
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∑ = signature⋅ vector ⋅

Thursday, December 13, 12

Figure 1: Signatures from every level access associative memory modules.

The neural implementation of the architecture requires local feedback
loops within areas (for instance for normalization operations). The theory
is most developed for the feedforward skeleton (probably responsible for
the first 100 msec of perception/recognition).

• Generic and class-specific transformations We distinguish (as we did in
past papers, see [56, 59]) between generic image-based transformations
that apply to every object, such as scale, 2D rotation, 2D translation, and
class specific transformations, such as rotation in depth for a specific class
of objects such as faces. Affine transformations in R2 are generic. Class-
specific transformations can be learned by associating templates from the
images of an object of the class undergoing the transformation. They can
be applied only to images of objects of the same class – provided the
class is “nice” enough. This predicts modularity of the architecture for
recognition because of the need to route – or reroute – information to
transformation modules which are class specific [36, 37].

• Memory-based architectures, correlation and associative learning The
architectures discussed in this paper implement memory-based learning
of transformations by storing templates (or principal components of a
set of templates) which can be thought of as frames of a patch of an ob-
ject/image at different times of a transformation. This is a very simple,
general and powerful way to learn rather unconstrained transformations. Un-
supervised (Hebbian) learning is the main mechanism at the level of sim-
ple cells. For those “complex” cells which may pool over several simple
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cells, the key is an unsupervised Foldiak-type rule: cells that fire together
are wired together. At the level of complex cells this rule determines classes
of equivalence among simple cells – reflecting observed time correlations in
the real world, that is transformations of the image. The main function of
each (simple + complex) layer of the hierarchy is thus to learn invari-
ances via association of templates memorized during transformations in
time. There is a general and powerful principle of time continuity here,
induced by the Markovian (eg low-order differential equations) physics
of the world, that allows associative labeling of stimuli based on their
temporal contiguity3.

• Spectral theory and receptive fields Part II of the paper describes a spec-
tral theory linking specific transformations and invariances to tuning prop-
erties of cells in each area. The most surprising implication is that the
computational goals and some of the detailed properties of cells in the
ventral stream follow from symmetry properties of the visual world through
a process of correlational learning. The obvious analogy is physics: for
instance, the main equation of classical mechanics can be derived from
general invariance principles.

• Subcortical structures and recognition We neglect the role of cortical
backprojections and of subcortical structures such as the pulvinar. It is
a significant assumption of the theory that this can be dealt with later,
without jeopardizing the skeleton of the theory. The default hypothesis
at this point is that inter-areas backprojections subserve attentional and
gaze-directed vision, including the use of visual routines, all of which is
critically important to deal with recognition in clutter. In this view, back-
projections would be especially important in hyperfoveal regions (less
than 20 minutes of visual angle in humans). Of course, inter-areas back-
projections are likely to play a role in control signals for learning, general
high-level modulations, hand-shakes of various types. Intra-areas feed-
back are needed even in a purely feed-forward model for several basic
operations such as for instance normalization.

3There are many alternative formulations of temporal contiguity based learning rules in the
literature. These include: [10, 78, 69, 24, 43, 11]. There is also psychophysics and physiology
evidence for these [5, 77, 41, 40]
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3 Part I: Memory-based Learning of Invariance to
Transformations

Summary of Part I. Part I assumes that an important computational primitive in
cortex consists of dot products between input vectors and synaptic weights. It shows
that the following sequence of operation allows learning invariance to transformations
for an image. During development a number of objects (templates) are observed during
affine transformations; for each template a sequence of transformed images is stored.
At run-time when a new image is observed its dot-products with the transformed tem-
plates (for each template) are computed; then the moduli of each term are pooled to
provide a component of the signature vector of the image. The signature is an invari-
ant of the image. Later in Part I we show that a multi-layer hierarchical architecture
of dot-product modules can learn in an unsupervised way geometric transformations
of images and then achieve the dual goal of invariance to global affine transformations
and of robustness to image perturbations. These architectures learn in an unsuper-
vised way to be automatically invariant to transformations of a new object, achieving
the goal of recognition with one or very few labeled examples. The theory of Part I
should apply to a varying degree to hierarchical architectures such as HMAX, con-
volutional networks and related feedforward models of the visual system and formally
characterize some of their properties.

3.1 Recognition is difficult because of image transformations

Summary. This section motivates the main assumption of the theory: a main difficulty
of recognition is dealing with image transformations and this is the problem solved
by the ventral stream. We show suggestive empirical observation and pose an open
problem for learning theory: is it possible to show that invariances improve the sample
complexity of a learning problem?

The motivation of this paper is the conjecture that the “main” difficulty, in
the sense of sample complexity, of (clutter-less) object categorization (say dogs
vs horses) is due to all the transformations that the image of an object is usu-
ally subject to: translation, scale (distance), illumination, rotations in depth
(pose). The conjecture implies that recognition – i.e. both identification (say
of a specific face relative to other faces) as well as categorization (say distin-
guishing between cats and dogs and generalizing from specific cats to other
cats) – is easy (eg a small number of training example is needed for a given
level of performance), if the images of objects are rectified with respect to all
transformations.

3.1.1 Suggestive empirical evidence

To give a feeling for the arguments consider the empirical evidence – so far just
suggestive and at the anecdotal level – of the “horse vs dogs” challenge (see
Figures 3 and 2). The figure shows that if we factor out all transformations in
images of many different dogs and many different horses – obtaining “normal-
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Figure 2: Images of dogs and horses, in the wild, with arbitrary viewpoints (and clutter, eg
background).The performance of a regularized least squares classifier (linear kernel, as in the
next figure) is around chance. There are 60 images in total (30 per class) from Google. The x axis
gives the number of training examples per class. Both clutter and viewpoint are likely to make
the problem difficult. This demonstration leaves unclear the relative role of the two.
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Figure 3: Images of dogs and horses, ’normalized’ with respect to image transformations. A
regularized least squares classifier (linear kernel) tested on more than 150 dogs and 150 horses
does well with little training. Error bars represent +/- 1 standard deviation computed over 100
train/test splits. This presegmented image dataset was provided by Krista Ehinger and Aude
Oliva.
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ized” images with respect to viewpoint, illumination, position and scale – the
problem of categorizing horses vs dogs is very easy: it can be done accurately
with few training examples – ideally from a single training image of a dog
and a single training image of a horse – by a simple classifier. In other words,
the sample complexity of this problem is – empirically – very low. The task
in the figure is to correctly categorize dogs vs horses with a very small num-
ber of training examples (eg small sample complexity). All the 300 dogs and
horses are images obtained by setting roughly the same viewing parameters
– distance, pose, position. With these “rectified” images, there is no signifi-
cant difference between running the classifier directly on the pixel representa-
tion versus using a more powerful set of features (the C1 layer of the HMAX
model).

3.1.2 Intraclass and viewpoint complexity

Additional motivation is provided by the following back-of-the-envelope esti-
mates. Let us try to estimate whether the cardinality of the universe of possible
images generated by an object originates more from intraclass variability – eg
different types of dogs – or more from the range of possible viewpoints – in-
cluding scale, position and rotation in 3D. Assuming a granularity of a few
minutes of arc in terms of resolution and a visual field of say 10 degrees, one
would get 103 − 105 different images of the same object from x, y translations,
another factor of 103−105 from rotations in depth, a factor of 10−102 from rota-
tions in the image plane and another factor of 10− 102 from scaling. This gives
on the order of 108 − 1014 distinguishable images for a single object. On the
other hand, how many different distinguishable (for humans) types of dogs
exist within the “dog” category? It is unlikely that there are more than, say,
102 − 103. From this point of view, it is a much greater win to be able to factor
out the geometric transformations than the intracategory differences.

Thus we conjecture that the key problem that determined the evolution of
the ventral stream was recognizing objects – that is identifying and categoriz-
ing – from a single training image, invariant to geometric transformations. In
computer vision, it has been known for a long time that this problem can be
solved if the correspondence of enough points between stored models and a
new image can be computed. As one of the simplest results, it turns out that
under the assumption of correspondence, two training images are enough for
orthographic projection (see [74]). Recent techniques for normalizing for affine
transformations are now well developed (see [80] for a review). Various at-
tempts at learning transformations have been reported over the years (see for
example [57, 30] and for additional references the paper by Hinton [20]).

Our goal here is instead to explore approaches to the problem that do not
rely on explicit correspondence operations and provide a plausible biological
theory for the ventral stream. Our conjecture is that the main computational goal
of the ventral stream is to learn to factor out image transformations. We show here
several interesting consequences follow from this conjecture such as the hier-
archical architecture of the ventral stream. Notice that discrimination without
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any invariance can be done very well by a classifier which reads the pattern of
activity in simple cells in V1 – or, for that matter, the pattern of activity of the
retinal cones.

Open Problem It seems obvious that learning/using an input representation
which is invariant to natural transformations (eg contained in the distribution) should
reduce the sample complexity of supervised learning. It is less obvious what is the best
formalization and proof of the conjecture.

3.2 Templates and signatures

Summary. In this section we justify another assumption in the theory: a primitive
computation performed by neurons is a dot product. This operation can be used by
cortex to compute a signature for any image as a set of dot products of the image with a
number of templates stored in memory. It can be regarded as a vector of similarities to a
fixed set of templates. Signatures are stored in memory: recognition requires matching
a signature with an item in memory.

The theory we develop in Part I is informed by the assumption that a basic
neural operation carried by a neuron can be described by the dot product be-
tween an input vectors and a vector of synaptic weights on a dendritic tree.
Part II will depend from the additional assumption that the vector of synaptic
weights can be stored and modified by an online process of Hebb-like learning.
These two hypothesis are broadly accepted.

In this paper we have in mind layered architectures of the general type
shown in Figure 5. The computational architecture is memory-based in the
sense that it stores during development sensory inputs and does very little in
terms of additional computations: it computes normalized dot products and
pooling (also called aggregation) functions. The results of this section are inde-
pendent of the specifics of the hierarchical architecture and of explicit refer-
ences to the visual cortex. They deal with the computational problem of in-
variant recognition from one training image in a layered, memory-based archi-
tecture.

The basic idea is the following. Consider a single aperture. Assume a mech-
anism that stores “frames”, seen through the aperture, as an initial pattern “out
in the world” transforms from t = 1 to t = N under the action of a spe-
cific transformation (such as rotation). For simplicity assume that the set of
transformations is a group. This is the “developmental” phase of learning the
templates. At run time an image patch is seen through the aperture, and a set
of normalized dot products with each of the stored templates (eg all transfor-
mations of each template) is computed. A vector called “signature” is then
produced by an aggregation function – typically a group average over non-
linear functions of the dot product with each template. Suppose now that at
some later time (after development is concluded) the same image is shown,
transformed in some way. The claim is that if the templates are closed under
the same group of transformations then the signature remains the same. Sev-
eral aggregation functions, such as the average or even the max (on the group),
acting on the signature, will then be invariant to the learned transformation.
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Figure 4: A neuron receives on its dendritic tree in the order of 103−104 synaptic inputs from
other neurons. To a first approximation each synapse contributes a current which depends on
the product of the input signal and the synapse. Since the soma of the neuron can be regarded as
summating all these contributions, the neuron computes xṫ which may be then coded in trains
of spikes.

3.2.1 Preliminaries: resolution and size

The images we consider here are functions of two spatial variables x, y and time
t. The images that the optics forms at the level of the retina are well-behaved
functions, in fact entire analytic functions in R2, since they are bandlimited by
the optics of the eye to about 60 cycles/degree (in humans). The photoreceptors
sample the image in the fovea according to Shannon’s sampling theorem on a
hexagonal lattice with a distance between samples equal to the diameter of the
cones (which are tightly packed in the fovea) which is 27 seconds of arc. The
sampled image is then processed by retinal neurons; the result is transmitted
to the LGN and then to primary visual cortex through the optic nerve, consist-
ing of axons of the retinal ganglion cells. At the LGN level there are proba-
bly two neural “images” in the fovea: they may be roughly described as the
result of DOG (Difference-of-Gaussian or the similar Laplacian-of-Gaussian)
spatial filtering (and sampling) of the original image at two different scales
corresponding to the magno and the parvo system. The parvo or midget sys-
tem is spatially bandpass (but with a DC component). There is also high-pass
filtering in time at the level of the retina which can be approximated by a time
derivative component or more accurately as a filter providing, in the Fourier
domain, βF (ωx, ωy, ωt) + iωtF (ωx, ωy, ωt) where F is the fourier transform of
the image. Thus the neural image seen by the cortex is bandpass in space and
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Figure 5: Hierarchical feedforward model of the ventral stream – a modern interpretation of the
Hubel and Wiesel proposal (see [58]). The theoretical framework proposed in this paper provides
foundations for this model and how the synaptic weights may be learned during development
(and with adult plasticity). It also suggests extensions of the model such as class specific modules
at the top.
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Figure 6: Number of intersection per line (out of an arbitrary, random but fixed set) provides
an effective set of measurements for OCR.

time. The finest grain of it is set by the highest spatial frequency (notice that if
λu corresponds to the highest spatial frequency then sampling at the Shannon
rate, eg on a lattice with edges of length λu

2 preserves all the information.)

3.2.2 Templatesets

Since the goal of visual recognition in the brain is not reconstruction but identi-
fication or categorization, a representation possibly used by the ventral stream
and suggested by models such as Figure 5 is in terms of an overcomplete set of
measurements on the image, a vector that we will call here a measurement.

It is interesting to notice that the nature of the measurements may not be terribly
important as long as they are reasonable and there are enough of them. A his-
torical motivation and example for this argument is OCR done via intersection
of letters with a random, fixed set of lines and counting number of intersections
(see 6. A more mathematical motivation is provided by a theorem due to John-
son and Lindenstrauss. Their classic result says informally that any set of n
points in d-dimensional Euclidean space can be embedded into k-dimensional
Euclidean space where k is logarithmic in n and independent of d via random
projections so that all pairwise distances are maintained within an arbitrarily
small factor. The theorem will be discussed later together with more classical
approximate embeddings as provided by finite frames. Here it is just a sugges-
tion that since there are no special conditions on the projections (though the
assumption of randomness is strong) most measurements will work to some
degree, as long as there are enough independent measurements (but still with
k << n in most cases of interest). Notice for future use that the discriminative
power of the measurements depends on k (and, of course, on the fact that they
should be independent and informative).
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In summary we assume

• The ventral stream computes a representation of images that supports the
task of recognition (identification and categorization). It does not need to
support image reconstruction.

• The ventral stream provides a signature which is invariant to geometric
transformations of the image and to deformations that are locally approx-
imated by affine transformations

• Images (of objects) can be represented by a set of functionals of the image,
eg measurements. Neuroscience suggests that a natural way for a neuron
to compute a simple image measurements is a (possibly normalized) dot
product between the image and a vector of synaptic weights correspond-
ing to the tuning of the neuron.

Before showing how to built and invariant signature let us give a few defini-
tions:

Definition 1. Space of images: X ⊆ L2(R2) ( or Rd) where

L2(R2) = {I : R2 → R, s.t.
∫
| I(x, y) |2 dxdy <∞}

〈I, t〉 =
∫
I(x, y)t(x, y)dxdy

Definition 2. Template set: T ⊆ X , (or Rd): a set of images (or, more generally,
image patches)

Given a finite template set (|T | = T < ∞) we define a set of linear func-
tionals of the image I :

〈I, ti〉, i = 1, ..., T.

Definition 3. The image I can be represented in terms of its measurement vector
defined with respect to the templateset T :

∆I = (〈I, t1〉, 〈I, t2〉, ..., 〈I, tT 〉)T

We consider here two examples for choosing a set of templates. Both ex-
amples are relevant for the rest of the paper. Consider as an example the set
of images in X ∈ Rd. The obvious choice for the set of templates is to be an
orthonormal basis in the space of “images patches”, eg in Rd. Our first exam-
ple is a variation of this case: the templateset T is assumed to be a frame (see
Appendix 23.1) for the n-dimensional space X spanned by n chosen images in
Rd, that is the following holds
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A||I||2 ≤
T∑
k=1

| < I, tk > |2 ≤ B||I||2 (1)

where I ∈ Rd and A ≤ B. We can later assume that A = 1 − ε and B = 1 + ε
where ε can be controlled by the cardinality T of the templateset T . In this
example consider for instance n ≤ T < d.

This means that we can represent n images by projecting them from I ∈ Rd
to RT by using templates. This map F : Rd → RT is such that for all u, v ∈ X
(where X is a n-dimensional subspace of Rd)

A ‖ u− v ‖≤‖ Fu− Fv ‖≤ B ‖ u− v ‖ .
If A = 1 − ε and B ≤ 1 + ε where ε = ε(T ) the projections of u and v in RT
maintains the distance within a factor ε: the map is a quasi-isometry and can
be used for tasks such as classification. The second example is based on the
choice of random templates and a result due to Johnson and Lindenstrauss (J-L).

Proposition 1. For any set V of n points in Rd, there exists a map P : Rd → RT
such that for all u, v ∈ V

(1− ε) ‖ u− v ‖≤‖ Pu− Pv ‖≤ (1 + ε) ‖ u− v ‖

where the map P is a random projection on RT and

kC(ε) ≥ ln(n), C(ε) =
1
2
(ε2

2
− ε3

3
)
.

The JL theorem suggests that good representations for classification and
discrimination of n images can be given by T dot products with random tem-
plates since they provide a quasi-isometric embedding of images.

Remarks

• The dimensionality of the measurement vector suggested by JL depends
on n but not on d;

• The dimensions of the measurement vector are logarithmic in n;

• The fact that random templates are sufficient suggests that the precise
choice of the templates is not important, contrary to the present folk wis-
dom of the computer vision community.
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3.2.3 Transformations and templatebooks

The question now is how to compute a measurement vector that is capable not
only of discriminating different images but is also invariant to certain transfor-
mations of the images. We consider geometric transformations of images due
to changes in viewpoints.
We define as geometric transformations of the image I the action of the operator
U(T ) : L2(R2)→ L2(R2) transformations such that:

[U(T )I](x, y) = I(T−1(x, y)) = I(x′, y′), I ∈ L2(R2)

where T : R2 → R2 is a coordinate change.
In general U(T ) : R2 → R2 isn’t a unitary operator. However it can be made
unitary defining

[U(T )I](x, y) = |JT |− 1
2 I(T−1(x, y))

where |JT | is the determinant of the Jacobian of the transformation. Unitarity
of the operator will be useful later, (e.g. in 3.4.2).
A key example of T is the affine case, eg

x′ = Ax + tx

where A ∈ GL(2,R) the linear group in dimension two and tx ∈ R2.

In fact, in most of this paper we will consider transformations that corre-
spond to the affine group Aff(2,R) which is an extension of GL(2,R) (the
general linear group in R2) by the group of translations in R2. Let us now
define a key object of the paper:

Definition 4. Suppose now we have a finite set of templates that are closed under the
action of a group of transformations:

G = (g1, ..., g|G|), T = (t1, ..., tT ), |G|, T <∞

We assume that the basic element of our architecture, the memory based module, stores
(during development) sequences of transformed templates for each template in the tem-
plateset. We define the Templatebook as

Tt1,...,tT =


g0t1, g0t2, ..., g0tT

...
g|G|t1, g|G|t2, ..., g|G|tT

.


the collection of all transformed templates. Each row corresponds to the orbit of the
template under the transformations of G.
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3.3 Invariance and discrimination

Summary. If a signature is a dot product between the image and a template, then the
average of any function of the dot product between all the transformations of the image
and the template is an invariant. Under some assumption this is equivalent to the
average of any function of the dot product of the image and all the transformations
of the template. Thus an invariant can be obtained from a single image. However,
invariance is not enough: discrimination is also important. Thus we go back to ground
zero: we consider not only the average of a function of the dot product but the full orbit
– corresponding to the set of dot products. For compact groups if two orbits have a
point in common then they are the same orbit. A distribution can be associated to each
orbit and a distribution can be characterized in terms of its moments which are group
averages of powers of the dot products. The overall logic is simple with some problems
in the details. We also take somewhat of a detour in discussing sets of templates such
as frames, random projections etc.

We start with a rather idealized situation (group is compact, the image does
not contain clutter) for simplicity. We will make our framework more realistic
in section 3.4.

3.3.1 The invariance lemma

Consider the dot products of all transformation of an image with one compo-
nent of the templateset t

∆G,I = (〈g0I, t〉, 〈g1I, t〉..., 〈g|G|I, t〉)T

Clearly,

∆G,I = (〈g0I, t〉, 〈g1I, t〉, ..., 〈g|G|I, t〉)T = (〈I, g−1
0 t〉, 〈I, g−1

1 t〉, ..., 〈I, g−1
|G|t〉)T

where g−1 is the inverse transformation of g and ∆G,I is the measurement vec-
tor of the image w.r.t the transformations of one template, that is the orbit ob-
tained by the action of the group on the dot product. Note that the following
is mathematically trivial but important from the point of view of object recog-
nition. To get measurements of an image and all its transformations it is not
necessary to “see” all the transformed images: a single image is sufficient pro-
vided a templatebook is available. In our case we need for any image, just one
row of a templatebook, that is all the transformations of one template:

Tt = (g0t, g1t, ..., g|G|t)T .

Note that the orbits ∆I,G and ∆gI,G are the same set of measurements apart
from ordering). The following invariance lemma follows.

Proposition 2. Invariance lemma Given ∆I,G for each component of the template-
set an invariant signature Σ can be computed as the group average of a nonlinear
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function, η, of the measurements which are the dot products of the image with all
transformations of one of the templates, for each template:

Σt[I] =
1
|G|

∑
g∈G

η(〈I, gt〉). (2)

A classical example of invariant is η(·) ≡ | · |2, the energy

Σti(I) =
1
|G|

|G|∑
j=1

|〈I, gjti〉|2

Other examples of invariant group functionals are

• Max: Σti(I) = maxj〈I, gjti〉

• Average: Σti(I) = 1
|G|
∑|G|
j=1〈I, gjti〉

These functions are called pooling or aggregation functions. The original HMAX
model uses a max of I ◦ gjti over j or the average of I ◦ gjti over j or the av-
erage of (I ◦ gjti)2 over j. Often a sigmoidal function is used to describe the
threshold operation of a neuron underlying spike generation. Such aggrega-
tion operations can be approximated by the generalized polynomial

y =

n∑
i=1

wi xi
p

k +

(
n∑
i=1

xi
q

)r (3)

for appropriate values of the parameters (see [29]). Notice that defining the p-
norm of xwith ||x||p = (

∑ |xi|p) 1
p , it follows thatmax(x) = ||x||∞ and energy−

operation(x) = ||x||2. Therefore the invariant signature,

Σ(I) = (Σt1(I),Σt2(I), ...,ΣtT (I))T

is a vector which is invariant under the transformations gj .

Remarks

• Group characters As we will see later using templates that are the charac-
ters of the group is equivalent to performing the Fourier transform de-
fined by the group. Since the Fourier transform is an isometry for all
locally compact abelian groups, it turns out that the modulo or modulo
square of the transform is an invariant.
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• Pooling functions It is to be expected that different aggregation functions,
all invariant, have different discriminability and noise robustness. For
instance, the arithmetic average will support signatures that are invariant
but are also quite similar to each other. On the other hand the max, also
invariant, may be better at keeping signatures distinct from each other.
This was the original reason for [58] to choose the max over the average.

• Signature Notice that not all individual components of the signature (a
vector) have to be discriminative wrt a given image – whereas all have
to be invariant. In particular, a number of poorly responding templates
could be together quite discriminative.

• Group averages Image blur corresponds to local average of pixel values. It
is thus a (local) group average providing the first image moment.

3.3.2 Discrimination and invariance: distance between orbits

An invariant signature based on the arithmetic average is invariant but likely to
be not discriminative enough. Invariance is not enough: discrimination must also
be maintained. A signature can be however made more discriminative by using
additional nonlinear functions of the same dot products. Next we discuss how
group averages of a set of functions can characterize the whole orbit.

To do this, we go back to orbits as defined in equation 3.3.1. Recall that iff a
group is compact then the quotient group is a metric space. This implies that a
distance between orbits can be defined (see Proposition 3). As we mentioned,
if two orbits intersect in one point they are identical everywhere. Thus equality
of two orbits implies that at least one point eg image is in common.

The goal of this section is to provide a criterion that could be used in a bio-
logically plausible implementation of when two empirical orbits are the same
irrespectively of the ordering of their points. Ideally we would like to give meaning
to a statement of the following type: if a set of invariants for u is ε close to the
invariants associated with v, then corresponding points of the two orbits are ε
close.

The obvious approach in the finite case is to rank all the points of the u set
and do the same for the v set. Then a comparison should be easy (computa-
tionally). Another natural approach is to compare the distribution of numbers
associated with the u set with the distribution associated with the v set. This is
based on the following axiom (that we may take as a definition of equivalence
between the orbits generated by G on the points u and v,

Definition 5.
p(u) = p(v) ⇐⇒ u ∼ v

where p is the probability distribution.
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Thus the question focuses on how can probability distribution be com-
pared. There are several metrics that can be used to compare probability dis-
tributions such as the Kolmogoroff-Smirnoff criterion and the Wasserstein dis-
tance. The K-S criterion is the simpler of the two. The empirical distribution
function is defined as

Fn(u) =
1
n

∑
IUi≤u

for n iid observations Ui, where I is the indicator function. The Kolmogoroff
Smirnoff statistic for a given other cumulative empirical distribution function
Gn(u) is

Dn = supu|Fn(u)−Gn(u)|,
where supu is the supremum of the set of distances. By the GlivenkoCantelli
theorem, if the samples come from the same distribution, then Dn converges
to 0 almost surely.

An approach which seems possibly relevant, though indirectly, for neuro-
science is related to the characterization of distributions in terms of moments.
In fact, a sufficient (possibly infinite) number of moments uniquely character-
izes a probability distribution. Consider an invariant vector m1(v) in Rd with
components m1

i , i = 1, · · · , d with (mi)1(v) = 1
|G|
∑
j((v

j)i)1 where vj = gjv

and (vj)i is its i-component. Other similar invariant “moment” vectors such
as mp

i (v) = 1
|G|
∑
j((v

j)i)p can be defined. Observe that intuitively a sufficient
number ( p = 1, · · · , P ) of moments mp

i (v) determines uniquely (vj)i for all j
and of course viceversa.

This is related to the uniqueness of the distribution which is the solution of the
moment problem ensured by certain sufficient conditions such as the Carleman
condition

∑∞
p=1

1

(m2p)
1
2p

on the divergence of infinite sums of functions of the

moments mp. The moment problem arises as the result of trying to invert the
mapping that takes a measure to the sequences of moments

mp =
∫
xpdµ(x).

In the classical setting, µ is a measure on the real line. In this form the ques-
tion appears in probability theory, asking whether there is a probability mea-
sure having specified mean, variance and so on, and whether it is unique. In
the Hausdorff moment problem for a bounded interval, which without loss of
generality may be taken as [0, 1], the uniqueness of µ follows from the Weier-
strass approximation theorem, which states that polynomials are dense under
the uniform norm in the space of continuous functions on [0, 1]. In our case the
measure µ is a Haar measure induced by the transformation group.

The following lemma follows:

Lemma 1. p(u) = p(v) ⇐⇒ mp
i (u) = mp

i (v),∀i, p
The lemma together with the axiom implies
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Proposition 3. If ming||gu − v||2 = 0 then mp
i (v) = mp

i (u) for all p. Conversely,
if mp

i (v) = mp
i (u) for i = 1, · · · , d and for all p, then the set of gu for all g ∈ G

coincides with the set of all gv for all g ∈ G.

We conjecture that a more interesting version of the proposition above should
hold in terms of error bounds of the form:

Proposition 4. For a given error bound ε it is possible (under weak conditions to be
spelled out) to chose δ and K such that if |mp

i (v)−mp
i (u)| ≤ δ for p = 1, · · · ,K then

ming||gu− v||2 ≤ ε.
This would imply that moments computed in Rk can distinguish in an in-

variant way whether ṽ and ũ are equivalent or not, in other words whether
their orbits coincide or not. We now have to connect Rk to Rd. The key obser-
vation of course is that

〈I, g−1
i t〉 = 〈giI, t〉

thus measurements of one of the images with ”shifts” of the template are equiv-
alent to measurements of (inverse) shifts of the image with a fixed template.

3.3.3 Frames and invariants

We know that with a sufficient number of templates it is possible to control ε
and thus maintain distances among the points ṽ and ũ and all of their |G| trans-
lates (which do not need to be explicitly given: it is enough to have translates
of the templates in order to have all the dot products between each random
template and all the translates of each point, eg image). Thus the overall pic-
ture is that there is an embedding of n points and their translates in Rd into Rk
that preserves approximate distances.

Consider nowRk and the projections inRk of v and u and of their translates,
that is P (v) = v and P (u) = u and P (vj) = vj etc. The same results wrt
moments above also hold in Rk. In other words, from a sufficient number of
moments for each of the k coordinates, it is possible to estimate whether the
orbits of u and v are the same or not. In particular, we conjecture that the
following result should hold

Proposition 5. For any given ε it is possible to chose δ and K such that if |mp
i (v)−

mp
i (u)| ≤ δ for p = 1, · · · ,K for all i = 1, · · · , k then ming||gu− v||2 ≤ ε.

The resulting diagram is in Figure 7: images are on the left, the action of
the group generates from each image a series of transformed images that form
an orbit of the group. The real action is on the right side (in Rk) where from a
single image u on the left the orbit associated to the group is generated by the
dot products of u with each template and the associate orbit. The orbits of ũ
and ṽ can be discriminated by the moments of each coordinate of the images
providing two vectors of moments that discriminate between the two orbits but
are invariant to the ordering of the transformed images. The diagram provides
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Figure 7: Image space and feature space.
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an approach towards the characterization of the tradeoff between invariance
and discriminability.

3.3.4 Random projections and invariants: an extension of J-L

Let us first consider how the JL result could be extended to the situation in
which n points in Rd are projected in Rk using k random templates and their
|G| transformations induced by a group with |G| elements.

Proposition 6. For any set V of n points in Rd and for a group G of |G| elements
there exists k random templates and for each of the template and its |G| transforms
such that for all u, v ∈ V

(1− ε) ‖ u− v ‖≤‖ P ′u− P ′v ‖≤ (1 + ε) ‖ u− v ‖

where the map P ′ includes the |G| transforms of each of k random projection on Rk
and

kC(ε) ≥ ln(n) + ln(|G|), C(ε) =
1
2
(ε2

2
− ε3

3
)

The key point for biology is that the n vectors v and their |G| transforma-
tions can be discriminated by random projections without the need to store
explicitly the transformations of each vector: a single image of an object is suffi-
cient for invariant recognition of other views of the object!

The previous result implies that by increasing the number of templates from
ln(n) to ln(n)+ ln(|G|) it is possible to maintain distances among the original n
points and all of their |G| translates (which do not need to be explicitly given:
it is enough to have translates of the templates in order to have all the dot
products between each random template and all the translates of each point,
eg image). Thus the overall picture is that there is an embedding of n points
and their translates in Rd into Rk that preserves approximate distances. The
previous result guarantees that the n images and all of their transforms can
be discriminated through their projections. The selectivity-invariance tradeoff is
clear here: for a fixed number of templates (k) and a fixed accuracy (ε), there is
an equivalent role for the number of discriminable objects, ln(n) and number
of transformations, ln(|G|), and a direct tradeoff among them.
The key point for biology is that the n vectors v and their |G| transformations
can be discriminated by random projections without the need to store explic-
itly the transformations of each vector.
This observation allows to take measurements on the result of random projec-
tions to obtain signatures that are either selective to identity and invariant to
transformations or selective to the transformation and invariant to identity.

The question is how – in addition to (non-invariant) distances in Rn – we
may define invariants associated with each pattern which are the same for
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every member of the set generated by the group. Notice that the Johnson-
Lindenstrauss result implies that if u and v are very close (that is ||u− v|| ≤ η),
their projections P (u) and P (v) are very close in every norm, in particular
component-wise (that is maxk|P (u)k − P (v)k| ≤ η).

Consider nowRk and the projections inRk of v and u and of their translates,
that is P (v) = v and P (u) = u and P (vj) = vj etc. The same results wrt
moments above also hold in Rk. In other words, from a sufficient number
of moments for each of the k coordinates, it is possible to estimate whether
the orbits of u and v are the same or not. We can the use the extension in
proposition 6 of the JL theorem to connect Rd to Rk. In particular, a similar
result should hold to frame proposition above:

Proposition 7. For any given ε it is possible to chose δ and K such that if |mp
i (v)−

mp
i (u)| ≤ δ for p = 1, · · · ,K for all i = 1, · · · , k then ming||gu− v||2 ≤ ε.

The diagram of Figure 7 should then describe the situation also for random
projections.

Both random projections and frames behave like a quasi-isometry satisfy-
ing a frame-type bound. Of course random projections are similar to choos-
ing random images as templates which are not natural images! Part II how-
ever considers templates which are Gabor wavelets (they emerge as the top
eigenfunctions of templatebooks learned from “randomly” observed images
undergoing an affine transformation). These templates are likely to be better
characterized as randomly sampled frames than as random vectors! The most
relevant situation is therefore when the templates are derived from a random
subsampling from an overcomplete set. Corollary 5.56 of Vershynin “Introduc-
tion to non-asymptotic analysis of random matrices”) gives conditions under
which a random subset of size N = O(nlogn) of a tight frame in Rn is an ap-
proximate tight frame ([76]).

Theorem 1. Consider a tight frame {ui, i = 1, ...,M} in Rn with frame bounds
A = B = M . Let number m be such that all frame elements satisfy ||ui||2 ≤

√
m.

Let {vi, i = 1, ..., N} be a set of vectors obtained by sampling N random elements
from the frame ui uniformly and independently. Let ε ∈ (0, 1) and t ≥ 1. Then the
following holds with probability at least 12n−t

2
: if N ≥ C( tε )

2mlogn then vi is a
frame in Rn with bounds A = (1 − ε)N and B = (1 + ε)N . Here C is an absolute
constant. In particular, if this event holds, then every x ∈ Rn admits an approximate
representation using only the sampled frame elements.

3.3.5 Compact groups, probabilities and discrimination

In particular if G is a compact group, called G, dg is a finite measure so that
gI can be seen as a realization of a random variable with values in the signal
space. A signature can be defined associating a probability distribution to each
signal. Such a signature can be shown to be invariant and discriminant.
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More precisely, if G is a compact group there is a natural Haar probability mea-
sure dg.
For any I ∈ X , the space of signals, define the random variable,

ZI : G → X , ZI(g) = gI.

Denote by PI , the law (distribution) of ZI , so that PI(A) = dg(Z−1
I (A)) for any

borel set A ⊂ X .
Let

ΦP : X → P(X ), ΦP (I) = PI ,

where P(X ) is the space of probability distribution on X
We have the following fact.

Fact 1. The signature ΦP is invariant and discriminant i.e. I ∼ I ′ ⇔ PI = PI′ .

Proof. We first prove that I ∼ I ′ ⇒ PI = PI′ .
By definition PI = PI′ iff ∀ A ⊆ X∫

A

dPI(s) =
∫
A

dPI′(s)

This expression can be written equivalently as:∫
Z−1
I (A)

dg =
∫
Z−1
I′ (A)

dg

where

Z−1
I = {g ∈ G s.t. gI ∈ A}

Z−1
I′ = {g ∈ G s.t. gI ′ ∈ A} = {g ∈ G s.t. gḡI ∈ A}

Now note that ∀ A ∈ X if gI ∈ A ⇒ gḡ−1ḡI = gḡ−1I ′ ∈ A, i.e. g ∈ Z−1
I (A) ⇒

gḡ−1 ∈ Z−1
I′ (A). The inverse follows noticing that g ∈ Z−1

I′ (A) ⇒ gḡ ∈
Z−1
I (A). Therefore Z−1

I (A) = Z−1
I′ (A)ḡ, ∀A. Using this observation we have:∫

Z−1
I (A)

dg =
∫

(Z−1
I′ (A))ḡ

dg =
∫
Z−1
I′ (A)

dĝ

where in the last integral we used the change of variables on ĝ = gḡ−1 and the
invariance property of the haar measure; this proves the implication.

To prove the implication PI = PI′ ⇒ I ∼ I ′ note that PI − PI′ = 0 is

equivalent to:∫
Z−1
I′ (A)

dg −
∫
Z−1
I (A)

dg =
∫
Z−1
I (A)4Z−1

I′ (A)

dg, ∀A ∈ X
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where with4we mean the symmetric difference. This impliesZ−1
I (A)4Z−1

I′ (A) =
∅ or equivalently

Z−1
I (A) = Z−1

I′ (A), ∀ A ∈ X
In other words of any element in A there exist g′, g′′ ∈ G such that g′I = g′′I ′.
This implies I = g′−1

g′′I ′ = ḡI ′, ḡ = g′−1
g′′, i.e. I ∼ I ′.

The signature ΦP does not have a natural vector representation. One way
to achieve such a representation is to consider the relationship between proba-
bility distribution and measurements.

3.3.6 Measurements and probability distributions

We begin by considering X to be a d dimensional space and T ⊂ X an or-
thonormal basis (we will later relax this last assumption). Then we can de-
fine (with some abuse of notation) T : X → Rd, T (I) = {(〈I, ti〉)i, ti ∈ T ,
‖T (I)‖d = ‖I‖}, and the random variable

ZTI : G → Rd, ZTI (g) = T gI.
Denote by P TI , the law (distribution) of ZTI , so that P TI (A) = dg((ZTI )−1(A))
for any borel set A ⊂ Rd and let

ΦTP : X → G(Rd), Φ(I) = P TI ,

where P(X ) be the space of probability distribution on Rd

Fact 2. If T is an orthonormal basis ΦTP is discriminant and invariant.

Proof. The proof follows the one in Fact 1 after noticing that T : X → Rd is an
isometry and therefore preserve the volumes which implies:

P TI (A) = dg(Z−1
T I (A)) = dg(Z−1

I (A)) = PI(A), ∀A ∈ X .

Fact 3. If T is a frame ΦTP (or Johnson Lindenstrauss), ΦTP is discriminative and
invariant.

Proof. Suppose P TI (A) = P TI′ (A), ∀A ∈ X . Following the demonstration in
Fact 1 we have that this implies

T gI − T g′I ′ = 0, ∃ g′ ∈ (ZTI′ )
−1(A), ∀ g ∈ (ZTI )−1(A), A ∈ X .

Therefore T (gI − g′I ′) = 0; Being T a frame it implies gI − g′I ′ = 0 ⇒ I ′ =
ḡI, ḡ = g′−1

g, i.e., I ∼ I ′.
If I ∼ I ′ we have (following again the same reasoning done in Fact 1) that g ∈
(ZTI )−1(A) ⇒ gḡ−1 ∈ (ZTI′ )

−1(A) and g ∈ (ZTI′ )
−1(A) ⇒ gḡ ∈ (ZTI )−1(A).

Therefore (ZTI )−1(A) = (ZTI )−1(A)ḡ and using the Haar measure invariance
we have proven the implication I ∼ I ′ ⇒ P TI = P TI′ .
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3.3.7 Moments

As we mentioned earlier, the moment problem concerns the question whether
or not a probability distribution (or, equivalently, the associated random vari-
able) is uniquely determined by the sequence of moments, all of which are
supposed to exist, finite. The following result due to Papoulis [Probability,
Random variables and Stochastic Processes, pg. 72− 77, 1991] is useful:

Fact 4. Give two distribution P,Q ∈ P(X ), let

µn =
∫

Rd
xnZ(I)dx, Z = P,Q x ∈ Rd

denote the n−th central moment. Then P = Q if and only if chP (t) = chQ(t) where
chZ(t) is the characteristic function of the distribution Z(x) built from its moments
µn:

chZ(t) = F[Z(x)](t) = 1 + itµ1 − 1
2!
t2µ2 − 1

3!
t3µ3 +

1
4!
t4µ4 + ....

We can now define the map M : P(Rd)→ R×Nd and let

ΦM : X → P(Rd), ΦTM (x) = M(P Tx ).

where M maps the probability distribution P Tx into its moments (and cross-
moments).

Fact 5. The signature ΦTM is invariant and discriminative, being T an orthonormal
basis, Johnson Lindenstrauss or a frame.

Proof. From above we have that the moments determine the characteristic func-
tion which uniquely determines the probability distribution. We then follow
the proofs in the previous paragraph.

3.4 Partially Observable Transformations (POTs)

Summary. The results described so far assume compactness of the transformation
group and assume that all transformations are “visible”. This is not fully realistic
(though of course there are grids of cells and motion could be discretized). In this sec-
tion we show how to relax the assumptions, though some work still needs to be done.

The invariance lemma is a key property that depends in our proof on the
transformations having a compact group structure. As it turns out, it is pos-
sible to derive some invariance property under more general conditions. We
describe here the following setup as one of the possible generalizations. Con-
sider the case of translation of the image or image patch. Let us assume that the
translation is on a torus (around the observer) but that only part of the torus
is visible through a “window” interval, e.g an interval I ∈ [−A,+A]. Thus the
transformations correspond to a compact group which is only partially observ-
able.
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3.4.1 Orbits and fragments

Notice that the prototypical group in the biological case consists of an abelian
subgroup of the affine group. As a key case, consider translation which is
abelian but only locally compact.

3.4.2 Invariance Lemma for POTs

Let G be a locally compact Abelian group and dg the associated Haar measure.
Let T : G → B(X ), Tg = T (g) be a representation of G on X (see appendix 22).

Example 1. Let X = L2(R2), and (TgI)(x) = I(σ−1
g (x)), where σg : R2 → R2,

with g ∈ G, is a representation of a group G. In particular we can consider G to be
the affine group so that σgr = Ar + b and σ−1

g r = A−1r − b, where b ∈ R2 and
A : R2 → R2 is a unitary matrix. It is easy to see that in this case Tg is linear and
T ∗g I(r) = I(σgr) for all g ∈ G and r ∈ R2. Moreover, T ∗g Tg = I so that g 7→ Tg is a
unitary representation of G on X .

In the following we consider the continuous (and more general) version of eq.
(2), the invariance lemma:

Invariance Lemma. Let m,h : X → R2 with m(I) =
∫
h(TgI)dg. Then m is

invariant:
m(Tg′I) =

∫
h(Tg′TgI)dg =

∫
h(Tg′gI)dg = m(I), (4)

for all I ∈ X , g′ ∈ G.

Observation. Note that in the case the group of transformations is discrete
and h(I) = η(〈I, t〉) for t, I ∈ X , η : R2 → R2 measurable, and T is a unitary
representation, then

η(〈TgI, t〉) = η(
〈
I, Tg−1t

〉
).

and eq. (4) is exactly (2) in the continuous case.

Invariance Lemma for POTs. Let G0 ⊂ G and m0, h : X → R2 with m0(I) =∫
G0
h(TgI)dg.

Clearly, in this case m0 is not invariant,

m0(I)−m0(Tg′I) =
∫
G0

h(TgI)dg −
∫
G0

h(Tg′TgI)dg 6= 0, g, g′ ∈ G (5)

The second integral of (5) can be written, with the variable change g̃ = g′g as∫
G0

h(Tg′Tg)I)dg =
∫
G0

h(Tg′gI)dg =
∫
g′−1G0

h(Tg̃I)dg̃
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where the last equality is true since we renormalize the operator Tg w.r.t. its
Jacobian (see 3.2.3). With abuse of notation calling g̃ = g:

m0(I)−m0(Tg′I) =
∫
G0

h(TgI)dg −
∫
g′−1G0

h(TgI)dg

=
∫
G0∆g′−1G0

h(TgI)dg.

where with ∆ we indicate the symmetric difference. If G0,I = {g′ ∈ G | h(TgI) =
0,∀g ∈ G0∆g′−1G0}, then,

m0(I) = m0(Tg′I), ∀g′ ∈ G0,I .

Example 2. The interpretation of G0,I can be made clear considering X = L2(R) and
h(I)(x) = |f(x)|2, I ∈ X . Let (TτI)(x) = I(x+τ), I ∈ X , τ ∈ R and G0 = [−π, π].
In this case, g′−1G0 = [−π − τ, π − τ ].

3.5 Hierarchical architectures: global invariance and local sta-
bility

Summary. In this section we find that the one-layer network, though globally invari-
ant, cannot provide robust signatures for parts of the image. A hierarchical architecture
of the same modules overcomes these limitations. The section shows that a hierarchical
architecture of layers of dot products and pooling operations can be at each layer stable
for small perturbations, locally invariant, covariant and, finally at the top, globally
invariant

3.5.1 Limitations of one layer architectures: one global signature only

The architecture described so far is a one layer architecture – a 2D array of
memory-based modules which, for each image, compute a single signature
which is invariant to a group of global, uniform transformations such as the
affine group. We conjecture that the architecture is optimal for (Gaussian) clut-
ter since matched filters are optimal in the L2 sense and the module performs
a normalized dot-product – effectively a correlation (a max aggregation func-
tion would then compute the max of the correlation, an algorithm known as
matched filter). Evolution may have in fact discovered first the one layer archi-
tecture: there is some evidence of correlation-based, non-invariant recognition
in insects such as bees. The one-layer architecture has, however, a few weak-
nesses:

• Fragility to image perturbations such as non uniform warping or small
shifts of image parts

• Memory storage issues when many object classes have to be recognized
with tolerance to local and global affine transformations
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The first problem is due to the global nature of the implemented invariance. In
the next paragraphs we are going to see how a hierarchical architecture may
solve this problem.

3.5.2 The basic idea

Consider a hierarchical architecture such as in Figure 8. We assume that each
of the nodes

∧
is invariant for shifts of a pattern within its receptive field; we

also assume that the output layer at each level is covariant (see later). Assume
that the receptive field of each node overlaps by 1

2 the neighboring ones on
each side at each level of the architecture. Start from the highest level. Assume
that deformations are local translation of a patch. Consider now the following
examples. First assume that there is a minimal distance between patches (A
and B in the figure) of 3 pixels. It is easy to see that each of A and B has a
distinct signature at the first level in 2 different nodes. Each of A or B can
shift by arbitrary amounts without changing their signature. So each one is
an “object” at the first level in terms of their signatures, invariant to shifts.
They compose a new object (AB) at the second level if their distance is between
3 ≤ d ≤ 4 and so on for higher levels. This is a situation in which A and B
are each a part – like an eye and a mouth in a face, each part is invariant to
shifts, the object AB is also invariant and is tolerant to “small” deformations
(distance between A and B). There other cases. For instance, assume that the
distance between A and B is 1 ≤ d ≤ 3. Then for each shift there is always a∧

which “sees” A, another one which “sees” B and a third one which “sees”
AB. In this case AB are parts of an object AB, all represented in an invariant
way at the first level. However, the object AB is not tolerant to deformations
of the distance between A and B (this happens only if objects are represented
at higher levels than parts in the hierarchy). Finally, if the distance between A
and B is less than 1 then AB is always an object at all levels. It is intriguing to
speculate that this kind of properties may be related to the minimal distances
involved in crowding?

3.5.3 A hierarchical architecture: one dimensional translation group

In the following we are going to focus, as an easy example, on the locally com-
pact group of one dimensional translations implemented by the operator

Tξ : X → X , (TξI)(τ) = I(τ − ξ), I ∈ X , ξ ∈ R .
We fix the following basic objects:

• X = L2(R), space of images.

• T ⊂ X , |T | <∞, the template set.

• η : X → X a non-linear function.

• Kn : R → {0, 1} the characteristic function of the interval Pn ⊆ R where
Pn−1 ⊆ Pn, ∀ n = 1, ..., N or Gaussian functions of σn width.
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Figure 8: Each of the nodes
∧

is invariant for shifts of a pattern within its receptive field; we
also assume that the output layer at each level is covariant.

We are going to define a hierarchical construction where each interval Pn will
be called pooling range and the index n layer; the basic building blocks of the
construction are given by the following two operators:

Definition 6. Simple and complex response
The complex response operator cn : X → X , is iteratively defined as:

cn(I)(ξ) = (Kn ∗ η(sn(I)))(ξ) = 〈Kn, Tξη(sn(I))〉 (6)

in terms of the simple response operator sn : X → X :

sn(I)(ξ) = (cn−1(I) ∗ t)(ξ) = 〈cn−1(I), Tξt〉 , t ∈ T , I ∈ X , ξ ∈ R (7)

where c0(I) ≡ I .

Remark 1. The above definitions and the demonstrations in the next paragraphs are
done for one dimensional square integral signals undergoing translation transforma-
tions in one dimension. They can be generalized to square integral signals on locally
compact groups I ∈ L2(G, dg) undergoing group transformations.

Pictorially, indicating each function cn with a
∧

we can consider a network
composed by different receptive fields

∧
:
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cn is the complex cell response at layer n and σn may be equal or larger than
σn−1.
Notice that the patch of the image seen at layer n is at least as large as the patch
seen at level n − 1, that is σneff ≥ σn−1

eff . In general σneff increases (rapidly)
with n where with σeff we mean the image part effectively seen by a complex
response at layer n.

3.5.4 Properties of simple and complex responses

We provide now our definition of covariance and invariance for the set of re-
sponses cn at each layer n of the architecture. We, for simplicity are focusing on
translations in 1D. However we can generalize the reasoning to translations in
x, y which shifts “stuff” across receptive fields. In fact we can think of layers at
each level indexed by orientation and scale. Thus our invariance and covari-
ance definitions are for a given orientation and scale.
For 1D translations we are interested into studying the following two proper-
ties:
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1. Covariance: the operator f : X → X is covariant with respect transla-
tions if:

f(Tξ(I)) = Tξ(f(I)), ∀ I ∈ X , ξ ∈ R

2. r−invariance: the operator f : X → X is r−invariant for I ∈ X with
respect to translations if:

f(Tξ(I)) = f(I), ξ ∈ [0, r], r ∈ R

Remark 2. Notice that many non-linear functionals are so-called space- or time-
invariant, e.g. NL-L systems, Volterra series, etc.. In this paper, we assume that
cortical layers in visual cortex can be modeled by linear convolutions, which are triv-
ially covariant, followed by memoryless non-linearities, which maintain covariance.

Remark 3. In principle, the arguments of these sections apply also to scale and ro-
tation under the assumption that the network is X-invariant (instead of simply shift-
invariant). If the network treats scale or rotation in the same way as x, y (with con-
volution and local pooling) the same arguments should apply. In practice, as we will
show, in the hierarchical architecture after the first layer all transformations can be
approximated as shifts within a 4-cube of wavelets (see later).

3.5.5 Property 1: covariance

The covariance of the complex response is a key ingredient in the analysis of
the invariance; we prove:

Proposition 8. The operator cn is covariant with respect to translations.
Let cn : X → X the complex response at layer n and I ∈ X then:

cn(Tτ̄I) = Tτ̄ (cn(I)), ∀τ̄ ∈ R .

Proof. We prove the proposition by induction. For n = 1 the covariance of the
s1(I) function follows from:

s1(Tτ̄I)(τ) = 〈Tτ̄I, Tτ t〉 = 〈I, Tτ−τ̄ t〉 = s1(I)(τ − τ̄) = (Tτ̄s1(I))(τ)

The covariance of the c1(I) follows from:

c1(Tτ̄I)(τ) =
∫
K1(τ − τ̃)η(s1(Tτ̄I))(τ̃)dτ̃

=
∫
K1(τ − τ̃)η(s1(I))(τ̃ − τ̄)dτ̃

=
∫
K1(τ − τ̄ − τ̂)η(s1(I)(τ̂))dτ̂ = c1(I)(τ − τ̄)

= (Tτ̄ c1(I))(τ)
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where on the second line we used the covariance property of s1(I) and on the
third we used the change of variable τ̂ = τ̃ − τ̄ .
Suppose now the statement is true for n; by definition:

sn+1(Tτ̄I)(τ) = 〈cn(Tτ̄I), Tτ t〉 = 〈Tτ̄ cn(I), Tτ t〉 = 〈cn(I), Tτ−τ̄ t〉
= sn+1(I)(τ − τ̄) = (Tτ̄sn+1(I))(τ)

Therefore

cn+1(Tτ̄I)(τ) =
∫
Kn+1(τ − τ̃)η(sn+1(Tτ̄I)(τ̃))dτ̃

=
∫
Kn+1(τ − τ̃)η(sn+1(I)(τ̃ − τ̄))dτ̃

= cn+1(I)(τ − τ̄) = (Tτ̄ cn+1(I))(τ)

where in the fourth line we used the change of variables τ̃ − τ̄ = τ̂ .
By induction, the statement is true for all layers.

3.5.6 Property 2: partial and global invariance

We now prove that the functions cn are approximately invariant (locally in-
variant) to translations within the range of the pooling. We further prove that
the invariance increases from layer to layer in the hierarchical architecture.In
the following, for reasons that will be clear later we choose as non linearity the
modulus function, η ≡ | · |.

Proposition 9. Let cn : X → X the complex response at layer n and I ∈ X then:

cn(Tτ̄I)(τ) = cn(I)(τ), I ∈ X , (8)

if
|sn(I)(τ)| = 0 τ ∈ Pn∆Tτ̄Pn

where ∆ is the symmetric difference.

Proof. Let the pooling at layer n be achieved by a characteristic function on the
interval Pn We have

cn(Tτ̄I)(τ)− cn(I)(τ) = cn(I)(τ − τ̄)− cn(I)(τ)

=
∫

R

(
Kn(τ − τ̄ − τ̃)−Kn(τ − τ̃)

)
|sn(I)(τ̃)|dτ̃

=
∫
Pn∆Tτ̄Pn

|sn(I)(τ̃)|dτ̃

where on the first line we used the covariance properties of the function cn(I).
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Further the invariance is increasing from layer to layer since the effective pool-
ing range at layer n will be

P effn = Pn × Pn−1 × · · · × P0

Consequently for each transformation there will exists a layer such that the
complex response is invariant to the transformation. We have

Theorem 2. Let I ∈ X , cn : X → X the complex response at layer n. Let ξ ∈
[0, τ̄ ], τ̄ ∈ R, we have that cn is τ̄−invariant for sone n̄, i.e.

cn̄(TξI) = cn̄(I), ∃ n̄ s.t. ∀m ≥ n̄, ξ ∈ [0, τ̄ ]

Proof. The proof comes from the fact that for any ξ ∈ [0, τ̄ ] there always exist
an n = n̄ such that forallτ ∈ Pn̄∆Tτ̄Pn̄, |sn̄(I)(τ)| = 0. The proof follows from
9.

Remark 4. If in 9 instead of choosing the characteristic function of the interval Pn we
use a Gaussian function exp(−x2/2σn) a similar result is obtained:

cn(Tτ̄I)(τ) = cn(I)(τ) +O
( τ̄2

2σ2
n

)
, ∀τ̄ ∈ [0, σn], τ ∈ R.

Remark 5. There are multiple scales (at each layer). We can think of them as different
resolution units corresponding to different sizes of complex cells – like multiple lattices
of photoreceptors of different sizes and different separations. The size of the complex
cells also increases from layer to layer and defines how large a part is at each layer
– from small parts in the first layer to parts of parts in intermediate layers, to whole
objects and images at the top. Notice that the term parts here really refers to patches of
the image. Notice that our theory may provide a novel definition of Part as the set
of patches which has an invariant signature – at some level of the architecture – under
affine transformations.

3.5.7 Property 3: stability to perturbations

In the paragraphs above we assumed, for simplicity, to have one template at
each layer. We will now suppose to have a set of templates at each layer that
form a frame with good frequency localization properties (e.g. wavelets)

Tn = {tin, i = 1, ..., Tn}

an ‖I‖2 ≤
( Tn∑
i=1

| 〈tinn , I〉 |2) 1
2

= ‖I‖`2 ≤ bn ‖I‖2 , an < bn ∈ R+ I ∈ X .

Let the non−linearity η : X → X be the modulus square function σ(·) = | · |.
Using this formalism we can write the complex response cn(I) at layer n by
components using the multi−index λ ≡ (i0, ..., in−1) as follow.
Let Cn : X → `2(RT ), T = T0 + ...+ Tn, the map

I −→ cλn(I) = cin−1,in−2,...,i1
n (I) = Kn ∗ |tin−1

n−1 ∗Kn−1 ∗ |tin−2
n−2 ∗ · · · ∗ |ti11 ∗ I| · · · |

I ∈ X , i1 = 1, ..., T1; ...; in−1 = 1, ..., Tn−1
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with norm in `2(RT ),

‖cn(I)‖`2 =
∑

in−1,in−2,...,i1

(
|Kn ∗ |tin−1

n−1 ∗Kn−1 ∗ |tin−2
n−2 ∗ · · · ∗ |ti11 ∗ I| · · · ||2

) 1
2

We study now, starting from the top cn(I) complex response, the tolerance
of the hierarchical representation to small perturbations I → I + δI . As in the
previous paragraph, let Tn = {tinn , i = 1, ..., Tn} a frame at layer n.

Theorem 3. Let I ∈ X . We have

‖cn(I)− cn(I + δI)‖`2 ≤
n∏
i=1

bi ‖δI‖∞ (9)

with

‖cn(I)− cn(I + δI)‖`2 =
( T1,...,Tn∑
i1,...,in

|tinn ∗ [ci1,...,in−1
n (I)− ci1,...,in−1

n (I + δI)|2
) 1

2

(10)
and

‖δI‖∞ = supτ |δI(τ)|
The theorem says that the representation is continuous to perturbations from L2(R) to
`2(RT

n

), T =
∑n
i=1 Ti

Proof. Being Tn = {tinn , i = 1, ..., Tn} a frame we have

‖cn(I)− cn(I + δI)‖2`2 =
T1,...,Tn∑
i1,...,in

|tinn ∗ [ci1,...,in−1
n (I)− ci1,...,in−1

n (I + δI)]|2

≤ b2n

T1,...,Tn−1∑
i1,...,in−1

|ci1,...,in−1
n (I)− ci1,...,in−1

n (I + δI)|2.

Using the definitions of complex and simple response, cinn (I) = Kn ∗ |sinn (I)|
and sinn (I) = t

in−1
n−1 ∗ cn−1(I)

‖cn(I)− cn(I + δI)‖2`2 ≤ b2n
T1,...,Tn−1∑
i1,...,in−1

|Kn∗
(
|tin−1
n−1 ∗ci1,...,in−2

n (I)|−|tin−1
n−1 ∗ci1,...,in−2

n (I+δI)|
)
|2

The convolution with Kn is a lowpass filter applied to the modulus square i.e.
is decreasing the energy content of the signal by filtering. Further using the
contraction properties of the modulus function i.e. ||a| − |b|| ≤ |a− b|

‖cn(I)− cn(I + δI)‖2`2 ≤ b2n
T1,...,Tn−1∑
i1,...,in−1

|tin−1
n−1 ∗

(
ci1,...,in−2
n (I)−ci1,...,in−2

n (I+δI)|
)
|2
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The last equation has the same form of eq. (10) with the frame factor b instead
of the sum over in. Repeating the reasoning for all layers

‖cn(I)− cn(DI)‖`2 ≤
n∏
i=2

b2i
∑
i1

|ti11 ∗ (I − (I + δI))|2 ≤
n∏
i=1

b2i ‖δI‖2∞

Taking the root square ends the proof.

3.5.8 A hierarchical architecture: summary

In the following we are going to extend the reasoning done in the previous
paragraphs to a general transformation of a locally compact group G imple-
mented by the operator

Tg : X/Y → Y, (TgI)(τ) = I(gτ), I ∈ X/Y, g ∈ G.
where X and Y are defined below among other basic objects:

• X = L2(R2).

• Y = L2(G, dg), where dg is the group invariant Haar measure.

• T ⊂ X/Y , |T | <∞, the template set.

• η : Y → Y a non-linear function.

• Kn : Y → Y the characteristic function of the intervals P1 ⊆ ... ⊆ Pn,
Pi ⊂ Y or Gaussians with σn width.

The definitions of simple and complex response are similar to those given for
the one dimensional translation group. However there is a major difference,
although irrelevant for the covariance, invariance properties of the construc-
tion: the first simple response is an operator that maps the image space X into
Y ; higher order responses instead are operators defined from Y into itself.

Definition 7. Simple and complex response
The complex response operator cn : Y → Y , is iteratively defined as:

cn(I)(ξ) = (Kn ∗ η(sn(I)))(ξ) = 〈Kn, Tgη(sn(I))〉 (11)

in terms of the simple response operator sn : X/Y → Y :

sn(I)(ξ) = (cn−1(I) ∗ t)(ξ) = 〈cn−1(I), Tξt〉 , t ∈ T , I ∈ X , g ∈ G (12)

where c0(I) ≡ I .

Same kind of results obtained before for covariance, invariance and robust-
ness to local perturbations can be obtained.
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3.6 A short mathematical summary of the argument.

The theory just described has a simple mathematical structure, despite the
mixed biological details. We summarize in this appendix.

3.6.1 Setting

Let (X , 〈·, ·〉) be a real separable Hilbert space, e.g. X = L2(R2). Let L(X ) be
the space of linear operators to and from X .

A measurement is defined as a functional m : X → R. A signature is a map
φ : X → `2 and can be viewed as a collection of measurements.

3.6.2 Linear measurements: bases, frames and Johnson Lindenstrauss lemma

Claim: Linear measurements give rise to isometric or quasi-isometric signa-
tures.

Let T ⊂ X be countable and

s : X → `2, st(I) = 〈I, t〉 t ∈ T .

If T is an orthonormal basis I =
∑
t∈T st(I)t and ‖s(I)‖2 = ‖I‖where ‖s(I)‖22 =∑

t st(I)2.
If T is a frame, by definition, A ‖I‖ ≤ ‖s(I)‖2 ≤ B ‖I‖, with 0 < A ≤ B <∞.
Finally, if X is a set of n points in RN and T a suitable finite set of p, possi-
bly random, vectors. by the Jonson and Lindenstrauss lemma (1 − ε) ‖I‖ ≤
‖s(I)‖2 ≤ (1 + ε) ‖I‖, as soon as p ≥ 8 log n/ε2.

3.6.3 Invariant measurements via group integration

Claim: Invariant measurements can be obtained via local group integration.
Let G be a locally compact Abelian group and dg the associated Haar mea-

sure. Let T : G → B(X ), Tg = T (g) be a representation of G on X .

Example 3. Let X = L2(R2), and (TgI)(I) = I(σ−1
g (I)), where σg : R2 → R2,

with g ∈ G, is a representation of a group G. In particular we can consider G to be
the affine group so that σgr = Ar + b and σ−1

g r = A−1r − b, where b ∈ R2 and
A : R2 → R2 is a unitary matrix. It is easy to see that in this case Tg is linear and
T ∗g x(r) = x(σgr) for all g ∈ G and r ∈ R2. Moreover,redefining the representation
dividing by the transformation Jacobian we have T ∗g Tg = I so that g 7→ Tg is a unitary
representation of G on X .

3.6.4 Observation

If t, I ∈ X , and T is a unitary representation, then

〈TgI, t〉 =
〈
I, T ∗g t

〉
=
〈
I, T−1

g t
〉

=
〈
I, Tg−1t

〉
.
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For σ : R→ Rmeasurable, let

c : X → R, c(I) =
∫
σ(〈I, Tgt〉)dg,

then c is invariant.

3.6.5 Approximately invariant measurements via local group integration

Claim: Approximately invariant measurements can be obtained via local group
integration.

Let m,h : X → Rwith m(I) =
∫
h(TgI)dg. Then m is invariant:

m(Tg′I) =
∫
h(Tg′TgI)dg =

∫
h(Tg′gI)dg = m(I),

for all I ∈ X , g′ ∈ G.

Let G0 ⊂ G and m0, h : X → Rwith m0(I) =
∫
G0
h(TgI)dg.

Clearly, in this case m0 is not invariant,

m0(I)−m0(Tg′I) =
∫
G0

h(TgI)dg −
∫
G0

h(Tg′gI)

=
∫
G0

h(TgI)dg −
∫
g′−1G0

h(TgI)dg =
∫
G0∆g′−1G0

h(TgI)dg.

If G0,I = {g′ ∈ G | h(TgI) = 0,∀g ∈ G0∆g′−1G0}, then,

m0(I) = m0(Tg′I), ∀g′ ∈ G0,I .

Example 4. The interpretation of G0,I can be made clear considering X = L2(R) and
h(I) = |f(x)|2, I ∈ X . Let (TτI)(x) = I(x + τ), I ∈ X , τ ∈ R and G0 = [−π, π].
In this case, g′−1G0 = [−π − τ, π − τ ].

3.6.6 Signature of approximately invariant measurements

Claim: A signature consisting of a collection of measurements obtained via
partial integration is covariant.

3.6.7 Discrimination properties of invariant and approximately invariant
signatures

Claim: If the considered group is compact, then it is possible to built (possibly
countably many) nonlinear measurements that can discriminate signals which
do not belong to the same orbit.
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3.6.8 Hierarchies approximately invariant measurements

Claim: An appropriate cascade of linear measurements and approximately in-
variant measurements (obtained via partial integration) give rise to signatures
which are covariant and eventually invariant.

3.6.9 Whole vs parts and memory based retrieval

Biological Conjecture: Signatures obtained from complex cells at each level
access an (associative) memory which also is involved in top-down control.
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4 Part II: Transformations, Apertures and Spectral
Properties

Summary of Part II. Part I proves that pooling over sequences of transformed images
stored during development allows the computation at run-time of invariant signatures
for any image. Part II makes a biologically plausible assumption: storage of sequences
of images is performed online via Hebbian synapses. Because of this assumption it is
possible then to connect invariances to tuning of cortical cells. We start by relating
the size of the receptive field – called aperture – and transformations “seen through the
aperture”. During development, translations are effectively the only learnable trans-
formations by small apertures – eg small receptive fields – in the first layer. We then
introduce a Linking Conjecture: instead of explicitly storing a sequence of frames dur-
ing development as assumed in the abstract framework of Part I, it is biologically more
plausible to assume that there is Hebbian-like learning at the synapses in visual cortex.
We will show that, as a consequence, the cells will effectively store and compress input
“frames” by computing online the eigenvectors of their covariance during development
and storing them in their synaptic weights. Thus the tuning of each cell is predicted to
converge to one of the eigenvectors. Since the size of the receptive fields in the hierarchy
affects which transformations dominate, it follows that the level of the hierarchy deter-
mines the spectral properties and thus the tuning of the cells. Furthermore, invariance
is now obtained by pooling nonlinear functions such as the mouduli of the dot products
between the eigenfunctions (computed over the transformation of interest) and the new
image.

4.1 Apertures and Stratification

Summary. In this short section we argue that size and position invariance develop in a
sequential order meaning that smaller transformations are invariant before larger ones;
size and position invariance are computed in stages by a hierarchical system that builds
invariance in a feedforward manner. The transformations of interest include all
object transformations which are part of our visual experience. They include
perspective projections of (rigid) objects moving in 3D (thus transforming un-
der the action of the euclidean group). They also include nonrigid transforma-
tions (think of changes of expression of a face or pose of a body): the memory-
based architecture described in part I can deal – exactly or approximately –
with all these transformations.

Remember that the hierarchical architecture has layers with receptive fields
of increasing size. The intuition is that transformations represented at each
level of the hierarchy will begin with “small” affine transformations – that is
over a small range of translation, scale and rotation. The “size” of the trans-
formations represented in the set of transformed templates will increase with
the level of the hierarchy and the size of the apertures. In addition it seems in-
tuitive that mostly translations will be represented for “small” apertures with
scale and orientation changes been relevant later in the hierarchy.

Let us be more specific. Suppose that the first layer consists of an array
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Figure 9: The conjecture is that receptive field sizes affects not only the size but also the type of
transformations that is learned and represented by the templates. In particular, small apertures
(such as in V1) only “see” (small) translations.

of “small apertures” – in fact corresponding to the receptive fields of V1 cells
– and focus on one of the apertures. We will show that the only transforma-
tions that can be “seen” by a small aperture are small translations, even if the
transformation of the image is more complex.

4.1.1 Translation approximation for small apertures

The purpose of this section is to show that a twice differentiable flow, when
perceived for a sufficiently short time through a sufficiently small aperture, is
well approximated by a translation.

Let I ⊆ R be a bounded interval and Ω ⊆ RN an open set and let Φ =
(Φ1, ...,ΦN ) : I × Ω → RN be C2, where Φ (0, .) is the identity map. Here RN
is assumed to model the image plane, intuitively we should take N = 2, but
general values of N allow our result to apply in subsequent, more complex
processing stages, for example continuous wavelet expansions, where the im-
age is also parameterized in scale and orientation, in which case we should
take N = 4. We write (t, x) for points in I × Ω, and interpret Φ (t, x) as the
position in the image at time t of an observed surface feature which is mapped
to x = Φ (0, x) at time zero. The map Φ results from the (not necessarily rigid)
motions of the observed object, the motions of the observer and the properties
of the imaging apparatus. The implicit assumption here is that no surface fea-
tures which are visible in Ω at time zero are lost within the time interval I . The
assumption that Φ is twice differentiable reflects assumed smoothness prop-
erties of the surface manifold, the fact that object and observer are assumed
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massive, and corresponding smoothness properties of the imaging apparatus,
including eventual processing.

Now consider a closed ball B ⊂ Ω of radius δ > 0 which models the aper-
ture of observation. We may assume B to be centered at zero, and we may
equally take the time of observation to be t0 = 0 ∈ I . Let

Kt = sup
(t,x)∈I×B

∥∥∥∥ ∂2

∂t2
Φ (t, x)

∥∥∥∥
RN

, Kx = sup
x∈B

∥∥∥∥ ∂2

∂x∂t
Φ (0, x)

∥∥∥∥
RN×N

.

Here (∂/∂x) is the spatial gradient in RM , so that the last expression is spelled
out as

Kx = sup
x∈B

(
N∑
l=1

N∑
i=1

(
∂2

∂xi∂t
Φl (0, x)

)2
)1/2

.

Of course, by compactness of I × B and the C2-assumption, both Kt and Kx

are finite.

Theorem 4. (Poggio-Maurer) There exists V ∈ RN such that for all (t, x) ∈ I ×B

‖Φ (t, x)− [x+ tV ]‖RN ≤ Kxδ |t|+Kt
t2

2
.

As one might suspect, the proof reveals this to be just a special case of Taylor’s
theorem.

Proof. Denote V (t, x) = (V1, ..., Vl) (t, x) = (∂/∂t) Φ (t, x), V̇ (t, x) =
(
V̇1, ..., V̇l

)
(t, x) =(

∂2/∂t2
)

Φ (t, x), and set V := V (0, 0). For s ∈ [0, 1] we have with Cauchy-
Schwartz∥∥∥∥ ddsV (0, sx)

∥∥∥∥2

RN
=

N∑
l=1

N∑
i=1

((
∂2

∂xi∂t
Φl (0, sx)

)
xi

)2

≤ K2
x ‖x‖2 ≤ K2

xδ
2,

whence

‖Φ (t, x)− [x+ tV ]‖

=
∥∥∥∥∫ t

0

V (s, x) ds− tV (0, 0)
∥∥∥∥

=
∥∥∥∥∫ t

0

[∫ s

0

V̇ (r, x) dr + V (0, x)
]
ds− tV (0, 0)

∥∥∥∥
=

∥∥∥∥∫ t

0

∫ s

0

∂2

∂t2
Φ (r, x) drds+ t

∫ 1

0

d

ds
V (0, sx) ds

∥∥∥∥
≤

∫ t

0

∫ s

0

∥∥∥∥ ∂2

∂t2
Φ (r, x)

∥∥∥∥ drds+ |t|
∫ 1

0

∥∥∥∥ ddsV (0, sx)
∥∥∥∥ ds

≤ Kt
t2

2
+Kx |t| δ.
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Of course we are more interested in the visible features themselves, than in
the underlying point transformation. If f : RN → R represents these features,
for example as a spatial distribution of gray values observed at time t = 0,
then we would like to estimate the evolved image f (Φ (t, x)) by a translate
f (x+ tV ) of the original f . It is clear that this is possible only under some
regularity assumption on f . The simplest one is that f is globally Lipschitz.
We immediately obtain the following

Corollary 1. Under the above assumptions suppose that f : RN → R satisfies

|f (x)− f (y)| ≤ c ‖x− y‖

for some c > 0 and all x, y ∈ RN . Then there exists V ∈ RN such that for all
(t, x) ∈ I ×B

|f (Φ (t, x))− f (x+ tV )| ≤ c
(
Kx |t| δ +Kt

t2

2

)
.

An example As a simple example we take rigid rotation with angular veloc-
ity ω about a point v in the image plane, observed in a neighborhood of radius
δ about the origin. Then

Φ (t, x1, x2) =
(

cos (ωt) − sin (ωt)
sin (ωt) cos (ωt)

)(
x1 − v1

x2 − v2

)
+
(
v1

v2

)
and with some calculation we obtain the bounds Kt ≤ ω2 (‖v‖+ δ) and Kx ≤√

2 |ω|. The error bound in the theorem then becomes

(‖v‖+ δ)ω2t2/2 +
√

2 |ω| tδ.

If we take v = 0, so that the center of rotation is observed , we see that we
considerably overestimate the true error for large t, but for t → 0 we also see
that we have the right order in δ and that the constant is correct up to

√
2.

A one-layer system comprising the full image (a large aperture) would require
a memory-based module to store all the transformations induced by all ele-
ments g of the full group of transformations at all ranges. Because this should
include all possible local transformations as well (for instance for an object
which is a small part of an image), this quickly becomes computationally infea-
sible as a general solution. A hierarchical architecture dealing with small, local
transformations first – which can be assumed to be affine (because of Lemma
4) – can solve this problem and may have been evolution’s solution for the ver-
tebrate visual system. It is natural that layers with apertures of increasing size
learn and discount transformations – in a sequence, from local transformations
to more global ones. The learning of transformations during development in a
sequence of layers with increasing range of invariance corresponds to the term
stratification.
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4.2 Linking conjecture: developmental memory is Hebbian

Summary. Here we introduce the hypothesis that memory of transformations during
development is Hebbian. Thus instead of storing a sequence of frame of a template
transforming, synapses store online updates due to the same sequences.

We introduce here a biologically motivated Linking Conjecture: instead of
explicitly storing a sequence of frames during development as assumed in Part
I, we assume that there is Hebbian-like learning at the synapses in visual cortex.
The conjecture consists of the following points:

Linking Conjecture

• The memory in a layer of cells (such as simple cells in V1) is stored in the
weights of the connections between the neurons and the inputs (from the
previous layers).

• Instead of storing a sequence of discrete frames as assumed in Part I,
online learning is more likely, with synaptic weights being incrementally
modified.

• Hebbian-like synapses exist in visual cortex.

• Hebbian-like learning is equivalent to an online algorithm computing
PCAs.

• As a consequence, the tuning of simple cortical cells is dictated by the
top PCAs of the templatebook, since Hebbian-like learning such as the
Oja flow converges to the top PCA.

The algorithm outlined in Part I, in which transformations are “learned”
by memorizing sequences of a patch undergoing a transformation, is an algo-
rithm similar to the existing HMAX (in which S2 tunings are learned by sam-
pling and memorizing random patches of images). Here we study a biologi-
cally more plausible online learning rule. Synapses change incrementally af-
ter each frame, effectively compressing information contained in the templates
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and possibly making signatures more robust to noise. Plausible online learn-
ing rules for this goal are associative Hebb-like rules which may lead synapses
at the level of simple-complex cells to match their tuning to the eigenvectors
of the templatebooks (Hebb-like are known to be online algorithms for learn-
ing the PCA of a set of input patterns). Thus the receptive field at each layer
would be determined by the transformations represented by the complex cells
pooling at each layer. Later we will discuss in some detail Oja’s rule[26] as an
example. It is not the only one with the properties we need but it is a sim-
ple rule and variations of it are biologically plausible. The key point for now
is that the conjecture links the spectral properties of the transformation being
represented in each layer to the spectral properties of the templatebook at each
level.

4.2.1 Hebbian synapses and Oja flow

The algorithm outlined in part I in which transformations are “learned” by
memorizing sequences of a patch undergoing a transformation is an algorithm
similar to the existing HMAX (in which S2 tunings are learned by sampling and
memorizing random patches of images and invariance is hardwired). A bio-
logically more plausible online learning rule is somewhat different: synapses
would change as an effect of the inputs, effectively compressing information
contained in the templates and possibly making signatures more robust to
noise. Plausible online learning rules for this goal are associative Hebbian-like
rules. As we will see later, Hebbian-like synaptic rules are expected to lead to
tuning of the simple cells according to the eigenvectors of the templatebooks.

We discuss here the specific case of the Oja’s flow. Oja’s rule [47, 26] defines
the change in presynaptic weights w given the output response y of a neuron
to its inputs to be

∆w = wn+1 −wn = η yn(xn − ynwn) (13)

where is the ”learning rate” and y = wTx. The equation follows from expand-
ing to the first order Hebb rule normalized to avoid divergence of the weights.
Its continuous equivalent is

ẇ = γ y(x− yw) (14)

Hebb’s original rule, which states in conceptual terms that ”neurons that
fire together, wire together”, is written as ∆w = η y(xn)xn, yielding synaptic
weights that approach infinity with a positive learning rate. In order for this
algorithm to actually work, the weights have to be normalized so that each
weight’s magnitude is restricted between 0, corresponding to no weight, and
1, corresponding to being the only input neuron with any weight. Mathemati-
cally, this requires a modified Hebbian rule:

wi(n+ 1) =
wi + η y(x)xi(∑m

j=1[wj + η y(x)xj ]p
)1/p

(15)
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of which Oja’s rule is an approximation.
Several theoretical papers on Hebbian learning rules show that selective

changes in synaptic weights are difficult to achieve without building in some
homeostatic or normalizing mechanism to regulate total synaptic strength or
excitability. In the meantime, homeostatic control of synaptic plasticity – corre-
sponding to the normalizing term in Oja equation – ([73]) is in fact experimen-
tally well established.

The above learning rules converge to the PCA with the largest eigenvalue
(see Appendix 24). It is a key conjecture of Part II of this paper that Oja’s
flow or some variation of it (with appropriate circuitry), may link the spectral
properties of the templatebook to receptive field tuning in visual areas. The
conjecture is based on Oja’s and other results, summarized by:

Proposition 10. The Oja flow (Equation 13) generates synaptic weights that converge
to the top real eigenvector of the input patterns covariance matrix, that is the covariance
matrix of the templatebook (in the noiseless case).

In principle, local invariance to translation can be achieved by averaging a
function over a number of Principal Components for each aperture (ideally all,
in practice a small number) corresponding to the “movie” of one transforma-
tion sequence. The PCA do in fact span the variability due to the transforma-
tion (translation in the case of simple cells): thus this average is equivalent to
averaging over frames of the templatebook, as described in Part I. An empirical
observation is that most of the PCA for the translation case appear as quadra-
ture pairs (this is also true for the other subgroups of the affine group since the
characters are always Fourier components). It follows that the energy aggrega-
tion function is locally invariant (because |eiωnx+θ| = 1) to the transformation
(see Figure 18).

In the hypothesis of Oja-type online learning, one possible scenario is that
that different simple cells which “look” at the same aperture converge to a
single top principal component. Several Oja-like learning rules converge to
principal components [62, 48]. In the presence of noise, different cells with
the same aperture may converge to different eigenvectors with the same eigen-
value (such as the odd and even component of a quadrature pair (see Figure
18). A complex cell then aggregates the square or the modulo of two or more
simple cells corresponding to different PCAs. Though diversity in the PCAs
to fit the observed RF of simple cells may come from online learning in the
presence of various types of noise, it is much more likely that there is lateral
inhibition between nearby simple cells to avoid that they converge to eigen-
vectors of the same order (nearby neurons may also be driven by local interac-
tion to converge to Gabor-like functions with similar orientation). In addition,
Foldiak-type learning mechanisms (see Appendix 24.2) mabe responsible for
wiring simple cells with the “same” orientation to the same complex cell.

It has been customary (for instance see [?] to state a single “slowness” max-
imization principle, formulated in such a way to imply both Oja’s-like learn-
ing at the level of simple cells and wiring of the complex cells according to a
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Foldiak-like rule. Though such a principle does not seem to reflect any obvi-
ous biological plasticity property, it cannot be excluded that a single biological
mechanisms – as opposed to a single abstract optimization principle – deter-
mines both the tuning of the simple cells and their pooling into complex cells.
In a similar spirit, simple cells may be a group of inputs on a dendritic branch
of a complex cell.

Notice that a relatively small hanges in the Oja equation give an online
algorithm for computing ICAs instead of PCAs [23]. Which kind of plasticity
is true biologically is an open question. We expect ICAs to be similar to PCAs
described here but not identical. Our spectral analysis would not carry over
to ICAs – at least not exactly – and instead direct simulations of the dynamic
online equations will have to be done.

Let us summarize the main implications of this section in terms of tem-
plates, signatures and simple and complex cells. Notice that the templatebook
T is a tensor with τi,j being an array. There are D PCA components for each
T: for instance retaining the first two PCA components shown in Figure 18
corresponds to replacing T with T̂ with 2 rows. From this point of view, what
do we expect it will happen during developmental learning using a Hebb-like
rule? Repeated exposure to stimuli sequences corresponding to the rows of the
T should induce, through the learning rule, simple cell tunings corresponding
for instance to the two PCA in quadrature pair of Figure 18. Simple cells tuned
to these Principal Components would be pooled by the same complex cell.

4.3 Spectral properties of the templatebook covariance opera-
tor: cortical equation

Summary. This section focuses on characterizing the spectral properties associated
with the covariance of the templatebook. It proposes a “cortical equation” whose so-
lution provides the eigenfunctions of the covariance. Hebbian synaptic rules imply
that during development the tuning of simple cells when exposed to inputs from the
retina will converge to the top eigenfunction(s). We start with the 1D analysis; the 2D
problem is somewhat more interesting because of the “symmetry breaking” induced by
motion.

We consider a layer of 2D “apertures” and the covariance of the template-
book associated with each aperture resulting from transformations of images
“seen” through one of these apertures. This will lead later to an explicit solu-
tion for the first layer in the case of translations.

For any fixed t we want to solve the spectral problem associated to the
templatebook:

Tt = (g0t, g1t, ..., g|G|t, ....)T

i.e. we want to find the eigenvalues λi and eigenfunctions ψi such that

T∗tTtψi = λiψi, i = 1, ..., N (16)

To state the problem precisely we need some definitions. We start first with the
1D problem for simplicity
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We show how to derive an analytical expression of the visual cortex cells
tuning based on the following hypothesis:

1. Observables: images, transforming by a locally compact group, looked
through an ”aperture” better specified later.

2. Hebbian learning: hebbian like synapses exists in visual cortex.

We fix few objects:

• X space of signals: L2(C, dx).

• T ⊆ X the template set.

We will solve the eigenproblem associated to the continuous version of (16): in
this case the basic observable given by the operator T : X → X

(TI)(y) ≡ [t ∗MaI](y) =
∫

dxt(y − x)a(x)I(x), t ∈ T , a, I ∈ X (17)

where
(MaI)(x) = a(x)I(x), a ∈ X

The equation (17) is the mathematical expression of the observable T i.e. a
translating template t looked through the function a which will be called the
aperture.

Remark 6. T is linear (from the properties of the convolution operator) and bounded
(from ‖T‖ = ‖F(T )‖ = ‖t‖ ‖a‖).
Remark 7. Ma is a selfadjoint operator.

The adjoint operator T ∗ : X → X is given by

〈TI, I ′〉 =
∫

dy Ī ′(y)
∫

dx t(y − x)a(x)I(x)

=
∫

dx I(x)a(x)
∫

dy t(y − x)Ī ′(y) = 〈I, T ∗I ′〉

which implies T ∗I = Ma(t− ∗ I), t−(x) = t(−x). Note that ‖t‖ = ‖t−‖ ⇒
‖T‖ = ‖T ∗‖, i.e. ‖T ∗‖ is bounded.
Assuming Hebbian learning we have that the tuning of the cortical cells is
given by the solution of the spectral problem of the covariance operator as-
sociated to T , T ∗T : X → X

[T ∗TI](y) = Ma[t− ∗ (t ∗ (MaI))](y) = Ma[(t− ∗ t) ∗ (MaI)](y)

= Ma(t~ ∗ (MaI)) = a(y)
∫

dx a(x)t~(y − x)I(x)

The above expression can be written as

[T ∗TI](y) =
∫

dx K(x, y)I(x), K(x, y) = a(x)a(y)t~(y − x).
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Being the kernel K Hilbert-Schmidt, i.e.

Tr(K) =
∫

dx K(x, x) =
∫

dx a2(x)t~(0) <∞

we have:

• the eigenfunctions corresponding to distinct eigenvalues are orthogonal.

• the eigenvalues are real and positive.

• there is at least one eigenvalues and one eigenfunctions (when K is al-
most everywhere nonzero) and in general a countable set of eigenfunc-
tions.

In the following paragraphs we aim to find ψn ∈ X and λn ∈ R such that

a(y)
∫

dx a(x)t~(y − x)ψn(x) = λnψn(y) (18)

and study their properties. In particular in the next paragraphs we are going to
find approximate solutions and show that they are a Gabor-like wavelets. An
exact solution in some particular cases can be found in the appendix 12.

Remarks

• Square aperture, circulants and Fourier
We start from the simplest discrete “toy” case in which we assume pe-
riodic boundary conditions on each aperture (one in a layer of receptive
fields) resulting on a circulant structure of the templatebook.

Define as templatebook T the circulant matrix where each column rep-
resents a template t shifted relative to the previous column. This corre-
sponds to assuming that the visual world translates and is “seen through
a square aperture” with periodic boundary conditions. Let us assume
in this example that the image is one dimensional. Thus the image seen
through an aperture

a(x) s.t. a(x) = 1 for 0 ≤ x ≤ A and a(x) = 0 otherwise

is t(x−y)a(x) when the image is shifted by y. We are led to the following
problem: find the eigenvectors of the symmetric matrix TTT where T is
a circulant matrix4. If we consider the continuous version of the problem,
that is the eigenvalue problem∫ A

0

dxψn(x)t~(y − x)dx = λnψn(y)

with t~(x) being the autocorrelation function associated with t. The so-
lution is ψn(x) = e−i2π

n
Ax which is the Fourier basis between 0 and A.

4This problem has also been considered in recent work from Andrew Ng’s group [63].

60



• Translation invariance of the correlation function of natural images

In the toy example above the two point correlation function t(x, y) has
the form t(x, y) = t(x − y) because of shifting the vector t. In the case
of natural images, the expected two-point correlation function is always
translation invariant even if the images are sampled randomly [61] (in-
stead of being successive frames of a movie). In 1-D there is therefore no
difference between the continuous motion case of one image translating
and random sampling of different natural images (apart signal to noise
issues). As we will see later, sampling from smooth translation is how-
ever needed for symmetry breaking of the 2D eigenvalue problem – and
thus convergence of the eigenfunctions to directions orthogonal to the
direction of motion.

• The sum of Gaussian receptive fields is constant if their density is large enough

What is
∑
G(x − ξi)? If

∑
G(x − ξi) ≈

∫
G(x − ξ)dξ then we know that∫

G(x− ξ)dξ = 1 for normalized G and for −∞ ≤ x ≤ ∞.

4.3.1 Eigenvectors of the covariance of the template book for the translation
group

As we mentioned, the linking conjecture connect the spectral properties to the
tuning of the cells during development. We study here the spectral properties
of the templatebook.
We consider a biologically realistic situation consisting of a layer of Gaussian
“apertures”. We characterize the spectral properties of the templatebook asso-
ciated with each aperture (corresponding to the receptive field of a “neuron”)
resulting from translations of images “seen” through one of these Gaussian
apertures. For the neuroscientist we are thinking about a Gaussian distribution
(wrt to image space) of synapses on the dendritic tree of a cortical cell in V 1 that will
develop into a simple cells.

Thus the image seen through a Gaussian aperture is t(x − s)g(x) when the
image is shifted by s. In the discrete case we are led to the following (PCA)
problem: find the eigenvectors of the symmetric matrix TTGTGT where G is a
diagonal matrix with the values of a Gaussian along the diagonal.

In the following we start with the continuous 1D version of the problem.
The 2D version of equation (18) (see remark 9) is an equation describing the

development of simple cells in V 1; we call it “cortical equation” because, as we
will see later, according to the theory it describes development of other cortical
layers as well.

Notice that equation (18)∫
dxg(y)g(x)ψn(x)t~(y − x) = λnψn(y)

holds for all apertures defined by functions g(x).
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Figure 10: Continuous spectrum of the covariance of the templatebook: Gabor-like eigenfunc-
tions for different σ

Remark 8. Eq. (18) can be easily written in the case x ∈ Y = L2(G, dg) being G a
locally compact group

[T ∗TI](g′) =
∫

dg K(g, g′)I(g), K(g, g′) = a(g)a(g′)t~(g−1g′), I ∈ Y, g, g′ ∈ G.

The convolution is now on the group G.

Remark 9. In 2D the spectral problem is:∫
dξdηg(x, y)g(ξ, η)t~(ξ − x, η − y)ψn(ξ, η) = λnψn(x, y). (19)

where t~ ≡ t~ t.

Numerical simulations in 1D show Gabor-like wavelets (see Figure 10) as
eigenfunctions. This result is robust relative to the exact form of the correlation
t~(x). Other properties depend on the form of the spectrum (the Fourier trans-
form of t~(x)). All the 1D simulations have been made (without any retinal
processing) directly with natural images – which roughly have t~(ω) ∝ 1

ω2 .
In particular, the figures 11, 12 show that (in 1D) the eigenfunctions of the

cortical equation show the key signature of true gabor wavelets in which the fre-
quency is proportional to the σ. Figure 13 shows that the Gaussian envelope is
smaller than the Gaussian aperture.

The following analysis of the eigenvalue equation provides some intuition
behind the results of the numerical simulations.
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Figure 11: Continuous spectrum: λ vs. σα for even symmetric patterns. The slope in this
figure is k where λ = kσα; k ∼ 2 in this figure.

Figure 12: Continuous spectrum: λ vs. σα for odd symmetric patterns. The slope is ∼ 2.4. In
1D, odd symmetric eigenfunctions tend to have a lower modulating frequency.
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Figure 13: Continuous spectrum: σα vs. σβ . The slope is ∼ 2. Though 1D, this is consistent
with experimental data from [25] and [60] shown in fig. 19 where the slope is also roughly 2.

1D: t~(ωx) approximately piecewise constant

We represent the template as:

t~(x) =
1√
2π

∫
dω t~(ω)eiωx (20)

and assume that the eigenfunction has the form ψ(x) = e−
β
2 x

2
eiωgx, where β

and ωg are parameters to be found.
With this assumptions eq. (18) reads:

1√
2π
e−

α
2 y

2
∫
dx e−

x2(α+β)
2

∫
dω t~(ω)eiω(y−x)eiwgx = λ(ωg)e−

βy2

2 eiωgy. (21)

Collecting the terms in x and integrating we have that the l.h.s becomes:√
1

α+ β
e−

α
2 y

2
∫
dω t~(ω)eiωye−

(ω−ωg)2

2(α+β) . (22)

With the variable change ω̄ = ω − ωg and in the hypothesis that t~(ω̄) ≈ const
over the significant support of the Gaussian centered in ω, integrating in ω̄ we
have: √

2π const e−
y2α

2 eiωgye−
y2(α+β)

2 ∼ λ(ωg)e−
y2β

2 eiωgy. (23)

Notice that this implies an upper bound on β since otherwise t would be white
noise which is inconsistent with the diffraction-limited optics of the eye.
The condition is that the above holds approximately over the relevant y interval
which is between−σβ and +σβ . The approximate eigenfunctions ψ1 (eg n = 1)
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has frequency ω0. the minimum value of ω0 is set by the condition thatψ1 has to
be roughly orthogonal to the constant (this assumes that the visual input does
have a dc component, which implies that there is no exact derivative stage in
the input filtering by the retina).

〈ψ0, ψ1〉 =
∫
dx e−βx

2
e−iω0x, → e−

(ω0)2

β ≈ 0 (24)

Using 2πf0 = 2π
λ0

= ω0 the condition above implies e−(
2πσβ)
λ0

)2 ≈ 0 which can

be satisfied with σβ ≥ λ0; σβ ∼ λ0 is enough since this implies e−(
2πσβ)
λ0

)2 ≈
e−(2π)2

.
A similar condition ensures more in general orthogonality of any pair of eigen-
functions.∫

dx ψ∗n(x)ψm(x) =
∫
dxe
− x2

σ2
β einω0xe−imω0x ∝ e−((m−n)ω0)2σ2

β ,

which gives a similar condition as above. this also implies that λ should in-
crease with σ of the Gaussian aperture, which is a property of gabor wavelets!.

2D t~(ωx, ωy) approximately piecewise constant

We represent the template after retinal processing (but without motion) as:

t~(x, y) =
1

2π

∫
dωxdωyt

~(ωx, ωy)ei(ωxx+ωyy) (25)

and assume the following ansatz: the eigenfunctions have the form ψ(x, y) =
e−

β
2 x

2
e−

γ
2 y

2
eiωgx, where β, γ and ωg are parameters to be found.

With this assumptions eq. 19 reads:

1
2π
e−

α
2 (x2+y2)

∫
dξdη e−

ξ2(α+β)
2 e−

η2(α+γ)
2

∫
dωxdωy t

~(ωx, ωy) (26)

eiωx(x−ξ)e−iωyηeiω
g
ξ ξ = λ(ωgx, ω

g
y)e−

γ
2 y

2
e−

βx2

2 eiω
g
xx (27)

Supposing t~(ωx, ωy) = t~(ωx)t~(ωy) and λ(ωgx, ω
g
y) = λ(ωgx)λ(ωgy) (which is

the case if the spectrum is piecewise constant) we can separate the integral into
the multiplication of the following two expressions:

1√
2π
e−

α
2 x

2
∫
dξ e−

ξ2(α+β)
2

∫
dωx t

~(ωx)eiω(x−ξ)eiω
g
ξ ξ = λ(ωgx)e−

βx2

2 eiω
g
xx

1√
2π
e−

α
2 y

2
∫
dη e−

η2(α+γ)
2

∫
dωy t

~(ωy)e−iωyη = λ(ωgy)e−
γ
2 y

2

The first equation is exactly the 1D problem analyzed in 4.3.1, meanwhile the
second is satisfied if γ = α.

Remark 10. note that σy ≤ σα and σy ≤ σx ≤ σα, that is the “receptive fields” are
elliptic Gaussians. This prediction is very robust wrt parameters and is clearly verified
by the experimental data on simple cells across different species.
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4.4 Retina to V1: processing pipeline

Summary. The image is processed by the retina and the LGN before entering V1.
Here we discuss how the spectrum of the image changes because of retinal processing.
The main properties of the eigenvectors do not depend on it but some of the important
quantitative properties – such as the linear relation between lambda and σ – do. The
question now is: what is the actual spectrum of t during development? Though
the main qualitative properties of the eigenvectors of the cortical equation do
not depend on it, the quantitative relations do, since the kernel of the inte-
gral eigenvalue equation depends on t. In this section we describe models of
processing in the retina up to V1 that affect the spectral properties of natural
images and thereby determine the actual spectrum of t. We should also note
that retinal waves may have a role in the development of cortex (c.f. [79]) in
which case the spectrum of t during development (or part of development)
may be independent of visual images and resemble more the simple case stud-
ied above of t = t0 + cos(ωx). It may be possible to expose developing animals
– for instance mice – to appropriately controlled artificial t,[15]. It is in any case
interesting to check what various choice of t may yield.

4.4.1 Spatial and temporal derivatives in the retina

Let us start with the observation that the retina performs both a DOG-like spa-
tial filtering operation as well as a high-pass filtering in time, roughly similar to
a time derivative, probably to correct the slow signals provided by the photore-
ceptors. Natural images have a 1

f spatial spectrum, bandlimited by the optical
point spread function at 60 cyclesdegree (in humans). Additional spatial low-pass fil-
tering is likely to take place especially during development (in part because of
immature optics).

This means that the spectrum of the patterns in the templatebook is spa-
tially bandpass, likely with a DC component since the DOG derivative-like
operation is not perfectly balanced in its positive and negative components.
The temporal spectrum depends on whether we consider the faster magno or
the slower parvo ganglion cells. The parvo or midget ganglion cells are likely to
be input to the V1 simple cells involved in visual recognition. It is possible that
the somewhat temporal high-pass properties of the retina and LGN (see [6])
simply correct in the direction of motion for the spatially low-pass components
of the output of the retina (see Figure 14).
Consider as input to V1 the result f(x, y; t) of an image i(x, y) with a spatial
power spectrum ∼ 1

ω2 filtered by the combination of a spatial low-pass filter
p(ω) and then a bandpass dog. In this simple example we assume that we
can separate a temporal filtering stage with a high-pass impulse response h(t).
Thus in the frequency domain

f(ωx, ωy;ωt) ∼ i(ωx, ωy;ωt)p(ωx, ωy)dog(ωx, ωy).

Assume that f(x, y, t) is then filtered through h(t). For example, let us see the
implications of h(t) ∼ d

dt . Consider the effect of the time derivative over the
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Figure 14: The sequence of processing stage from the retina with spatial low-pass and bandpass
(DOG) plus temporal d/dt derivative-like filtering to V1. Thus high-pass temporal filtering
compensates for the spatial blurring in the direction of motion.

signal generated by the translation of an image f(x−vt), where x, v are vectors
in r2:

d I
d t

= ∇I · v. (28)

assume for instance that the direction of motion is along the x axis, eg vy = 0.
Then

d I
d t

=
∂I

∂x
vx. (29)

Thus the prediction is that motion in the x direction suppresses spatial changes
in y, eg spatial frequencies in ωy , and enhances components orthogonal to its
direction. This means that the time derivative of a pattern with a uniform spa-
tial frequency spectrum in a bounded domain ω, as an effect of motion along
x, gives a templatebook with a spectrum in ω which reflects the transformation
and not only the spectrum of the image and the filtering of the retina: iωxf(ωx, ωy).
Notice that spatial and temporal filtering commute in this linear framework, so
their order (in the retina) is not important for the analysis. In particular, a high
pass time-filtering may exactly compensate for the spatial-low pass operation
in the direction of motion (but not in the orthogonal one). Interestingly, this argu-
ment is valid not only for translations but for other motions on the plane. From now
on, we assume the pipeline of figure 14. The 2D simulations are performed
with this pipeline using the low-pass filter of Figure 15.

Because of our assumptions, invariances to affine transformations are di-
rectly related to actual trajectories inR2 of the image while transforming. These
are flows on the plane of which a classification exist (see Appendix22). We
have the following result for the solution of the 2D eigenfunction equation in
the presence of oriented motion:
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Figure 15: Spatial lowpass filter 1/
√
ω2
x + ω2

y as implemented in the 2D simulations.

Lemma 2. Selection rule
Assume that a templatebook is obtained after the∇2g ◦ ∂

∂t filtering of a “video” gener-
ated by a transformation which is a subgroup of the affine group Aff(2,R). Then the
components in the image spectrum orthogonal to the trajectories of the transformations
are preferentially enhanced.

4.5 Cortical equation: predictions for simple cells in V1

Summary. The numerical simulations predict surprisingly well, almost without any
parameter fitting, quantitative properties of the tuning of simple cells in V1 across
different species.

Numerical simulations of the cortical equation in 2D using natural images
moving in one direction and the pipeline of Figure 14 show that the top eigen-
vectors are oriented Gabor-like wavelets. We are mostly interested in the top
three eigenvectors, since they are the ones likely to be relevant as solutions of
a Oja-type equation. Figures 16 and 17 shows that the solutions are very close
to actual Gabor wavelets. A number of other simulations (not shown here) to-
gether with the previous theoretical analysis suggests that the Gabor-like form
of the solution is robust wrt large changes in the form of the signal spectrum.

Some of the other more quantitative properties however seem to depend
on the overall shape of the effective spectrum though in a rather robust way. In
this respect the simulations agree with the astonishing and little known finding
that data from simple cells in several different species (see Figure 19) show very
similar quantitative features.

The most noteworthy characteristics of the physiology data are:

• the tuning functions show a λ proportional to σ which is the signature of
wavelets;
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Figure 16: For each row pair: the top row shows the Gabor fit, the bottom row shows the
eigenvector.
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Figure 17: 1D sections of the principal components sorted by eigenvalue (row) for different
Gaussian apertures (column). Red indicates best least square fit of a Gabor wavelet.

Figure 18: A vertical slice through a quadrature pair (1st and 2nd eigenvector) from Figure 16
.

70



Figure 19: Data from [25] (cat), [60] (macaque) and [46] (mouse). Here nx = σxf where σx
is the standard deviation of the Gaussian envelope along the modulated axis and f = 2π

λ
is the

frequency of the Gabor’s sinusoidal component. Likewise, ny = σyf where σy is the sigma of
the Gaussian envelope along the unmodulated axis.

• in particular λ is always finite;

• σy > σx always where x is the direction of motion and the direction of
maximum modulation.

The 2D simulations with the pipeline described earlier reproduce these
properties without any parameter fitting process. In particular, Figure 21 shows
that σy > σx. Figure 22 summarizes the main quantitative properties of the
simulations. Figure 23 shows that the simulations seem to be consistent with
the data across species. Notice that a better fitting may be obtainable with a
minimum of parameter optimization.

The form of the low-pass filtering – a spatial average that cancels the time
derivative in the direction of motion – seems to be important. When the filter is
replaced by a Gaussian low pass filter, the slope of λ wrt σ becomes too small
(see Appendix 17).

The image spectrum before the retinal processing matters. For instance,
if instead of natural images a white noise pattern is moved, the key properties
(see Figures 24 and 25 ) of the tuning functions are lost: λ is essentially constant,
independent of σ.

An interesting question arises about the actual role of motion in the de-
velopment of tuning in the simple cells. In our theoretical description, mo-
tion determines the orientation of the simple cells tuning. We cannot rule out
however the possibility that motion is not involved and orientations emerge
randomly (with orthogonal orientations for different eigenvectors, as in figure
26), in which different natural images, randomly chosen, were used as input
to the eigenvector calculation, instead of a motion sequence. It would be inter-
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Figure 20: Principal components of the template book. These are obtained observing 40 natural
images translate through Gaussian apertures. The pipeline consists of a Gaussian blur, a DoG
filter, a spatial low-pass filter 1/

√
ω2
x + ω2

y and an imperfect temporal derivative.

72



Figure 21: Width of the Gaussian envelope for the modulated and unmodulated directions.

esting to examine experimentally predictions of these two possible situations.
The first one predicts that all the eigenvectors generated for a simple cell dur-
ing development have the same orientation; the second predicts orthogonal
orientations during learning. Unfortunately, verifying this prediction is exper-
imentally difficult. There is however another property – the relation between
λ and σ – that distinguish these two mechanisms allowed by the theory. The
prediction from our simulations is that motion yields finite λ (see Figure 22)
whether absence of motion implies that some λ go to infinity (see Figures 26
and 27). Physiology data (see Figure 19) support then a key role of motion dur-
ing development! Further checks show that without motion λ can be infinite
even without spatial low pass filtering (see Appendix 18).

Remarks

• Gabor-like wavelets and motion We have seen that motion is not necessary to
obtain Gabor-like wavelets but is required for the right properties, such
as finite λ.

The story goes as follows. Originally the theory assumed that the covari-
ance of the 2D input has the form t~(x, y) = t~(y − x) with x ∈ R2 and
y ∈ R2 because of shifts in the input images (that is because of motion of
the recorded images).

However, it turns out that the empirical estimate of the covariance of
randomly sampled static images (assumed to be E[I(x)(y)] has the same,
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Figure 22: Summary plots for 2D simulations. Figures from top left to bottom right: a) sinu-
soid wavelength (λ) vs. Gaussian aperture width (σα). b) Sinusoid wavelength (λ) vs. Gaussian
envelope width on the modulated direction (σ). c) Gaussian envelope width for the modulated
direction (σ) vs. Gaussian aperture width (σα). d) Ratio between sinusoid wavelength and
Gaussian envelope width for the modulated direction (nx) vs. Gaussian aperture width (σα). e)
Ratio between sinusoid wavelength and Gaussian envelope width on the unmodulated direction
(ny) vs. ratio between sinusoid wavelength and Gaussian envelope width for the modulated
direction (nx). The pipeline consists of a Gaussian blur, a DOG filter, a spatial low-pass filter
1/
√
ω2
x + ω2

y and an imperfect temporal derivative. Parameters for all filters were set to values
measured in macaque monkeys by neurophysiologists.
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Figure 23: This figure shows the σ/λ ratio for the modulated and unmodulated direction of the
Gabor wavelet. Neurophysiology data from monkeys, cats and mice are reported together with
our simulations
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Figure 24: A white noise visual pattern is translated.
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Figure 25: Properties of the eigenfunctions for translation of a white noise pat-
tern.

shift-invariant structure without motion. For images of natural environ-
ments (as opposed to images of cities and buildings) the covariance is
approximately a radial function, eg t~(x, y) ≈ t~(||x − y||), therefore in-
variant for shifts and rotations. Scale invariance follows from the approx-
imate 1

ω2 power spectrum of natural images [70]. Further, natural images
have a power spectrum |I(ωx, ωy)|2 ≈ 1

ω2 , where ω = (ω2
x + ω2

y)−
1
2 . A

power spectrum of this form is invariant for changes in scale of the im-
age I(x, y) and is an example of a power law. A related open question
is whether these spectrum symmetries are reflected in the form of of the
eigenfunctions.

• The Appendix (section 15) collects a few notes about transformations and
spectral properties of them.

• The hypothesis explored here, given our pipeline containing a time deriva-
tive and PCA, is related to maximization of the norm of the time deriva-
tive of the input patterns (or more precisely a high-pass filtered version
of it). This is related to – but almost the opposite of – the “slowness”
principle proposed by Wiskott ([78, 10]) and made precise by Andreas
Maurer.

• Receptive fields size and eigenvalues distribution. Simple properties of the
eigenfunctions of integral operators of the Hilbert-Schmidt type imply
two rather general properties of the receptive fields in different layers as
a function of the aperture:

Proposition 11. (Anselmi, Spigler, Poggio)
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Figure 26: Eigenvectors of covariance matrix of scrambled set of images (same
as in Figure 16 but scrambled). There is no continuous motion. The orientation
of wavelets changes.
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Figure 27: As in the previous Figure. λ can be infinite since orthogonality wrt
to lower order eigenfunction is ensured by orthogonal orientation.
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Figure 28: Eigenvalues behavior as a function of the aperture for general Hilbert-Schmidt
integral operators.

– Under the assumption of a power spectrum of the form t(ω) ∝ 1
ω2 , the

eigenvalues obey the relation:

λi(σ)
λi(σ̄)

≥ 1, σ ≥ σ̄.

This suggests that the top eigenvalues are closer to each other for large
apertures, suggesting that in the presence of noise the eigenvector emerging
as the result of Oja’s flow may vary among the several top eigenvectors.

– The number of eigenfunctions depends on the size of the receptive field: this
also suggests that the variety of tunings increases with the size of the RFs.

4.6 Complex cells: wiring and invariance

Summary.We show that local PCA can substitute for templates in the sense that group
averages over nonlinear functions of the PCA may be invariant. This is true in partic-
ular for modulo square nonlinearities. The section analyzes the connection between the
simple complex cells stage of our theory with the first iteration of Mallat’s scattering
transform [42].

In the theory, complex cells are supposed to pool nonlinear functions of
(shifted) templates over a small bounded domain in x, y, representing a par-
tial group average. Clearly, pooling the modulo square of the top Gabor-like
eigenvectors over a x, y domain is completely equivalent (since the eigenvec-
tors are legitimate templates). Interestingly, pooling the modulo square of the
top Gabor-like wavelets is also equivalent to a partial group average over a
(small) domain. This can be seen (and proven) in a number of ways. The
intuition is that the Gabor-like eigenvectors capture the transformations seen
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through the Gaussian windows (exact reconstructions of all the frames can be
achieved by using all the eigenvectors; optimal L2 approximation by using a
smaller number). Thus pooling over the squares of the local eigenvectors is
equivalent to pooling the squares of the templates (eigenvectors are orthog-
onal), assuming that the templates are normalized, over the aperture used for
the eigenvector computation. This intuition shows that some invariance can be
obtained locally. In fact, local pooling of the modulo square (of simple cells at
the same x, y) increases invariance; extending the range of pooling to a domain
in x, y of course increases the range of invariance. Thus pooling over eigenvec-
tors In the case of Gabor wavelets the modulo square of the first quadrature
pair is sufficient to provide quite a bit of invariance: this is shown by a rea-
soning similar to Mallat’s [42]. The sum of the squares of the quadrature pair
is equal to the modulo of each complex wavelet which maps a bandpass fil-
ter portion of the signal into a low-pass signal. In the Fourier domain the low
pass signal is a Gaussian centered in 0 with the same σω as the wavelet (which
is roughly 1

2ω0, the peak frequency of the Fourier transform of the wavelet).
Thus a rapidly changing signal is mapped into a much slower signal in the
output of the C cells. There is in fact an almost perfect equivalence between
the simple complex stage of the theory here and the first iteration of the scat-
tering transform ([42]). We discuss related issues next.

4.6.1 Complex cells invariance properties: mathematical description

Let L2(G) = {F : G → R | ∫ |F (g)|2dg <∞}, and

Tt : X → L2(G), (Ttf)(g) = 〈f, Tgt〉 ,
where t ∈ X . It is easy to see that Tt is a linear bounded and compact5 operator,
if ‖Tgt‖ < ∞. Denote by (σi;u,vi)i the singular system of Tt, where (ui)i and
(vi)i are orthonormal basis for X and L2(G), respectively.

For σ : R→ Rmeasurable, define (complex response)

c : X → R, c(I) =
∑
i

σ(〈I, ui〉).

If σ(a) = |a|2, a ∈ R and Tt/bt is an isometry, where bt is a constant possibly
depending on t (see [18]), then c invariant. Indeed,

c(I) = ‖I‖2 =
1
b2t
‖TtI‖2L2(G) =

1
b2t

∫
| 〈I, Tgt〉 |2dg,

for all I ∈ X , and ‖TtI‖2L2(G) = ‖TtTg′I‖2L2(G) for all g′ ∈ G.

Example 5 (Affine Group). If G is the affine group and X = L2(R), then under the
admissibility condition ∫

| 〈Tgt, t〉 |2 <∞,
5In fact it is easy to see that T is Hilbert Schmidt, Tr(T ∗t Tt) =

∫
dg ‖Tgt‖
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it is possible to take bt =
√
Ct, with Ct = 2π

∫ |t̂(ω)|2
ω dω, where t̂ denotes the Fourier

transform of t.

4.6.2 Hierarchical frequency remapping

The theory so far does not provide information about the size of the receptive
fields for the first layer S and C cells. Here we sketch an approach to this
question which is related to section 9.4. A main difference is that we consider
here the specific case of templates being Gabor wavelets and of pooling being
energy pooling over a bounded interval. Thus we consider a partial group
average of the squares.

We begin by considering one dimensional “images”. Let the image I(x) ∈
X . To analyze I(x) we use a wavelet centered in ω0, x ∗ ψω0,σ0

where σ0 is
the width σ1s of the wavelet Gaussian envelope, that is of the envelope of the
simple cells impulse response at fist layer. There are several such channels cen-
tered on different frequencies and with corresponding σ resulting from Heb-
bian learning as described in previous sections such as 4.4.1. As an example
the highest frequency channel may be centered on a frequency ω0 that satisfies
ωmax ≤ ω0 + 3σ̂0 with max(supp(Î)) = ωmax.

The signal I can be reconstructed exactly – apart from its DC and low fre-
quencies around it – by combining a sufficiently large number of such bandpass
filters according to the identity

∫
G(ω − ω′)dω′Î(ω) = Î(ω).

The pooling operation, from simple to complex cells, starts with taking the
modulus square of the wavelet filtered signal. In Fourier space, the operation
maps the support of the Fourier transform of I ∗ ψω0,σ0

into one interval, cen-
tered in 0.

A one-octave bandwidth – that we conjecture is the maximum still yield-
ing full information with a low number of bits (see Appendix 11.1)) – implies
a certain size of the receptive field (see above) of simple cells. Complex cells
preserve information about the original image if the pooling region is in the or-
der of the support of the simple cells (thus in the order of 6σ), since we assume
that the sign of the signal is known (positive and negative parts of the signal
are carried by different neural channels, see Appendix 11.1). The same reason-
ing can be also applied to higher order simple cells learned on the 4-D cube
(see later) to obtain estimates of RF size at a fixed eccentricity. Interestingly,
these arguments suggest that if information is preserved by pooling (which is
not necessary in our case), then there the C cells pooling regions are very small
(in order of

√
2 the simple cells receptive fields): most of the invariance is then

due to the RF of simple cells and the pooling effect of the modulo square (sum
over quadrature pairs).

4.7 Beyond V1

Summary. We show that the V1 representation – in terms of Gabor-like wavelets in
x, y, θ, s – can locally approximate (within balls of radius r with r

R ≤ δ where R is
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the retinal eccentricity) similitude transformations of the image as independent shifts
in a 4-dimensional space (The subgroup of translations is a 2-parameter group (trans-
lations in x, y); the subgroup of rotations and dilations is also a two parameters group
(ρ, θ)). Thus learning on the V1 representation generates 4-dimensional wavelets. The
prediction seems consistent with physiology data. Assuming that R is retinal eccen-
tricity corresponds to assuming that most of the experienced and learned “rotations
and looming are centered in the fovea.

4.7.1 Almost-diagonalization of non commuting operators

Let us start from the fact that if (ei, i = 1, ..., N) is an orthonormal basis in any
finite Hilbert space, the matrix whose entries are ai,j = 〈Aei, ej〉 is diagonal if
and only if each ei is an eigenfunction of the operator A:

ai,j = 〈Aei, ej〉 = λi 〈ei, ej〉 = λiδi,j

If another operator B acting on the Hilbert space is such that [A,B] = 0 the
two operators share the same eigenfunctions and can therefore be simultane-
ously diagonalize. For example in the case of the Fourier basis {eixω we can
say that the Fourier transform diagonalize any operator that commutes with
translation.
What can we say if we have two commuting operators, A,B? In this case we
cannot have simultaneous diagonalization but choosing a basis ei of the Hilbert
space we have

〈Aei, ej〉 = ai,j + ∆(A)i,j
〈Bei, ej〉 = bi,j + ∆(B)i,j .

since the eigenvalues (the measurement results) cannot be determined with
infinite precision at the same time. In this case we can speak of almost si-
multaneous diagonalization of the operators A,B if there exists a basis ψi that
minimize simultaneously ∆(A)i,j ,∆(B)i,j , i 6= j. This corresponds to find the
set of functions ψ that minimize the uncertainty principle

(∆ψA)(∆ψB) ≥ 1
2
|[A,B]ψ|

Example 6. The Weyl-Heisenberg group in one dimension is generated by two non
commuting operators, the translation in frequency and space. The minimizers of the
associated uncertainty relations gives Gabor functions as solutions.

Example 7. The affine group in dimension two...

4.7.2 Independent shifts and commutators

(From [9])
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Theorem 5. Given two Lie transformation groups, Ta and Sb, acting on an image
f(x, y) ∈ L2(R2), there exists a representation of the image g(u, v), (u = u(x, y), v =
v(x, y)) such that

Lau = 1, Lbv = 0
Lbu = 0, Lav = 1

where (La,Lb) are the lie generators of the transformations, if La and Lb are linearly
independent and the commutator [La,Lb] = 0.

The last two equations state that, in the new coordinate system (u, v) the
transformations Ta and Sb are translations along the u and v axes, respectively
(and each translation is independent from the other).

Example 8. In the case we consider dilation and rotation transformations we have
that there exists a coordinate change such that, in that coordinate system rotations,
and dilations are translations being Lr independent from Lr and [Lr,Ld] = 0

4.7.3 Hierarchical wavelets: 4-cube wavelets

As a consequence of what found in the previous paragraphs a group trans-
formation in the image space X is a shift in the space L2(SIM(2)) where the
function cn(I) is defined. In this approximation the transformations at the sec-
ond layer can be written as direct product of translation group in the group
parameters:

G = R2 × S1 × R (30)

The same reasoning applied at the first layer for the the translation group can
be repeated: the eigenfunctions will be Gabor-like wavelets in the parameter
group space.
The theoretical considerations above imply the following scenario. In the first
layer, exposure to translations determines the development of a set of receptive
fields which are an overcomplete set of Gabor-like wavelets. The space of two-
dimensional images – functions of x, y – is effectively expanded into a 4-cube
of wavelets where the dimensions are x, y, θ, s, eg space, orientation and scale,
(see fig. 4.7.3).

The same online learning at the level of the second layer (S2) with apertures
“looking” at a Gaussian ball in x, y, θ, s will converge to Gabor-like wavelet af-
ter exposure to image translations, which induce translations in x, y of the 4-
cube. Informally, the signature of a patch of image at the first layer within the
aperture of a S2 cell will consist of the coefficients of a set of Gabor wavelets at
different orientations and scales; after processing through the S2 second order
wavelets and the C2 aggregation function it will be invariant for local transla-
tions within the aperture.

In the example above of x, y translation of the image, the second-order
wavelets are wavelets parallel to the x, y plane of the 4-cube. For image mo-
tion that include rotations and looming, the resulting motion in the 4-cube is
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Figure 29: Learning an S2 filter from C1 outputs (of a single scale only). Here the transfor-
mation is off-center rotation. The resulting S2 filters are Gabor filters in 3 dimensions: x; y, and
orientation. Left: the receptive field center is in the middle (central blue asterisk) but the center of
rotation is to the left (green asterisk). The green arrows show the speed of optical flow at various
places. Middle: the learned filters. Each row represents a single filter; since the filters are 3D,
we show a separate (x, y) plane for each orientation. However, in this view it is not easy to see
shifting along the orientation dimension. Right: here we show that the 3D Gabors also have a
sinusoidal component along the orientation dimension. We show a single slice, at the central X
position, for each filter. The slices are planes in (y, orientation).
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Figure 30: The strength of the response of single cells in V4 is indicated by pseudocolor for
each “non cartesian” pattern. Simulations compared to Gallant’s data.

mostly still locally a shift – but in general along a diagonal in the 4-cube. Thus,
in general, second-order wavelets are Gabor-like oriented along diagonals in
x, y, θ, s (apart from a minority of polar wavelets near the fovea, see below).

Of course, the argument above are recursive with higher levels behaving as
the second level. Not surprisingly, the tuning properties, seen from the image,
of higher order wavelets is more complex: for instance shifts in scale corre-
spond to receptive fields for which the preferred stimulus may be similar to
concentric circles.

The theory predicts that pooling within the 4-cube takes place over rela-
tively small balls in which rotations and expansions induce approximately uni-
form shifts in x, y together with uniform changes in orientations or scale. For
this to happen the radius of the ball has to decrease proportionally to the dis-
tance from the center of rotation. If this is assumed to be the fovea then we
derive the prediction that the size of receptive fields of complex cells should
increase linearly with eccentricity – a prediction consistent with data (see [12]).

Remarks

• Mallat also considers wavelets of wavelets [42]. In his case all the wavelets
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are in x, y only with orientation and scale as parameters, whereas in the
simple cells of V2 or higher we expect wavelets on x, y, orientation and
scale.

• V 1 (may be with V 2) diagonalize the affine group: how can we check this
prediction?

4.7.4 Predictions for V2, V4, IT

If during learning gaze is precisely maintained, then neurons which happen
to contain the center of rotation and looming could develop wavelets in polar
coordinates. The probability of this occurring is probably very low for any of
the small receptive fields in V1 but could be considerably higher for the larger
receptive fields in areas such as V4—close to the very center of the fovea. In
other words, in V2 and especially V4, some of the larger receptive fields could
contain the center of rotation or the focus of expansion. The corresponding
wavelets would be a mix of shifts in orientation and non-uniform translations
in x, y (circles around the center of rotation) with respect to the previous layer.
We expect quite a variety of wavelets – once projected back in image space.
This could explain variety of receptive fields seen in Gallant’s results [14].
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Shape Processing in V2 vs. V4*    Hegdé and Van Essen

14

to V2.  The percentage of cells responding better to complex contours than to bars was 
87% for V4 and 84% for V2, and the percentage for which this preference was significant 
was 36% for V4 and 37% for V2.

Together, the above results suggest that the differences between V2 and V4 
populations in their preferences for complex shapes are modest and are outweighed by 
the similarities.  Notably, the differences did not involve systematically greater 
preferences for more complex stimuli in V4 compared to V2.

Figure 5.  The effectiveness of the various stimulus subclasses for V4 vs. V2.  Each cell from either area 
was classified according the subclass to which its most effective grating or contour stimulus belonged.  The 
resulting distributions are shown here for grating stimuli (panel A) or contour stimuli (panel B) for both V4 
(top row) and V2 (bottom row; reformatted from Fig. 2 of Hegdé and Van Essen, 2000).  In each case, the 
filled bars denote cells for which the response to its most effective grating/contour stimulus was 
significantly larger than its response to the second most effective grating/contour stimulus.  The stimulus 
subclasses for which the actual proportion of cells significantly differed from the proportion expected from 
a uniform distribution at p < 0.05 (single asterisk) or at p < 0.01 (double asterisks) as determined by the 
binomial proportions test are shown.  The cases where the absence of filled bars was statistically significant 
are denoted by asterisks in black boxes above the corresponding bars.  Note that the tests of significance 
were performed using raw numbers, not percentages, although the data are plotted as percentages in this 
figure (and in subsequent figures where appropriate) to facilitate comparisons between the areas, all of 
which had different sample sizes.  In this and subsequent figures where appropriate, the exemplar cells in 
Figure 3A-D are denoted by the corresponding letters.

Figure 31: The effectiveness of the various stimulus subclasses for V4 vs. V2. Each cell from
either area was classified according the subclass to which its most effective grating or contour
stimulus belonged. The resulting distributions are shown here for grating stimuli (panel A) or
contour stimuli (panel B) for both V4 (top row) and V2. See [19].
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5 Part III: Class-specific transformations and mod-
ularity

5.1 Approximate invariance to non-generic transformations

Affine transformations are generic—invariance to them can be learned from
any template objects and applied to any test objects. Many other important
transformations do not have this property. Non-generic transformations de-
pend on information that is not available in a single image. Perfect invariance
to non-generic transformations is not possible. However, approximate invari-
ance can still be achieved as long as the template objects transform similarly to
the test objects. One view of this is to say that the missing information in the ob-
ject’s 2D projection is similar between template and test objects. For example,
3D rotation is a non-generic transformation—as a map between projected 2D
images it depends on the object’s 3D structure. If the template and test objects
have the same 3D structure then the transformation learned on the template
will apply exactly to the test object. If they differ in 3D structure then the error
incurred is a function of the difference between their 3D structures.

Many non-generic transformations are class-specific. That is, there is a class
of objects that are similar enough to one another that good (approximate) in-
variance can be achieved for new instances of the class by pooling over tem-
plates of the same type. Faces are the prototypical example of objects that have
many class-specifc transformations. Faces are all similar enough to one an-
other that prior knowledge of how a small set of faces transform can be used to
recognize a large number of new faces invariantly to non-generic transforma-
tions like 3D rotations or illumination changes. We can extend our notion of a
non-generic transformation even further and consider transformations that are
difficult to parameterize like facial expressions or aging.

5.2 3D rotation is class-specific

There are many non-generic transformations. As an illustrative example we
consider 3D rotation and orthographic projection along the z-axis of 3-space
with the center of projection Cp at the origin (see figure 32). In homogenous
coordinates this projection is given by

P =

1 0 0 0
0 1 0 0
0 0 0 1

 (31)

In 3D homogenous coordinates a rotation around the y-axis is given by

Rθ =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1

 (32)
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Figure 32: Consider a situation where the center of projection Cp is at the origin in R3 and
the projection is along the z-axis.

A homogenous 4-vectorX = (x, y, z, 1)ᵀ representing a point in 3D is mapped
to homogenous 3-vector x̃ = (x, y, 1)ᵀ representing a point on the image plane
by x̃ = PX . The composition of 3D rotation and orthographic projection is

PRθX =

 x cos(θ) + z sin(θ)
y
1

 (33)

Let tθ,z : R2 → R2 be the function that describes the 2D transformation of
the projection of one point undergoing a 3D rotation. Note: It depends on the
z-coordinate which is not available in the 2D image.

tθ,z :
(
x
y

)
7→
(

x cos(θ) + z sin(θ)
y

)
(34)

Let τ = {(xiτ , yiτ , ziτ , 1)ᵀ} be the set of homogenous 4-vectors representing
points on a 3D template object. Likewise, define the test object f = {(xi, yi, zi, 1)ᵀ}.
Assume that the two objects are in correspondence—every point in τ has a cor-
responding point in f and vice-versa.

Just as in part 1, we use the stored images of the transformations of τ to cre-
ate a signature that is invariant to transformations of f . However, in this case,
the invariance will only be approximate. The transformation of the template
object will not generally be the same as the transformation of the test object.
That is, tθ,zτ 6= tθ,z unless zτ = z.

If |z − zτ | < ε is the difference in z-coordinate between two corresponding
points of τ and F . The error associated with mapping the point in 2D using
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tθ,zτ instead of tθ,z is given by

‖tθ,z
(
x
y

)
− tθ,zτ

(
x
y

)
‖ < (ε sin(θ))2 (35)

5.2.1 The 2D transformation

So far this section has only been concerned with 3D transformations of a single
point. We are actually interested in the image induced by projecting a 3D object
(a collection of points). We define the rendering operator Pq[f ] that takes a set of
homogenous points in 3D and a texture vector q and returns the image map that
puts the corresponding gray value at each projected point.

Definition: Let f = {(xi, yi, zi, 1)ᵀ} be a set of N homogenous 4-vectors
representing points on a 3D object. Use the notation f i to indicate the i-th
element of f . Let q ∈ RN with qi ∈ [0, 1] for i = 1, ..., N be the vector of texture
values for each point of f . Let P be the orthographic projection matrix. Define
the map Pq[f ] : R2 → R such that ∀v ∈ R2:

Pq[f ](v) =

{
qi if v = Pf i

0 otherwise
(36)

Remark 1: This definition of the rendering function assumes uniform light-
ing conditions. To address the general case that would allow for variations
in gray value over the rendered image arising from the lighting direction this
function would also have to depend on the object’s material properties as well
as other properties of the scene’s lighting.

Remark 2: This definition leaves ambiguous the case where more than one
point of the object projects to the same point on the image plane (the case where
Pf i = Pf j for some i 6= j). For now we assume that we are only considering
objects for which this does not happen. We will have additional comments on
the case where self-occlusions are allowed below.

Analogously to the single point case, we can write the 2D transformation
Tθ,~z : L2(R2) → L2(R2) that maps an image of a 3D object to its image after a
3D rotation. It depends on a vector of parameters ~z ∈ RN .

Tθ,~z[Pq[f ]] = Pq[{Rθgi : i = 1, ..., N}] (37)

Where gi is obtained by replacing the z-component of f i with ~zi. Thus

Tθ,~z[Pq[f ]] = Pq[{Rθf i : i = 1, ..., N}] if ~zi = the z-component of f i (∀i)
(38)

Tθ,~z transforms individual points in the following way:

Tθ,~z[Pq[f ]]
(
x
y

)
= Pq[f ]

(
x cos(θ) + z sin(θ)

y

)
(39)
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We can bound the error arising from mapping the image using ~zτ obtained
from a template object τ = {(xiτ , yiτ , ziτ , 1)ᵀ}—different from the test object f .

If |ziτ − zif | < ε (∀i) then

‖Tθ, ~zτ [Pq[f ]]−Pq[{Rθf i : i = 1, ..., N}]‖ < ΣNi=1|ziτ sin(θ)−zif sin(θ)|2 = N(ε sin(θ))2

(40)

5.2.2 An approximately invariant signature for 3D rotation

We now consider a range of transformations Tθ, ~zτ for θ ∈ [−π, π]. As in part
1 we define the template response (the S-layer response) as the normalized dot
product of an image with all the transformations of a template image.

∆Tθ, ~zτ ,Pq [τ ](Pq[f ]) =

 < T−π, ~zτ [Pq[τ ]] , Pq[f ] >
...

< Tπ, ~zτ [Pq[τ ]] , Pq[f ] >

 (41)

In the affine case we have that ∆G,τ (f) = ∆G,f (τ) up to the ordering of the
elements. In that case this fact implies that the signature is invariant.

However, in the case of 3D rotation/projection the template response is
defined with respect to the 2D transformation that uses the parameters ~zτ ob-
tained from the z-coordinates of τ . Therefore the analogous statement to the
invariance lemma of part 1 is false.

In the case of 3D rotation / projection there is only approximate invariance.
How close of an approximation it is depends on to what extent the template
and test object share 3D structure. We have the following statement.

If for all stored views of the template τ , the difference between the z-coordinate of
each point and its corresponding point in the test object f is less than ε. That is, if

|ziτ − zif | < ε (∀i). (42)

Then there exists a permutation function S such that

S(∆Tθ, ~zτ ,Pq [τ ](Pq[f ]))−∆Tθ, ~zτ ,Pq [f ](Pq[τ ]) < N(ε sin(θ))2~1 (43)

This statement is not mathematically precise (we haven’t said how to define
the permutation function), but it is the approximate analog of the statement in
part I. From this it will follow that we can define an approximately invariant
signature. The approximate invariance of the signature defined in this way
depends on how similar the 3D structure of the template objects is to the 3D
structure of the test object. We will verify this claim empirically in the next
section.

Remark: On self-occlusions. Many 3D objects have multiple points that
project to the same point on the image plane. These are the places where one
part of the object occludes another part e.g. the back of a head is occluded by
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its front. Since 3D rotation brings different points into view it immediately fol-
lows that invariance to 3D rotation from a single 2D example image can never
be perfect. Consider: It is never possible to predict a tattoo on someone’s left
cheek from a view of the right profile. On the other hand, this does not nec-
essarily impact the approximate invariance obtained from templates aquired
from similar objects. For example, a lot can be said about the likely appear-
ance of the back of someone’s head from a view of the front—e.g. the hair and
skin color remain the same. This makes it difficult to precisely formulate an
approximate version of the invariance lemma (except for the unrealistic case of
objects with no self-occlusions). It does not impact empirical investigations of
class-specific invariance.

5.3 Empirical results on class-specific transformations

Class-specific transformations, like 3D rotation, can be learned from one or
more exemplars of an object class and applied to other objects in the class. For
this to work, the object class needs to consist of objects with similar 3D shape
and material properties. Faces, as a class, are consistent enough in both 3D
structure and material properties for this to work. Other, more diverse classes,
such as “automobiles” are not.

Figure 33 depicts an extension of the HMAX model that we used to empiri-
cally test this method of building signatures that are approximately invariant to
non-affine transformations. The signature at the top of the usual HMAX model
(C2 in this case) is not invariant to rotation in depth. However, an additional
layer (S3 and C3) can store a set of class-specific template transformations and
provide class-specific approximate invariance (see Figures 34 and 35).

Figures 34 and 35 show the performance of the extended HMAX model on
viewpoint-invariant and illumination-invariant within-category identification
tasks. Both of these are one-shot learning tasks. That is, a single view of a
target object is encoded and a simple classifier (nearest neighbors) must rank
test images depicting the same object as being more similar to the encoded
target than to images of any other objects. Both targets and distractors were
presented under varying viewpoints and illuminations. This task models the
common situation of encountering a new face or object at one viewpoint and
then being asked to recognize it again later from a different viewpoint.

The original HMAX model [66], represented here by the red curves (C2),
shows a rapid decline in performance due to changes in viewpoint and illu-
mination. In contrast, the C3 features of the extended HMAX model perform
significantly better than C2. Additionally, the performance of the C3 features
is not strongly affected by viewpoint and illumination changes (see the plots
along the diagonal in Figures 34I and 35I).

The C3 features are class-specific. Good performance on within-category
identification is obtained using templates derived from the same category (plots
along the diagonal in figures 34I and 35I). When C3 features from the wrong
category are used in this way, performance suffers (off-diagonal plots). In all
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Figure 33: Illustration of an extension to the HMAX model to incorporate class-specific
invariance to face viewpoint changes. Note: All simulations with this model (Figures 34, 35) use
a Gaussian radial basis function to compute the S2 and S3 layers as opposed to the normalized
dot product that is used in its S1 layer and elsewhere in this report.
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Figure 34: Viewpoint invariance. Bottom panel (II): Example images from three classes of
stimuli. Class A consists of faces produced using FaceGen (Singular Inversions). Class B is a
set of synthetic objects produced using Blender (Stichting Blender Foundation). Each object in
this class has a central spike protruding from a sphere and two bumps always in the same location
on top of the sphere. Individual objects differ from one another by the direction in which another
protrusion comes off of the central spike and the location/direction of an additional protrusion.
Class C is another set of synthetic objects produced using Blender. Each object in this class has
a central pyramid on a flat plane and two walls on either side. Individual objects differ in the
location and slant of three additional bumps. For both faces and the synthetic classes, there is
very little information to disambiguate individuals from views of the backs of the objects. Top
panel (I): Each column shows the results of testing the model’s viewpoint-invariant recognition
performance on a different class of stimuli (A,B or C). The S3/C3 templates were obtained from
objects in class A in the top row, class B in the middle row and class C in the bottom row.
The abscissa of each plot shows the maximum invariance range (maximum deviation from the
frontal view in either direction) over which targets and distractors were presented. The ordinate
shows the AUC obtained for the task of recognizing an individual novel object despite changes in
viewpoint. The model was never tested using the same images that were used to produce S3/C3
templates. A simple correlation-based nearest-neighbor classifier must rank all images of the
same object at different viewpoints as being more similar to the frontal view than other objects.
The red curves show the resulting AUC when the input to the classifier consists of C2 responses
and the blue curves show the AUC obtained when the classifier’s input is the C3 responses only.
Simulation details: These simulations used 2000 translation and scaling invariant C2 units
tuned to patches of natural images. The choice of natural image patches for S2/C2 templates had
very little effect on the final results. Error bars (+/- one standard deviation) show the results
of cross validation by randomly choosing a set of example images to use for producing S3/C3
templates and testing on the rest of the images. The above simulations used 710 S3 units (10
exemplar objects and 71 views) and 10 C3 units.
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Figure 35: Illumination invariance. Same organization as in figure 3. Bottom panel (II):
Example images from three classes of stimuli. Each class consists of faces with different light
reflectance properties, modeling different materials. Class A was opaque and non-reflective like
wood. Class B was opaque but highly reflective like a shiny metal. Class C was translucent like
glass. Each image shows a face’s appearance corresponding to a different location of the source
of illumination (the lamp). The face models were produced using FaceGen and modified with
Blender. Top panel (I): Columns show the results of testing illumination-invariant recognition
performance on class A (left), B (middle) and C (right). S3/C3 templates were obtained from ob-
jects in class A (top row), B (middle row), and C (bottom row). The model was never tested using
the same images that were used to produce S3/C3 templates. As in figure 3, the abscissa of each
plot shows the maximum invariance range (maximum distance the light could move in either
direction away from a neutral position where the lamp is even with the middle of the head) over
which targets and distractors were presented. The ordinate shows the AUC obtained for the task
of recognizing an individual novel object despite changes in illumination. A correlation-based
nearest-neighbor “classifier” must rank all images of the same object under each illumination
condition as being more similar to the neutral view than other objects. The red curves show the
resulting AUC when the input to the classifier consists of C2 responses and the blue curves show
the AUC obtained when the classifier’s input is the C3 responses only. Simulation details: These
simulations used 80 translation and scaling invariant C2 units tuned to patches of natural im-
ages. The choice of natural image patches for S2/C2 templates had very little effect on the final
results. Error bars (+/- one standard deviation) show the results of cross validation by randomly
choosing a set of example images to use for producing S3/C3 templates and testing on the rest of
the images. The above simulations used 1200 S3 units (80 exemplar faces and 15 illumination
conditions) and 80 C3 units.
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Figure 36: Layout of face-selective regions in macaque visual cortex, adapted from [13] with
permission.

these cases, the C2 features which encode nothing specifically useful for tak-
ing into account the relevant transformation perform as well as or better than
C3 features derived from objects of the wrong class. It follows that in order
to accomplish within-category identification, then the brain must separate the
circuitry that produces invariance for the transformations that objects of one
class undergo from the circuitry producing invariance to the transformations
that other classes undergo.

Object classes that are important enough to require invariance to non-generic
transformations of novel exemplars must be encoded by dedicated circuitry.
Faces are clearly a sufficiently important category of objects to warrant this
dedication of resources. Analogous arguments apply to a few other categories;
human bodies all have a similar 3D structure and also need to be seen and
recognized under a variety of viewpoint and illumination conditions, likewise,
reading is an important enough activity that it makes sense to encode the vi-
sual transformations that words and letters undergo with dedicated circuitry
(changes in font, viewing angle, etc). We do not think it is coincidental that, just
as for faces, brain areas which are thought to be specialized for visual process-
ing of the human body (the extrastriate body area [7]) and reading (the visual
word form area [4, 2]) are consistently found in human fMRI experiments (See
section 5.5).

5.4 The macaque face-processing network

In macaques, there are 6 discrete face-selective regions in the ventral visual
pathway, one posterior lateral face patch (PL), two middle face patches (lateral-
ML and fundus- MF), and three anterior face patches, the anterior fundus (AF),
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anterior lateral (AL), and anterior medial (AM) patches [71, 72]. At least some
of these patches are organized into a feedforward hierarchy. Visual stimulation
evokes a change in the local field potential ∼ 20 ms earlier in ML/MF than in
patch AM [13]. Consistent with a hierarchical organization involving informa-
tion passing from ML/MF to AM via AL, electrical stimulation of ML elicited
a response in AL and stimulation in AL elicited a response in AM [44]. In ad-
dition, spatial position invariance increases from ML/MF to AL, and increases
further to AM [13] as expected for a feedforward processing hierarchy.

Freiwald et al. (2010) found that the macaque face patches differ qualita-
tively in how they represent identity across head orientations. Neurons in the
middle lateral (ML) and middle fundus (MF) patches were view-specific; while
neurons in the most anterior ventral stream face patch, the anterior medial
patch (AM), were view invariant. Puzzlingly, neurons in an intermediate area,
the anterior lateral patch (AL), were tuned identically across mirror-symmetric
views. That is, neurons in patch AL typically have bimodal tuning curves e.g.,
one might be optimally tuned to a face rotated 45◦ to the left and 45◦ to the
right6 (see figure 37).

In Part II of this paper, we argued that Hebbian plasticity at the synapses
in visual cortex causes the tuning of the cells to converge to the eigenvectors of
their input’s covariance. In this section we demonstrate that the same theory,
when applied to class-specific layers, yields cells with properties that closely
resemble those of the cells in the macaque face-processing network.

5.4.1 Principal components and mirror-symmetric tuning curves

Define τ∗n,i as the i-th principal component (PC) of the templatebook obtained
from a single base template. For the following, assume that the templatebook
T is centered (we subtract its mean as a preprocessing step). The τ∗n,i are by
definition the eigenvectors of TᵀT: τ∗n,1 is the first PC acquired from the n-th
base pattern’s transformation, τ∗n,2 the second PC, and so on.

A frontal view of a face is symmetric about its vertical midline. Thus equal
rotations in depth (e.g., 45◦ to the left and 45◦ to the right) produce images that
are reflections of one another. Therefore, the templatebook T obtained from a
face’s 3D rotation in depth must have a special structure. For simplicity, con-
sider only “symmetric transformation sequences”, e.g., all the neural frames of
the rotation from a left 90◦ profile to a right 90◦ profile. For each neural frame
τn,t there must be a corresponding reflected frame in the templatebook that we
will indicate as τn,−t. It will turn out that as a consequence of its having this
structure, the eigenfunctions of the templatebook will be even and odd. There-
fore, the templates obtained from compressing the templatebook as though
they were neural frames, are symmetric or anti-symmetric images (see figure

6Freiwald and Tsao (2010) found that 92 of the 215 AL cells in their study responded at least
twice as strongly to one of the two full-profiles as to frontal faces. These profile-selective cells
responded very similarly to both profiles. A subsequent test using face stimuli at more orienta-
tions found that 43 of 57 cells had view tuning maps with two discrete peaks at mirror symmetric
positions.
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Figure 37: Figure from [13]. Tuning of AL cells to a head randomly rotated in three di-
mensions. (A) Illustration of stimulus head and three axes of rotation. (B) View tuning in
four typical cells. Tuning to up-down angle versus left-right angle (responses averaged across
picture-plane angle). (Middle) Tuning to up-down angle versus picture-plane angle (responses
averaged across left-right angle). (Bottom) Tuning to picture-plane angle versus left-right angle
(responses averaged across up-down angle). Marginal tuning curves are also shown (vertical
lines indicate tuning peak position).
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40).
LetR denote the reflection operatorR(τn,t) = τn,−t. For simplicity, consider

a templatebook that only contains one template τ and its reflection Rτ .
Let J denote the operator that takes a neural frame τ and returns the tem-

platebook consisting of τ and its reflection.

J = (I,R) (44)

J(τ) = T =
(
τ
Rτ

)
(45)

(46)

Thus

[JᵀJ ](Rτ) =
(
Rτ + τ
τ +Rτ

)
= R([JᵀJ ](τ)) (47)

Therefore R(JᵀJ) = (JᵀJ)R, (they commute). Thus JᵀJ and R must have
the same eigenfunctions. Since the eigenfunctions of R are even or odd func-
tions, the principal components of TᵀT must also be even and odd. Therefore,
since we use the absolute value of the normalized dot product of the input
with a template, both even and odd templates yield tuning curves that show
identical tuning to symmetric face views.

5.4.2 Models of the macaque face recognition hierarchy

We have shown that models of the ventral stream that compute a signature rel-
ative to the principal components of the templatebooks acquired from rotation
of template faces must contain an intermediate step with identical tuning to
symmetric face faces. We propose to identify patch AL with the the projection
onto principal components and patch AM with the subsequent pooling stage.

These considerations alone do not completely constrain a model of the ven-
tral stream. In order to demonstrate the working of these models and perform
virtual electrophysiology experiments to test the properties of the simulated
cells, we must make some other parameter and architectural choices. We inves-
tigated several model architectures. Each one corresponds to different choices
we made about the processing of the visual signal prior to face patch AL (see
figure 38).

At run time, cells in the S-PCA layer compute the absolute value of the
normalized dot product of their stored PC with the input. Each cell in the C-
PCA layer pools over all the cells in the S-PCA layer with PCs from the same
templatebook.

In the developmental phase, the S-PCA templates are acquired by PCA of
the templatebooks. Each templatebook contains all the (vectorized) images of
the rotation (in depth) of a single face. All the 3D models used to produce
training and testing images were produced by FaceGen7 and rendered with

7Singular Inversions Inc.
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Figure 38: Schematic of three possible models. Magenta: A model where the templatebooks
were raw pixels with no preprocessing. Blue: A model where the templatebooks were encoded in
an HMAX C1 layer (preprocessing with Gabor filtering and some limited pooling over position).
Green: A model where the templatebooks are encoded in the responses of an HMAX C2 layer
with large—nearly global—receptive fields and optimal tuning to specific views of faces.
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Figure 39: Sample tuning curves and principal components for the model that encodes all
inputs as HMAX C1 responses (the blue model in figures 38 and 41). Top row: the responses
of S-PCA layer cells to systematically varying the orientation of a randomly-chosen test face.
Below each tuning curve are 4 “slices” from the PC encoded by that cell. There are 4 slices
corresponding to each of the 4 orientations we used in the C1 layer (orientations shown in far
left column). The first and third PCs are clearly symmetric (even functions) while the second
is anti-symmetric (an odd function). These 3 PCs all came from the same templatebook (other
templatebooks give very similar results). They are ordered by their corresponding eigenvalue
with the largest eigenvalue on the left.

Blender8. Images of each face were rendered every 5 degrees, Each template-
book covered nearly the full range of orientations (0− 355◦).

Each experiment used 20 faces (templatebooks) in the developmental phase,
and 20 faces for testing. These training and testing sets were always indepen-
dent. No faces that appeared in the developmental phase ever appeared in the
testing phase.

Figure 41 compares three of these models to two different layers of the
HMAX model on a viewpoint-invariant face identification task. The proposed
model is considerably better able to recognize new views of a face despite
viewpoint changes. The results shown here use all the principal components
of each templatebook. In analogous simulations we showed that roughly the
same level of performance is achieved when only the first 5-10 PCs are used.

5.5 Other class-specific transformations: bodies and words

Many objects besides faces are nice in the sense that they have class-specific
transformations. Within the ventral stream there are also patches of cortex that

8The Blender foundation
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Figure 40: More sample principal components. These were obtained from a model that does
PCA directly on pixel inputs. They are the first 4 PCs obtained from the rotation of one head
from −90◦ to 90◦.
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Figure 41: Results from a test of viewpoint-invariant face identification. Test faces were pre-
sented on a black background. The task was to correctly categorize images by whether or not
they depict the same person shown in a reference image—despite changes in viewpoint. This is a
test of generalization from a single example view. The abscissa shows the maximum invariance
range (maximum deviation from the frontal view in either direction) over which targets and dis-
tractors were presented. The ordinate shows the area under the ROC curve (AUC) obtained for
the task of recognizing an individual despite changes in viewpoint (nearest neighbor classifier).
The model was never tested with any of the images that went into the templatebooks in the de-
velopmental phase. We averaged the AUC obtained from experiments on the same model using
all 20 different reference images and repeated the entire simulation (including the developmental
phase) 10 times with different training/test splits (for cross validation). The error bars shown
on this figure are 1 standard deviation, over cross validation splits. Magenta, blue and green
curves: results from the models that encoded templatebooks and inputs as raw pixels, HMAX
C1 responses, HMAX C2 (tuned to faces at different views) respectively. These are the same
models depicted in Figure 38. Red and black curves: Performance of the HMAXC1 and HMAX
C2 layers on this task (included for comparison).
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Figure 42: Left: Images of human bodies in various poses were used to train and test the
model. 1280 3D object models of human body were created with DAZ 3D Studio and one
256*256 pixel greyscale image was rendered from each object automatically with blender. The
1280 objects consisted of 40 differently shaped human bodies in 32 poses. The 40 bodies were
either male or female, had varying degrees of fatness, muscularity, and limb proportion. The
32 poses were natural, commonly encountered poses such as waving, running, leaning, and
clinging. Right: Performance of class-specific models and HMAX control models on a pose-
invariant body recognition task. 10 bodies were used for testing. The abscissa is the number of
bodies used to train the model. Performance was averaged over 10 cross-validation runs. The
error bars correspond to standard deviations of AUC values over the cross-validation runs.

show BOLD responses for non-face objects. These include regions that respond
to scenes—the parahippocampal place area (PPA) [8]—written words—the vi-
sual word form area (VWFA) [4], and bodies—the extrastriate body area (EBA)
and the fusiform body area (FBA) [7, 50]. Many of these regions were shown
to be necessary for recognition tasks with the objects they process by lesion
studies ([34, 45]) and TMS ([75, 52]. We have begun to study transformations
of two of these: bodies (different poses, actions) and printed words (changes
in font, viewing angle, etc.) (See also the preliminary report of our work on
scenes: [27]).

Figures 42 and 43 show the results of class-specific invariant recognition
tasks for bodies—identification of a specific body invariantly to its pose—and
words—font-invariant word recognition. In both cases, the models that em-
ploy class-specific features (they pooling over templates depicting different
bodies or different fonts) outperform control HMAX models. Additional de-
tails on these models will soon be available in forthcoming reports from our
group.

Remark: Throughout this report we have held temporal contiguity to be
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Figure 43: Words (4-grams) were chosen from a fixed alphabet of 4 letters. A nearest-neighbor
classifier ranked each image—of a word in a particular font—by its similarity to the image of
a reference word. Templatebooks were obtained from translated and font-transformed images
of single letters, bigrams and trigrams. Red, blue and green curves: These used a version of
the compression-based model described in part II of this report. Black curve: An HMAX C2
model with global pooling (for comparison). The S2 dictionary consisted of 2000 patches of
natural images. The abscissa is the number of partial words (bigrams and trigrams) used in
the templatebook. Error bars are +/- 1 standard deviation, over 5 runs of the simulation using
different randomly chosen bigrams, trigrams and testing words. This simulation used 4 different
fonts.
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an important cue for associating the frames of the video of an object’s trans-
formation with one another. That approach cannot be taken to learn these
body/word recognition models. The former model requires the association
of different bodies under the same pose and the latter requires the same words
(rather: partial words) to be associated under a variety of fonts. A temporal-
contiguity based learning rule could not be used to learn the pooling domains
for these tasks. Additionally, in other sensory modalities (such as audition) rec-
ognizing temporally extended events is common. It is not clear how temporal
contiguity-based arguments could apply in those situations.

5.6 Invariance to X and estimation of X

So far we have discussed the problem of recognition as estimating identity
or category invariantly to a transformation X – such as translation or pose or
illumination. Often however, the key problem is the complementary one, of
estimating X, for instance pose, possibly independently of identity. The same
neural population may be able to support both computations as shown in IT
recordings [22] and model simulations [64]. We are certainly able to estimate
position, rotation, illumination of an object without eye movements, though
probably not very precisely. In the ventral stream this may require the use of
lower-level signatures, possibly in a task-dependent way. This may involve
attention.

Figure 44 shows the results on the task of recognizing the pose—out of a
set of 32 possibilities—of a body invariantly to which body is shown. Notice
that low-level visual features (HMAX C1) work just as well on this task as the
class-specific features.
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Figure 44: Left: These simulations used the same images as the one in figure 42. Right:
Performance of class-specific models and HMAX control models on a body-invariant pose recog-
nition task. 10 poses were used for testing. The abscissa is the number of poses used to train the
model. Performance was averaged over 10 cross-validation runs. The error bars correspond to
standard deviations of AUC values over the cross-validation runs.

6 Discussion

This section gives first an overview of the various parts of the theory and then
summarizes some of its main ideas. We also discuss the new theory with re-
spect to the old model, list potential problems and weaknesses and finally dis-
cuss directions for future research.

• Part I presents a theory in which transformations are learned during develop-
ment by storing a number of templates and their transformations. Invariant
signatures can be obtained by pooling dot products of a new image with the
transformed templates over the transformations for each template. A hierarchi-
cal architecture of these operations provides global invariance and stability to
local deformations.

• Part II assumes that the storing of templates during biological development is
based on Hebbian synapses effectively computing the eigenvectors of the covari-
ance of the transformed templates. A cortical equation is derived which predicts
the tuning of simple cells in V1 in terms of Gabor-like wavelets. The predic-
tions agree with physiology data across different species. Instead of pooling a
template across its transformations, the system pools nonlinear functions, such
as modulo, of eigenfunctions. Furthermore, we show that the V1 representa-
tion diagonalizes the local representation (within balls of radius r with r

R ≤ k)
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of similitude transformations of the image as independent shifts in a 4D space.
Thus learning at higher layers generates 4D wavelets. The prediction may be
consistent with physiology data

• Part III shows that non-affine transformations on the image plane (such as the
image changes induced by 3D rotations of an object) can be well approximated
by the template and dot-product module described in Part I and II for certain ob-
ject classes, provided that the transformed templates capture class-specific trans-
formation. The theory explains several properties of faces patches in macaque
cortex. It also suggests how pooling over transformations can provide identity-
specific, pose-invariant representations whereas pooling over identities (tem-
plates) provides pose-specific, identity-invariant representations.

6.1 Some of the main ideas

There are several key ideas in the theoretical framework of the paper. We re-
count here ideas already mentioned in the paper.

1. We conjecture that the sample complexity of object recognition is mostly
due to geometric image transformations (e.g. different viewpoints) and
that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-
and-discount image transformations.

2. The most surprising implication of the theory emerging from these spe-
cific assumptions is that the computational goals and detailed properties
of cells in the ventral stream follow from symmetry properties of the visual
world through a process of correlational learning. The obvious analogy
is physics: for instance, the main equation of classical mechanics can be
derived from general invariance principles. In fact one may argue that
a Foldiak-type rule together with the physics of the world is all that is
needed by evolution to determine through developmental learning the
hierarchical organization of the ventral stream, the transformations that
are learned and the tuning of the receptive fields in each visual area.

3. Aggregation functions such as the modulo square or approximations of
it or the max (as in HMAX or in [30]) ensure that signatures of images are
invariant to affine transformations of the image and that this property is
preserved from layer to layer.

4. The theory assumes that there is a hierarchical organization of areas of the
ventral stream with increasingly larger receptive apertures of increasing
size determining a stratification of the range of invariances. At the small-
est size there are effectively only translations.

5. Another idea is that memory-based invariances determine the spectral
properties of samples of transformed images and thus of a set of tem-
plates recorded by a memory-based recognition architecture such as an
(extended) HMAX.
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6. Spectral properties of the input determine receptive field tuning via Hebbian-
like online learning rules that converge to the principal components of
the inputs.

7. Signatures from all layers access the associative memory or classifier mod-
ule and thus control iterations in visual recognition and processing. Of
course, at lower layers there are many signatures, each one in different
complex cell layer locations, while at the top layer there are only a small
number of signatures – in the limit only one.

The theory of this paper starts with this central computational problem in
object recognition: identifying or categorizing an object after looking at a sin-
gle example of it – or of an exemplar of its class. To paraphrase Stu Geman,
the difficulty in understanding how biological organisms learn – in this case
how they recognize – is not the usual n → ∞ but n → 0. The mathematical
framework is inspired by known properties of neurons and visual cortex and
deals with the problem of how to learn and discount invariances. Motivated
by the Johnson-Lindenstrauss theorem, we introduce the notion of a signature
of an object as a set of similarity measurements with respect to a small set of
template images. An invariance lemma shows that the stored transformations
of the templates allow the retrieval of an invariant signature of an object for
any uniform transformation of it such as an affine transformation in 2D. Since
any transformation of an image can be approximated by local affine transfor-
mations, corresponding to a set of local receptive fields, the invariance lemma
provides a solution for the problem of recognizing an object after experience
with a single image – under conditions that are idealized but hopefully cap-
ture a good approximation of reality. Memory-based hierarchical architectures
are much better at learning transformations than non-hierarchical architectures
in terms of memory requirements. This part of the theory shows how the hi-
erarchical architecture of the ventral stream with receptive fields of increasing
size (roughly by a factor of 2 from V1 to V2 and again from V2 to V4 and from
V4 to IT) could implicitly learn during development different types of transfor-
mations starting with local translations in V1 to a mix of translations and scales
and rotations in V2 and V4 up to more global transformations in PIT and AIT
(the stratification conjecture).

Section 4 speculates on how the properties of the specific areas may be de-
termined by visual experience and continuous plasticity and characterizes the
spectral structure of the templatebooks arising from various types of transfor-
mations that can be learned from images. A conjecture – to be verified with
simulations and other empirical studies – is that in such an architecture the
properties of the receptive fields in each area are mostly determined by the
underlying transformations rather than the statistics of natural images. The
last section puts together the previous results into a detailed hypothesis of the
plasticity, the circuits and the biophysical mechanisms that may subserve the
computations in the ventral stream.

In summary, some of the broad predictions of this theory-in-fieri are:
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• each cell’s tuning properties are shaped by visual experience of image
transformations during developmental and adult plasticity;

• the mix of transformations – seen from the retina – learned in each area
influences the tuning properties of the cells – oriented bars in V1+V2,
radial and spiral patterns in V4 up to class specific tuning in AIT (e.g.
face tuned cells);

• during evolution, areas above V1 should appear later than V1, reflect-
ing increasing object categorization abilities and the need for invariances
beyond translation;

• an architecture based on signatures that are invariant (from an area at
some level) to affine transformations may underly perceptual constancy
against small eye movements and other small motions9.

• invariance to affine transformations (and others) can provide the seed for
evolutionary development of “conceptual” invariances;

• the transfer of invariance accomplished by the machinery of the template-
books may be used to implement high level abstractions;

• the preceding sections stressed that the statistics of natural images do
not play a primary role in determining the spectral properties of the tem-
platebook and, via the linking theorem the tuning of the cells in specific
areas. This is usually true for the early areas under normal development
conditions. It is certainly not true if development takes place in a de-
prived situation. The equations show that the spectrum of the images
averaged over the presentations affects the spectral content, e.g. the cor-
relation matrix and thus the stationary solutions of Hebbian learning.

• In summary, from the assumption of a hierarchy of areas with receptive
fields of increasing size the theory predicts that the size of the recep-
tive fields determines which transformations are learned during devel-
opment and then factored out during normal processing; that the trans-
formation represented in an area determines the tuning of the neurons
in the area; and that class-specific transformations are learned and repre-
sented at the top of the hierarchy.

6.2 Extended model and previous model

So far in this paper, existing hierarchical models of visual cortex – eg HMAX –
are reinterpreted and extended in terms of computational architectures which
evolved to discount image transformations learned from experience. From this
new perspective, I argue that a main goal of cortex is to learn equivalence

9There may be physiological evidence (from Motter and Poggio) suggesting invariance of sev-
eral minutes of arc at the level of V1 and above.
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classes consisting of patches of images (that we call templates), associated to-
gether since they are observed in close temporal contiguity – in fact as a tempo-
ral sequence – and are therefore likely to represent physical transformations of
the same object (or part of the same object). I also conjecture that the hierarchy –
and the number of layers in it - is then determined by the need to learn a group
of transformations – such as the affine group. I prove that a simple memory-
based architecture can learn invariances from the visual environment and can
provide invariant codes to higher memory areas. I also discuss the possibil-
ity that the size of the receptive fields determines the type of transformations
which are learned by different areas of cortex from the natural visual world
– from local translations to local rotations and image-plane affine transforma-
tions up to almost global translations and viewpoint/pose/expression trans-
formations. Earlier layers would mostly represent local generic transforma-
tions such as translation and scale and other similitude transformations. Sim-
ilar considerations imply that the highest layers may represent class-specific
transformations such as rotations in depth of faces or changes in pose of bod-
ies.

• The present HMAX model has been hardwired to deal with 2 generic
transformations: translation and scale. The model performance on ”pure”
translation tasks is perfect (apart from discretization noise), while it de-
clines quickly with viewpoint changes (±20 degrees is roughly the in-
variance range).

• As mentioned several times, the theory assumes that signatures from
several layers can be used by the associative memory- classifier at the
top, possibly under attentional or top-down control, perhaps via cortical-
pulvinar-cortical connections.

• What matters for recognition is not the strong response of a population
of neurons (representing a signature) but the invariance of the response
in order to provide a signal, invariant as possible, to the classifier.

• Untangling invariance Getting invariance is easy if many examples of the
specific object are available. What is difficult is getting invariance from
a single example of an object (or very few). Many of the discussions of
invariance are confused by failing to recognize this fact. Untangling in-
variance is easy10 when a sufficiently large number of previously seen
views of the object are available, by using smooth nonlinear interpola-
tion techniques such as RBFs.

6.3 What is under the carpet

Here is a list of potential weaknesses, small and large, with some comments:

10apart from self-occlusions and uniqueness problems. Orthographic projections in 2D of the
group Aff(3,R) are not a group; however the orthographic projections of translations in x, y, z
and rotations in the image plane are a group.
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• “The theory is too nice to be true”. One of the main problems of the
theory is that it seems much too elegant – in the sense of physics – for
biology.

• Backprojections are not taken into account and they are a very obvious
feature of the anatomy, which any real theory should explain. Backpro-
jections and top-down controls are however implied by the present the-
ory. The most obvious limitation of feedforward architectures is recog-
nition in clutter and the most obvious way around the problem is the
attentional masking of large parts of the image under top-down con-
trol. More in general, a realistic implementation of the present theory
requires top-down control signals and circuits, supervising learning and
possibly fetching signatures from different areas and at different loca-
tions in a task-dependent way. An even more interesting hypothesis is
that backprojections update local signatures at lower levels depending on
the scene class currently detected at the top (an operation similar to the
top-down pass of Ullman). In summary, the output of the feedforward
pass is used to retrieve labels and routines associated with the image;
backprojections implement an attentional focus of processing to reduce
clutter effects and also run spatial visual routines at various levels of the
hierarchy.

• Subcortical projections, such as, for instance, projections to and from the
pulvinar, are not predicted by the theory. The present theory still is (un-
fortunately) in the “cortical chauvinism” camp. Hopefully somebody
will rescue it.

• Cortical areas are organized in a series of layers with specific types of cells
and corresponding arborizations and connectivities. The theory does not
say anything at this point about this level of the circuitry.

6.4 Directions for future research

6.4.1 Associative memories

In past work on HMAX we assumed that the hierarchical architecture performs
a kind of preprocessing of an image to provide, as result of the computation,
a vector (that we called “signature” here) that is then input to a classifier. This
view is extended in this paper by assuming that the signature vector is input to
an associative memory so that a number of properties of the image (and asso-
ciations) can be recalled. Parenthetically we note that old associative memories
can be regarded as vector-valued classifiers – an obvious observation.

Retrieving from an associative memory: optimal sparse encoding and recall There
are interesting estimates of optimal properties of codes for associative mem-
ories, including optimal sparsness (see [49, 54]). It would be interesting to
connect these results to estimated capacity of visual memory (Oliva, 2010).
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Weak labeling by association of video frames Assume that the top associative
module associates together images in a video that are contiguous in time (apart
when there are clear transitions). This idea (mentioned to TP by Kai Yu) relies
on smoothness in time to label via association. It is a very biological semi-
supervised learning, very much in tune with our proposal of the S:C memory-
based module for learning invariances to transformations and with the ideas
above about an associative memory module at the very top.

Space, time, scale, orientation Space and time are in a sense intrinsic to images
and to their measurement. It seems that the retina is mainly dealing with those
three dimensions (x, y, t), though x, y are sampled according to the sampling
theorem in a way which is eccentricity-dependent forcing in later cortical layers
the development of receptive field with a size which increases with eccentricity
(spacing in the lattice and scale of receptive fields increase proportionally to
∼ logr).

The theory assumes that at each eccentricity a set of receptive fields of dif-
ferent size (eg σ) exist during development at the level of developing simple
cells, originating a set of scales. It is an open question what drove evolution to
discover multiresolution analysis of the image. Given finite channel resources
– eg bandwidth, number of fibers, number of bits – there is a tradeoff between
size of the visual field and scale (defined as the resolution in terms of spa-
tial frequency cutoff). Once multiple scales are superimposed on space (eg a
lattice of ganglion cells in each x, y) by a developmental program, our theory
describes how the orientation dimension is necessarily discovered by exposure
to moving images.

6.4.2 Visual abstractions

• Concept of parallel lines Consider an architecture using signatures. Assume
it has learned sets of templates that guarantee invariance to all affine
transformations. The claim is that the architecture will abstract the concept of
parallel lines from a single specific example of two parallel lines. The argument
is that according to the theorems in the paper, the signature of the single
image of the parallel lines will be invariant to any affine transformations.

• Number of items in an image A classifier which learns the number five in
a way which is invariant to scale should be able to recognize five objects
independent of class of objects.

• Line drawings conjecture The memory-based module described in this pa-
per should be able to generalize from real images to line drawings when
exposed to illumination-dependent transformations of images. This may
need to happen at more than one level in the system, starting with the
very first layer (eg V1). Generalizations with respect to recognition of
objects invariant to shadows may also be possible.
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(A)

Figure 45: For a system which is invariant to affine transformations a single training
example (A) allows recognition of all other instances of parallel lines – never seen be-
fore.

.

6.4.3 Invariance and Perception

Other invariances in visual perception may be analyzed in a parallel way. An
example is color constancy. Invariance to illumination (and color opponent
cells) may emerge during development in a similar way as invariance to affine
transformations.

The idea that the key computational goal of visual cortex is to learn and ex-
ploit invariances extends to other sensory modalities such as hearing of sounds
and of speech. It is tempting to think of music as an abstraction (in the sense
of information compression a’ la PCA) of the transformations of sounds. Clas-
sical (western) music would then emerge from the transformations of human
speech (the roots of western classical music were based in human voice – Gre-
gorian chants).

6.4.4 The dorsal stream

The ventral and the dorsal streams are often portrayed as the what and the where
facets of visual recognition. It is natural to ask what the theory described here
implies for the dorsal stream.

In a sense the dorsal stream seems to be the dual of the ventral stream:
instead of being concerned about the invariances under the transformation in-
duced by a Lie algebra it seems to represent (especially in MST) the orbits of
the dynamical systems corresponding to the same Lie algebra.
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6.4.5 Is the ventral stream a cortical mirror of the invariances of the physical
world?

It is somewhat intriguing that Gabor frames - related to the “coherent” states
and the squeezed states of quantum mechanics - emerge from the filtering op-
erations of the retina which are themselves a mirror image of the position and
momentum operator in a Gaussian potential. It is even more intriguing that in-
variances to the group SO2×R2 dictate, according to our theory, the computa-
tional goals, the hierarchical organization and the tuning properties of neurons
in visual areas. In other words: it did not escape our attention that the theory
described here implies that the brain function, structure and properties reflect
in a surprising direct way the physics of the visual world.
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