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Abstract

In this work we discuss a regularization framework to solve multi-category when the classes are described
by an underlying class taxonomy. In particular we discuss how to learn the class taxonomy while learning a
multi-category classifier.

1 Introduction

Multi-category classification problems are central in a variety of fields in applied science: given a training set of
input patterns (e.g. images) labeled with one of a finite set of labels identifying different categories/classes, infer –
that is learn – the class of a new input. Within this class of problems the special case of binary classification has re-
ceived special attention since multi-category problems are typically reduced to a collection of binary classification
problems. A common approach is to learn a classifier to discriminate each class from all the others, the so called
one-vs-all approach.

The availability of new datasets with thousands (and even millions) of examples and classes, has triggered the
interest in novel learning schemes for multi-category classification. The one-vs-all approach does not scale as the
number of classes increases, since the computational cost for training and testing is essentially linear in the number
of classes. More importantly taxonomies that may lead to a more efficient classification are not exploited.

Several approaches have been proposed to address these shortcomings. A group of methods assume the class
taxonomy to be known: this includes approaches such as structured and multi-task learning (see for example
[13, 12]). In some applications it is possible that the taxonomy is available as a prior information, for example
In image classification taxonomies are often derived from databases such as WordNet [11]. Another group of
methods addresses the question of learning the taxonomy itself from data. Taxonomies can be learned separately
from the actual classification [8, 4], or, more interestingly, while training a classifier (see next sections).

The approach we develop here is of this second type. It is based on a mathematical framework which unifies
most of the previous approaches and allows to develop new efficient solutions. Key to our approach is the idea
that multi-category classification can be cast as vector valued regression problem where we can take advantage of
the theory of reproducing kernel Hilbert spaces. As we discuss in the following, our framework formalizes the
idea of class taxonomies using functional and geometric concepts, related to graphical models, while allowing us
to make full use of the tools from regularization theory.

The paper is organized as follows. We start recalling some basic concepts on reproducing kernel Hilbert spaces
for vector valued functions in Section 2. In Section 3 we first recall how a known taxonomy can be used to design
a suitable vector valued kernel, then we discuss how the taxonomy can be learned from data while training a
multi-category classifier. We end with some discussion and remarks in Section (4).
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2 Reproducing Kernel Hilbert Spaces for vector valued functions

Let X ⊆ Rp and Y ⊆ RT , we denote by 〈·, ·〉 the euclidean inner product in the appropriate space.

Definition 1. Let (H, 〈., .〉H) be a Hilbert space of functions from X −→ Y . A symmetric, positive definite, matrix valued
function Γ : X ×X −→ Y ×Y is a reproducing Kernel forH, if for all x ∈ X , c ∈ Y , f ∈ H we have that Γ(x, .)c ∈ H and
the following reproducing property holds

〈f(x), c〉 = 〈f,Γ(x, ·)c〉H .

In the rest of the paper we will consider for simplicity kernels of the form

Γ(x, x′) = K(x, x′)A,

where K is a scalar kernel on X and A a T × T positive semi-definite matrix, that we call the the taxonomy matrix.
In this case, functions inH, can be written using the kernel as f(x) =

∑d
i=1K(x, xi)Ac

f
i , where d ≤ ∞, with inner

product 〈f, g〉H =
∑d

i,j=1K(x, xi)
〈
cfi , Ac

g
j

〉
, and norm ‖f‖2H =

∑d
i,j=1K(x, xi)

〈
cfi , Ac

f
i

〉
.

As we discuss below, the taxonomy, when known, can be encoded designing a suitable taxonomy matrix A. If
the taxonomy is not known, it can be learned estimating A from data under suitable constraints.

3 A Regularization Approach

In this section we describe a regularization framework for multi-category classification when the categories have
an underlying taxonomy. First, we discuss the case where the taxonomy is known and show how such an infor-
mation can be incorporated in a learning algorithm. Seemingly different strategies can be shown to be equivalent
using our framework. Second, if the taxonomy is not known, we discuss how it can be learned while training a
multi-category classifier. Connection with other methods and in particular Bayesian approaches are discussed.

3.1 Classification with Given Taxonomy

We assume that A is given

f∗ = arg min
f∈H

{
1
n

n∑
i=1

V (yi, f(xi)) + λ‖f‖2H

}
, (1)

where the T class labels have been turned into vector codes using the encoding j 7→ ej , where ej is the canonical
basis in RT . The final classifier is obtained using the classification rule naturally induced by the coding, that is

arg max
j=1,...T

f∗j (x), (2)

where fj(x) = 〈f(x), ej〉. The role played by A and its design can be understood from different perspectives listed
below.

Kernels and Regularizers. A first insight is obtained by writing [10, 3]

‖f‖|2H =
T∑

t=1

T∑
t′=1

A†t,t′ 〈ft, ft′〉K ,

where 〈·, ·〉K is the inner product induced by K and A† is the pseudo-inverse of A. The entries of A or rather
A† encode the coupling of the different components. It is easy to see that the one-vs-all approach corresponds to
A†tt′ = δtt′ [3]. Different choice ofA induce couplings of the different classifiers ([12]). For example if the taxonomy
is described by a graph with adjacency/weight matrix W , one can consider the regularizer

T∑
j,t=1

Wj,t‖fj − ft‖2K + γ

T∑
t=1

‖ft‖2K , γ > 0 (3)
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which corresponds to A† = LW +γI where LW is the graph laplacian induced by W . We refer to [10, 3] for further
references and discussions.

Kernels and Coding. One could replace the standard coding (the one using the canonical basis) with a different
coding strategy ([8],[13])

i 7→ bi, bi ∈ RL,

where the code B = {b1, . . . , bT } reflects our prior knowledge on the class taxonomy. For example if the classes are
organized in a tree we can define (bi)j = 1 if node j is parent of leaf i and (bi)j = −1 otherwise. Then L is given by
T plus the number of nodes minus the number of leafs. In this case one would choose A = I and the classification
rule (2) would be replaced by a different strategy that will depend on B. In fact it is easy to show that the above
approach is equivalent to using the standard coding and A = BB>, where B is the T × L matrix of code vectors.
On the contrary, any matrix A can be written as A = UΣU> and the rows of Σ1/2U define a taxonomy dependent
coding.

Kernels and Metric. One can encode prior information on the class taxonomy by defining a new metric on RT by
the inner product

y>By′,

and choosing A = I , see for example [11]. This is equivalent to taking the canonical inner product in RT and
A = B.

3.2 Learning the Taxonomy while Training a Classifier

Next we consider the situation where A is not known and needs to be learned from data. The idea is to replace (1)
with

min
A∈A

min
f∈HA

{
1
n

n∑
i=1

V (yi, f(xi)) + λ‖f‖2HA

}
, (4)

where we wrote HA in place of A to emphasize the dependence on A. Here A is a set of constraints reflecting our
prior beliefs about the class taxonomy we want to learn. We give several examples.

Spectral Regularization We considerA = {A | A ≥ 0, ‖A‖p ≤ 1}, where ‖A‖p are different matrix norms encoding
different prior and A ≥ 0 denotes the positive semi-definiteness constraint. For example we may consider the the
trace norm Tr(A), forcing A to be low rank.

Information-Theoretic Regularization. A different set of constraints is given by A = {A ≥ 0, D(A, I) = Tr(A) −
log(det(A)) ≤ 1}. The above set of constraints can be derived from a probabilistic/information theoretic argument
[6]. From a regularization perspective, one can see that, the constraint use a convex constraint Tr(A) and a strictly
convex term − log(det(A)).

Sparse Graph. ([9, 4]) A natural constraint while consider the regularizer (3) is that of imposing the underlying
graph to be sparse. To do this we consider a family of taxonomy matrices parameterized by the weight matrix W
subject to a sparsity constraint, i.e.

A = {A | A ≥ 0, A† = LW ,W ∈ W}, with W = {W | ‖W‖1 ≤ 1,Wii = 0,Wij ≥ 0}, (5)

and ‖W‖1 =
∑

i,j Wi,j .

The approach described so far is related to previous work such as [2, 9] which is in the same spirit. Connection
with graphical models estimation are discussed in the next section.
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3.3 Connections to Unsupervised Learning of Graphical Models

A (Gaussian) graphical model is described by a T -dimensional multivariate normal distribution with mean µ and
covariance Σ; it is well known that any i, j component is conditionally independent if the corresponding entry of
the inverse covariance matrix satisfies (Σ−1)i,j = 0. The estimate of the Gaussian graphical model, from N sample
with empirical covariance S requires the estimation of a sparse approximate inverse covariance Θ by minimizing
the functional

Tr(ΘS)− log(det(Θ)) + ‖Θ‖1 . (6)

This functional can be derived from a Bayesian perspective, see for example [5] and references therein.
The approach outlined so far can be used to learn a taxonomy (before training a classifier), if for each category

a feature description is available. Each feature can then be seen as an observation of a T -dimensional normal
distribution, T being the number of categories. This is the point of view taken in [4] (see also [7]).

A feature description of the classes is almost equivalent to the taxonomy matrixA. It is natural to ask what may
be done when such a feature description is not available. We propose here that for available supervised data we can
leverage the indirect knowledge of the input-output relation to learn the taxonomy. To see the connection to (6) it
is useful to rewrite (4) in the following way. For simplicity let us consider the case whereK is a linear kernel. Then,
given a taxonomy matrixA, the functions in the corresponding vector valued RKHS can be written as f(x) = WAx,
where 1 WA is a T × p matrix which depends on A and the corresponding norm is ‖f‖2HA

= Tr(W>AWA). In the
case of the square loss, the simple change of variable WA = A†W leads to (4)

min
W∈∈RT×p

{
1
n
‖Y −WX‖2F + λmin

A∈A
Tr(W>A†W )

}
, (7)

where, due to the re-parameterization, the minimization over A is only over the regularization term.
We can see now how the problem of Equation (6) is related to Equation (7)– and hence to Equation (4) when

A = {A ≥ 0 | Tr(A) − log(det(A)) ≤ 1}. By Solving (7) we use the input output data to estimate a matrix W
which capture how the classes are related. At the same time A is learned to give a better estimate of the taxonomy
information encoded in W . The two estimation problems depend on each other: the best prediction is sought
while estimating the best taxonomy. We end noting that more complex priors can be considered and that they
will correspond to more complex regularizers. For example one can show that the hierarchical Bayesian prior
considered in [4] corresponds exactly to the regularizer in (5).

4 Discussion

In this paper we describe a framework for solving multi-category classification when there is an underlying tax-
onomy. In particular, we discuss how to learn simultaneously a classifier and the underlying class taxonomy. The
proposed framework has some interesting properties:

• It leads to a unified view of several seemingly different algorithms, clarifying the connection between regu-
larization approaches and other methods such as graphical models.

• A few computational advantages follow from the approach described here. In the case when the matrix A
is known (1), we can prove [3] that, for a large class of convex loss functions, the computational cost for
training a multi-category classifier is the same as a binary classification problem. In the case of the problem
of Equation (4) it is possible to prove that for a large class of loss functions and for broad sets of constraints,
the corresponding optimization problem is convex and can be solved efficiently, using ideas from [1].

• Finally, since the problem is cast in a regularization framework, the analysis of the sample complexity of the
algorithms can be studied in a unified way.

1Note that by definition we have f(x) =
∑d

i=1
〈xi, x〉Aci =

∑d

i=1

∑p

j=1
xj

i xjAci =
∑p

j=1
xj
∑d

i=1
xj

i Aci so that W ′ has columns∑d

i=1
xj

i Aci.
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