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Abstract

This is a collection of information about regularized least squares (RLS). The facts here are
not “new results”, but we have not seen them usefully collected together before. A key goal
of this work is to demonstrate that with RLS, we get certain things “for free”: if we can
solve a single supervised RLS problem, we can search for a good regularization parameter
λ at essentially no additional cost.
The discussion in this paper applies to “dense” regularized least squares, where we work
with matrix factorizations of the data or kernel matrix. It is also possible to work with
iterative methods such as conjugate gradient, and this is frequently the method of choice for
large data sets in high dimensions with very few nonzero dimensions per point, such as text
classifciation tasks. The results discussed here do not apply to iterative methods, which
have different design tradeoffs.
We present the results in greater detail than strictly necessary, erring on the side of showing
our work. We hope that this will be useful to people trying to learn more about linear
algebra manipulations in the machine learning context.

1 Notation and Basics

We are given data points S = {(X1, Y1), . . . , (Xn, Yn)}. We define Si to be the data set with the ith point
removed: Si = {(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn)}. We let X simultaneously refer to the
set {X1, . . . , Xn} and to the n by d matrix whose ith row is Xt

i .

We assume a positive semidefinite kernel function k, which generalizes the notion of dot product in a
Reproducing Kernel Hilbert Space (RKHS) [1, 6]. Commonly used kernels include:

linear: k(Xi, Xj) = Xt
i Xj

polynomial: k(Xi, Xj) = (Xt
i Xj + 1)d

gaussian: k(Xi, Xj) = exp
(
||Xi −Xj ||2

σ2

)
The polynomial order d or gaussian bandwidth σ must be specified by the user. We define the kernel matrix
K to satisfy Kij = k(Xi, Xj). Abusing notation slightly, we allow the kernel function k to take multiple
data points and produce a matrix of results: k(X, X) = K, and, given an arbitrary point X∗, k(X, X∗) is a
column vector whose ith entry is k(Xi, X∗).

We note that the linear kernel (also called the dot-product kernel) has special computational properties,
which we discuss in Section 5.

Given a square matrix M , diagm(M) denotes the diagonal matrix satisfying diagm(M)ii = Mii, and diagv(M)
the column vector satisfying diagv(M)i = Mii. We abuse notation somewhat by assuming that fractional
division is done elementwise, so a vector divided by a vector yields another vector.



We use the standard convention that I represents an identity matrix of the appropriate size (we occasionally
index the size of the matrix for clarity, e.g. In), and ei represents a column vector with a 1 in the ith position
and zeros elsewhere.

2 RLS Basics

RLS arises as a Tikhonov minimization problem [2] with a square loss:

min
f∈H

1
2

n∑
i=1

(f(Xi)− Yi)2 +
λ

2
||f ||2K . (1)

The representer theorem [7, 5] guarantees that the solution to (1) can be written as

f =
n∑

i=1

cik(Xi, ·),

for some c ∈ Rn. Using basic properties of RKHS [1, 6], we can therefore rewrite (1) as

min
c∈Rn

1
2
||Y −Kc||22 +

λ

2
ctKc.

Setting the derivative with respect to c to zero, we see that c must satisfy

(K + λI)c = Y.

We note that c exists and is unique: K is positive semidefinite, so K + λI is positive definite (for λ > 0).
We define G(λ) = K + λI. Frequently, λ will be clear from context, and we just write G.

The predictions at the training points will be given by

f(X) = Kc = K(K + λI)−1Y = KG−1Y,

and the prediction at a new test point X∗ is:

f(X∗) =
∑

cik(Xi, X∗)

= k(X, X∗)tc

= Y tG−1k(X, X∗).

Note that we are not suggesting forming G−1 explicitly and manipulating it; we discuss computation below.

3 Leave-one-out computations

In general, we need some mechanism for finding a “good” value of the regularization parameter λ. We
are usually interested in finding a function that does well on future examples. Since the distribution over
examples is unknown, this is not that easy. One method is to use a “holdout” set: we try a bunch of values
of λ, and for each value, we compute the performance the holdout (also called the development) set, and
choose the λ that does best on it. If we have enormous quantities of data, a holdout set is a good option. If
we have relatively few data points, we might like to use leave-one-out values instead.

The ith leave-one-out value is fSi(Xi), the value of the RLS function trained on Si applied at Xi. The ith
leave-one-out error is Yi − fSi(Xi). We define LOOV and LOOE to be the vectors of leave-one-out values
and errors over the training set. ||LOOE||22 is considered a good empirical proxy for the error on future
points, and we often want to choose parameters by minimizing this quantity.1 In this section, we develop
tools for working with LOOE and LOOV for RLS. We will see that for RLS, working with LOOE and

1It is possible to overfit by doing this, but in practice it is often quite effective. Note that combining minimizing
||LOOE|| with feature selection on the entire dataset can overfit disastrously — in general, if we are minimizing
||LOOE||, we must be able to “form” fSi without looking at Xi at all.
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LOOV are computationally effective. Note that this material supersedes Section 3.3 of [4], which contains
several typos.

We consider two different approaches (really two different views of the same approach) for finding leave-one-
out values. The first approach can be seen in many references, such as [4] or [3]. The second approach, which
demonstrates that leave-one-out RLS computations can be treated as augmented linear systems, is (to our
knowledge) an original development by the authors.

3.1 The Direct Approach

Imagine we knew fSi . Define the vector Y i via

Y i
j =

{
Yj j 6= i

fSi(Xi) j = i

If we solve (1) but replace Y with Y i, the optimal solution will be fSi . This is easy to see — if we solve a
smaller problem by discarding the ith example entirely, we will get fSi , and adding the example (Xi, fSi(Xi))
adds nothing to the cost. More formally, for any f ∈ H,

1
2

n∑
j=1

(Y i
j − f(Xi))2 +

λ

2
||f ||2K ≥ 1

2

∑
j 6=i

(Y i
j − f(Xi))2 +

λ

2
||f ||2K

≥ 1
2

∑
j 6=i

(Y i
j − fSi(Xi))2 +

λ

2
||fSi ||2K

=
1
2

n∑
j=1

(Y i
j − fSi(Xi))2 +

λ

2
||fSi ||2K .

We note in passing that this result is much more general than what we’ve just written: we did not use the
fact that we are optimizing an RKHS norm, or the specific form of the square loss — we used only that the
square loss allows us to “construct” a Y value with loss zero.

The above derivation makes it clear that for RLS, we can define the expansion coefficients for fSi via
ci = G−1Y i, and therefore

fSi(Xi) = (KG−1Y i)i.

Note that this is all theoretical so far, because in order to form Y i, we need to know fSi(Xi). However,
assuming we have solved RLS, and therefore computed fS(X) = KG−1Y , we can derive a nice expression
for fSi(Xi):

fSi(Xi)− fS(Xi) =
∑

j

(KG−1)ij(Y i
j − Yj)

= (KG−1)ii(fSi(Xi)− Yi),

which leads immediately to

fSi(Xi) =
fS(Xi)− (KG−1)iiYi

1− (KG−1)ii

=
(KG−1Y )i − (KG−1)iiYi

1− (KG−1)ii
.

Therefore,

LOOV =
KG−1Y − diagm(KG−1)Y

diagv(I −KG−1)
,

LOOE = Y − LOOV

= Y +
diagm(KG−1)Y −KG−1Y

diagv(I −KG−1)
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=
diagm(I −KG−1)Y
diagv(I −KG−1)

+
diagm(KG−1)Y −KG−1Y

diagv(I −KG−1)

=
Y −KG−1Y

diagv(I −KG−1)
. (2)

We can simplify our expressions in a way that leads to better computational and numerical properties by
noting that

KG−1 = QΛQtQ(Λ + λI)−1Qt

= QΛ(Λ + λI)−1Qt

= Q(Λ + λI − λI)(Λ + λI)−1Qt

= I − λG−1.

Substituting into our expression for LOOE yields

LOOE =
Y −KG−1Y

diagv(I −KG−1)

=
Y − (I − λG−1)Y

diagv(I − (I − λG−1))

=
λG−1Y

diagv(λG−1)

=
G−1Y

diagv(G−1)

=
c

diagv(G−1)
.

3.2 The Augmented Linear System Approach

Suppose we consider the augmented optimization problem

min
c∈Rn,β∈R

1
2
||Y −Kc− βei||22 +

λ

2
ctKc.

While it is not immediately obvious, we will now proceed to show that solving this n+1 variable optimization
problem yields the ith LOO error.

Taking the derivative of the augmented problem with respect to c and β shows that the solution is given by
the solution of the augmented linear system[

K + λI ei

et
iK 1

] [
c
β

]
=

[
Y

et
iY

]
.

We begin with an intuitive argument. From inspection of either the original augmented problem of the linear
system, it is obvious that β will take the value Y − (Kc)i = Yi − et

iKc. Using this fact, the top row of our
augmented linear system can be rewritten as

(K + λI)c + ei(Yi − et
iKc) = Y(

(I − eie
t
i)K + λI

)
c = Y − eiYi.

Consider the ith equation in the above system. The ith row of (I − eie
t
i)K is zero, and the ith element on

the right hand side is also zero. Therefore λci = 0, and we conclude that ci = 0. It is now clear that the
remaining c’s must be the RLS solution over the other n − 1 points, and that β is a “readout” of the ith
RLS error.

We can also easily derive the actual value of the LOO error. We take the top equation in the linear system
and multiply it (on the left) by −et

iK(K + λI)−1, yieding

−et
iKc− et

iK(K + λI)−1eiβ = et
iK(K + λI)−1Y.
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We add this to the bottom equation, obtaining(
1− et

iK(K + λI)−1ei

)
β = Yi − et

iK(K + λI)−1Y

β =
Yi − et

iK(K + λI)−1Y

1− et
iK(K + λI)−1

,

which is the result we derived in Equation 2.

4 Searching for λ is free

For a single value of λ, we can solve RLS by solving the linear system (2). In Matlab, we would do this
with the ’slash’ operator, rather than explicitly forming the inverse. However, usually we do not know a
good value of λ in advance. We will therefore make use of the eigendecomposition K = QΛQt, where Λ is
diagonal with Λii ≥ 0 and QQt = I. We now see that

G = K + λI

= QΛQt + λI

= Q(Λ + λI)Qt,

which of course implies G−1 = Q(Λ + λI)−1Qt.

It takes O(n3) time to compute the eigendecomposition.2 Asymptotically, this is no slower than solving a
single linear system, although the constant is worse by maybe a factor of 4. Once we have this eigendecom-
position, we can find c for a given λ in O(n2) time by solving

c(λ) = Q(Λ + λI)−1QtY,

noting that (Λ + λI) is diagonal, so multiplying the vector QtY by its inverse is a linear time operation.
Once we have c, we can also get the predictions Kc in O(n2) time.

Furthermore, we can compute a single entry of G(λ)−1 in O(n) time:

G−1
ij = (Q(Λ + λI)−1Qt)ij

=
n∑

k=1

QikQjk

Λkk + λ
,

and therefore we can compute diag(G−1), and compute LOOE, in O(n2) time.

In conclusion, it takes O(n3) to solve a single RLS problem for c. If we compute an eigendecomposition of
K, we can compute c(λ) and ||LOOE(λ)|| over a quite fine grid of λ, at basically no additional cost.

5 The Linear Case

We now discuss the special case of a linear kernel k(Xi, Xj) = Xi · Xt
j . We assume throughout this section

that we are in Rd, with d < n. (If d > n, we are better off ignoring the linearity, and working with the n by
n kernel matrix).

It is easy to see that with a linear kernel, the function we are learning is linear as well:

f(x) = ctk(X, x)
= ctXx

= wtx,

2In practice, to machine precision. In theory, finding an exact eigendecomposition is as hard as exactly finding
the roots of an arbitrary polynomial.
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where we define the hyperplane w to be Xtc. We can classify new points in O(d) time, using w, rather than
having to compute a weighted sum of n kernel products (which will usually cost O(nd) time).

In the nonlinear case, there is basically only one technique available: to work with the eigendecomposition
of K. In the linear case, we have two options. The first is to work with the singular value decomposition of
X and to compute leave-one-out values. The second is to work with the eigendecomposition of XtX and to
use a hold-out set to validate λ.

5.1 The SVD Approach

Suppose that we only have a moderate amount of data (n is not too large), and we want to compute
leave-one-out values to validate λ. Then we can work with the SVD of X.

The economy-size SVD of X can be written as X = USV t, with U ∈ Rn×d, S ∈ Rd×d, V ∈ Rd×d,
U tU = V tV = V V t = Id, and S diagonal and positive definite. (Note that UU t 6= In). In Section 3 we
derived an expression for the leave-one-out error in terms of c and G−1. In the linear case, we can use the
SVD to express these quantities directly in terms of X, rather than K:

K = XXt = (USV t)(V SU t) = US2U t

K + λI = US2U t + λIn

=
[

U U⊥

] [
S2 + λId

λIn−d

] [
U t

U t
⊥

]
= U(S2 + λId)U t + λU⊥U t

⊥

= U(S2 + λId)U t + λ(In − UU t)
(K + λI)−1 = (US2U t + λIn)−1

=
( [

U U⊥

] [
S2 + λId

λIn−d

] [
U t

U t
⊥

] )−1

=
[

U U⊥

] [
S2 + λId

λIn−d

]−1 [
U t

U t
⊥

]
= U(S2 + λI)−1U t + λ−1U⊥U t

⊥

= U(S2 + λI)−1U t + λ−1(I − UU t)
= U

[
(S2 + λI)−1 − λ−1I

]
U t + λ−1I

c = (K + λI)−1Y

= U
[
(S2 + λI)−1 − λ−1I

]
U tY + λ−1Y

G−1
ij =

d∑
k=1

UikUjk[(Skk + λ)−1 − λ−1] + [i = j]λ−1

G−1
ii =

d∑
k=1

U2
ik[(Skk + λ)−1 − λ−1] + λ−1

LOOE =
c

diagv(G−1)

=
U

[
(S2 + λI)−1 − λ−1I

]
U tY + λ−1Y

diagv(U [(S2 + λI)−1 − λ−1I]U t + λ−1I)
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5.2 The SVD Approach, Direct Derivation

We can obtain the same results via an alternate derivation, which we include for pedagogical purposes.
Suppose we phrase the RLS problem directly in terms of w, rather than c:

min
w∈Rd

L(w) =
1
2
||Y −Xw||22 +

λ

2
||w||22.

Taking the derivative with respect to w,

∂L

∂w
= XtXw −XtY + λw,

and setting to zero implies

w = (XtX + λI)−1XtY

= V (S2 + λI)−1V tXtY

(= V (S2 + λI)−1V t(V SU t)Y )
(= V S(S2 + λI)−1U tY )

Define w\i to be the hyperplane obtained when we remove the ith training point and train on the remaining
n− 1 points (the linear analog of fSi). Defining Y i as before,

min
w∈Rn

1
2

∑
j

(Y i
j − wtxj)2 + λ||w||22 ≥ min

w∈Rn

1
2

∑
j 6=i

(Y i
j − wtxj)2 + λ||w||22

=
1
2

∑
j 6=i

(Y i
j − wt

\ixj)2 + λ||w\i||22

=
1
2

∑
j

(Y i
j − wt

\ixj)2 + λ||w\i||22,

so w\i “solves” RLS with Y replaced with Y i, and

w\i = (XtX + λI)−1XtY i.

Precisely analogously to the nonlinear case,

(w\i − w)txi =
(
(XtX + λI)−1Xt(Y i − Y )

)t
xi

= (Y i − Y )tX(XtX + λI)−1xi

= (wt
\ixi − yi)xt

i(X
tX + λI)−1xi,

which implies

wt
\ixi =

wtxi − yix
t
i(X

tX + λI)−1xi

1− xt
i(XtX + λI)−1xi

.

Therefore,

LOOE = Y − Xw − diagm(X(XtX + λI)−1Xt)Y
diagv(I −X(XtX + λI)−1Xt)

= Y − X(XtX + λI)−1XtY − diagm(X(XtX + λI)−1Xt)Y
diagv(I −X(XtX + λI)−1Xt)

=
Y −X(XtX + λI)−1XtY

diagv(I −X(XtX + λI)−1Xt)
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Noting that

X(XtX + λI)−1Xt = USV t(V S2V t + λI)−1V SU t

= US2(S2 + λI)−1U t

= U [S2 + λI − λI](S2 + λI)−1U t

= UU t − λU(S2 + λI)−1U t

I −X(XtX + λI)−1Xt = I − λU(λ−1I)U t + λU(S2 + λI)−1U t

= λ
(
λ−1I + U

[
(S2 + λI)−1 − λ−1I

]
U t

)
,

we can derive the same expression for LOOE as we did in the previous section.

5.3 The covariance matrix approach

If we require only w and not the LOO values, we need only the V and S pieces of the SVD. These can
be computed from the eigendecomposition of the (nonstandarized) covariance matrix XtX, which is only
d by d. Furthermore, computation of this matrix is fairly easily parallelizable. For very large datasets in
moderate numbers of dimensions, this is probably the method of choice.

6 Conclusions

The interplay of the RLS algorithm with simple matrix factorization techniques yields extremely efficient
algorithms. For both linear and nonlinear RLS, in the same (asymptotic) time it takes to solve a single
problem, we can find a good λ using LOO cross-validation. For linear RLS, we have an additional option of
using a validation set, which can be even faster in practice.

The primary disadvantage of nonlinear RLS is the need to work with the entire kernel matrix, which is n by
n. There have been many attempts to approximate the entire function using an expansion over a subset of
the data points. We leave the extension of the methods contained here to this case for future work.
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