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Abstract

Many studies have uncovered evidence that visual cortetastnspecialized re-
gions involved in processing faces but not other objectselas Recent electro-
physiology studies of cells in several of these specialiegibns revealed that at
least some of these regions are organized in a hierarchaahen with viewpoint-
specific cells projecting to downstream viewpoint-invatiaentity-specific cells
[1]. A separate computational line of reasoning leads tethien that some trans-
formations of visual inputs that preserve viewed objechfig are class-specific.
In particular, the 2D images evoked by a face undergoing ad#&tion are not
produced by the same image transformation (2D) that wowddyme the images
evoked by an object of another class undergoing the same t@ifiom. How-
ever, within the class of faces, knowledge of the image fomnmsation evoked
by 3D rotation can be reliably transferred from previousigwed faces to help
identify a novel face at a new viewpoint. We show, through patational sim-
ulations, that an architecture which applies this methodaifing invariance to
class-specific transformations is effective when restddb faces and fails spec-
tacularly when applied to other object classes. We argue thet in order to
accomplish viewpoint-invariant face identification fromsimgle example view,
visual cortex must separate the circuitry involved in digsding 3D rotations of
faces from the generic circuitry involved in processingaotbbjects. The resulting
model of the ventral stream of visual cortex is consistetti wie recent physiol-
ogy results showing the hierarchical organization of tloe farocessing network.

1 Introduction

There is increasing evidence that visual cortex contaséie patches involved in processing faces
but not other objects [2, 3, 4, 5, 6, 7]. Though progress has lpeade recently in characterizing
the properties of these brain areas, the computational-leason the brain adopts this modular
architecture has remained unknown.

In this paper, we propose a new computational-level expilaméor why visual cortex separates face

processing from object processing. Our argument does gatreeus to claim that faces are auto-

matically processed in ways that are inapplicable to objéxiy. gaze detection, gender detection)
or that cortical specialization for faces arises due to gl expertise [8], though the perspective
that emerges from our model is consistent with both of th&sms.

We show that the task of identifying individual faces in atimglly viewpoint invariant way from

single training examples requires a separate neural triycspecialized for faces. The crux of this
identification problem involves discounting transforroat of the target individual’'s appearance.
Generictransformations e.g, translation, scaling and 2D in-pleanation can be learned from any
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Figure 1: Layout of face-selective regions in macaque VisoeX, adapted from [1] with permis-
sion.

object class and usefully applied to any other class [9]. eDtransformations which argass-
specifi¢ include changes in viewpoint and illumination. They depen the object’s 3D structure
and material properties both of which vary between — but rititiv— certain object classes. Faces
are the protoypical example of such a class where the ingidbjects are similar to each other.
In this paper, we describe a method by which invariance tssefpecific transformations can be
encoded and used for within-class identification. The tegymodel of visual cortex must separate
the representations of different classes in order to aetgewd performance.

This analysis is mainly computational but has implicatiforsneuroscience and psychology. Sec-
tion 2 of this paper describes the recently discovered tdkieal organization of the macaque face
processing network [1]. Sections 3 and 4 describe an exterisian existing hierarchical model

of object recognition to include invariances for classesipetransformations. The final section ex-
plains why the brain should have separate modules and sdtateproposed computational model
to physiology and neuroimaging evidence that the brain duwksed separate face recognition from
object recognition.

2 The macaque face recognition hierarchy

In macaques, there are 6 discrete face-selective regidhg wentral visual pathway, one posterior
lateral face patch (PL), two middle face patches (laterdl-and fundus- MF), and three anterior
face patches, the anterior fundus (AF), anterior later&) (And anterior medial (AM) patches [5, 4].
At least some of these patches are organized into a feedfvierarchy. Visual stimulation evokes
a change in the local field potential 20 ms earlier in ML/MF than in patch AM [1]. Consistent with
a hierarchical organization involving information pagsinom ML/MF to AM via AL, electrical
stimulation of ML elicited a response in AL and stimulationAL elicited a response in AM [10].

The firing rates of cells in ML/MF are most strongly modulatgdface viewpoint. Further along
the hierarchy, in patch AM, cells are highly selective fodiuidual faces but tolerate substantial
changes in viewpoint [1].

The computational role of this recently discovered higraal organization is not yet established.
In this paper, we argue that such a system — with view-tunéd gpstream from view-invariant
identity-selective cells — is ideally suited to supportdadentification. In the subsequent sections,
we present a model of the ventral stream that is consisteéhtadarge body of experimental resdits
and additionally predicts the existence of discrete faaeesive patches organized in this manner.

1See [11] for a review.



3 Hubel-Wiesel inspired hierarchical models of object recgnition

At the end of the ventral visual pathway, cells in the mosegdat parts of visual cortex respond
selectively to highly complex stimuli and also invariantlyer several degrees of visual angle. Hier-
archical models inspired by Hubel and Wiesel's wdikyV modelsseek to achieve similar selectiv-
ity and invariance properties by subjecting visual inpatsuccessive tuning and pooling operations
[12, 13, 14, 15]. A major algorithmic claim made by these H-Wdals is that repeated applica-
tion of this AND-like tuning operation is the source of thdestive responses of cells at the end
of the ventral stream. Likewise, repeated application ofllR& pooling operations yield invariant
responses.

Hubel and Wiesel described complex cells as pooling theutsitpf simple cells with the same op-
timal stimuli but receptive fields in different locationsg|1 This pooling-over-position arrangement
yields complex cells with larger receptive fields. Thath& dperation transforms a position sensitive
input to a (somewhat) translation invariant output. Sim@laoling operations can also be employed
to gain tolerance to other image transformations, inclgdimse induced by changes in viewpoint
or illumination. Beyond V1, neurons can implement poolingtjas they do within V1. Complex
cells could pool over any transformation e.g., viewpoimy@y by connecting to (simple-like) cells
that are selective for the appearance of the same featuiffeaedt viewpoints.

The specific H-W model which we extended in this paper is comyn&nown as HMAX [14,
17]; analogous extensions could be done for many relatecel®oth this model, simple (S) cells
compute a measure of their input’s similarity to a storedmat feature via a gaussian radial basis
function or a normalized dot product. Complex (C) cells poatr S cells by computing th@ax
response of all the S cells with which they are connectedsd loperations are typically repeated in
a hierarchical manner, with the output of one C layer feeditgthe next S layer and so on.

The max-pooling operation we employ can be viewed as animehimathematical description of

the operation obtained by a system that has accuratelyiatsbtemplate images across transfor-
mations. These associations could be acquired by a learaledghat connects input patterns that
occur nearby in time to the same C unit. Numerous algorithaw lbeen proposed to solve this
invariance-learning problem through temporal assoaiati®, 19, 20, 21, 22]. There is also psy-
chophysical and physiological evidence that visual coeteploys a temporal association strategy
[23, 24, 25, 26, 27].

4 Invariance to class-specific transformations

H-W models can gain invariance to some transformations ereigc way. When the appearance of
an input image under the transformation depends only omrirdtion available in a single example
e.g., translation, scaling, and in-plane rotation, thennttodel’'s response to any image undergoing
the transformation will remain constant no matter what tiei@s were associated with one another
to build the model. For example, a face can be encoded imtrito translation as a vector of
similarities to previously viewed template images of anyeotobjects. The similarity “values” need
not be high as long as they remain consistent across pas@nWe refer to transformations with
this property as generic, and note that they are the most com@ther transformations are class-
specific, that is, they depend on information about the deg@iobject that is not available in a single
image. For example, the 2D image evoked by an object undeggochange in viewpoint depends
on its 3D structure. Likewise, the images evoked by changékimination depend on the object’s
material properties. These class-specific properties edadyned from one or more exemplars of
the class and applied to other objects in the class (see 285@9]). For this to work, the object
class needs to consist of objects with similar 3D shape artdriabproperties. Faces, as a class, are
consistent enough in both 3D structure and material prigsefidr this to work. Other, more diverse
classes, such as “automobiles” are not.

2These temporal association algorithms and the evidence for their emghoyay visual cortex are inter-
esting in their own right. In this paper we sidestep the issue of how visutgxcassociates similar features
under different transformations in order to focus on the implicationsaeirty the representation that results
from applying these learning rules.
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Figure 2: lllustration of an extension to the HMAX model tedmporate class-specific invariance to
face viewpoint changes.

In our implementation of the HMAX model, the response of a C-eassociating templates at
each positiort — is given by:

1 & )
rw(ac):mtax exp —%Z(wt,j—xj) Q)

Jj=1

The same template; is replicated at all positions, so this C response modelotiteome of a
temporal association learning process that associategdtierns evoked by a template at each
position. This C response is invariant to translation. Aalagous method can achieve viewpoint-
tolerant responsesr,,(x) is invariant to viewpoint changes of the input faceas long as the
3D structure of the face depicted in the template imagesatches the 3D structure of the face
depicted inz. Since all human faces have a relatively similar 3D strugtuy, () will tolerate
substantial viewpoint changes within the domain of facefollows that templates derived from a
class of objects with the wrong 3D structure give rise to Gsdblat do not respond invariantly to
3D rotations.

Figures 3 and 4 show the performance of the extended HMAX hmdeiewpoint-invariant (fig3)
and illumination-invariant (fig4) within-category idefitation tasks. Both of these are one-shot
learning tasks. That is, a single view of a target object iodied and a simple classifier (nearest
neighbors) must rank test images depicting the same olgdotiag more similar to the encoded
target than to images of any other objects. Both targets stichdtors were presented under varying
viewpoints and illuminations. This task models the comniturasion of encountering a new face or
object at one viewpoint and then being asked to recognizgaindater from a different viewpoint.

The original HMAX model [14], represented here by the redvesr(C2), shows a rapid decline
in performance due to changes in viewpoint and illuminatiém contrast, the C3 features of the
extended HMAX model perform significantly better than C2.digbnally, the performance of the
C3 features is not strongly affected by viewpoint and illoation changes (see the plots along the
diagonal in figures 3l and 41).
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Figure 3: Viewpoint invariance. Bottom panel (11): Examjaleages from three classes of stimuli.
Class A consists of faces produced using FaceGen (Singmarsions). Class B is a set of synthetic
objects produced using Blender (Stichting Blender Fouadat Each object in this class has a
central spike protruding from a sphere and two bumps alwayke same location on top of the
sphere. Individual objects differ from one another by thection in which another protusion comes
off of the central spike and the location/direction of anidddal protrusion. Class C is another
set of synthetic objects produced using Blender. Each bbjethis class has a central pyramid
on a flat plane and two walls on either side. Individual olgetiffer in the location and slant of
three additional bumps. For both faces and the synthet8sefs there is very little information
to disambiguate individuals from views of the backs of th¢geots. Top panel (I): Each column
shows the results of testing the model’s viewpoint-invatri@cognition performance on a different
class of stimuli (A,B or C). The S3/C3 templates were obtifiem objects in class A in the top
row, class B in the middle row and class C in the bottom row. @hscissa of each plot shows
the maximum invariance range (maximum deviation from tleatfl view in either direction) over
which targets and distractors were presented. The ordéhates the AUC obtained for the task of
recognizing an individual novel object despite changesiewpoint. The model was never tested
using the same images that were used to produce S3/C3 tesplat simple correlation-based
nearest-neighbor classifier must rank all images of the ssbhjeet at different viewpoints as being
more similar to the frontal view than other objects. The radres show the resulting AUC when
the input to the classifier consists of C2 responses and the dirves show the AUC obtained
when the classifier’s input is the C3 responses only. Sinwulaletails: These simulations used
2000 translation and scaling invariant C2 units tuned tcheg of natural images. The choice of
natural image patches for S2/C2 templates had very littecebn the final results. Error bars (+/-
one standard deviation) show the results of cross validdtjorandomly choosing a set of example
images to use for producing S3/C3 templates and testing emett of the images. The above
simulations used 710 S3 units (10 exemplar objects and Wisyi@nd 10 C3 units.
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Figure 4: lllumination invariance. Same organization afignre 3. Bottom panel (I1): Example
images from three classes of stimuli. Each class consistsces with different light reflectance
properties, modeling different materials. Class A was ogaand non-reflective like wood. Class
B was opaque but highly reflective like a shiny metal. Classds wanslucent like glass. Each
image shows a face’s appearance corresponding to a diffecation of the source of illumination
(the lamp). The face models were produced using FaceGen adiet with Blender. Top panel
(I): Columns show the results of testing illumination-ireat recognition performance on class A
(left), B (middle) and C (right). S3/C3 templates were oixai from objects in class A (top row),
B (middle row), and C (bottom row). The model was never testgdg the same images that were
used to produce S3/C3 templates. As in figure 3, the abscfssach plot shows the maximum
invariance range (maximum distance the light could movetimee direction away from a neutral
position where the lamp is even with the middle of the head) avhich targets and distractors
were presented. The ordinate shows the AUC obtained foratble df recognizing an individual
novel object despite changes in illumination. A correlatitased nearest-neighbor “classifier” must
rank all images of the same object under each illuminatiorditmn as being more similar to the
neutral view than other objects. The red curves show thdtieglAUC when the input to the
classifier consists of C2 responses and the blue curves sileodC obtained when the classifier's
input is the C3 responses only. Simulation details: Thaselsitions used 80 translation and scaling
invariant C2 units tuned to patches of natural images. Tbe&elof natural image patches for S2/C2
templates had very little effect on the final results. Errarsa(+/- one standard deviation) show the
results of cross validation by randomly choosing a set ofrgpta images to use for producing
S3/C3 templates and testing on the rest of the images. Theamulations used 1200 S3 units
(80 exemplar faces and 15 illumination conditions) and 8Qi&s.
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The C3 features are class-specific. Good performance omvagtiegory identification is obtained
using templates derived from the same category (plots dtendiagonal in figures 31 and 41). When
C3 features from the wrong category are used in this wayppadnce suffers (off-diagonal plots).
In all these cases, the C2 features which encode nothingfispélg useful for taking into account
the relevant transformation perform as well as or betten D& features derived from objects of the
wrong class. It follows that if the brain is using an alganitbf this sort (an H-W architecture) to ac-
complish within-category identification, then it must segta the circuitry that produces invariance
for the transformations that objects of one class undeig the circuitry producing invariance to
the transformations that other classes undergo.

5 Conclusion

Everyday visual tasks require reasonably good invariamcean-generic transformations like
changes in viewpoint and illuminatidn We showed that a broad class of ventral stream models
that is well-supported by physiology data (H-W models) iegjalass-specific modules in order to
accomplish these tasks.

The recently-discovered macaque face-processing higrdrears a strong resemblance to the ar-
chitecture of our extended HMAX model. The responses ofdrlan early part of the hierarchy
(patches ML and MF) are strongly dependent on viewpoint)enthie cells in a downstream area
(patch AM) tolerate large changes in viewpoint. Identifyitne S3 layer of our extended HMAX
model with the ML/MF cells and the C3 layer with the AM cellsan intruiging possibility. An-
other mapping from the model to the physiology could be tatifigthe outputs of simple classifiers
operating on C2, S3 or C3 layers with the responses of ceNtLitMF and AM.

Fundamentally, the 3D rotation of an object class with onesBDcture e.g., faces, is not the same
as the 3D rotation of another class of objects with a diffeB&Ehstructure. Generic circuitry cannot
take into account both transformations at once. The samarengt applies to all other non-generic
transformations as well. Since the brain must take thessftsemations into account in interpreting
the visual world, it follows that visual cortex must have adular architecture. Object classes
that are important enough to require invariance to thesesfomamations of novel exemplars must
be encoded by dedicated circuitry. Faces are clearly a muffig important category of objects to
warrant this dedication of resources. Analogous argunmegnpdy to a few other categories; human
bodies all have a similar 3D structure and also need to be aeérrecognized under a variety
of viewpoint and illumination conditions, likewise, readiis an important enough activity that it
makes sense to encode the visual transformations that vemdidetters undergo with dedicated
circuitry (changes in font, viewing angle, etc). We do nahkhit is coincidental that, just as for
faces, brain areas which are thought to be specialized $oiaV/processing of the human body (the
extrastriate body area [32]) and reading (the visual worthfarea [33, 34]) are consistently found
in human fMRI experiments.

We have argued in favor of visual cortex implenting a modtyasf contentrather tharprocess
The computations performed in each dedicated processgignrean remain quite similar to the
computations performed in other regions. Indeed, the adtivity within each region can be wired
up in the same way, through temporal association. The offfigrdihce across areas is the object
class (and the transformations) being encoded. In this, wiswal cortex must be modular in order
to succeed in the tasks with which it is faced.
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