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Abstract

Many studies have uncovered evidence that visual cortex contains specialized re-
gions involved in processing faces but not other object classes. Recent electro-
physiology studies of cells in several of these specializedregions revealed that at
least some of these regions are organized in a hierarchical manner with viewpoint-
specific cells projecting to downstream viewpoint-invariant identity-specific cells
[1]. A separate computational line of reasoning leads to theclaim that some trans-
formations of visual inputs that preserve viewed object identity are class-specific.
In particular, the 2D images evoked by a face undergoing a 3D rotation are not
produced by the same image transformation (2D) that would produce the images
evoked by an object of another class undergoing the same 3D rotation. How-
ever, within the class of faces, knowledge of the image transformation evoked
by 3D rotation can be reliably transferred from previously viewed faces to help
identify a novel face at a new viewpoint. We show, through computational sim-
ulations, that an architecture which applies this method ofgaining invariance to
class-specific transformations is effective when restricted to faces and fails spec-
tacularly when applied to other object classes. We argue here that in order to
accomplish viewpoint-invariant face identification from asingle example view,
visual cortex must separate the circuitry involved in discounting 3D rotations of
faces from the generic circuitry involved in processing other objects. The resulting
model of the ventral stream of visual cortex is consistent with the recent physiol-
ogy results showing the hierarchical organization of the face processing network.

1 Introduction

There is increasing evidence that visual cortex contains discrete patches involved in processing faces
but not other objects [2, 3, 4, 5, 6, 7]. Though progress has been made recently in characterizing
the properties of these brain areas, the computational-level reason the brain adopts this modular
architecture has remained unknown.

In this paper, we propose a new computational-level explanation for why visual cortex separates face
processing from object processing. Our argument does not require us to claim that faces are auto-
matically processed in ways that are inapplicable to objects (e.g. gaze detection, gender detection)
or that cortical specialization for faces arises due to perceptual expertise [8], though the perspective
that emerges from our model is consistent with both of these claims.

We show that the task of identifying individual faces in an optimally viewpoint invariant way from
single training examples requires a separate neural circuitry specialized for faces. The crux of this
identification problem involves discounting transformations of the target individual’s appearance.
Generictransformations e.g, translation, scaling and 2D in-planerotation can be learned from any
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Figure 1: Layout of face-selective regions in macaque visual cortex, adapted from [1] with permis-
sion.

object class and usefully applied to any other class [9]. Other transformations which areclass-
specific, include changes in viewpoint and illumination. They depend on the object’s 3D structure
and material properties both of which vary between – but not within – certain object classes. Faces
are the protoypical example of such a class where the individual objects are similar to each other.
In this paper, we describe a method by which invariance to class-specific transformations can be
encoded and used for within-class identification. The resulting model of visual cortex must separate
the representations of different classes in order to achieve good performance.

This analysis is mainly computational but has implicationsfor neuroscience and psychology. Sec-
tion 2 of this paper describes the recently discovered hierarchical organization of the macaque face
processing network [1]. Sections 3 and 4 describe an extension to an existing hierarchical model
of object recognition to include invariances for class-specific transformations. The final section ex-
plains why the brain should have separate modules and relates the proposed computational model
to physiology and neuroimaging evidence that the brain doesindeed separate face recognition from
object recognition.

2 The macaque face recognition hierarchy

In macaques, there are 6 discrete face-selective regions inthe ventral visual pathway, one posterior
lateral face patch (PL), two middle face patches (lateral- ML and fundus- MF), and three anterior
face patches, the anterior fundus (AF), anterior lateral (AL), and anterior medial (AM) patches [5, 4].
At least some of these patches are organized into a feedforward hierarchy. Visual stimulation evokes
a change in the local field potential∼ 20 ms earlier in ML/MF than in patch AM [1]. Consistent with
a hierarchical organization involving information passing from ML/MF to AM via AL, electrical
stimulation of ML elicited a response in AL and stimulation in AL elicited a response in AM [10].

The firing rates of cells in ML/MF are most strongly modulatedby face viewpoint. Further along
the hierarchy, in patch AM, cells are highly selective for individual faces but tolerate substantial
changes in viewpoint [1].

The computational role of this recently discovered hierarchical organization is not yet established.
In this paper, we argue that such a system – with view-tuned cells upstream from view-invariant
identity-selective cells – is ideally suited to support face identification. In the subsequent sections,
we present a model of the ventral stream that is consistent with a large body of experimental results1

and additionally predicts the existence of discrete face-selective patches organized in this manner.

1See [11] for a review.
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3 Hubel-Wiesel inspired hierarchical models of object recognition

At the end of the ventral visual pathway, cells in the most anterior parts of visual cortex respond
selectively to highly complex stimuli and also invariantlyover several degrees of visual angle. Hier-
archical models inspired by Hubel and Wiesel’s work,H-W models, seek to achieve similar selectiv-
ity and invariance properties by subjecting visual inputs to successive tuning and pooling operations
[12, 13, 14, 15]. A major algorithmic claim made by these H-W models is that repeated applica-
tion of this AND-like tuning operation is the source of the selective responses of cells at the end
of the ventral stream. Likewise, repeated application of OR-like pooling operations yield invariant
responses.

Hubel and Wiesel described complex cells as pooling the outputs of simple cells with the same op-
timal stimuli but receptive fields in different locations [16]. This pooling-over-position arrangement
yields complex cells with larger receptive fields. That is, the operation transforms a position sensitive
input to a (somewhat) translation invariant output. Similar pooling operations can also be employed
to gain tolerance to other image transformations, including those induced by changes in viewpoint
or illumination. Beyond V1, neurons can implement pooling just as they do within V1. Complex
cells could pool over any transformation e.g., viewpoint, simply by connecting to (simple-like) cells
that are selective for the appearance of the same feature at different viewpoints.

The specific H-W model which we extended in this paper is commonly known as HMAX [14,
17]; analogous extensions could be done for many related models. In this model, simple (S) cells
compute a measure of their input’s similarity to a stored optimal feature via a gaussian radial basis
function or a normalized dot product. Complex (C) cells poolover S cells by computing themax
response of all the S cells with which they are connected. These operations are typically repeated in
a hierarchical manner, with the output of one C layer feedinginto the next S layer and so on.

The max-pooling operation we employ can be viewed as an idealized mathematical description of
the operation obtained by a system that has accurately associated template images across transfor-
mations. These associations could be acquired by a learningrule that connects input patterns that
occur nearby in time to the same C unit. Numerous algorithms have been proposed to solve this
invariance-learning problem through temporal association [18, 19, 20, 21, 22]. There is also psy-
chophysical and physiological evidence that visual cortexemploys a temporal association strategy2

[23, 24, 25, 26, 27].

4 Invariance to class-specific transformations

H-W models can gain invariance to some transformations in a generic way. When the appearance of
an input image under the transformation depends only on information available in a single example
e.g., translation, scaling, and in-plane rotation, then the model’s response to any image undergoing
the transformation will remain constant no matter what templates were associated with one another
to build the model. For example, a face can be encoded invariantly to translation as a vector of
similarities to previously viewed template images of any other objects. The similarity “values” need
not be high as long as they remain consistent across positions [9]. We refer to transformations with
this property as generic, and note that they are the most common. Other transformations are class-
specific, that is, they depend on information about the depicted object that is not available in a single
image. For example, the 2D image evoked by an object undergoing a change in viewpoint depends
on its 3D structure. Likewise, the images evoked by changes in illumination depend on the object’s
material properties. These class-specific properties can be learned from one or more exemplars of
the class and applied to other objects in the class (see also [28, 29]). For this to work, the object
class needs to consist of objects with similar 3D shape and material properties. Faces, as a class, are
consistent enough in both 3D structure and material properties for this to work. Other, more diverse
classes, such as “automobiles” are not.

2These temporal association algorithms and the evidence for their employment by visual cortex are inter-
esting in their own right. In this paper we sidestep the issue of how visual cortex associates similar features
under different transformations in order to focus on the implications of having the representation that results
from applying these learning rules.
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Figure 2: Illustration of an extension to the HMAX model to incorporate class-specific invariance to
face viewpoint changes.

In our implementation of the HMAX model, the response of a C cell – associating templatesw at
each positiont – is given by:
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The same templatewt is replicated at all positions, so this C response models theoutcome of a
temporal association learning process that associated thepatterns evoked by a template at each
position. This C response is invariant to translation. An analogous method can achieve viewpoint-
tolerant responses.rw(x) is invariant to viewpoint changes of the input facex, as long as the
3D structure of the face depicted in the template imageswt matches the 3D structure of the face
depicted inx. Since all human faces have a relatively similar 3D structure, rw(x) will tolerate
substantial viewpoint changes within the domain of faces. It follows that templates derived from a
class of objects with the wrong 3D structure give rise to C cells that do not respond invariantly to
3D rotations.

Figures 3 and 4 show the performance of the extended HMAX model on viewpoint-invariant (fig3)
and illumination-invariant (fig4) within-category identification tasks. Both of these are one-shot
learning tasks. That is, a single view of a target object is encoded and a simple classifier (nearest
neighbors) must rank test images depicting the same object as being more similar to the encoded
target than to images of any other objects. Both targets and distractors were presented under varying
viewpoints and illuminations. This task models the common situation of encountering a new face or
object at one viewpoint and then being asked to recognize it again later from a different viewpoint.

The original HMAX model [14], represented here by the red curves (C2), shows a rapid decline
in performance due to changes in viewpoint and illumination. In contrast, the C3 features of the
extended HMAX model perform significantly better than C2. Additionally, the performance of the
C3 features is not strongly affected by viewpoint and illumination changes (see the plots along the
diagonal in figures 3I and 4I).
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Figure 3: Viewpoint invariance. Bottom panel (II): Exampleimages from three classes of stimuli.
Class A consists of faces produced using FaceGen (Singular Inversions). Class B is a set of synthetic
objects produced using Blender (Stichting Blender Foundation). Each object in this class has a
central spike protruding from a sphere and two bumps always in the same location on top of the
sphere. Individual objects differ from one another by the direction in which another protusion comes
off of the central spike and the location/direction of an additional protrusion. Class C is another
set of synthetic objects produced using Blender. Each object in this class has a central pyramid
on a flat plane and two walls on either side. Individual objects differ in the location and slant of
three additional bumps. For both faces and the synthetic classes, there is very little information
to disambiguate individuals from views of the backs of the objects. Top panel (I): Each column
shows the results of testing the model’s viewpoint-invariant recognition performance on a different
class of stimuli (A,B or C). The S3/C3 templates were obtained from objects in class A in the top
row, class B in the middle row and class C in the bottom row. Theabscissa of each plot shows
the maximum invariance range (maximum deviation from the frontal view in either direction) over
which targets and distractors were presented. The ordinateshows the AUC obtained for the task of
recognizing an individual novel object despite changes in viewpoint. The model was never tested
using the same images that were used to produce S3/C3 templates. A simple correlation-based
nearest-neighbor classifier must rank all images of the sameobject at different viewpoints as being
more similar to the frontal view than other objects. The red curves show the resulting AUC when
the input to the classifier consists of C2 responses and the blue curves show the AUC obtained
when the classifier’s input is the C3 responses only. Simulation details: These simulations used
2000 translation and scaling invariant C2 units tuned to patches of natural images. The choice of
natural image patches for S2/C2 templates had very little effect on the final results. Error bars (+/-
one standard deviation) show the results of cross validation by randomly choosing a set of example
images to use for producing S3/C3 templates and testing on the rest of the images. The above
simulations used 710 S3 units (10 exemplar objects and 71 views) and 10 C3 units.
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Figure 4: Illumination invariance. Same organization as infigure 3. Bottom panel (II): Example
images from three classes of stimuli. Each class consists offaces with different light reflectance
properties, modeling different materials. Class A was opaque and non-reflective like wood. Class
B was opaque but highly reflective like a shiny metal. Class C was translucent like glass. Each
image shows a face’s appearance corresponding to a different location of the source of illumination
(the lamp). The face models were produced using FaceGen and modifed with Blender. Top panel
(I): Columns show the results of testing illumination-invariant recognition performance on class A
(left), B (middle) and C (right). S3/C3 templates were obtained from objects in class A (top row),
B (middle row), and C (bottom row). The model was never testedusing the same images that were
used to produce S3/C3 templates. As in figure 3, the abscissa of each plot shows the maximum
invariance range (maximum distance the light could move in either direction away from a neutral
position where the lamp is even with the middle of the head) over which targets and distractors
were presented. The ordinate shows the AUC obtained for the task of recognizing an individual
novel object despite changes in illumination. A correlation-based nearest-neighbor “classifier” must
rank all images of the same object under each illumination condition as being more similar to the
neutral view than other objects. The red curves show the resulting AUC when the input to the
classifier consists of C2 responses and the blue curves show the AUC obtained when the classifier’s
input is the C3 responses only. Simulation details: These simulations used 80 translation and scaling
invariant C2 units tuned to patches of natural images. The choice of natural image patches for S2/C2
templates had very little effect on the final results. Error bars (+/- one standard deviation) show the
results of cross validation by randomly choosing a set of example images to use for producing
S3/C3 templates and testing on the rest of the images. The above simulations used 1200 S3 units
(80 exemplar faces and 15 illumination conditions) and 80 C3units.
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The C3 features are class-specific. Good performance on within-category identification is obtained
using templates derived from the same category (plots alongthe diagonal in figures 3I and 4I). When
C3 features from the wrong category are used in this way, performance suffers (off-diagonal plots).
In all these cases, the C2 features which encode nothing specifically useful for taking into account
the relevant transformation perform as well as or better than C3 features derived from objects of the
wrong class. It follows that if the brain is using an algorithm of this sort (an H-W architecture) to ac-
complish within-category identification, then it must separate the circuitry that produces invariance
for the transformations that objects of one class undergo from the circuitry producing invariance to
the transformations that other classes undergo.

5 Conclusion

Everyday visual tasks require reasonably good invariance to non-generic transformations like
changes in viewpoint and illumination3. We showed that a broad class of ventral stream models
that is well-supported by physiology data (H-W models) require class-specific modules in order to
accomplish these tasks.

The recently-discovered macaque face-processing hierarchy bears a strong resemblance to the ar-
chitecture of our extended HMAX model. The responses of cells in an early part of the hierarchy
(patches ML and MF) are strongly dependent on viewpoint, while the cells in a downstream area
(patch AM) tolerate large changes in viewpoint. Identifying the S3 layer of our extended HMAX
model with the ML/MF cells and the C3 layer with the AM cells isan intruiging possibility. An-
other mapping from the model to the physiology could be to identify the outputs of simple classifiers
operating on C2, S3 or C3 layers with the responses of cells inML/MF and AM.

Fundamentally, the 3D rotation of an object class with one 3Dstructure e.g., faces, is not the same
as the 3D rotation of another class of objects with a different 3D structure. Generic circuitry cannot
take into account both transformations at once. The same argument applies to all other non-generic
transformations as well. Since the brain must take these transformations into account in interpreting
the visual world, it follows that visual cortex must have a modular architecture. Object classes
that are important enough to require invariance to these transformations of novel exemplars must
be encoded by dedicated circuitry. Faces are clearly a sufficiently important category of objects to
warrant this dedication of resources. Analogous argumentsapply to a few other categories; human
bodies all have a similar 3D structure and also need to be seenand recognized under a variety
of viewpoint and illumination conditions, likewise, reading is an important enough activity that it
makes sense to encode the visual transformations that wordsand letters undergo with dedicated
circuitry (changes in font, viewing angle, etc). We do not think it is coincidental that, just as for
faces, brain areas which are thought to be specialized for visual processing of the human body (the
extrastriate body area [32]) and reading (the visual word form area [33, 34]) are consistently found
in human fMRI experiments.

We have argued in favor of visual cortex implenting a modularity of contentrather thanprocess.
The computations performed in each dedicated processing region can remain quite similar to the
computations performed in other regions. Indeed, the connectivity within each region can be wired
up in the same way, through temporal association. The only difference across areas is the object
class (and the transformations) being encoded. In this view, visual cortex must be modular in order
to succeed in the tasks with which it is faced.
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