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Isik L, Meyers EM, Leibo JZ, Poggio T. The dynamics of
invariant object recognition in the human visual system. J Neuro-
physiol 111: 91–102, 2014. First published October 2, 2013;
doi:10.1152/jn.00394.2013.—The human visual system can rapidly
recognize objects despite transformations that alter their appearance.
The precise timing of when the brain computes neural representations
that are invariant to particular transformations, however, has not been
mapped in humans. Here we employ magnetoencephalography de-
coding analysis to measure the dynamics of size- and position-
invariant visual information development in the ventral visual stream.
With this method we can read out the identity of objects beginning as
early as 60 ms. Size- and position-invariant visual information appear
around 125 ms and 150 ms, respectively, and both develop in stages,
with invariance to smaller transformations arising before invariance to
larger transformations. Additionally, the magnetoencephalography
sensor activity localizes to neural sources that are in the most posterior
occipital regions at the early decoding times and then move tempo-
rally as invariant information develops. These results provide previ-
ously unknown latencies for key stages of human-invariant object
recognition, as well as new and compelling evidence for a feed-
forward hierarchical model of invariant object recognition where
invariance increases at each successive visual area along the ventral
stream.

vision; decoding; magnetoencephalography; object recognition; in-
variance

HUMANS CAN IDENTIFY OBJECTS in complex scenes within a
fraction of a second (Potter 1976; Thorpe et al. 1996). The
main computational difficulty in object recognition is believed
to be identifying objects across transformations that change the
photoreceptor-level representation of the object, such as posi-
tion in the visual field, size, and viewpoint (DiCarlo and Cox
2007). Invariance to these transformations increases along the
ventral visual pathway (Ashbridge and Perrett 1998; Logothe-
tis and Sheinberg 1996; Rolls 2000; Rust and Dicarlo 2010),
and the latencies of the visual areas along this pathway [from
V1 to inferior temporal (IT)] are known in the macaque (Hung
et al. 2005; Nowak and Bullier 1997; Schmolesky et al. 1998;
Thorpe 2001). For instance, position and size invariance is
found in macaque IT at about 100 ms. In humans, electroen-
cephalography (EEG) studies have shown that neural signals
containing object category information can be found at 150 ms
or later (Bentin et al. 1996; Kirchner and Thorpe 2006; Thorpe
et al. 1996), however, the timing and steps to develop the
invariant object representations that drive this categorization
are still unknown.

To understand the timing of invariant object recognition in
humans, we use a technique called neural decoding analysis
(also known as multivariate pattern analysis, or readout). Neu-
ral decoding analysis applies a machine learning classifier to
assess what information about the input stimulus (e.g., what
image the subject was looking at) is present in the recorded
neural data. This technique is widely used in functional mag-
netic resonance imaging (Haynes and Rees 2006) and brain-
machine interfaces (Donoghue 2002) and has also been applied
to electrophysiology data (Hung et al. 2005; Meyers et al.
2008), EEG data (Philiastides and Sajda 2006; Philiastides et
al. 2006; Ratcliff et al. 2009), and magnetoencephalography
(MEG) motor (Waldert et al. 2008) and semantic data (Sudre et
al. 2012). These analyses, however, have only been applied to
visual data in a few instances (Carlson et al. 2011, 2013;
Guimaraes et al. 2007). MEG provides high temporal resolu-
tion, whole-head neural signals, making it a useful tool to study
the different stages of invariant object recognition throughout
the brain.

Using MEG decoding we could identify the precise times
when neural signals contain object information that is invariant
to position and size. We also examined the dynamics of these
signals with high temporal accuracy and estimated their under-
lying neural sources. Finally, we compared the timing data
uncovered here to a feed-forward model of invariant object
recognition in the ventral stream. These results allow us to
draw conclusions about when and where key stages of invari-
ant object recognition occur and provide insight into the
computations the brain uses to solve complex visual problems.

MATERIALS AND METHODS

Subjects. Eleven subjects (three women) age 18 yr or older with
normal or corrected to normal vision took part in the experiment. The
MIT Committee on the Use of Humans as Experimental approved the
experimental protocol. Subjects provided informed written consent
before the experiment. One subject (S1) was an author, and all others
were unaware of the purpose of the experiment.

Experimental procedure. In this experiment, subjects performed a
task unrelated to the images presented. The images were presented in
two image blocks, and the fixation crossed changed color (red, blue or
green) when the first image was presented, then changed to black
during the interstimulus interval, and then turn a second color when
the second image was presented. The subjects’ task was to report if the
color of the fixation cross was the same or different at the beginning
and end of each two image (Fig. 1) and thus helped ensure that they
maintained a center fixation while both images were presented (this
was also verified for two subjects with eye tracking, see below).

To evaluate the robustness of the MEG decoding methods, three
subjects (S1, S2, S3) were each shown a different dataset of images
presented at one size and position. Subject S1 was shown 25 scene
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images [from (Walther et al. 2009) and available at http://vision.
stanford.edu/projects/sceneclassification/resources.html] presented in
the center of the visual field at a size of 4 � 6° of visual angle, subject
S2 was shown 25 black letters (A�Y) on white background presented
in the center of the visual field at a size of 5 � 5° of visual angle, and
subject S3 was shown 25 isolated objects on a gray background, pre-
sented in the center of the visual field at a size of 5 � 5° of visual angle
(Fig. 2, right). To study size- and position-invariance, eight subjects
(S4–S11) were shown the same subset of six images from the isolated
objects dataset, presented at three sizes (2, 4 and 6° of visual angle in
diameter) in the center of the visual field, and three 6° diameter
images shown at three positions (centered, and �3° vertically).

Images were presented for 48 ms with 704-ms interstimulus inter-
val. Image order was randomized for each experiment, and each
stimulus was repeated 50 times. All images were presented in gray-
scale on a 48 cm � 36 cm display, 140 cm away from the subject; thus
the screen occupied 19 � 14° of visual angle.

Eye tracking. To verify that the above subjects maintain central
fixation, eye tracking was performed during MEG recordings for two
subjects (S9, S10) with the Eyelink 1000 eye tracker from SR
Research. A nine-point calibration was used at the beginning of each
experiment. We discarded trials that were greater than 2° away from
the mean eye position, which we used as center to account for
calibration errors, or that contained artifacts such as blinks. Six percent
of trials were rejected for subject S9, and 11% were discarded for subject
S10. Discarding data did not have a significant effect on decoding, so the
data shown contains all trials for each subject.

MEG recordings and data processing. The MEG scanner used was
an Elekta Neuromag Triux with 102 magnetometers at 204 planar
gradiometers, and the MEG data were sampled at 1,000 Hz. The MEG
data were preprocessed using Brainstorm software (Tadel et al. 2011).
First the signals were filtered using Signal Space Projection for
movement and sensor contamination (Tesche et al. 1995). The signals
were also band-pass filtered from 2–100 Hz with a linear phase finite
impulse response digital filter to remove external and irrelevant
biological noise, and the signal is mirrored to avoid edge effects of
band-pass filtering.

Recent studies have shown that high-pass filtering may lead to
artifacts that affect evoked response latencies in MEG/EEG data
(Acunzo et al. 2012; Rousselet 2012). To ensure that the high-pass
filter threshold did not affect our results, we performed one set of
analyses with a 0.01-Hz high-pass filter threshold and observed no
noticeable difference in the latency or shape of decoding accuracy.

Decoding analysis methods. Decoding analyses were performed
with the Neural Decoding Toolbox (Meyers 2013), a Matlab package
implementing neural population decoding methods. In this decoding
procedure, a pattern classifier was trained to associate the patterns of
MEG data with the stimulus conditions that were present (the identity

of the image shown) when the MEG recording were made. The
amount of information in the MEG signal was evaluated by testing the
accuracy of the classifier on a separate set of test data. In our analyses,
data from both magnetometers and gradiometers were used as features
that were passed to the pattern classifier (we found both types of
sensors had information that contributed to increasing the decoding
performance). We also averaged the MEG in 5-ms non-overlapping
bins (i.e., each sensor’s activity was averaged within each 5-ms time
window) prior to beginning the decoding procedure.

All decoding analyses were performed with a cross-validation
procedure where the classifier is trained on a subset of the data, and
then the classifier’s performance is evaluated on the held-out test data.
Our recordings consisted of 50 repetitions of each stimulus condition
(see Experimental procedure above). For each decoding run, data
from these 50 trials were divided into 5 sets of 10 trials, and the data
from each set of 10 trials were averaged together. We were also able
to decode without this averaging (using single trials), but found that
averaging trials led to an increase in the signal-to-noise ratio (SNR) of
our results (see Fig. 3). This gave rise to five cross-validation splits.
The classifier was trained on four of these splits (80% of the data) and
then tested on the remaining split (20% of the data), and the procedure
was repeated five times, leaving out each cross-validation split.

In each training phase of the decoding procedure, the mean and
standard deviation of the each sensor over the entire time series was
used to z-score normalize the data. Additionally, an analysis of
variance (ANOVA) test was applied to the training data to select the
25 sensors at each time point that are most selective for image identity
(those sensors with the lowest P values determined by an F-test). The
test data was then z-score normalized using the mean and standard
deviation learned from the training data, and only the top 25 sensors
that had the lowest P values were used when testing the classifier. The
pattern of the most selected sensors was very localized to the occipital
portion of the sensor helmet, beginning 60 ms after stimulus onset
(Supplemental Video S1; Supplemental material for this article is
available online at the journal website).

Decoding analyses were performed using a maximum correlation
coefficient classifier. This classifier computes the correlation between
each test vector x* and a vector �xi that is created from taking the mean
of the training vectors from class i. The test point x* is assigned the
label i* of the class of the training data with which it is maximally
correlated. This can be formulated as:

i* � argmax i[corr(x*, x�i)]

The classification accuracy is reported as the percentage of correct
trials classified in the test set averaged over all cross-validation splits.
This decoding procedure was repeated for 50 decoding runs with
different training and test cross-validation splits being generated on
each run, and the final decoding accuracy reported is the average

Different

Same

50 ms 700 ms 50 ms200 ms

Fig. 1. Experimental task. To keep their gaze at
the center of the screen, the subjects’ task was to
report if the color of the fixation cross was the
same or different at the beginning and end of
each two image. Top: illustrates a trial where the
fixation cross is the same color (red) at begin-
ning and end. Bottom: illustrates a trial where
the fixation cross changes color (from red to
green) between beginning and end. The fixation
cross changed color when the images were on
the screen and was black between stimulus
presentations.

92 DYNAMICS OF INVARIANT OBJECT RECOGNITION IN HUMANS

J Neurophysiol • doi:10.1152/jn.00394.2013 • www.jn.org

http://vision.stanford.edu/projects/sceneclassification/resources.html
http://vision.stanford.edu/projects/sceneclassification/resources.html


decoding accuracy across the 50 runs. For more details on the
decoding procedure, and to view the code used for these analyses,
please visit http://www.readout.info.

The decoding parameters, including number of stimulus repeti-
tions, number of trials averaged, number of sensors used, bin width,
and classifier used in decoding, were chosen to maximize a SNR,
defined as the peak decoding accuracy divided by the standard
deviation during the baseline period. Using data from the initial three
subjects on the 25 image discrimination tasks (Fig. 2), we found good
SNR values for most of these parameter settings (Fig. 3, A–E). The
results showed 50 stimulus repetitions were more than sufficient to
provide good SNR, and that averaging 10 trials and selecting 25
features led to a clear increase in decoding performance. In addition,
small bin size not only led to an increase in decoding performance, but
also allowed us to interpret our results with finer temporal resolution.
Next, we performed the decoding analysis using several different
classifiers (correlation coefficient, support vector machine, and regu-
larized least squares with linear and Gaussian kernels) and found that
classifier choice did not affect decoding accuracy (Fig. 3F). Conse-
quently, to have the clearest results possible to examine the effects of
interest, we use 50 stimulus repetitions, the average of 10 trials, the 25

most selective features, 5-ms bin width, and a correlation coefficient
classifier for subsequent invariance analyses.

Significance criteria. We assessed significance using a permutation
test. To perform this test, we generated a null distribution by running
the full decoding procedure 200 times using data with randomly
shuffled labels with 10 cross-validation split repetitions used on each
run. Decoding results performing above all points in the null distri-
bution for the corresponding time point were deemed significant with
P � 0.005 (1/200). The first time decoding reached significantly
above chance (“significant time”) was defined as the point when
accuracy was significant for two consecutive time bins. This signifi-
cance criterion was selected such that no spurious correlations in the
baseline period were deemed significant. This criterion was met for all
decoding experiments, except one subject in one position-invariance
condition (S7, train-down/test-up condition) whose data were still
included in our analyses.

Significance testing with normalized decoding magnitudes. To
examine the effect of decoding magnitude on significance time, we
also performed a procedure to approximately normalize the peak
decoding accuracy across trials. We then repeated this significance
testing to see the latencies across different conditions with normalized

Time (ms)

A

B

C

-300-400

40

35

30

25

20

15

10

5

0

60

50

40

30

20

10

0

-200 -100 0 100 200 300 400 500

Time (ms)
-300 -200 -100 0 100 200 300 400 500

Time (ms)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

-300 -200 -100 0 100 200 300 400 500

60

70

80

50

40

30

20

10

0

Fig. 2. Decoding accuracy vs. time for three
different image sets. A: 25 scene images
[from Walther et al. (2009) and avail-
able at: http://vision.stanford.edu/projects/
sceneclassification/resources.html], presented
at 4 � 6°. B: 25 black letters on white
background, presented at 5 � 5°. C: 25
isolated objects on a gray background, pre-
sented at 5 � 5° (thumbnail images in gray
box indicate the subset used in subsequent
invariance experiments). Time zero corre-
sponds to the time of stimulus onset. Each
image set was run on a separate date with a
separate subject. Please note the change in
scale for classification accuracy (y-axis)
across the three subplots. The horizontal line
indicates chance performance. The horizontal
bars at the bottom of each plot indicate when
decoding was significantly above chance
(P � 0.005, permutation test).
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magnitudes. To normalize the decoding magnitude for different con-
ditions, we included less data for those conditions with higher decod-
ing accuracy: if the peak decoding magnitude was above 0.7 for one
condition or pair of conditions (in the case of invariance conditions,
the average of each train and test pair was considered), we performed
decoding with 20% of data collected; if the peak decoding magnitude
was between 0.6 and 0.7, we performed decoding with 30% of data

collected; and if the peak decoding magnitude was between 0.44 and
0.6, we performed decoding with 50% of the data collected. After this
normalization procedure, peak decoding accuracy for all conditions
fell within the same narrow range of 33–43%. Decoding analysis was
still performed with five cross-validation splits, and all the data in
each split (3 trials for those conditions using 30% of data, and 5 trials
for those conditions using 50% of data) were still averaged at each
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Fig. 3. Parameter optimization. The effect of number of stimulus repetitions used in decoding (using single-trial data, the top 25 features, and 5-ms bin width;
A); number of trials averaged (using 50 stimulus repetitions, the top features, and 5-ms bin width; B); number of sensors used in decoding (using 50 stimulus
repetitions, the average of 10 trials, and 5-ms bin width; C); and bin width (using 50 stimulus repetitions, the average of 10 trials, and the top 25 sensors; D) on
signal-to-noise ratio (SNR). SNR is measured by the peak decoding height divided by the baseline noise (standard deviation of the decoded signal before stimulus
onset). SNR data are averaged for three subjects (S1–S3) on three different data sets (25 scenes, 25 letters, and 25 isolated objects), and the error bars show
standard error from the mean. E: the combined effects of different numbers of trials averaged and number of sensors used in decoding on decoding accuracy
vs. time for one subject (S1). F: the effect of classifier on decoding accuracy vs. time for one subject (S1). SVM, support vector machine; RLS, regularized least
squares.
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cross-validation run. All other decoding parameters were kept the
same. This procedure adjusted the peak decoding magnitudes for each
condition so they were between the 0.33–0.44 desired range.

Source localization. We used the minimum norm estimate (MNE)
distributed source modeling method, which finds the set of sources
along the cortical surface that minimizes the total power of the sources
(Hämäläinen et al. 2010), for three subjects (S9–S11) using Brain-
storm software. MNE was performed using the cortical orientation
constraints and with the default SNR value (SNR of power of data) of
3. The sources were estimated on the colin27 standard brain template
(Holmes et al. 1998). (Head positions for S1–S8 were not measured in
the scanner, so they were excluded from this analysis.) A head model
was generated for each subject’s head position using the overlapping
spheres method. A full noise covariance matrix from the 233-ms
baseline period of 1,530 visual presentations was generated for each
subject and used in the MNE algorithm. The source estimates were
evaluated by simulating the sensor activity from the source estimates
and comparing these simulated measurements with the actually MEG
measurements. Goodness of fit of the source estimate was evaluated as

g � 1 � �n
i�1 �bi � b̂i�

2⁄ �n
i�1 b2

i (Hämäläinen et al. 1993). In the

case of MNE, goodness of fit reflects the effect of the regularization
term (as without this term, goodness of fit would be 1). Goodness of
fit values for the three subjects from stimulus onset to 500-ms
poststimulus onset were 0.92, 0.96, and 0.96, (this value was higher
than the goodness of fit values in the 233-ms baseline period before
stimulus onset, which were 0.69, 0.90, and 0.87).

Cortical modeling (HMAX). To model the MEG-invariant decoding
results, we tested the HMAX model (Serre et al. 2007). The model
consists of alternating layers of simple units and complex units.
Simple cells perform a template matching operation between its inputs
and stored templates (in the first layer these templates are oriented
Gabor functions, similar to those found in primary visual cortex) to
build selectivity, and complex cells perform a pooling operation over
local regions (here we use maximum pooling) to build invariance.
HMAX was implemented using the Cortical Network Simulator
GPU-based framework (Mutch et al. 2010). The HMAX parameters
used were the same as in Serre et al. (2007). One thousand model units
were randomly sampled at each model layer and used as the feature
vector for classification. As in the decoding procedure, a correlation
coefficient classifier was used to classify the same image across two
different sizes or positions, at each model layer. This procedure was
repeated 10 times, and results were averaged.

RESULTS

Fast and robust readout for different types of stimuli. To
examine whether we could extract visual information from
MEG signals, we first decoded the identity of the presented
images. Three subjects were each shown a different stimulus
set, which consisted of either images of scenes, images of
letters, or images of isolated objects (Fig. 2, A–C, right), while
MEG signals were recorded from 306 sensors covering the full
head. The stimulus sets each had 25 images, and each image
was shown 50 times to each subject. We trained a correlation
coefficient classifier to discriminate between the different im-
ages based on the subject’s MEG data. The MEG signals were
averaged over 5-ms time bins, and data from 10 different trials
were averaged together. The classifier was trained and tested
separately on each time bin, and the 25 most selective sensors
were chosen in training for each time point (see MATERIALS AND

METHODS). These decoding parameters were chosen to maxi-
mize signal to noise in the recordings (Fig. 3).

For each image set and subject, we could reliably decode the
identity of the 25 different images in the set. Decoding was

significantly above chance (based on a P � 0.005 permutation
test) from 60–335 ms after stimulus presentation for scene
images, 70–325 ms for letter images, and 60–370 ms for
object images (Fig. 2, A–C, left). The peak decoding accuracies
ranged from 38–70% correct (chance accuracy is 4%), show-
ing that we were able to reliably extract information from MEG
signals from a large range of different stimulus sets.

Timing of size- and position-invariant visual representations.
Once we established that we could decode basic visual infor-
mation from MEG signals, we then tested whether we could
detect visual representations that are invariant to image trans-
formations. To do this we presented a subset of six of the
isolated object images (shown in Fig. 2C, right in gray box) at
various sizes and positions to eight different subjects. We
presented large images (6 � 6° of visual angle) centered and in
the upper and lower halves of the visual field (�3° vertically)
and presented centered images at medium and small sizes (4 �
4 and 2 � 2° of visual angle, respectively). To make sure any
invariant information we extracted was not due to eye move-
ments, we used a brief presentation time of �50 ms and
randomized position and size of the image. Humans require at
least 80–100 ms to make a saccadic eye movement (Busettini
et al. 1997; Fischer and Ramsperger 1984); thus presenting
images for only 50 ms in a random position ensured subjects
would not be able to saccade to peripheral images. Eye position
was also measured for two of the eight subjects (see MATERIALS

AND METHODS).
As a first check to make sure that we could extract similar

visual information from this new stimulus set, we decoded the
identity of the images at each of the five different position and
size conditions (Fig. 4A). The results showed a similar time
course as the larger image sets in (Fig. 2B), indicating that our
initial results generalized to both the new stimulus set and the
larger number of subjects.

We next sought to detect position-invariant information by
training the classifier on data from images presented at one
position and testing it on images presented at a second position.
This technique allowed us to detect when common neural
representations arose between images of the same object pre-
sented at two different positions, i.e., representations that are
invariant to position. Using this method, we detected position-
invariant visual signals for the six different position compari-
sons beginning at 150 ms on average (Fig. 4B). Similarly, to
detect size-invariant visual signals, we trained the classifier on
data from images presented at one size and tested it on data
from images presented at a second size for six different size
comparison cases (Fig. 4C). On average, size-invariant infor-
mation was first detected around 125 ms. These results provide
previously unknown human latencies for size and position-
invariant object recognition, which are consistent across sub-
jects. Additionally, they uncover a potential latency difference
between size and position-invariant processing, which may
have interesting implications for how and where in the visual
pathway these two types of transformations are processed.

Varying extent of size and position invariance. To quantify
when noninvariant, position-invariant and size-invariant infor-
mation rises and peaks, we looked at the first time decoding
rose significantly (P � 0.005 permutation test) above chance
for two consecutive 5-ms time bins, and the time when decod-
ing reached peak performance. The noninvariant information
appeared at 80 ms and peaked at 135 ms, on average, which
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was before the size-invariant information (125 ms appearance,
170 ms peak) and the position-invariant information (150 ms
appearance, 180 ms peak) (Fig. 5A).

We also looked at the individual invariant decoding condi-
tions, which showed that position- and size-invariant informa-
tion developed in stages, with the decoding signals from the
smaller transformed cases rising before signals from the larger
transformed cases (Fig. 5B). The 3° position-invariance cases
(lower/centered and centered/upper) both developed before the
6° position-transformation cases (lower/upper). A similar order
was true of the size-invariant cases with the 2.25� area
increase appearing first (larger/middle), followed by the 4�

increase (middle/small), and finally the 9� size increase (large/
small). A similar trend is true when you examine peak times;
however, there is much less spread in these latencies as most
signals tend to peak around the same time (Fig. 5C). This
modular development indicates that size- and position-invari-
ant signals are being computed in stages by a hierarchical
system that increases invariance in a feed-forward manner.

An alternative possibility is that the difference in decoding
latencies is an artifact of the different magnitudes of decoding
accuracy across conditions. In general, conditions with higher
peak decoding accuracy also had shorter latency, and its
possible that these conditions could surpass the level of noise

Fig. 4. Assessing position and size invariant information. Six different images of isolated objects (Fig. 2C, right in gray box) were presented at three different
positions (centered and �3° vertically) and three different sizes (2, 4 and 6° in diameter). The different training and test conditions are illustrated using a bowling
ball-like object, one of the six images used in this experiment. Training conditions are shown in the top row, test conditions are shown in the bottom row, and
the different comparisons are boxed with same color as the corresponding trace in each plot. Classification accuracy vs. time is plotted for average of subjects’
results to five noninvariant conditions (illustrated below plot; A); average of subjects’ results to six position-invariant conditions (B); average of subjects’ results
to six size-invariant conditions (C); and direct comparison of the noninvariant, position-invariant, and size-invariant results that were calculated by averaging all
the individual results together (D). Please note the change in scale for classification accuracy (y-axis) across the four subplots. The horizontal line indicates chance
performance. Error bars represent the standard error across subjects. In A–C, the bars below each plot indicate when decoding was significantly above chance (P � 0.005,
permutation test) for four (thinnest line), six (middle line), or all eight (thickest line) subjects for each condition, indicated by the color of the bar.
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sooner and thus with significance testing appear to have shorter
latencies only due to their higher magnitude. To test this
possibility, we normalized the decoding magnitudes for differ-
ent decoding conditions by including only a fraction of the
MEG data for the conditions with higher accuracy (Table 1).
By including 20–50% of the data for certain conditions (please
see MATERIALS AND METHODS), we were able to approximately
normalize the decoding magnitudes across condition. Impor-
tantly, there was little effect on decoding latency, and the
decoding order shown in Fig. 5 still held for normalized
decoding magnitudes.

Combined size- and position-invariance. Using these results,
we were also able to look at combined size- and position-
invariant visual processing, by performing decoding across the
two types of transformations: training with centered, large
images, and testing with small or medium images presented in
the upper and lower halves of the visual field, and vice versa
(Fig. 6). In two cases (center/small vs. down/large, and center/
small vs. up/large, Fig. 6, A and B, respectively), the corre-
sponding size-invariant and position-invariant decoding had
similar magnitude, but in the two other cases (center/medium
vs. down/large, and center/medium vs. up/large, Fig. 6, C and
D, respectively), the corresponding size-invariant decoding
occurred much earlier and with larger magnitude than the
position-invariant decoding. In all four cases, the combined
size- and position-invariant decoding had similar magnitude
and latency to the corresponding position-invariant decoding.
This suggests that the slower and lower accuracy transforma-
tion, in this case position, limits combined size- and position-
invariant decoding.

Dynamics of decoded signals. We examined the similarity in
the decoded signals at different times by performing a tempo-
ral-cross-training analysis (Meyers et al. 2008; Meyers 2013).
In temporal-cross-training analysis, a classifier is trained with
data from one time point and then tested on data from different
trials that were taken either from the same time point or from
a different time point. This method yielded a matrix of decod-
ing accuracies for each training and test time bin, where the
rows of the matrix indicate the times when the classifier was
trained, and the columns indicate the times when the classifier
was tested. The diagonal entries of this matrix are the same
results as plotted in Fig. 4A, where the classifier was trained
and tested with data from the same time points, and again show
that there is high decoding accuracy from about 70 ms to 300
ms after stimulus onset.

Additionally, this new analysis showed very low classifica-
tion accuracy when the classifier was trained and tested at
different time points (off-diagonal elements), indicating that
different patterns of MEG sensor activity contained object
information at different time points in an experimental trial
(Fig. 7A). The same pattern was true for a position-invariant
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Fig. 5. Significant and peak invariant decoding times. Significant and peak
decoding times averaged across subjects for the mean of all noninvariant,
position-invariant and size-invariant conditions (A), significant decoding time
for each individual condition (B), and peak decoding time for each individual
condition (C). Significant decoding times indicate the first time decoding is
significantly above chance (P � 0.005, permutation test) for two consecutive
5-ms time bins. Peak decoding time is the maximum decoding performance
over the entire time window. Error bars represent standard error across
subjects.

97DYNAMICS OF INVARIANT OBJECT RECOGNITION IN HUMANS

J Neurophysiol • doi:10.1152/jn.00394.2013 • www.jn.org



case (Fig. 7B) and a size-invariant case (Fig. 7C) with the
six-object image. The width of the well-decoded window along
the diagonal is 20–50 ms wide, indicating that the neural signal
is highly dynamic. Further analysis showed that these dynam-
ics are not due to information moving to different sensors, but
instead to the information in a given set of sensors changing
over time (Fig. 7D). It is important to note that each sensor
coarsely samples several brain areas, so these results do not
speak directly to the specific regions driving the decoding.

Neural sources underlying sensor activity and classification.
To understand which brain areas were behind the high decod-
ing performance, we used a distributed source localization
algorithm to determine where the primary neural sources are
located at key decoding times (see MATERIALS AND METHODS).
We measured head position in the scanner for three subjects
during the six-image invariance experiment. We examined the
sources for images presented at each individual position and
size, as well as for an average of all image presentations across
all positions and sizes (shown in Fig. 8). Sources for the
individual conditions looked similar to the overall average.

When identity-specific information first appears in most
subjects, at 70 ms, the strongest neural sources were localized
in the occipital lobe near early visual areas (Fig. 8A). When
both size- and position-invariant information is present in the
signal, at 150 ms, the neural sources were located more
temporally, further down the ventral visual stream (Fig. 8B).
The strongest sources at each time point are a good indica-
tion of the brain region carrying visual information and
indicate that very occipital areas are driving early decoding,
while later visual areas contain size- and position-invariant
visual information.

Invariant recognition with a cortical model. To make sure
that low level visual features could not account for the invari-
ance results, we tested a hierarchical model of object recogni-
tion, HMAX (Serre et al. 2007), on our six-object dataset to
compare with our experimental invariance results. The model,
which is inspired by the findings of Hubel and Wiesel (1962)

in V1, consists of alternating layers of simple cells that build
selectivity and complex cells that build invariance. Each stage
of the model yields a set of features that models the represen-
tations contained in different brain regions in the ventral visual
processing stream. To test whether features from different
stages of the model could account for the invariant decoding
results, we applied the model to the same six-object image set
presented at the same sizes and positions and then applied a
classification analysis to the different layers of model outputs
that was analogous to MEG invariance analyses.

The results showed that a V1-like model, consisting of the
first pair of simple/complex cell layers, was not able to achieve
above-chance performance on the size and position invariance-
decoding task. A midlevel visual model, consisting of an
additional layer of simple/complex cells, however, could clas-
sify smaller transformed images with above-chance perfor-
mance. The final model output, which modeled cells in anterior
IT cortex and employed global tuning/pooling, was able to
classify the transformed images with high performance for
each invariance case (Fig. 9). The model results show a
sequential order of invariance (smaller transformations before
larger transformations), which is similar to the MEG experi-
mental results. This data provides further evidence that a
feed-forward, hierarchical model can account for the timing
of experimental invariance results, suggesting that the tim-
ing may be directly related to the location of the invariance
computations.

DISCUSSION

While it is widely believed that the ventral visual processing
stream is involved in object recognition, how this pathway
builds up representations that are invariant to visual transfor-
mations is still not well understood. Here we addressed this
issue by comparing the time course of invariance to two types
of transformations, position and size, in the human brain.
Using MEG decoding, we were able to see the temporal flow

Table 1. Decoding accuracy magnitude, significant time, and peak times with varying amounts of data

Condition
Decoding
Magnitude

Significant
Time, ms

Peak Time,
ms

Proportion of Data Used
in Normalization

Normalized Decoding
Magnitude

Normalized Significant
Time, ms

Normalized
Peak Time, ms

Up, large 0.66 90.75 113.25 0.30 0.40 100.75 124.50
Center, large 0.78 75.13 139.50 0.20 0.42 87.63 137.00
Down, large 0.69 74.50 134.50 0.30 0.42 90.75 110.75
Center, mid 0.70 82.63 147.00 0.30 0.42 95.75 148.25
Center, small 0.59 94.50 148.88 0.50 0.41 98.25 148.25
Train large, test mid 0.58 85.75 154.50 0.50 0.38 102.63 154.50
Train mid, test large 0.69 90.13 160.13 0.50 0.38 102.00 160.75
Train small, test mid 0.44 123.25 198.88 0.50 0.33 126.63 182.63
Train mid, test small 0.41 129.50 170.13 1.00 0.41 129.50 170.13
Train small, test large 0.39 147.00 172.00 1.00 0.39 147.00 172.00
Train large, test small 0.34 161.38 178.88 1.00 0.34 161.38 178.88
Train down, test center 0.47 125.13 165.13 0.50 0.37 119.50 163.88
Train center, test down 0.43 129.50 177.63 1.00 0.43 129.50 177.63
Train up, test center 0.42 152.63 171.38 1.00 0.42 152.63 171.38
Train center, test up 0.37 153.88 180.75 1.00 0.37 153.88 180.75
Train up, test down 0.34 184.50 194.50 1.00 0.34 184.50 194.50
Train down, test up 0.33 178.07 222.63 1.00 0.33 178.07 222.63

Values are the average magnitude of the peak of decoding accuracy, significant time, and peak time for the different size and position conditions using all data
(columns 2–4). For those conditions with highest decoding accuracy, a fraction of the total data (column 5) was used to normalize peak decoding accuracy (see
MATERIALS AND METHODS), and the modified peak accuracy, significant time and peak time with a fraction of the data are also shown (columns 6–8). Latency
values for the normalized decoding values (columns 7 and 8) are very similar to those from decoding performed with all data (columns 3 and 4), suggesting that
different latencies are not due to different magnitudes of decoding accuracy.
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of invariant information much more clearly than was possible
using conventional analyses.

We detected image identity information as early as 60 ms,
and size and position-invariant visual signals at 125 and 150
ms, respectively. The timing of the initial identity decoding is
similar to the latency of macaque V1, which is around 60 ms.
Additionally, the timing for size- and position-invariant infor-
mation is close to the latencies of size- and position-invariant
signals in macaque IT, which first occur around 100 ms (Hung
et al. 2005). The slightly longer latencies seen in our study are
likely due to the fact that human brains are larger, which is
believed to lead to longer neural latencies (Thorpe 2001).
Unlike previous physiology studies of invariant object recog-
nition, which are limited in the number of brain regions from

which they can record, we were able to see a clear latency
difference between the initial identity signal and size- and
position-invariant information.

The source localization results showed that neural activity
moved to more ventral regions when invariant information
developed at 150 ms (Fig. 8). While one potential criticism is
that there is a fair amount of variation in the sources across
subjects, and source localization algorithms taking into con-
sideration structural and functional MRI data may provide a
finer picture of where in the brain invariance computations
occur (Hämäläinen et al. 2010), these results do show a clear
progression in each subject where activity appears to move
down the ventral stream. These source localization results,
combined with timing data and our results showing that it was

Fig. 6. Assessing combined size and position-invariant information. Six different images of isolated objects (Fig. 2C, right in gray box) were presented at three
different positions (centered, and �3° vertically) and three different sizes (2, 4 and 6° in diameter). The different training and test conditions are illustrated using
a bowling ball-like object, one of the six images used in this experiment. Training conditions are shown in the top row, test conditions are shown in the bottom
row, and the different comparisons are boxed with same color as the corresponding trace in each plot. A–D: classification accuracy vs. time is plotted for
individual size-invariant (red, blue traces), position-invariant (green, cyan traces) and the corresponding combination of size and position-invariant (pink, yellow
traces) decoding in each subplot. Please note the change in scale for classification accuracy (y-axis) across the three subplots.
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not possible to decode invariant information from a V1-like
model (Fig. 9), all suggest that early visual areas are driving the
initial identity decoding, and later visual areas are computing
the invariant representations.

The timing between neural events recorded through EEG/
MEG and behavioral reaction times for visual tasks has not
always been consistent in the literature. For example, humans
can distinguish between scenes with or without animals with
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vation (see MATERIALS AND METHODS).
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saccades that are as fast as 120 ms (Kirchner and Thorpe
2006), yet the earliest differences between EEG event-related
potentials (ERPs) on this task were not observed until 150 ms
after stimulus onset (Thorpe et al. 1996). Similarly, the N170
ERP (a negative potential observed in certain channels at 170
ms) response to faces (Bentin et al. 1996) also occurs late
relative to behavioral reaction times and latencies in the ma-
caque. A reason for this discrepancy might be that ERP
analysis is too coarse a method to capture the earliest compo-
nents of object-related information. By using decoding-based
methods, we are able to see discriminative visual signals at
significantly earlier latencies in humans (also see Carlson et al.
2011; Isik et al. 2012; Liu et al. 2009). In the study by Carlson
et al. (2011), the authors found similar latencies for position-
invariant MEG decoding using a categorization task. They
were able to categorize faces, cars, and face and car textures as
early as 105–135 ms post-stimulus onset. Interestingly, in
contrast with our results, Carlson et al. did not detect a
difference in latency between their position-invariant and non-
invariant decoding conditions. This discrepancy may be due to
the fact that the authors used a categorization task, which
requires generalization (unlike our identification task) and may
occur when the neural signals already show a certain degree of
invariance. A recent study by the same group shows that more
abstract categorization has a longer decoding latency (Carlson
et al. 2013), supporting this explanation. With our experimen-
tal paradigm, we were able to see a clear range of latencies
from the initial noninvariant identity signal to size- and posi-
tion-invariant neural signals, which help to frame previous
human timing results.

Our timing results also showed that both size and position
invariance developed in a sequential order, meaning that

smaller transformations were decoded before larger transfor-
mations. This sequential development is consistent with a
hierarchical, feed-forward visual model where receptive fields
pool at each successive visual layer to first create local invari-
ance and then build invariance over a larger area. We tested
this theory with a biologically inspired object recognition
system, which employs this feed-forward hierarchical architec-
ture, known as HMAX (Serre et al. 2007) (Fig. 9). HMAX
performance had a similar trend to the order of the MEG
experimental results: an early visual model could not decode
stimuli invariant to size or position with above-chance accu-
racy, a midlevel visual model could decode small transforma-
tions with above-chance accuracy, and an IT-like model could
decode all transformations with above-chance accuracy. These
results give new and compelling evidence that such a feed-
forward hierarchy is a plausible model for invariant object
recognition in the human ventral stream.

The order and timing information presented here have valu-
able applications not only for constraining models of the visual
system, but also for answering more complex algorithmic
questions about invariant object recognition, for example: do
different types of invariance arise at different times in the
ventral visual pathway? These results allow us to directly
compare varying extents of these two transformations, position
and size. The shorter latencies for size-invariant decoding
suggest that size-invariance may begin to develop before po-
sition-invariance. However, it was not the case that all size-
invariance cases arose before position-invariant cases. The
timing difference between the two types of invariance is being
driven largely by the early rise of the smallest size-invariant
shift (between 4° and 6° images). Additionally, it is difficult to
directly compare the “extent” of two different types of trans-
formations. For example, how does a 2° linear size increase
compare to a 2° translation? Our results, however, do suggest
that both size and position invariance develop in several areas
along the ventral stream and appear significantly later than the
initial identity signal.

The MEG decoding methods outlined in this study are a
powerful tool to examine the dynamics of visual processing.
Unlike conventional methods examining evoked responses,
which require recordings from 50 or more stimulus repetitions
to be averaged, decoding analysis is sensitive enough to detect
visual signals by averaging only a few trials, or even from
single-trial data (Fig. 2). The results and decoding methods
presented here serve as a framework to examine an extended
range of transformations, which should help lead to a real
computational understanding of invariant object recognition.
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