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Abstract

We describe a “natural” metric on the space of images motivated by the neuro-
science of visual cortex. We propose the notion of a hierarchical derived distance
and suggest that it could be applied to the classification of imagery and text and to
the analysis of genomics data.



1 Introduction

In the last few years, new models based on anatomical and physiological data
about the primate visual cortex [5, 10, 6, 18, 8, 3, 6] are beginning to quanti-
tatively account for a host of novel physiological data and to provide human-
level performance on rapid categorization of complex imagery [15, 17, 16, 13,
14]. These models are the most recent examples of a family of biologically-
inspired architectures [4, 21, 9, 12, 19, 1, 22], and related computer vision sys-
tems [7, 20]. The hierarchical organization of such models – and of the cortex
itself – remains a challenge for learning theory, as we mentioned elsewhere
[11], since classical “learning algorithms” – as described in [11] correspond to
one-layer architectures.

In this note, we attempt to formalize the basic hierarchy of computations
represented in the models of visual cortex. Our hope is ultimately to achieve a
theory that may explain why such models work as well as they do and what the
computational reasons for the hierarchical organization of the cortex are.

This report provides a simplified version of the framework introduced in
[2]. In the Appendix we establish detailed connections with the Serre et al.
model [16] and identify a key difference.

1.1 Notation and Preliminary Definitions

At first we consider the special case of a two stage derived distance. Consider
the squares v, v′ and R in R2 with v ⊂ v′ ⊂ R, centered and with axis aligned
(see Figure 1). For example, in our simulations (see Appendix 1) the width of v
is 4 pixels, the with of v′ is 8 pixels and the width of the “retina” R is 14 pixels.

Suppose Im(R) is given. Im(v) and Im(v′) are subsets of the restrictions
of f ∈ Im(R) to v and v′, respectively. Let H be the set of all transformations
h : v → v′ with the form h = hβhα, hα(x) = αx and hβ(x′) = x′ + β, where
1/2 ≤ α ≤ 2 and β ∈ R2 is such that hβhα(v) ⊂ v′. We define in a similar
way h′ : v′ → R, with h′ ∈ H ′. The transformations h, h′ are embeddings
(of v in v′, of v′ in R,). In the following, let us assume, for simplicity, that all
h, h′ are restricted to translations (α = 1) and that there is a finite number of
them in H, H ′, respectively (thus we assume that there is a finite number of β
values). h can be thought of as translating the image over “the receptive field”
v or alternatively as selecting a receptive field of size and shape v that “looks”
at a different regions of the image. An image f is defined on the retina R but
restricted to v′ or v in the following.

Let Im(v) , Im(v′), Im(R) be three spaces of functions v → [0, 1], v′ → [0, 1]
and R → [0, 1], respectively. We also assume that T ⊂ Im(v) and T ′ ⊂ Im(v′)
are two different, finite sets of “templates” with probability measures ρT and
ρT ′ respectively, which we assume here to be uniform.

The key property we use is
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Figure 1: Nested domains, see text.

Axiom: f ◦ h : v → [0, 1] is in Im(v) if f ∈ Im(v′) and h ∈ H ,
that is the restriction of an image is an image and similarly for H ′. Thus

f ◦ h : v → [0, 1] ∈ Im(v) if f ∈ Im(v′) and h ∈ H ,
f ◦ h′ : v′ → [0, 1] ∈ Im(v′) if f ∈ Im(R) and h′ ∈ H ′.

We also call RT
+ the set of functions T → R+ so that RT

+ can be thought of as
the positive orthant of the cartesian space RN with N = |T | (and similarly for
T ′). These function spaces use ρT and ρT ′ , respectively, as the structure of an
Lp-normed space. This p ≥ 1 is a fixed parameter.

2 A Derived Distance

We formulate the model in the following stages:

1. The process starts with some initial distance on Im(v) provided by

d′0(f, g) = d(f, g) = ||f − g||p, (1)

where || · ||p is an appropriate Lp norm
(||f ||p = (

∫
v
|f(x)|pdµ(x))1/p

)
, for

the space of functions Im(v).

Then we define a first stage Neural Similarity as
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N1
t (f) = min

h∈H
d′0(f ◦ h, t), f ∈ Im(v′) (2)

Thus N1 : Im(v′) → RT
+ can be defined1 by N1(f)(t) = N1

t (f).

We define the derived distance
(
with ||N1(f)||p = (

∫
T
|N1

t |pdρ(t))1/p
)

on
Im(v′) as

d′1(f, g) = ||N1(f)−N1(g)||p (3)

Since N1(f) and N1(g) are elements in RT
+, this norm makes sense (we

use no Lp norm on Im(v′)).

2. We now repeat the process by defining the second stage Neural Similarity
as

N2
t′(f) = min

h′∈H′
d′1(f ◦ h′, t′), f ∈ Im(R), t′ ∈ T ′. (4)

The new derived distance is now on Im(R)

d′2(f, g) = ||N2(f)−N2(g)||p. (5)

Clearly this process could continue if appropriate higher level patches
were defined.

Remarks

1. The Appendix discusses relations with the model of [15] , see Figure 8.

2. Notice that the hierarchy can be considered as a hierarchy of associa-
tions. At the first level, each patch of the image is associated with a set
of similarities to given templates. At the second level the process is it-
erated using larger patches and bigger, more complex templates – and
thus establish an association with associations. At the top level the im-
age is described as a set of similarities to the top-level templates. Clearly,
translations (and scales) make the hierarchy non-trivial. If there were no
translations and scales, it is not clear whether the hierarchy would of-
fer any advantage with respect to a single stage of similarities, apart from
defining a “natural” similarity function.

3. Notice that a supervised classifier may be defined from the derived dis-
tance at the top level. Also derived distances at lower levels may be used
(this is what is done in [13, 15]).

1Notice that N1
t can be interpreted in terms of the model of Figure 8, see Appendix. In our

simulations (see Appendix 1) the function of t, N1
t (f) is represented as a vector N1

t with |T | com-
ponents.
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4. The same model can be applied to classification of text (the dictionary of
templates at the first level consists of isolated letters, at the second level
of frequent pairs etc.).

5. The same model can be applied to classification of genomic sequences
(the dictionary of templates at the first level consists of the four isolated
nucleotides, at the second level of frequent pairs etc.).

6. We suppose our probability measure ρ on Im(R) is given by the real
world images for the given vision problem under study. Then the tem-
plates ti ∈ T can be most conveniently be taken as random draws from
ρv on Im(v), where ρv is the probability measure induced from ρ by re-
striction. One may take T ′ in a similar fashion.
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Figure 2: Four of the 500 (4x4) tem-
plates in T .

Figure 3: Four of the 50 (8x8) tem-
plates in T ′.
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Figure 4: Matrices of pairwise d′2 (left) and L2 (right) distances for the set of 20 labeled
images from the database. The first 10 rows/columns correspond to images of threes,
and the last 10 rows/columns correspond to images of eights. Each entry is the pairwise
distance between the corresponding images.

3 Appendix 1: Preliminary Simulations

We have conducted preliminary simulations in which derived distances are
compared to the L2 distance in the context of a simple handwritten digit classi-
fication task. Given a small labeled set of images, we use the 1-nearest neighbor
(1-NN) classification rule: an unlabeled test example (restricted to 3s and 8s) is
given the label of the stored, labeled instance it is closest to under the specified
distance metric.

In the experiments presented here, we have used 14x14 pixel grayscale im-
ages randomly selected from the MNIST handwritten digit dataset. The digits
in this dataset include a small amount of natural translation, rotation, scaling,
shearing and other “transformations”, as one might expect to find in a corpus
containing the handwriting of many human subjects. To further explore the
translation invariance of the derived distance, we subjected the labeled and
unlabeled (test) sets of images to translations ranging from 0 to 6 pixels in one
of 8 randomly chosen directions (the transformations h are restricted in the
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Figure 5: Experiments comparing 1-NN classification accuracy over 100 test examples
with 2 labeled examples, one per class, when using the L2 distance vs. d′1 and d′2
derived distances. The experiment is repeated with images subjected to translations of
0-6 pixels (x-axis) to test robustness of the distance under translations.

implementation of this paper to translations, mainly for computational sim-
plicity). For the classification experiments, we explored two different labeled
image sets: one in which we included only one labeled image per class, and
another in which the labeled set was chosen to include 10 threes and 10 eights,
giving 20 labeled images total. In all experiments reported here, classification
accuracies are averaged over 100 test examples.

The sets T of templates consists of 500 randomly extracted 4x4 image patches
(corresponding to v). The set T ′ consists of 50 randomly extracted 8x8 image
patches2 (corresponding to v′). Examples of the patches in T and T ′ can be seen
in Figures 2 and 3, respectively. The smaller templates in T are large enough
to include semi-circles and distinct stroke intersections as extracted from the
digits. At 8x8 pixels, the templates in T ′ are seen to include nearly full digits
where more discriminative structure is present. Here, R corresponds to the
full domain of the image, eg 14x14 pixels. Patches are extracted from images
of threes and eights which are not used in the classification experiments. In all
experiments, we have used the same images to build the labeled, unlabeled,
and template sets, respectively.

The p-norms invoked in the definitions of d′0, d′1 and d′2 (equations (1), (3)
and (5)) are as given in Section 2. For the simulations in this section, the norm
involving images takes the form

‖f‖p =
(∫

v

|f |pdµ(x)
)1/p

=⇒
(

1
M

M∑

i=1

|fi|p
)1/p

(6)

2This latter number, imposed by computational limitations, is probably too small.
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Figure 6: Experiments similar to Figure 5 comparing 1-NN classification accuracy
over 100 test examples, but using here 10 labeled examples per class.

where the image patch has M pixels. The neural similarities N i require the
following norm (we drop the index i of the layer for simplicity)

‖N(f)‖p =
(∫

T

|Nt|pdρ(t)
)1/p

=⇒
(

1
|T |

|T |∑

i=1

|Nti |p
)1/p

(7)

where we have assumed a uniform measure ρ over the finite space T of tem-
plates. We denote the number of templates in the set by |T |. For purposes of
the experiments discussed in this note, we set p = 2.

Before discussing classification, we pause to illustrate graphically in Fig-
ure 4 the derived distances when applied to pairs of digits. On the left we
show d′2 distances, while the L2 distances are provided for comparison on the
right. In this example, we have used the labeled set of 20 images described
above, and with no artificial translations. The first 10 rows/columns corre-
spond to images of threes, and the last 10 rows/columns correspond to images
of eights. Each entry is the pairwise distance between the corresponding im-
ages. The images themselves are shown (with some translation) in Figure 7
(small, right), where the index written to the left of each digit corresponds to
rows/columns of the distance matrices shown in Figure 4.

In Figures 5 and 6 we turn to the classification experiments, and show ac-
curacies using the 1-NN rule for each of the image translations ranging from
0-6 pixels (as discussed above) in the case of the L2, d′2 and d′1 distances. For
the experiments summarized in Figure 5 we have used one labeled example
per class, while in Figure 6 we used the labeled image set with 10 examples
per class. As might be expected, the derived distances are better able to ac-
commodate image translations than L2 on the whole, and classification accu-
racy decays more gracefully in the derived distance cases as we increase the
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Figure 7: Two instances from the set of test examples (large, left), and the full labeled
set (small, right, with 10 examples for each of the two digits). All images in the ex-
periments are fixed at 14x14 pixels. Images here have been randomly translated by 3
pixels.

Test Digit Train 3s (d′2) Train 8s (d′2) Train 3s (L2) Train 8s (L2)
3 0.0096 0.0116 0.3028 0.3339
8 0.0111 0.0082 0.3832 0.3360

Table 1: Minimum distances from the test examples shown in Figure 7 (large digits,
left) to the labeled examples in Figure 7 (small digits, right). We have divided the
labeled set up into threes and eights, and show the minimum d′2 and L2 distances to
each category separately.

size of the translation. In addition, the 2-layer d′2 derived distance is seen to
generally outperform the 1-layer d′1 derived distance. Whether there exists an
optimal number of layers and template set sizes for a given problem, and how
to choose them, is an open topic.

In Figure 7 we show one instance each from the test set of threes and eights
on the left (large boxed digits), and on the right we show the complete labeled
image set (small digits). Both the labeled and test images in this case have
been artificially translated by 3 pixels in one of 8 random directions. In Table 1
we give the minimum distances, in both the L2 and d′2 derived distance cases,
from the test instances shown in Figure 7 to the labeled set shown in the same
figure. While both L2 and d′2 give the correct 1-NN classification, the differ-
ence between minimum distances across the two classes of training examples
is more pronounced (relative to the distances) for d′2.
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Figure 8: The model of Serre et al [16]. We consider here the layers up to C2.

4 Appendix 2: Derived distances and Visual Cortex

In this Appendix, we extend the neural distance definition in Section 2 towards
establishing an exact connection with the model of Serre et al. We consider a
two-stage model (comprising S1, C1, S2, C2 as in [16], as illustrated in the first
4 layers of Figure 8.

As shown in the figure, we consider one additional stage and thus a v′′

square. Similarly to the above, we assume that the squares v, v′, v′′ and R in
R2 with v ⊂ v′ ⊂ v′′ ⊂ R, centered and with axis aligned. For example, the
width of v is 1/2 of the with of v′ which is also 1/2 of the with of v′′ which is
also 1/2 of the width of the “retina” R. Let H be the set of all transformations
h : v → v′ with the form h = hβhα, hα(x) = αx and hβ(x′) = x′ + β, where
1/2 ≤ α ≤ 2 and β ∈ R2 is such that hβhα(v) ⊂ v′. We define in a similar way
h′ : v′ → v′′ and h′′ : v′′ → R, with h′, h′′ ∈ H ′,H ′′, respectively.

As before, we assume, for simplicity, that all h, h′, h′′ are restricted to trans-
lations and that there is a finite number of them in H,H ′,H ′′, respectively (thus
we assume that there is a finite number of β values).

Let Im(v) , Im(v′) and Im(v′′) the three spaces of functions v → [0, 1], v′ →
[0, 1] and v′′ → [0, 1], respectively. We also assume that T ⊂ Im(v) and T ′ ⊂
Im(v′′) are two different, finite sets of “templates”, each with a probability
measure ρT and ρT ′ , respectively, which we again assume here to be uniform.

Analogous to the assumptions made earlier, we assume that
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Figure 9: Nested domains, with an additional v′′.

f ◦ h : v → [0, 1] ∈ Im(v)

if f ∈ Im(v′) and h ∈ H ,

f ◦ h′ : v′ → [0, 1] ∈ Im(v′)

if f ∈ Im(v′′) and h′ ∈ H ′,

f ◦ h′′ : v′′ → [0, 1] ∈ Im(v′′)

if f ∈ Im(R) and h′′ ∈ H ′′,

The definition of Neural Similarity can be broken down into two steps:

• First we have
N1,S

h,t (f) = d(f ◦ h, t)

where N1,S
h,t (f) corresponds to the response of a S1 cell with template t

with receptive field h ◦ v.

• The Neural Similarity is now

N1,C
t (f) = min

h∈H
d(f ◦ h, t)

where N1,C
t : Im(v′) → RT

+. N1,C
t (f) corresponds to the response of a C1

cell with template t and with receptive field – the region over which the
min is taken – corresponding to v′.
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We now extend N1,C to the region v′′ as

N1,C
t,h′ (f) = N1,C

t (f ◦ h′)

where N1,C
t,h′ (f) can be regarded as a vector with components indexed by t, h′;

N1,C
t,h′ (f) is a function of f restricted to v′. N1,C

t,h′ (f) is the response of a C1 cell
with receptive field h′ ◦ v′ in v′′.

The two steps at the second stage – corresponding to S2 and C2 cells, respec-
tively – can be now defined as

• N2,S
t′,h′′(f) = d(N1,C

t,h′ (f ◦ h′′), N1,C
t,h′ (t

′)) where the distance is computed
averaging over t, h′ and f is restricted to v′′. N2,S

t′,h′′ is the response of a S2
cell with receptive field h′′ ◦ v′′. Furthermore

• N2,C
t′ (f) = minh′′∈H′′ d(N1,C

t,h′ (f ◦ h′′), N1,C
t,h′ (t

′))

is the response of a C2 cell with receptive field R.

What is described above gives a detailed correspondence between the model
of Figure 8 and the mathematics (apart from the use of the Gaussian instead of
the derived distance and the presence of scale invariance in the Serre model).
The special case considered in the main text corresponds to the case of v′ = v′′

eg H ′ contains only the identity transformation. The special case corresponds
to the model of [2]. It is not completely faithful to the Serre model [16, 15] and
to the commonly accepted view of physiology. However, S2 cells could have
the same receptive field of C1 cells and C2 cells could be the equivalent of V4
cells. Thus the known physiology may not be inconsistent.
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