
Vision Research xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres
What and where: A Bayesian inference theory of attention

Sharat Chikkerur *, Thomas Serre, Cheston Tan, Tomaso Poggio
McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
a r t i c l e i n f o

Article history:
Received 21 October 2009
Received in revised form 30 April 2010
Available online xxxx

Keywords:
Computational model
Attention
Bayesian inference
Object recognition
0042-6989/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.visres.2010.05.013

* Corresponding author.
E-mail addresses: sharat@mit.edu (S. Chikkerur

cheston@mit.edu (C. Tan), tp@ai.mit.edu (T. Poggio).

Please cite this article in press as: Chikkerur, S
j.visres.2010.05.013
a b s t r a c t

In the theoretical framework of this paper, attention is part of the inference process that solves the visual
recognition problem of what is where. The theory proposes a computational role for attention and leads to
a model that predicts some of its main properties at the level of psychophysics and physiology. In our
approach, the main goal of the visual system is to infer the identity and the position of objects in visual
scenes: spatial attention emerges as a strategy to reduce the uncertainty in shape information while fea-
ture-based attention reduces the uncertainty in spatial information. Featural and spatial attention repre-
sent two distinct modes of a computational process solving the problem of recognizing and localizing
objects, especially in difficult recognition tasks such as in cluttered natural scenes.

We describe a specific computational model and relate it to the known functional anatomy of attention.
We show that several well-known attentional phenomena – including bottom-up pop-out effects, mul-
tiplicative modulation of neuronal tuning curves and shift in contrast responses – all emerge naturally
as predictions of the model. We also show that the Bayesian model predicts well human eye fixations
(considered as a proxy for shifts of attention) in natural scenes.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Much of the recent work in visual recognition both in computer
vision and physiology focused on the ‘what’ problem: which object
is in the image. Face detection and identification are typical exam-
ples. Recognition is, however, more than the mere detection of a
specific object or object class: everyday vision routinely solves
the problem of what is where. In fact, David Marr defined vision
as ‘‘knowing what is where by seeing” (Marr, 1982).

In somewhat of an oversimplification, it has been customary to
describe processing of visual information in the brain along two
parallel and concurrent streams. The ventral (‘what’) stream pro-
cesses visual shape appearance and is largely responsible for object
recognition. The dorsal (‘where’) stream encodes spatial locations
and processes motion information. In an extreme version of this
view, the two streams underlie the perception of ‘what’ and
‘where’ concurrently and relatively independently of each other
(Ungerleider & Haxby, 1994; Ungerleider & Mishkin, 1982). Lesions
in a key area of the ventral (‘what’) stream (the inferior temporal
cortex) cause severe deficits in visual discrimination tasks without
affecting performance on visuospatial tasks such as visually guided
reaching tasks or tasks that involve judgments of proximity be-
tween an object and a visual landmark. In contrast, parietal lesions
in the dorsal (‘where’) stream cause severe deficits on visuospatial
ll rights reserved.
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performance tasks while sparing visual discrimination ability. In
everyday life, the identity and location of objects must somehow
be integrated to enable us to direct appropriate actions to objects.
Thus a hypothetical segregation of the two streams raises the ques-
tion of how the visual system combines information about the
identities of objects and their locations. The central thesis of this
paper is that visual attention performs this computation (see also
Deco & Rolls, 2004; Van Der Velde & De Kamps, 2001).

The past four decades of research in visual neuroscience have
generated a large and disparate body of literature on attention
(see Supplementary Online Information, Sections 3.1–3.3).
Although several computational models have been developed to
describe specific phenomena, a theoretical framework that ex-
plains the computational role of attention, while predicting and
being consistent with known biological effects, is lacking. It was re-
cently suggested that visual perception may be interpreted as a
Bayesian inference process whereby top-down priors help disam-
biguate noisy bottom-up sensory input signals (Dayan, Hinton, &
Neal, 1995; Dayan & Zemel, 1999; Dean, 2005; Epshtein, Lifshitz,
& Ullman, 2008; Friston, 2003; George & Hawkins, 2005; Hinton,
2007; Kersten & Yuille, 2003a; Kersten, Mamassian, & Yuille,
2004; Knill & Richards, 1996; Lee & Mumford, 2003; Mumford,
1992; Murray & Kreutz-Delgado, 2007; Rao, 2004; Rao, Olshausen,
& Lewicki, 2002; Weiss, Simoncelli, & Adelson, 2002).

In this paper, we build on earlier work (Rao, 2005; Yu & Dayan,
2005) to extend the Bayesian inference idea and propose that the
computational role of attention is to answer the what is where
question. Our model predicts several properties of attention at
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Fig. 1. The figure illustrates the progression of graphical models corresponding to the sequence of factorizations given in Eqs. (1)–(5) induced by the three main assumptions.

1 The probabilistic model can be extended to generalize to scenes with an arbitrary
number of objects.
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the level of visual psychophysics and physiology. It can also be re-
garded as extending existing models of the ‘what’ pathway, such as
hierarchical feedforward models of the ventral stream in the visual
cortex (e.g., Amit & Mascaro, 2003; Fukushima, 1980; Mel, 1997;
Riesenhuber & Poggio, 1999b; Serre, Kouh, et al., 2005; Thorpe,
2002; Ullman, Vidal-Naquet, & Sali, 2002; Wallis & Rolls, 1997;
Wersing & Koerner, 2003) by taking into account some of the
back-projections present throughout cortex.

In our framework, visual recognition corresponds to estimating
posterior probabilities of visual features for specific object catego-
ries and their locations in an input image (i.e., knowing what is
where). Algorithmically, this computation can be performed using
belief propagation (Pearl, 1988), variational methods (Wainwright
& Jordan, 2008) or sampling-based approaches, such as MCMC (Gil-
ks & Spiegelhalter, 1996; Neal, 1993). We use here the belief prop-
agation algorithm for which implementations have been proposed
that are biologically plausible (Beck & Pouget, 2007; Deneve, 2008;
George, 2008; Lee & Mumford, 2003; Litvak & Ullman, 2009; Rao,
2004; Steimer, Maass, & Douglas, 2009; Zemel, Dayan, & Pouget,
1998) (see also Supplementary Online Information, Section 3.2).

Within our framework, spatial attention is related to spatial pri-
ors, while feature-based attention depends on task-based priors for
objects and features. The posterior probability over location vari-
ables serves as a ‘saliency map’. Attentional phenomena such as
pop-out, multiplicative modulation and change in contrast re-
sponse, which have been sometimes described in the recent liter-
ature as different and, in some cases, even conflicting findings,
are all predicted by the same model. We also show that the Bayes-
ian model predicts well human eye fixations (considered as a proxy
for shifts of attention) in natural scenes in task-free as well as in
task-dependent situations.

This paper proposes a formal interpretation of attention as a
process that has the computational goal of inferring simulta-
neously the form and location of objects in the visual world. As
we will discuss later (see Section 7), the generative model de-
scribed below is based on a few assumptions, the first of which
is related to the traditional ‘computational bottleneck’ (Tsotsos,
1997) theories of attention.

2. Computational model

2.1. Model preliminaries

A generative model S ? I specifies how an image I (represented
as either raw pixel intensities or as a collection of topographic fea-
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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ture maps) is determined by the scene description S (e.g., vectorial
description of properties such as global illumination, scene iden-
tity, and objects present). The product of the likelihood P(IjS) and
the prior probability of the scene description P(S) determines the
generative model (Kersten et al., 2004):

PðS; IÞ ¼ PðIjSÞPðSÞ ð1Þ

The generative model also specifies the probabilistic relation-
ship between observed variables (object and image) and unob-
served (latent) variables such as lighting, depth, and viewpoint.
that influence the observed data. Following recent work (Kersten
& Yuille, 2003b), we decompose the description of a scene in n
components which in our case are just objects (including the back-
ground) {O1,O2, . . . ,On} and their locations {L1,L2, . . . ,Ln} in the
scene.1

Thus, S = {O1,O2, . . . ,On,L1,L2, . . . ,Ln}. In the most general case,
every random variable influences every other one. We show how
a few key assumptions lead to a simple factorization of the gener-
ally complex joint probability – corresponding to simplifications of
the original graphical model (see Fig. 1).

As we mentioned, one of the main tasks of vision is to recognize
and localize objects in the scene. Here we assume that

(a) To achieve this goal, the visual system selects and localizes
objects, one object at a time.

Since the requirements of the task split S into those variables
that are important to estimate accurately for the task and those
that are not, we write in this case P(S, I) = P(O1,L1,O2,L2, . . . ,On,Ln, I).
We can then integrate out the confounding variables (i.e., all ob-
jects except one – labeled, without loss in generality, O1):

PðO1; L1; IÞ ¼
X

O2 ���On ;L2 ���Ln

PðO1; L1;O2; . . . ;On; L2; . . . ; Ln; IÞ ð2Þ

We further assume that

(b) the object location and object identity are independent, leading
to the following factorization:

PðO; L; IÞ ¼ PðOÞPðLÞPðIjL;OÞ ð3Þ
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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In Eq. (3) and in following equations, we replace, for simplicity the
single object O1 with O and its location L1 with L.

Remarks

� Attention, as described later, emerges as the inference process
implied by Eq. (3). In a sense, our framework with the key
assumption (a), ‘‘predicts” attention and – with the approxima-
tions to Eq. (3) described in the rest of the section – several of
its properties.
� Bayesian models of object recognition – but, emphatically, not

of attention – assume different (w.r.t Eq. (3)) factorizations of
P(S, I), such as P(S, I) = P(O1,L1, . . . ,On,Ln, I) (Sudderth, Torralba,
Freeman, & Willsky, 2005) or P(S, I) = P(O,L, I) = P(O, LjI)P(I)
(Torralba, 2003a), in which location and identity of an object
are modeled jointly. In Eq. (3), I corresponds to an entire array
of measurements (every feature at every location). Eq. (3), dic-
tated by the generative model and the requirements of the task,
leads to a simpler approximation with P(O,L, I) = P(O)P(L)P(IjO,L)
– as a model of attention.
� The key assumption (a) characterizes the task of attention as

selecting a single object – for recognition and localization – in
the scene. This is a formalization of the standard spotlight hypoth-
esis of attention, in which attention focuses processing to a region
of the image. One can speculate about the reasons for this con-
straint. Previous proposals based on the bottleneck and salience
hypotheses (Bruce & Tsotsos, 2006; Itti, Koch, & Niebur, 1998;
Tsotsos, 1997) postulate that the role of attention is to prioritize
the visual scene, where limited visual processing resources are
directed towards ‘relevant’ regions. These hypotheses corre-
spond to the assumption that the visual system needs attention
in order to reduce the computational complexity of recognition.
We prefer a related hypothesis to justify attention and our factor-
ization. Our hypothesis is that attention is needed to reduce the sam-
ple complexity of learning the relevant probability distributions
over objects, features and locations. We believe that it would take
too much data, and therefore an unreasonably long time, unless
one makes assumptions about the parametric form of the distri-
butions – assumptions that are arguably as strong as ours.2

� Eq. (3) is not a strong generative model (Kersten et al., 2004)
because it takes into account a generative model and the assumed
constraints of the task of attention. It cannot produce images
containing many objects, such as typical scenes used in our exper-
iments (see for instance Fig. 6). It can synthesize images containing
either no object or one object such as a single car. It corresponds to
visual scenes ‘illuminated by a spotlight of attention’. Note that
from the inference point of view, if the task is to find a car in the
image, there will always be either no car or one car which is more
car-like than other ones (because of image ‘‘noise”).
� Although, assumption (a) posits that the core model of attention

should find a single object in the image, the process can be iter-
ated, looking for other objects in other locations, one at a time.
This assumption motivates most (extended) models of attention
(Miau & Itti, 2001; Rutishauser, Walther, Koch, & Perona, 2004;
Walther & Koch, 2007, Chapter: Attention in Hierarchical Models
of Object Recognition) and also motivates mechanisms such as
‘‘inhibiton of return” (Itti & Koch, 2001). The full strategy of call-
2 Let us assume that e is the error with which the distribution is learned, s is a
measure of smoothness of the density being approximated, N is the number of
objects, O is the number of object classes and L is the dimensionality of the location
grid. As an example to give a feeling for the issue, we consider the joint probabilities:
Learning joint probabilities of all the N objects and their locations would take in the
order of e�NOL/s examples whereas learning a single object and its location would take
in the order of e�OL/s examples. Whereas it would take in the order of e�O/s + e�L/s

examples for our factorization. There can be many orders of magnitude difference
between the required examples (for instance take e = 0.1)!
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ing multiple times the core attention module to recognize and
localize one object at a time is not Bayesian. It is an interesting
question for future work how to model in a fully Bayesian frame-
work the sequential process of recognizing and localizing objects
(Lovejoy, 1991; Monahan, 1982; Smallwood & Sondik, 1973).

2.2. Model

Consider the generative model specified in Eq. (3). We assume
that the image of an object is generated through a set of relatively
complex object features. In particular, (c) we assume that each of N
features is either present or absent and that they are conditionally
independent, given the object and its location. A similar approach
can be found in other part-based object recognition frameworks
(Crandall, Felzenszwalb, & Huttenlocher, 2005; Felzenszwalb &
Huttenlocher, 2005; Fergus, Perona, & Zisserman, 2003). We use
intermediate latent variables {X1,X2, . . . ,XN} to encode the position
of the N object features; if feature i is not present, then Xi = 0. These
intermediate variables can be considered as feature maps which
depend on the object and its location. We model the joint probabil-
ity of the object identity O, its location L, the feature maps
{Xi, i = 1,2, . . . ,N} and the image I. Eq. (3) takes the form

PðO; L;X1; . . . ;XN; IÞ ¼ PðOÞPðLÞPðX1; . . . ;XNjL;OÞPðIjX1; . . . ;XNÞ
ð4Þ

We then take the variables to be discrete, because of computational
considerations and because images (and arrays of neurons) can be
represented on discrete grids. Because of the assumed conditional
independence P(X1, . . . ,XNjL,O) is given by the following
factorization:

PðX1; . . . ;XN jL;OÞ ¼
Yi¼N

i¼1

fPðXijL;OÞg ð5Þ

Applying Eq. (5), Eq. (4) leads to our final probabilistic model

PðO; L;X1; . . . ;XN; IÞ ¼ PðOÞPðLÞ
Yi¼N

i¼1

fPðXijL;OÞg
( )

PðIjX1; . . . ;XNÞ

ð6Þ
The model consists of a location encoding variable L, object encod-
ing variable O, and feature-map variables {Xi, i = 1, . . . ,N}, that en-
code position-feature combinations. The object variable O is
modeled as a multinomial random variable with jOj values corre-
sponding to objects known by the model. The location variable L
is modeled as a multinomial random variable with jLj distinct val-
ues that enumerate all possible location and scale combinations.
The variable Xi is a multinomial variable with jLj + 1 values
(0,1, . . . ,L).

As we discuss later (Section 4), it is easier to map the model
onto the functional cortical anatomy (see Fig. 2) of attention by
introducing the (dummy) variables (Fi)i=1. . .N, which are not strictly
needed but can be interpreted directly in a biological perspective.
Each feature-encoding unit Fi is modeled as a binary random vari-
able that represents the presence or absence of a feature irrespec-
tive of location and scale. The location (Xi) of feature i depends on
the feature variable Fi and on the location variable L. This relation,
and the definition of Fi, can be written as P(XijL,O) = P(XijFi,L)P(FijO).
With the auxiliary variables (Fi)i=1. . .N the factorization of Eq. (6) can
be rewritten as

PðO; L;X1; . . . ;XN; F1; . . . ; FN ; IÞ

¼ PðOÞPðLÞ
Yi¼N

i¼1

fPðXijL; FiÞPðFijOÞg
( )

PðIjX1; . . . ;XNÞ ð7Þ

The conditional probability P(XijFi,L) is such that when feature Fi is
present (Fi = 1), and L = l*, the feature map is activated at either
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Fig. 2. Left: Proposed Bayesian model. Right: A model illustrating the interaction
between the parietal and ventral streams mediated by feedforward and feedback
connections. The main additions to the original feedforward model (Serre, Kouh,
et al., 2005) (see also Supplementary Online Information) are (i) the cortical
feedback within the ventral stream (providing feature-based attention); (ii) the
cortical feedback from areas of the parietal cortex onto areas of the ventral stream
(providing spatial attention); and (iii) feedforward connections to the parietal
cortex that serves as a ‘saliency map’ encoding the visual relevance of image
locations (Koch & Ullman, 1985).
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Xi = l* or a nearby location with high probability (decreasing in a
gaussian manner). However, when the feature Fi is absent (Fi = 0),
only the ‘null’ state of Xi (Xi = 0) is active. Thus, when location
L = l* is active, the object features are either near location l* or ab-
sent from the image. In addition to this top-down generative con-
straint, bottom-up evidence P(IjX1 � � �XN) is computed from the
input image. P(IjX1 � � �XN) obtained from the image is not a normal-
ized probability. In practice, it is proportional to the output of a fea-
ture detector. However, this does not adversely affect the inference
process. See Table 2 for further details.

Visual perception here corresponds to estimating posterior
probabilities of visual features (Fi)i=1. . .N, object O and location L fol-
lowing the presentation of a new stimulus. In particular, P(LjI) can
be interpreted as a saliency map (Koch & Ullman, 1985), that gives
the saliency of each location in a feature-independent manner.
P(FijI) and P(OjI) can be thought of as location independent readout
of object features and object identity respectively.

Remarks 1. The probabilistic model of Eq. (7) encodes several
constraints resulting from our three assumptions:
� Each feature Fi occurs at a single location/scale in the feature map.
This apparently strong constraint follows from assumption (a)
and (c). Assumption (c) is suggested directly by the assumption
that the features are relatively complex (such as V4-like fea-
tures). Our model implements the constraint above through
the automatically enforced mutual exclusion of different states
of Xi. We emphasize that there is no mutual exclusion among
the different features – multiple features can be active at the
same location. This is in contrast to earlier probabilistic models
(Rao, 2005) where features were assumed to be mutually exclu-
sive as well.
� Objects can be represented in terms of a single set of universal fea-

tures (F1, . . . ,FN). Although some objects may have diagnostic
features, a large variety of objects can be represented using a
shared set of primitive shape features (Mutch & Lowe, 2006;
Ranzato, Huang, Boureau, & LeCun, 2007; Serre, Wolf, Bileschi,
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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Reisenhuber, & Poggio, 2007; Torralba, Murphy, & Freeman,
2004).

These assumptions limit the range and kind of ‘‘images” that
can be generated by this model. The relevant question, however,
is whether such a simplified model of the visual world, imposed
by the objective constraint of sample complexity, actually de-
scribes what is used by the visual system.

2.3. Comparison to prior work

The model is closely related to the Bayesian model of spatial
attention proposed by Rao (2005). The previous model was modi-
fied to include the following significant extensions: (i) The model
includes both feature and object priors. This allows us to imple-
ment top-down feature-based attention in addition to spatial
attention. (ii) The model allows conjunction of features that share
common spatial modulation, while prior work modeled a single
feature dimension (e.g., orientation) with mutually exclusive fea-
tures. (iii) Spatial attention is extended to include scale/size infor-
mation in addition to just location information. Our new model can
account not only for visual searches in artificial search arrays but
also for searches in real-world natural images for which it predicts
well human eye movements under bottom-up and top-down
attention (see Section 6).

3. Model properties

In the following, we describe the properties of the model. For
simplicity, we assume that the model consists of a single feature
variable Fi and its corresponding feature-map variable Xi.

3.1. Translation invariance

The Fi units encode the presence or absence of individual fea-
tures in a translation/scale invariant manner. The invariance is
achieved by pooling responses from all locations. The posterior
probability of the feature Fi is given by:

PðFijIÞ / PðFiÞ
X
L;Xi

PðXijFi; LÞPðLÞPðIjXiÞ ð8Þ

Here, PðFiÞ ¼
P

OPðFijOÞPðOÞ. Spatial invariance is achieved by mar-
ginalizing (summing over) the L variables (see Fig. 3a).

3.2. Spatial attention

In our model, spatial attention follows from setting a prior P(L)
concentrated around the location/scale of interest (see Fig. 3b).
Consider the posterior estimate of the feature unit Fi. Ignoring
the feature prior, the estimate is given by:

PðFijIÞ /
X
L;Xi

PðXijFi; LÞPðLÞPðIjXiÞ ð9Þ

The corresponding unit response can be considered as a
weighted sum of the evidence P(IjXi). Under spatial attention, re-
gions inside the spotlight of attention are weighed more, while
those outside the spotlight are suppressed. As a consequence, the
receptive fields of the non-retinotopic Fi units at the next stage
are effectively shrunk.

3.3. Feature-based attention

As illustrated in Fig. 3c, when a single isolated object/feature is
present, it is possible to read out its location from the posterior
probability P(LjI). However when multiple objects/features are
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Fig. 3. An illustration of some of the key model properties. Here P(L), P(F) represent the prior that is set before the image is seen. P(FjI), P(LjI) represent the posterior
probabilities after the image is observed. (a) Spatial invariance: The posterior probability P(FjI) is independent of the stimulus position. (b) Illustration of how spatial attention
contributes to solving the ‘clutter’ problem associated with the presentation of multiple stimuli. (c) Illustration of how feature-based attention contributes to solving the
‘clutter’ problem associated with the presentation of multiple stimuli. (d) The feature pop-out effect: The relative strength of the saliency map P(LjI) increases as more and
more identical distractors are being added increasing the conspicuity of the unique stimulus with its surround.
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present (see Fig. 3c, first column), it is no longer possible to readout
this information. To solve this problem, parallel feature-based
attention results from concentrating the priors P(Fi) (P(FijO) for
an object search) around the features of interest (e.g., red and
square features when searching for a red square). The value of
the saliency map is given by:
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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PðLjIÞ / PðLÞ
Y

i

X
Fi ;Xi

PðXijFi; LÞPðFiÞPðIjXiÞ

8<
:

9=
; ð10Þ

Increasing the concentration of the prior around the target feature Fi

enhances the preferred feature at all locations while low priors on
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Table 1
Bayesian model units and tentative mapping to brain areas.

Model
(brain)

Representation (biological evidence)

L (LIP/FEF) This variable encodes the location and scale of a target object. It is modeled as a discrete multinomial variable with jLj distinct values
Prior studies (Colby & Goldberg, 1999) have shown that the parietal cortex maintains several spatial maps of the visual environment (eye-centered,
head-centered, etc.). Studies also show that response of LIP neurons is correlated with the likelihood ratio of a target object (Bisley & Goldberg, 2003). In
this paper, we hypothesize that the saliency map (corresponding to the variable L) is represented in the parietal cortex.

O (PFC) This variable encodes the identity of the object. It is modeled as a discrete multinomial variable that can take jOj distinct values
The preferred stimulus of neurons tend to increase in complexity along the ventral stream: from simple oriented bars in area V1 (Hubel & Wiesel, 1959)
to combinations of orientations and features of moderate complexity in intermediate visual areas V2 (Hegde & Van Essen, 2000; Ito & Komatsu, 2004)
and V4 (Desimone & Schein, 1987; Gallant et al., 1996; Pasupathy & Connor, 2001), to parts and objects in area IT (Logothetis & Sheinberg, 1996; Tanaka,
1996). It has been shown that object category information is represented in higher areas such as the prefrontal cortex (PFC) (Freedman et al., 2001).

Fi (IT) Each feature variable Fi encodes the presence of a specific shape feature. Each such unit is modeled as a discrete binary variable that can be either on or
off. The presence/absence of a given feature is computed in a position/scale invariant manner (see Serre, Kouh, et al. (2005) for details). In practice, for the
visual tasks described in this paper, we have used a dictionary of features of about 10 � 100 such features.
Neurons in the inferotemporal (IT) cortex are typically tuned to objects and parts (Tanaka, 1996) and exhibit some tolerance with respect to the exact
position and scale of stimulus within their receptive fields (typically on the order of a few degrees for position and on the order of one octave for size
(Logothetis et al., 1995).

Xi (V4) This variable can be thought of as a feature map that encodes the joint occurrence of the feature (Fi) at location L = l. It is modeled as a discrete
multinomial variable with jLj + 1 distinct values (0,1 . . . ,L). Values (1 � � �L) correspond to valid locations while Xi = 0 indicates that the feature is
completely absent from the input.
Feature-based attention is found to modulate the response of V4 neurons at all locations (Bichot et al., 2005). Under spatial attention, V4 neurons that
have receptive fields overlapping with the locus of attention are enhanced (McAdams & Maunsell, 1999). Thus V4 neurons are involved in feature-based
attention as well as spatial attention marking V4 as the likely area of interaction between ventral and parietal cortices.

I (V2) This is the feed-forward evidence obtained from the lower areas of ventral stream model. Given the image I, for each orientation and location, P(IjXi) is set
proportional to the output of the filter.
The neurons in area V2 are found to be sensitive to conjunction of orientations, curvature and grating-like stimuli (Hegde & Van Essen, 2000; Ito &
Komatsu, 2004). We use the computational model of the ventral stream (Serre, Wolf, et al., 2007) to derive V2-like features from the image.
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other features suppress activity from distracting objects. Thus, the
evidence P(IjXi) is now modulated by the preference for the feature
given by P(Fi). The location of the preferred feature can be read out
from the posterior probability P(LjI), which can be interpreted as a
saliency map.
3.4. Feature pop-out

Since the Xi units are mutually exclusive ð8i;
P

Xi PðXijFi; LÞ ¼ 1Þ,
increasing the activity (probability) at one location in an image
typically reduces the likelihood of the stimulus being present at
other locations (see Fig. 3d). In a sense, this is similar to the ex-
tra-classical receptive field effects observed throughout the visual
cortex (see Carandini, Heeger, & Movshon (1997) for instance).
As a result, a unique feature that is active at only one location tends
to induce a higher likelihood, concentrated at that location, than a
common feature, present at multiple locations, for each of the cor-
responding locations. This predicts a ‘pop-out’ effect, whereby a
salient items immediately draw attention (the model shows a
strong bias of the saliency map towards the location of the salient
or ‘surprising’ item (see Fig. 3d)).

It is important to realize that the pop-out effect in our model is
directly due to our assumption that different locations within the
same feature compete for representation at a higher level. This is
a novel explanation for the pop-out phenonmenon. In contrast to
our model, traditional approach to pop-out has been based on im-
age saliency or breakdown of feature homogeneity. In (Itti et al.,
1998), center-surround difference across color, intensity and orien-
tation dimensions is used as measure of saliency. In (Gao &
Vasconcelos, 2007), self information of the stimuli (�log(P(I))) is
used as measure of visual saliency (Zhang, Tong, Marks, Shan, &
Cottrell, 2008). In (Rosenholtz, 1985), the normalized deviation
from mean response is used instead. Li and Snowden (2006) pro-
posed a computational model based on spatially organized V1-like
units showing that they are sufficient to reproduce attentional ef-
fects such as pop-out and search asymmetries. In addition, this
model can reproduce effects such as contour completion and
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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cross-orientation inhibition that is currently not possible with
the proposed model.
4. Neural interpretation

Prior work has shown that perception under uncertainty can be
modeled well using Bayesian inference (Kersten et al., 2004; Knill
& Richards, 1996; Mumford, 1992; Rao et al., 2002). However,
how the brain represents and combines probabilities at the level
of neurons is unclear. Computational models have attempted to
model probabilities using populations codes (Pouget, Dayan, & Ze-
mel, 2000), spiking models of neurons (Deneve, 2008; Pouget et al.,
2000), recurrent networks (Rao, 2004), etc. The properties of the
model of attention described so far do not depend on how proba-
bilities are mapped to neural activities. In the following neural
interpretation of the model we assume, however, that probabilities
are represented as firing rates of populations of neurons (the phys-
iology experiments typically measure firing rates averaged across
‘‘identical” neurons over a series of recordings).
4.1. Tentative mapping to brain areas

The graphical model can be tentatively mapped – in a way
which is likely to be an oversimplification – into the basic func-
tional anatomy of attention, involving areas of the ventral stream
such as V4 and areas of the dorsal stream such as LIP (and/or
FEF), known to show attentional effects (see Table 1, Supplementary
Discussion, Section 3.2, and Fig. 2). Thus, following the organization
of the visual system (Ungerleider & Haxby, 1994), the proposed
model consists of two separate visual processing streams: a ‘where’
stream, responsible for encoding spatial coordinates and a ‘what’
stream for encoding the identity of object categories. Our model
describes a possible interaction between intermediate areas of
the ventral (‘what’) stream such as V4/PIT (modeled as Xi variables)
where neurons are tuned to shape-like features of moderate com-
plexity (Kobatake & Tanaka, 1994; Logothetis & Sheinberg, 1996;
Tanaka, 1996) and higher visual areas such as AIT where retinotopy
is almost completely lost (Logothetis, Pauls, & Poggio, 1995; Oram
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Table 2
Description of the model conditional probabilities.

Conditional
probability

Modeling

P(L) Each scene, with its associated viewpoint, places constraints on the location and sizes of objects in the image. Such constraints can be specified
explicitly (e.g., during spatial attention) or learned using a set of training examples (Torralba, 2003b)

P(FijO) The probability of each feature being present or absent given the object; it is learned from the training data
P(XijFi,L) When the feature Fi is present and location L = l* is active, the Xi units that are nearby unit L = l* are most likely to be activated. When the feature Fi

is absent, only the Xi = 0 location in the feature map is activated. This conditional probability is given by the following table

d1 and d2 are small values (�0.01), chosen to ensure that
P

PðXijFi; LÞ ¼ 1
P(IjXi) For each location within the feature map, P(IjXi) provides the likelihood that Xi is active. In the model, this likelihood is set to be proportional to

the activations of the shape-based units (see Serre, Wolf, et al., 2007)
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& Perrett, 1992) (modeled as Fi units). Prior (non-Bayesian) at-
tempts to model this interaction can be found in Grossberg
(1999) and Van Der Velde and De Kamps (2001).

In our interpretation, the L variable, which encodes position and
scale independently of features, may correspond to the LIP area in
the parietal cortex. In the model, the L variable is represented as a
multinomial variable. Each Xi variable corresponds to a collection
of V4 neurons, where each neuron can be interpreted as encoding
one of the mutually exclusive states of Xi. The posterior probability
P(Xi = xjI) is then interpreted as the response of a V4 neuron encod-
ing feature i and at location x. Thus, in the neural interpretation,
P(Xi = 1jI),P(Xi = 2jI) . . . ,P(Xi = jLjjI) can be mapped to the firing rates
of the neuron encoding feature Fi at location 1,2 . . . , jLj respectively.

The Fi units correspond to non-retinotopic, spatial and scale
invariant cells found in higher layers of the ventral stream such
as AIT and IT. In feedforward models (Riesenhuber & Poggio,
1999b; Serre, Kouh, et al., 2005), such invariance (over a limited
range) is obtained via a max pooling operation. The original moti-
vation for a max operation was that the max is a natural selection
operation: when a feature is active at multiple locations within
the receptive field of a unit, the max operation selects the strongest
active location while ignoring other locations. Within the Bayesian
framework, the individual locations within a feature map are
mutually exclusive and thus a strong activation at one location
suppresses the likelihood of activation at other locations. Interest-
ingly, the Bayesian model of attention is also performing a selec-
tion akin to the max operation – by using the ‘sum-product’
algorithm for belief propagation.

4.2. Inference using belief propagation

Within the Bayesian network, inference can be done using any
of several inference algorithms such as junction tree, variable elim-
ination, Markov-chain Monte Carlo (MCMC) and belief propagation
(Gilks & Spiegelhalter, 1996; Wainwright & Jordan, 2008). Sam-
pling-based approaches such as MCMC and belief propagation lend
themselves more easily to biological interpretations. In the simula-
tions of this paper, the inference mechanism used is the ‘belief
propagation‘ algorithm (Pearl, 1988), which aims at propagating
new evidence and/or priors from one node of the graphical model
to all other nodes. We can regard some of the messages passed be-
tween the variables during belief propagation as interactions be-
tween the ventral and dorsal streams. Spatial attention and
feature attention can then be interpreted within this message pass-
ing framework. A formal mathematical treatment of the messages
passed between nodes is sketched below. For simplicity we con-
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sider the case of a model based on a single feature F and adopt
the notation used in Rao (2005), where the top-down messages,
p() and bottom-up messages k() are replaced by a uniform m()
term.

mO!Fi ¼ PðOÞ ð11Þ
mFi!Xi ¼

X
O

PðFijOÞPðOÞ ð12Þ

mL!Xi ¼ PðLÞ ð13Þ
mI!Xi ¼ PðIjXiÞ ð14Þ
mXi!Fi ¼

X
L

X
Xi

PðXijFi; LÞðmL!Xi ÞðmI!Xi Þ ð15Þ

mXi!L ¼
X

Fi

X
Xi

PðXijFi; LÞðmFi!Xi ÞðmI!Xi Þ ð16Þ

The first three messages correspond to the priors imposed by the
task. The rest correspond to bottom-up evidence propagated up-
wards within the model. The posterior probability of location (sal-
iency map) is given by

PðLjIÞ / ðmL!Xi ÞðmXi!LÞ ð17Þ

The constant of proportionality can be resolved after computing
marginals over all values of the random variable. Thus, the saliency
map is influenced by task dependent prior on location P(L), prior on
features P(FijO) as well as the evidence from the ventral stream
mXi!L. Note that the summations in the message passing equations
are performed over all the discrete states of the variable. Thus, L is
summed over its states, {1,2 . . . , jLj}, Fi is summed over {0,1} and Xi,
over states {0,1, . . . , jLj}. Note that the belief propagation inference
converges (to the posterior) after one bottom-up and one top-down
cycle.

Multiple features. When considering multiple features, the Bayes-
ian inference proceeds as in a general polytree (Pearl, 1988). Most
messages remain identical. However, the message mL!Xi is influ-
enced by the presence of other features and is now given by:

mL!Xi ¼ PðLÞ
Y
j–i

mXj!L ð18Þ

Remarks:

� The mapping between the multinomial nodes/units in the
model and neurons in the cortex is neither obvious nor unique.
Consider a multinomial variable Y that takes states y1,y2, . . . ,yS.
A possible mapping is to S individual binary indicator variables
I1, I2 . . . , IS, with the constraint that (I1 + I2 � � � IS) = 1. Then we
yesian inference theory of attention. Vision Research (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.visres.2010.05.013
http://dx.doi.org/10.1016/j.visres.2010.05.013


Fig. 4. Effect of spatial attention on tuning response. The tuning curve shows a
multiplicative modulation under attention. The inset shows the replotted data from
McAdams and Maunsell (1999).
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would map each variable Ii to an individual neuron whose firing
rate is proportional to its posterior probability of being on. The
constraint that only a single neuron is active may be imple-
mented through lateral inhibition in terms of a form of divisive
normalization. In this interpretation, a multinomial random
variable Y corresponds to a collection of S laterally inhibited
neurons such that the firing rate of neuron i represents a value
proportional to its posterior probability. For binary random
variables, the mapping is more direct. Each binary variable
can be interpreted as a single neuron with its firing rate propor-
tional to the posterior probability of the variable being on.

5. ‘‘Predicting the effects of attention

Here we show that the proposed model is consistent with neu-
rophysiology experiments about the effects of feature-based and
spatial attention (Bichot, Rossi, & Desimone, 2005; McAdams &
Maunsell, 1999; Reynolds & Heeger, 2009). We also find that, sur-
prisingly, several key attentional phenomena such as pop-out,
multiplicative modulation and change in contrast response emerge
directly, without any further assumptions or parameter tuning, as
properties of the Bayesian model.

5.1. Attentional effects in V4

Within our model, V4 neurons are represented with variables
{X1,X2 . . . ,XN}. For analysis, we assume a single feature for simplic-
ity. Now, consider the response of the model unit Xi given a stim-
ulus I, which is given by

PðXijIÞ ¼
PðIjXiÞ

P
Fi ;LPðXijFi; LÞPðLÞPðFiÞP

Xi PðIjXiÞ
P

Fi ;LPðXijFi; LÞPðLÞPðFiÞ
n o ð19Þ

Here, the term P(IjXi) represents the excitatory component – the
bottom-up evidence from the input I. For example, assume that
when features Fi correspond to different orientations, given the im-
age I, for each orientation and location, P(IjXi) is set proportional to
the output of an oriented Gabor filter. P(L) and P(Fi) serve as the
attentional modulation. We make the assumption that features
and location priors can be set independently based on the search
task. The conditional probabilities P(XijFi,L) may then be interpreted
as synaptic strengths, indicating how strongly locations on the fea-
ture map are affected by attentional modulation. The sum over all Xi

(used to generate normalized probabilities) in the denominator can
be regarded as a divisive normalization factor.

Thus, Eq. (19) may be rewritten in terms of three components:
(i) an excitatory component E(Xi) = P(IjXi) (image I is observed and
fixed); (ii) an attentional modulation component A(L,Fi) = P(L)P(Fi);
and (iii) a divisive normalization factor S(L,Fi). With this notation,
Eq. (19) can be rewritten as:

PðXijIÞ ¼ AðFi; LÞEðXiÞ
SðFi; LÞ

ð20Þ

Eq. (20) turns out to be closely related to a phenomenological model
of attention recently proposed by Reynolds and Heeger (2009). They
integrated the normalization model of neural response (Carandini
et al., 1997; Simoncelli & Schwartz, 1999; Heeger, 1991; Heeger,
1992) with an early divisive inhibition model of attention (Reynolds,
Chelazzi, & Desimone, 1999) to account for a variety of different
effects of attention. The response of a neuron at location x and
tuned to orientation h is given by:

Rðx; hÞ ¼ Aðx; hÞEðx; hÞ
Sðx; hÞ þ r

ð21Þ

Here, E(x,h) represents the excitatory component of the neuron re-
sponse. S(x,h) represents the suppressive component of the neuron
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response derived by pooling activity over a larger area and across all
features. A(x,h) represents the attentional modulation that en-
hances specific orientations and locations, based on the search task
– a factor absent in the earlier normalization models. The free
parameter r determines the slope of the contrast response. Rey-
nolds and Heeger showed that the model of Eq. (21) can reproduce
key physiological effects of attention such as contrast gain behavior
under different stimulus conditions. A comparison of Eq. (20) with
Eq. (21) suggests that the normalization model of Reynolds and
Heeger model is a special case of our model, e.g. Eq. (20). Normali-
zation in our model emerges directly from the Bayesian formula-
tion, instead of being an ad hoc assumption. The most notable
difference between the models is based on how the pooling term
S() is computed. In our model, the pooling is done across all loca-
tions but within the same feature. However, in the normalization
model, pooling is done across features as well.

5.2. Multiplicative modulation

5.2.1. Spatial attention
In (McAdams & Maunsell, 1999), it was observed that the tuning

curve of a V4 neuron is enhanced (multiplicatively) when attention
is directed to its receptive field. We observe that this effect occurs
in the model. Recall that the response of a simulated neuron
encoding feature i and at location x, is given by

PðXi ¼ xjIÞ /
X
Fi ;L

PðXi ¼ xjFi; LÞPðIjXiÞPðFiÞPðLÞ ð22Þ

Under normal conditions, P(L) and P(Fi) can be assumed to have a
uniform distribution and thus the response of the neuron is largely
determined by the underlying stimulus (P(IjXi)). Under spatial
attention, the location priors are concentrated around L = x. This
leads to a multiplicative change (from P(L = x) = 1/jLj to
P(L = x) � 1) that enhances the response, even under the same stim-
ulus condition (see Fig. 4).

Reinterpreting in terms of the message passing algorithm, spa-
tial attention corresponds to concentrating the prior P(L) around
the location/scale of interest (see Fig. 6b). Such a change in the
prior is propagated from L to Xi (through messages in the Bayesian
network). This results in a selective enhancement of all feature
maps Xi for i = 1 � � �n at locations l1 � � � lm that overlap with the
attentional spotlight P(L) and in suppression everywhere else
(see Fig. 6c). The message passing is initiated at the level of the L
units assumed to be in parietal cortex) and should manifest itself
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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a b c

Fig. 5. (a) Effect of feature attention on neuron response (replotted from Bichot et al., 2005). (b) The time course of the neuron response is sampled at 150 ms. (c) The model
predicts multiplicative modulation of the response of Xi units under attention.

a

d

b

e

c

f

Fig. 6. Spatial and feature attention re-interpreted using message passing within the model. Spatial attention: (a) Each feature unit Fi pools across all locations from the
corresponding Xi unit. (b) Spatial attention here solves the ‘clutter’ problem by concentrating the prior P(L) around a region of interest (the attentional spotlight, marked ‘X’) via
a message passed between the L nodes in the ‘where’ stream and the Xi nodes in the ‘what’ stream. (c) Following this message passing, the feature within the spotlight can be
read out from the posterior probability P(FijI). Feature-based attention (d) Each location represented in the L unit output from all features at the same location. (e) Feature
attention can be deployed by altering the priors P(Fi) such that P(Fi) is high for the preferred feature and low for the rest. The message passing effectively enhances the
preferred features at all locations while suppressing other features from distracting objects. (f) The location of the preferred feature can be read out from the posterior
probability P(LjI).
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after a short delay in the Fi units (in the ventral stream), in agree-
ment with physiological data (Buschman & Miller, 2007).

5.2.2. Feature-based attention
Recent findings in physiology (Bichot et al., 2005) show multi-

plicative modulation of neuronal response under attention (see
Fig. 5a and b). Units in the PFC and higher areas seem to modulate
arrays of ‘‘feature detector” cells in intermediate areas of the ven-
tral stream (PIT and V4) according to how diagnostic they are for
the specific categorization task at hand. The data suggest that this
modulation is effective at all locations within the receptive field.
An equivalent effect is also observed in the model (see Fig. 5c). Un-
der normal conditions, P(L) and P(Fi) have a uniform distribution
and thus the response of the neuron is largely determined by the
underlying stimulus (P(IjXi)). Under feature-based attention, the
feature priors are modified to P(Fi = 1) � 1. This leads to a multipli-
cative change (from P(Fi = 1) = 1/2 to P(Fi = 1) � 1) enhancing the
response at all locations. The response is more pronounced when
the stimulus is preferred (i.e., P(IjXi) is high (see Fig. 5a–c)).

In terms of message passing, objects priors are first concen-
trated around the object(s) of interest (e.g., (see Fig. 6d). ‘pedes-
trian’ when asked to search for pedestrians in street scenes). The
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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change in object prior is propagated to the feature units, through
the message O ? Fi. This results in a selective enhancement of
the features that are typically associated with the target object
(e.g., vertical features when searching for pedestrians) and sup-
pression of others (see Fig. 6e). This preference propagates to all
feature-map locations through the message mFi!Xi ¼

P
OPðFijOÞ

PðOÞ.
The L unit pools across all features Xj for j = 1 � � �n at a specific

location l. However, because of the feature-based modulation, only
the locations that contain features associated with the object are
selectively enhanced (see Fig. 6f). Thus, priors on objects in the
ventral stream activates units in the parietal cortex at locations
that are most likely to contain the object of interest. The message
passing is thus initiated in the ventral stream first and is mani-
fested in the parietal cortex (L units) later, in agreement with the
recent data by Buschman and Miller (2007).

5.3. Contrast response

The influence of spatial attention on the contrast response of V4
neurons has been studied extensively. Prior work showed two ma-
jor, apparently contradictory, effects: in Martınez-Trujillo and
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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Fig. 7. The model (a) exhibits shift in contrast response when the attentional spotlight is larger than the stimulus and (b) exhibits response gain modulations when the
spotlight is smaller than the stimulus.

10 S. Chikkerur et al. / Vision Research xxx (2010) xxx–xxx
Treue (2002) and Reynolds et al. (2000) attention was shown to
shift the contrast response of neurons, while in McAdams and
Maunsell (1999) and Treue and Trujillo, 1999 attention was shown
to induce a multiplicative gain in the contrast response of neurons.
Reynolds and Heeger (2009) reconciled these differences by
observing that these two experiments were performed under dif-
ferent stimulus conditions. In the experiments in which attention
modulated contrast gain, the stimuli were smaller than those used
in the experiments that showed a mixture of response and contrast
gain effects. Further, the task demands in the latter experiments,
which required the monkey to plan a saccade precisely to the tar-
get, may have required more focused attentional feedback.

In Fig. 7a and b we show that our Bayesian model, as expected
given its close relation with Reynolds and Heeger’s model, is also
consistent with the observed dependency of contrast on attention.
In this simulation, the response without attention is assumed to
depend on contrast (the bottom-up evidence P(IjX1 � � �Xn) is directly
derived from the outputs of oriented Gabor filters operating on
images of varying contrast). The Bayesian model ‘‘predicts” how
the contrast response changes with attention.
6. Predicting eye movements during free viewing and visual
search tasks

Human and animal studies (see Wolfe (2007) for a recent re-
view) have isolated at least three main components used to guide
the deployment of eye movements. First, studies have shown that
image-based bottom-up cues can capture attention, particularly
during free viewing conditions.3 Second, task dependence also plays
a significant role in visual search (Wolfe, 2007; Yarbus, 1967).4 Third,
structural associations between objects and their locations within a
scene (contextual cues) have been shown to play a significant role in
visual search and object recognition (Torralba, 2003b).
3 A measure that has been shown to be particularly relevant is the local image
salience (i.e., the local feature contrast), which corresponds to the degree of
conspicuity between that location and its surround (Itti & Koch, 2001).

4 Evidence for top-down feature-based attention comes from both imaging studies
in humans (Kanwisher & Wojciulik, 2000) as well as monkey electrophysiology
studies (Maunsell & Treue, 2006).
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How the visual system combines these cues and what the
underlying neural circuits are, remain largely unknown. Here we
show that our model, which combines bottom-up as well as top-
down cues within a probabilistic Bayesian framework, can predict
well human eye movements in complex visual search tasks as well
as in free viewing conditions.
6.1. Free viewing

Here we evaluate the performance of the model in a task-free
scenario where attention is purely bottom-up and driven by image
salience. We used images and eye-movement data provided by
(Bruce & Tsotsos, 2006). The dataset consists of 120 images con-
taining indoor and outdoor scenes with at least one salient object
in each image. The images were presented to 20 human subjects
in random order and all the eye movements made within the first
four seconds of presentation were recorded using an infrared eye
tracker. In their work, Bruce and Tsostos used low level filters de-
rived by performing ICA (Bell & Sejnowski, 1995) on color image
patches to generate feature maps. The visual salience of each posi-
tion is derived from self information. In contrast to low level filters,
our approach uses higher level shape-tuned features and color
information (see Supplementary Online Methods Section 2.5).

There are at least two measures that have been used to compare
models of attention to human fixations: normalized scan path sal-
iency (NSS) from Peters and Itti (2007) and fixations in the most
salient region (FMSR) from Bruce and Tsotsos (2006) and Torralba
et al., 2006. For brevity, we only report results using the FMSR mea-
sure, but qualitatively similar results were obtained for NSS. For
each stimulus and task, we calculated an FMSR value by first thres-
holding the computed saliency map, retaining only the most sali-
ent pixels (see Fig. 8). The FMSR index corresponds to the
percentage of human fixations that fall within this most salient re-
gion. A higher value indicates better agreement with human fixa-
tions. We generated an ROC curve by continuously varying the
threshold. The area under the ROC curve provides a summary mea-
sure of the agreement with human observers. We compare our
Bayesian approach with two baseline algorithms (see Table 3).5
5 Since the fixation data were pooled from all subjects, it is not possible to compare
inter-subject consistency or provide error intervals for this data.
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The results show that the Bayesian attention model using shape-
based features can predict human eye movements better than ap-
proaches based on low level features.
6.2. Search for cars and pedestrians

We manually selected 100 images (containing cars and pedes-
trians) from the CBCL Street-scene database (Bileschi, 2006), while
an additional 20 images that did not contain cars or pedestrians
were selected from LabelMe (Russell, Torralba, Murphy, & Freeman,
2008). These 120 images were excluded from the training set of the
model. On average, images contained 4.6 cars and 2.1 pedestrians.
Fig. 8. Predicting human eye movements: (a) Agreement between the model and human
pedestrians. Sample images overlaid with most salient (top 20%) regions predicted by th
red: not predicted by model) and corresponding model posteriors (i.e., predicted image
searches. (For interpretation of the references to color in this figure legend, the reader i
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The images (640 � 480 pixels) were presented at a distance of
about 70 cm, roughly corresponding to 16� � 12� of visual angle.

We recruited eight human subjects (age 18–35) with normal or
corrected-to-normal vision. Subjects were paid and gave informed
consent. Using a block design (120 trials per block), participants
were asked to either count the number of cars or the number of
pedestrians. Task and presentation order were randomized for
each subject. Every image was presented twice: once for pedestri-
ans and once for cars. No instructions regarding eye movements
were given, except to maintain fixation on a central cross in order
to start each trial. Each image was then presented for a maximum
of 5 s, and within this time observers had to count the number of
targets (cars or pedestrians) and press a key to indicate completion.
eye fixations during free viewing (left) and a complex visual search for either cars or
e model (green) along with human eye movements (yellow: agree with prediction,
saliency). (b) Model performance at predicting human eye fixations during visual

s referred to the web version of this article.)
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Table 3
Comparison of the proposed Bayesian model with shape-based features with prior
work that relies on low level features.

Models Agreement with humans (ROC area)

Bruce and Tsotsos (2006) 0.728
Itti et al. (1998) 0.727
Proposed model 0.779

Table 4
Comparison between the performance of the various models to localize objects. The
values indicate the area under the ROC.

Car Pedestrian

Bottom-up (Itti & Koch, 2001) 0.437 0.390
Context (Torralba et al., 2006) 0.800 0.763
Model/uniform priors 0.667 0.689
Model/learned spatial priors 0.813 0.793
Model/learned feature priors 0.688 0.753
Model/full 0.818 0.807
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Subjects then verbally reported the number of targets present, and
this was recorded by the experimenter. We verified that reported
counts agreed well with the actual number of targets. We used
an ETL 400 ISCAN table-mounted, video-based eye tracking system
to record eye position during the course of the experiment. Eye
position was sampled at a rate of 240 Hz with an accuracy of about
0.5� of visual angle.

Training the model to attend to specific objects or object classes
corresponds to estimating the probability distribution P(FijO)). In
practice, this is done by computing feature maps for a set of train-
ing images. The corresponding feature maps are discretized to
maximize classification accuracy following Fleuret (2004). The fea-
ture Fi is said to be present if its detected at any location in the fea-
ture map. P(FijO) is determined by simply counting the frequency
of occurrence of each feature. Since scenes of streets obey strong
constraints on where the objects of interest may be found, it is
important to use not only feature priors but also priors over object
location. We follow a procedure outlined in Torralba (2003a) for
this purpose. Given the image, we compute the ‘gist’ (or global
summary) of the scene in a deterministic manner. We use a mix-
ture-of-regressors as in Murphy, Torralba, and Freeman, 2003 to
learn the mapping between the context features and location/scale
priors for each object. Details about how the model was trained for
the task are provided in the Supplementary Online Methods,
Section 2.5.

As assumed in several previous psychophysical studies (Itti and
Koch, 2001; Rao et al., 2002; Torralba, Oliva, Castelhano, and Hen-
derson, 2006), we treat eye movements as a proxy for shifts of
attention. To calculate inter-subject consistency, we generated a
saliency map by pooling fixations from all but one subject in a
manner similar to Torralba et al. (2006), and then tested the left-
out subject on this map. Thus, inter-subject consistency measures
performance by a model constructed from human fixations, which
is regarded here as an ‘‘ideal model”.

Fig. 8b shows the agreement between the model (and how the
location and feature priors influence performance) and human
observers for the first fixation. Tables S2 and S3 provide compari-
sons for additional number of fixations and against other models
of eye movements (Itti and Koch, 2001; Torralba et al., 2006).
Our results suggest that our Bayesian model of attention accounts
relatively well for the very first fixations (especially for cars, see
Fig. 8b). Beyond the first saccade, the agreement between model
and human fixations decreases while the inter subject agreement
increases (see Tables S2 and S3). The higher relative contribution
of the context (i.e., learned location priors) to the overall prediction
is not surprising, since street scenes have strong spatial constraints
regarding the locations of cars and pedestrians. We found that
using image based saliency cues, corresponding to setting all the
priors to be uniform (see also the bottom-up saliency model (Itti
& Koch, 2001) in Tables S2 and S3), does worse than chance. Learn-
ing either spatial priors or feature priors improves the agreement
between models and humans significantly. In addition, learning
priors for both cues does better than either in isolation. The model
agrees at the 92% level with human eye fixations on both pedes-
trian and car search tasks (measured in terms of the overlap be-
tween ROC areas for the first three fixations). Recently, Ehinger,
Hidalgo-Sotelo, Torralba, and Oliva (2009) used a combination of
Please cite this article in press as: Chikkerur, S., et al. What and where: A Ba
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feature bias, gist and bottom-up saliency to achieve similar predic-
tive performance. The inconsistency between human subjects and
the model may be due to higher-level abstract information avail-
able to humans but not to the model. Humans routinely utilize
higher level visual cues (e.g., location of ground-plane) as well
non-visual information (e.g., pedestrians are found on pavements
and cross walks) while examining a visual scene.

Previous work has shown that attention is useful in priming ob-
ject detection (Navalpakkam and Itti, 2006; Torralba, 2003a), prun-
ing interest points (Rutishauser et al., 2004), quantifying visual
clutter (Rosenholtz and Mansfield, 2005) and predicting human
eye movements (Oliva, Torralba, Castelhano, and Henderson,
2003). Here we provide a quantitative evaluation of the proposed
model of attention for detecting objects in images as opposed to
predicting human eye movements. Table 4 shows the percentage
of object locations that are correctly predicted using different cues
and models. An object was considered to be correctly detected if its
center lay in the thresholded saliency map. An ROC curve can be
obtained by varying the threshold on the saliency measure. The
area under the ROC curve provides an effective measure of the pre-
dictive ability of the individual models. The context (gist) repre-
sentation derived from shape-based units (Serre, Kouh, et al.,
2005) perform better than the representation based on simple ori-
ented features (Torralba et al., 2006). As expected, bottom-up cues
derived using shape-based features perform better than bottom-up
saliency obtained using simple oriented features (Itti and Koch,
2001).
7. Discussion

7.1. Relation to prior work

A few theories and several specific models (see Tables S4 and S5
for an overview and comparison with our approach) have been
proposed to explain the main functional roles of visual attention
and some of its properties. An influential proposal by Tsotsos
(1997) maintains that attention reflects evolution’s attempt to fix
the processing bottleneck in the visual system (Broadbent, 1958)
by directing the finite computational capacity of the visual cortex
preferentially to relevant stimuli within the visual field while
ignoring everything else. Treisman and Gelade (1980) suggested
that attention is used to bind different features (e.g., color and
form) of an object during visual perception. Desimone (1998) sug-
gested that the goal of attention is to bias the choice between com-
peting stimuli within the visual field. These general proposals,
though correct and groundbreaking, do not yield detailed insights
on how attention should be implemented in the visual cortex
and do not yield direct predictions about the various behavioral
and physiological effects of attention. Other, more specific models
exist, each capable of modeling a different effect of attention.
Behavioral effects include pop-out of salient objects (Itti et al.,
1998; Rosenholtz and Mansfield, 2005; Zhang et al., 2008), top-
down bias of target features (Navalpakkam and Itti, 2006; Wolfe,
2007), influence from scene context (Torralba, 2003b), serial vs.
yesian inference theory of attention. Vision Research (2010), doi:10.1016/
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parallel-search effect (Wolfe, 2007), etc. Physiological effects in-
clude multiplicative modulation of neuron response under spatial
attention (Rao, 2005) and feature-based attention (Bichot et al.,
2005). This paper describes a possible unifying framework that de-
fines a computational goal for attention, derives possible algorith-
mic implementations and predicts its disparate effects listed
above.

7.2. Our theory

The theoretical framework of this paper assumes that one goal
of vision is to solve the problem of what is where. Attention follows
from the assumption that this is done sequentially, one object at a
time. It is a reasonable conjecture that the sequential strategy is
dictated by the intrinsic sample complexity of the problem. Solving
the ‘what’ and ‘where’ problem is especially critical for recognizing
and finding objects in clutter. In a probabilistic framework, the
Bayesian graphical model that emerges from the theory maps into
the basic functional anatomy of attention involving the ventral
stream (V4 and PIT) and the dorsal stream (LIP and FEF). In this
view, attention is not a visual routine, but is the inference process
implemented by the interaction between ventral and dorsal areas
within this Bayesian framework. This description integrates bot-
tom-up, feature-based and context-based attentional mechanisms.

7.3. Limitations

In its current form, the model has several limitations: (i) The
model we have implemented only accounts for effects of attention
in areas V4, IT and LIP. The lower regions are assumed to be purely
feedforward. However, studies have shown that some attentional
effects can be found even in areas V1 (Hegde and Felleman,
2003). These effects may be accounted for by extending the Bayes-
ian framework to lower areas at the expense of computational
complexity. (ii) The model currently uses a static inference scheme
and thus cannot model dynamic effects of attention. In particular,
it is likely that the saliency map is updated after each shift of atten-
tion – currently not represented in the model. (iii) The model cur-
rently does not account for effects that can be explained by spatial
organization (Li and Snowden, 2006). (iv) Understanding how the
brain represents uncertainty is one of the open questions in neuro-
science. Here our assumption (which is relevant for some of the
comparisons with neural data) is that neurons represent uncer-
tainty using probabilities – firing rates of neurons directly repre-
sent probability estimates. A similar but more indirect mappings
(using population responses) have been assumed before (Rao,
2004; Zemel et al., 1998). It is surprising that a model with such
limitations can predict such a variety of attentional phenomena.

7.4. Validation

We checked that the theory and the associated model predicts
well human psychophysics of eye movements (which we consider
a proxy for attention) in a task-free as well as in a search task sce-
nario. In a task-free scenario the model, tested on real world
images, outperforms existing ‘saliency’ models based on low-level
visual features. In a search task, we found that our model predicts
human eye movements better than other, simpler models. Finally
the same model predicts – surprisingly – a number of psychophys-
ical and physiological properties of attention that were so far ex-
plained using different, and somewhat ad hoc mechanisms.
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