
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2012-029
CBCL-310

September 8, 2012

Multiscale Geometric Methods for Data 
Sets I: Multiscale SVD, Noise and Curvature
Anna V. Little, Mauro Maggioni, and Lorenzo Rosasco



Multiscale Geometric Methods for Data Sets I:

Multiscale SVD, Noise and Curvature

Anna V. Little1, Mauro Maggioni1,2, Lorenzo Rosasco3

1Department of Mathematics and 2Computer Science, Duke University
3 Laboratory for Computational and Statistical Learning, Massachusetts Institute of Technology and Istituto Italiano di Tecnologia

avl@math.duke.edu,mauro.maggioni@duke.edu, lrosasco@ mit.edu

September 5, 2012

Abstract

Large data sets are often modeled as being noisy samples from probability distributions µ in RD, with D large.
It has been noticed that oftentimes the supportM of these probability distributions seems to be well-approximated
by low-dimensional sets, perhaps even by manifolds. We shall consider sets that are locally well approximated
by k-dimensional planes, with k ≪ D, with k-dimensional manifolds isometrically embedded in RD being a
special case. Samples from µ are furthermore corrupted by D-dimensional noise. Certain tools from multiscale
geometric measure theory and harmonic analysis seem well-suited to be adapted to the study of samples from
such probability distributions, in order to yield quantitative geometric information about them. In this paper we
introduce and study multiscale covariance matrices, i.e. covariances corresponding to the distribution restricted to
a ball of radius r, with a fixed center and varying r, and under rather general geometric assumptions we study how
their empirical, noisy counterparts behave. We prove that in the range of scales where these covariance matrices
are most informative, the empirical, noisy covariances are close to their expected, noiseless counterparts. In fact,
this is true as soon as the number of samples in the balls where the covariance matrices are computed is linear in
the intrinsic dimension ofM. As an application, we present an algorithm for estimating the intrinsic dimension
ofM.

1 Introduction

We are interested in developing tools for the quantitative analysis of the geometry of samples from a probability
distribution in a high-dimensional Euclidean space, which is approximately supported on a low-dimensional set,
and is corrupted by high-dimensional noise. Our main motivation arises from the need to analyze large, high
dimensional data sets arising in a wide variety of applications. These data sets are often modeled as samples
from a probability measure µ concentrated on or around a low-dimensional set embedded in high dimensional
space (see for example [1, 2, 3, 4, 5, 6, 7]). While it is often assumed that such low-dimensional sets are in fact
low-dimensional smooth manifolds, empirical evidence suggests that this is only a idealized situation: these sets
may be not be smooth [8, 4, 9], they may have a non-differentiable metric tensor, self-intersections, and changes in
dimensionality (see [10, 11, 12, 13] and references therein).

Principal components or the singular value decomposition is one of the most basic and yet generally used
tools in statistics and data analysis. In this work we consider the local singular value decomposition of samples
of µ in a ball Bz(r) of radius r (the scale) centered at a data point z, and we are interested in inferring geometric
properties of the underlying distribution from the behavior of all the singular values as a function of r, i.e. across
scales. We investigate properties of these singular values and vectors when the data lies close to a rather general
class of low-dimensional sets, and is perturbed by high-dimensional noise. We show that key properties hold
with high probability as soon as the number of samples in a ball of radius r of interest is essentially linear in
the intrinsic dimension. The usefulness of the multi-scale singular values is demonstrated in the context of the
classical problem of estimating the intrinsic dimension of a distribution from random samples.
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The analysis of this fundamental problem will require us to develop an analysis of these tools in the setting
of random samples from a probability distribution in high dimensional spaces (sometimes referred to as a “point
cloud”). The problem of estimating the intrinsic dimension of point clouds is of interest in a wide variety of
situations. In fact, to cite some important instances, is related to estimating: the number of latent variables in a
statistical model (points are samples from the model), the number of degrees of freedom in a dynamical system
(points are configurations in the state space of the system sampled from trajectories), the intrinsic dimension of a
data set modeled by a probability distribution highly concentrated around a low-dimensional manifold (samples
are data points). Many applications and algorithms crucially rely on the estimation of the number of components
in the data.

Beyond dimension estimation, the quantities studied in this paper are extremely useful in a variety of contexts:

(i) in [14, 15] they are used to explore the geometry of trajectories of very high-dimensional dynamical systems
arising in molecular dynamics simulations, and to construct robust dimensionality reduction approximations
to such dynamical systems;

(ii) in [16] to construct a novel multiscale representation and “transform” of point clouds, yielding fast algo-
rithms for constructing data-driven dictionaries and obtaining sparse representation of data, for which an
analogue of compressive sensing may be developed [17];

(iii) in [18] to construct estimators for µ itself, bringing approximation theory into the space of measures;

(iv) in [19, 20, 21, 22] to attack the problem of estimating the support of µ when it is a union of an unknown small
number of unknown low-dimensional hyperplanes.

The inspiration for the current work originates from ideas in classical statistics (principal component analysis),
dimension estimation of point clouds (see Section 2.1, 7 and references therein) and attractors of dynamical sys-
tems [23, 24, 25], and geometric measure theory [26, 27, 28], especially at its intersection with harmonic analysis.
The ability of these tools to quantify and characterize geometric properties of rough sets of interest in harmonic
analysis, suggests that they may be successfully adapted to the analysis of sampled noisy point clouds, where
sampling and noise may be thought of as new types of (stochastic) perturbations not considered in the classical
theory. In this paper we amplify and provide full proofs and extensions of the ideas originally presented in the
reports [29, 30, 31], in the summary [19], and fully laid out in generality in the thesis [32].

2 Multiscale Geometric Analysis and Dimension Estimation

In the seminal paper [33] 1 multiscale quantities that measure geometric quantities of k-dimensional sets in RD

were introduced. These quantities could be used to characterized rectifiability and construct near-optimal solu-
tions to the analyst’s traveling salesman problem. We consider the L2 version of these quantities, called Jones’
β-numbers: for a probability measure µ and a cube Q in RD ,

β2,k(Q) :=
1

diam(Q)

 inf
π a k−dim.

affine hyperplane

1
µ(Q)

∫
Q

‖y − Pπy‖2dµ(y)


1
2

,

with Pπ the orthogonal projection onto π and ‖ ·‖ denotes the euclidean norm in RD. This dimensionless quantity
measures the deviation (in the least-squares sense) of the measure in Q from a best-fitting k-dimensional plane. If
we consider the probability measure µ|Q(A) := µ(A)/µ(Q), obtained by localizing µ on Q, and let XQ be a random
variable with distribution µ|Q, then we have

β2,k(Q) :=
1

diam(Q)

(
D∑

i=k+1

λ2
i (cov(XQ))

) 1
2

1see also, among many others, [34, 35] and the pleasant short survey [36]
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where cov(XQ) = E[(XQ − E[XQ])⊗ (XQ − E[XQ])] is the covariance matrix of XQ and (λ2
i (cov(XQ)))i=1,...,D are

its eigenvalues sorted in decreasing order.
In practice one may observe n random samples drawn from µ, and often such samples may be corrupted by

noise in RD. If for simplicity we fix Q, we may formalize the above as follows: let X1, . . . , Xn be i.i.d. copies of
XQ, and N1, . . . , Nn be i.i.d. random variables representing noise, for example let them have distributionN (0, ID).
Given nQ realizations X̃nQ of X̃1 := X1 + σN1, . . . , X̃n := XnQ + σNnQ lying in Q, we may construct empirical
versions of the quantities above:

βnQ,2,k(Q) :=
1

diam(Q)

(
D∑

i=k+1

λ̃2
i

(
cov(X̃nQ))

)) 1
2

,

where cov(Xn) := 1
n

∑n
i=1(Xi − En[X ])T (Xi − En[X ]) is the D ×D empirical covariance matrix of a sample Xn,

En[X ] := 1
n

∑n
i=1 Xi, (λ2

i (cov(Xn)))i=1,...,D are its eigenvalues sorted in decreasing order.

Here cov(X̃nQ) and its eigenvalues are random variables, and it is natural to ask how close these empirical
quantities are to the expected quantities above as a function of sample size, how they depend on k and the ambient
dimension D, and how much noise affects the above, depending on the scale of the cube Q. For example changing
the scale of Q affects nQ, and therefore the variance of the above random variables, as well as the relative size of
the noise.

In this paper we investigate these questions, and their relevance to the analysis of digital data sets that, while
lying in high-dimensional spaces, may be concentrated along low-dimensional structures.

Here and in what follows ‖ · ‖ denotes the euclidean norm in RD. A set of n points in RD is often thought of as

an n×D matrix, whose (i, j) entry is the j-th coordinate of the i-th point. For example Xn and X̃n will be used to

denote both the point clouds corresponding to a sample of (Xi)n
i=1 and (X̃i)n

i=1 and the associated n×D matrices.
Similarly Nn may denote the matrix corresponding to a sample of (Ni)n

i=1.

2.1 Manifolds, Local PCA and intrinsic dimension estimation

Consider random variables X, N in RD with distribution µ and N (0, ID), respectively. When the support of µ,
which we denote byM, has low-dimensional structure, a natural question is to estimate the unknown k = dimM,

from random noisy data, that is from a sample X̃n of X̃1 = X1 + σN1, . . . , X̃n = Xn + σNn, where (Xi)i, (Ni)i

are i.i.d. copies of X, N and σ ≥ 0 is the noise standard deviation. When M is linear, e.g. the image of a cube
under a well-conditioned affine map, the standard approach is to perform principal components analysis (PCA)

and threshold the singular values of X̃n to estimate k. Let cov(Xn) be the D × D empirical covariance matrix of
the samples Xn, with eigenvalues (λ2

i )
D
i=1 ordered in decreasing order. At least for n & k log k (with a constant

that may depend on the “aspect ratio” of M), Rudelson’s Lemma [37] (see also the review [38]) implies that with
high probability (w.h.p.) the empirical covariance matrix is close to the true covariance matrix. In particular,
exactly k singular values will be well-separated from 0, and the remaining D − k will be equal to 0. Since we

observe X̃n = Xn + σNn and not Xn, one may consider the covariance cov(X̃n) as a random perturbation of

cov(Xn) and expect Σ(n−
1
2 X̃n), the set of singular values of the matrix n−

1
2 X̃n, to be close to Σ(n−

1
2 Xn), so that

λ2
1, . . . , λ

2
k ≫ λ2

k+1, . . . , λ
2
D , allowing one to estimate k correctly w.h.p..

When M is a manifold, several problems arise when one tries to generalize the above line of thinking. The
curvature of M in RD in general forces the dimension of a global approximating hyperplane to be much higher
than necessary. For example, consider a planar circle (k = 1) embedded in RD: the true covariance cov(X) of X
has exactly 2 6= k = 1 nonzero eigenvalues equal to half of the radius squared. In fact, it is easy to construct a one-
dimensional manifold (k = 1) such that cov(X) has rank equal to the ambient dimension: it is enough to pick a curve
that spirals out in more and more dimensions. A simple example (sometimes referred to as the Y. Meyer’s staircase)
is the following: let χ[0,1)(x) = 1 if x ∈ [0, 1) and 0 otherwise. Then the set {xt := χ[0,2)(·−t)}t=0,...,d−1 ⊂ L2(R) is a
one-dimensional (non-smooth) manifold, which is not contained in any finite-dimensional subspace of dimension.
It is clear how to discretize this example and make it finite-dimensional. Notice that xt1 and xt2 are orthogonal
whenever |t1 − t2| > 2, so this curve spirals into new directions on the unit sphere of L2(R) as t increases. Similar
considerations would hold after discretization of the space and restriction of t to a bounded interval.
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The failure of PCA in this situation can be seen as a consequence of performing PCA globally. It has been
attempted to localize PCA to small neighborhoods [39, 40, 41, 42], without much success [43], at least compared to
what we may call volume-based methods [44, 45, 46, 47, 48, 12, 13, 49, 50, 51, 52, 53, 54], which we discuss at length
in Section 7. These methods, roughly speaking, are based on empirical estimates of the volume of M ∩ Bz(r),
for z ∈ M and r > 0: such volume grows like rk when M has dimension k, and k is estimated by fitting the
empirical volume estimates for different values of r. We expect such methods, at least when naively implemented,
to both require a number of samples exponential in k (if O(1) samples exist in M∩Bz(r0), for some r0 > 0, these
algorithms require O(2k) points in M∩ Bz(2r0)), and to be highly sensitive to noise, which affects the density in
high dimensions. The results of our experiments (Section 5.2.1) are consistent with these observations.

The approach we propose here is quite different: we do not give up on linear approximations, with their
promise of needing a number of samples essentially linear in k, but instead of a local, fixed-scale approach as in
[39, 40], we propose a multiscale approach, since determining an appropriate range of scales at which the estimate is
reliable is a key aspect to the problem. Let z ∈M, r a radius and consider the random variable Xz,r corresponding
to X conditioned to take values in M∩Bz(r), where Bz(r) is the Euclidean ball (in RD) centered at z with radius
r. We will be varying r (the “scale”). We encounter 3 constraints:

(i) curvature: for r small enough, M∩Bz(r) is well-approximated in the least squares sense by a portion of the
k-dimensional tangent plane Tz(M), and therefore we expect the covariance cov(Xz,r) of Xz,r to have k large
eigenvalues and possibly other smaller eigenvalues caused by curvature. Choosing r small enough depending
on curvature, the eigenvalues will tend to 0 faster than the top k eigenvalues of size O(r2). Therefore we
would like to choose r small.

(ii) sampling: we need the number nz,r of samples of Xz,r to be sufficiently high in order to estimate cov(Xz,r).
Therefore, for n fixed, we would like to choose r large.

(iii) noise: since we are given points corrupted by noise, say Gaussian with variance σ2ID , we will be forced
to consider r above the “scale” of the noise, i.e. not too small, since at smaller scales the estimation of the
covariance of the data is completely corrupted by noise.

To summarize, only for r larger than a quantity dependent on σ2, the variance of the noise, yet smaller than a
quantity depending on curvature, conditioned on Bz(r) containing enough points, will we expect local covariances
to be able to detect a “noisy” version of Tz(M). For every point z ∈ M and scale parameter r > 0, we let

{(λ̃[z,r]
i )2}i=1,...,D be the Square Singular Values (S.S.V.’s) of cov(X̃[Z̃,r]

n ), where X̃[Z̃,r]
n are noisy samples in a ball

of radius r centered at Z̃ := z + N , where N ∼ N (0, σ2ID), sorted in nonincreasing order. We will call them the

multiscale squared singular values (S.S.V.’s) of X̃[Z̃,r]
n .

During the redaction of this manuscript, we were made aware by M. Davies and K. Vixie of the works [41, 42, 55,
56] where a similar approach is suggested, in the spirit of exploratory data analysis. The effects of sampling, noise,
and possibly very high ambient dimension, which we think all are at the heart of the matter, are not analyzed, nor
are fast multi scale algorithms for the necessary computations, also crucial in view of applications to large data
sets.

2.2 Example: k-dimensional sphere in RD, with noise

To build our intuition, we start with a simple, yet perhaps surprising, example. Let Sk = {x ∈ Rk+1 : ||x||2 = 1} be
the unit sphere in Rk+1, so dim(Sk) = k. We embed Sk in RD via the natural embedding of Rk+1 in RD via the first

k + 1 coordinates. We obtain Xn by sampling n points uniformly at random from Sk, and X̃n is obtain by adding
D-dimensional Gaussian noise of standard deviation σ in every direction. We call this model Sk(n, D, σ).

In Figure 1 we consider the multiscale S.S.V.’s corresponding to S9(1000, 100, 0.1) as a function of r. Several
observations are in order. First of all, notice that R10 is divided into 210 = 1024 sectors, and therefore by sampling
1000 points on S9 we obtain “in average” 1 point per sector (!) - of course we have so few points that we are

typically far from this expected value. Secondly, observe that the noise size, if measured by ||Xi − X̃i||2, i.e. by

how much each point is displaced, would be order E[||Xi − X̃i||2] ∼ 1, where xi − X̃i ∼ σN (0, ID) = N (0, σ2ID).
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By concentration of measure, in fact ||xi − X̃i|| ∼ 1 with high probability, a length comparable with the radius of
the sphere itself.

Notwithstanding the considerations above, we can in fact reliably detect the intrinsic dimension ofM. At very

small scales, BZ̃(r) is empty or contains o(k) points, and the rank of X̃[Z̃,r]
n is o(k). From Figure 1, we see that at

small scales, no gap among the (λ̃[z,r]
i )2 is visible: Bz(r) contains too few points, scattered in all directions by the

noise. At larger scales, the top 9 = k S.S.V.’s start to separate from the others: at these scales the noisy tangent
space is detected. At even larger scales, the curvature starts affecting the covariance, as indicated by the slowly
growing 10th S.S.V., while the remaining smaller S.S.V.’s tend approximately to the one-dimensional noise variance
σ2.

3 Setting and Main Results

3.1 Notation

Random variables are denoted with capital letters, e.g. X : (Ω, P ) → RD , and samples are denoted with lowercase
letters, x = X(ω), ω ∈ Ω. Covariance matrices are denoted by

cov(X) = E[(X − E[X ])⊗ (X − E[X ])] (3.1)

and cross-covariance between two random variables Y, X by cov(Y, X) = E[(Y −E[Y ])⊗ (X−E[X ])]. We will use
bold letters to denote sets of random variables, in particular n i.i.d copies of a random variable X are denoted by
Xn. Given n i.i.d copies of a random variable and a subset B ⊂ RD, we let define the random set of indices

IB,Xn : (Ω, P ) → 2{1,...,n}, IB,Xn(ω) = {i = 1, . . . , n |Xi(ω) ∈ B, Xi ∈ Xn}, (3.2)

and
nB,Xn : (Ω, P ) → {1, . . . , n}, nB,Xn = |IB,Xn |. (3.3)

Note that nB,Xn can be equivalently defined as nB,Xn =
∑n

i=1 1B(Xi), the sum of binomial random variables
Bin(µ(B), n), where µ is the law of X . When clear from the context we might write IB , nB in place of IB,Xn , nB,Xn .
We further define the random set

XB
n = {Xi ∈ Xn | i ∈ IB}, (3.4)

and an associated random matrix

cov(XB
n ) =

1
nB

∑
i∈IB

(
Xi −

(
1

nB

∑
i∈IB

Xi

))
⊗
(

Xi −
(

1
nB

∑
i∈IB

Xi

))
. (3.5)

Given two sets of random variables YB ,XA, A, B ⊂ X , cov(YB ,XA) is defined analogously. Note that if B
contains the support of X then cov(XB

n ) = cov(Xn) is the empirical covariance matrix for X . If B = Bz(r) = {x ∈
RD | ‖x− z‖ ≤ r} for z ∈ RD, we simplify the above notation writing Xz,r

n for XBz(r)
n and similarly Iz,r for IBz(r)

We often view a random set in RD as a random matrix, e.g. Xn can be thought of as a n by D matrix. For example,

viewing Yn,Xn as matrices, we will write cov(Yn,Xn) = 1
nY

T

nXn, where Yn,Xn denote the matrices obtained
centering the rows of Yn,Xn with respect to the centers of mass of the corresponding sets.

Definition 1. We let {λ2
i (cov(X))} be the Squared Singular Values of X , i.e. the eigenvalues of cov(X) (possibly up to a

set of 0 eigenvalues), sorted in decreasing order. We let ∆i(cov(X)) := λ2
i (cov(X))− λ2

i+1(cov(X)), for i = 1, . . . , D − 1,
∆D(cov(X)) = λ2

D(cov(X)), ∆max := maxi=1,...,D ∆i.

We denote by ‖·‖ the euclidean norm for vectors and the operator norm for matrices. We let Sk be the unit
k-dimensional sphere and Bk the unit k-dimensional ball. We let µRk be the Lebsegue measure in Rk.
Finally, in what follows C, C1, C2 will denote numeric constants independent of all parameters, and their values
may change from line to line. We will write f(x) . g(x) if there exists a numerical constant C such that f(x) ≤
Cg(x) for all x, and f(x) ≈ g(x) if there exist two numerical constants C1, C2 such that C1g(x) ≤ f(x) ≤ C2g(x)
for all x.
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Figure 1: S9(1000, 100, 0.1). Top left: plot of Ez [(λ̃
[z,r]
i )2], and corresponding standard deviation bands (dotted), as

a function of r. The top 9 S.S.V.’s dominate and correspond to the intrinsic dimensions; the 10-th S.S.V. corresponds

to curvature, and slowly increases with scale (note that at large scale ∆10 > ∆9, where ∆i = (λ̃[z,r]
i )2 − (λ̃[z,r]

i+1 )2);
the remaining S.S.V.’s correspond to noise in the remaining 90 dimensions, and converge to the one-dimensional

noise size σ2. Top right: smoothed plot of the gaps (λ̃[z,r]
k )2− (λ̃[z,r]

k+1)2 of the multiscale singular values on a portion
the “scale-frequency” plane (where “frequency” is index of the singular value): note the 10-th gap passing the 9-th
gap at large scales. At smaller scales (not shown), noisy singular values create large random gaps. Bottom left: the

multiscale S.S.V. (λ̃[z,r]
i )2 for a fixed (randomly chosen) point z: the algorithm is run at only that point, and both

the global range of scale and the correct range of “good scale” are detected automatically. Bottom right: a view of
the surface top right from above.

6



Figure 2: A pictorial representation of some of our geometric assumptions.

3.2 Problem Setting

Let X be a random variable in RD with distribution µX and M := supp{µX}. We will be interested in the case
when M is low-dimensional, for example a k dimensional manifold, or a k Ahlfors regular k-rectifiable set [34,
35], with k ≪ D. More generally, M may be just approximated by a low-dimensional set, in a sense that our
assumptions below will make precise. Let N be a random variable, for example N ∼ N (0, ID), that will think of

as as noise, and let X̃ = X + σN .
Roughly speaking, we are interested into the properties of local covariance matrices and in how they can be

estimated from random noisy samples. More precisely, fix z ∈ M, and consider the random variable Xz,r with
values in Bz(r) and distribution µz,r, where µz,r(A) := µX(A ∩Bz(r))/µX (Bz(r)) is the restriction of µX to Bz(r).
We are interested into estimating the multiscale family of matrices cov(Xz,r), and in particular in the behavior of
its eigenvalues as a function of r, for fixed z ∈ supp{µX}, since it contains useful geometric information.

Towards this end, we have at disposal a sample of X̃n obtained from n i.i.d. copies of X̃ and have access to a

sample of the random variable Z̃ = z + σN . Then we can consider the random matrix cov(X̃[Z̃,r]
n ). Indeed, we will

show that cov(Xz,r), and its spectral properties, can be estimated by cov(X̃[Z̃,r]
n ) whenever r is in a suitable range

of scales depending on the geometry of the data distribution and the noise.

It is then crucial to understand how close cov(X̃[Z̃,r]
n ) is to cov(Xz,r). Towards this end, we make use of a few

intermediate (theoretical) quantities that are not accessible in practice. In particular, we will consider the random
sets

˜
X[Z̃,r]

n = X[Z̃,r]
n + σNn, X̃[z,r]

n = X[z,r]
n + σNn

where in the first set the noise is added only after localization and in the second set we assume to have access to

the noiseless center z ∈ M. The above sets are not observable and can be contrasted to X̃[Z̃,r]
n which is available in

practice.

3.3 Assumptions

We make the following assumptions, which we call “usual assumptions” from this point onwards.
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I. Assumptions on the Geometry. We assume that for every z ∈ M there exists a range of scales r ∈
(Rmin, Rmax), an integer k and an orthogonal projection P [z,r] onto an affine subspace of dimension k such
that if we let

Xz,r
|| = P [z,r]Xz,r , Xz,r

⊥ = (I − P [z,r])Xz,r

then the following conditions hold almost surely, for all r ∈ (Rmin, Rmax) and Z̃ ∈ RD satisfying ||Z̃ − z|| ≤
Rmax, and for some 1 ≤ λmax ≤

√
k, λmin, δ, vmin > 0, κ ≥ 0, and vZ̃(r), called the geometric parameters:

λ2
i (cov(Xz,r

||)) ⊆ [λ2
min, λ2

max]
k

r2 , max
i<k

∆i(cov(Xz,r
||)) ≤ δ

k
r2

∥∥X⊥∥∥ ≤ √
kκr2 a.s. , ||cov(Xz,r

⊥)|| ≤ κ2

k
r4 ,

tr(cov(Xz,r
⊥))

||cov(Xz,r
⊥)|| ≤ 2k2

µX(BZ̃(r)) = µRk(Bk)vZ̃(ρ)ρk , ρ2 := r2 − d(Z̃,M)

vZ̃(r(1 + h))
vZ̃(r)

≤ (1 + h)k
, h > 0 ,

vZ̃(r)
vz(r)

≤ 1 +
||z − Z̃||

r
, vZ̃(r) ≥ vmin

(3.6)

where µRk is k-dimensional Lebesgue measure. We think of λmin, λmax as being of order 1.

II. Assumptions on the Noise. We assume that N is independent of X , and has a standard multivariate normal
distribution, i.e. independent, centered Gaussian coordinates with variance 1.

Finally, we shall assume that there exists a constant Cξ that depends (continuously) only on ξ := σ
√

D
r , such

that for any z ∈M and for ξ < 1/3

∞∑
l=1

e−l2µX

((
Bz(

√
r2 + (l + 1)2σ2D)

)
\Bz(

√
r2 + l2σ2D)

)
≤ CξµRk(Bk)rk ,

which ensures thatM does not come close to self-intersecting too often, in a rather weak, measure-theoretic sense.
We make of course all µX -measurability assumptions needed for the above to make sense.

We interpret Xz,r
|| and Xz,r

⊥ as the projections of Xz,r onto a local approximating plane and its orthogonal
complement, respectively (see also Figure 3). The first condition in (3.6) roughly determines the elongation of

Xz,r projected onto the approximate tangent plane. Note that, after subtracting the means, Xz,r
||, Xz,r

⊥ are al-

most surely bounded by r, but tighter conditions on Xz,r
⊥ are possible depending on the curvature. Indeed, the

second condition enforces second-order closeness (in the least-squares sense) of Xz,r to the tangent plane. It also

renormalizes Xz,r
⊥ so that κ is a measure of extrinsic curvature that takes into account the distribution in the

normal directions where Xz,r
⊥ is supported. The condition on the effective rank tr(A)/||A|| for A = cov(Xz,r

⊥)
is motivated by the fact that locally M may only curve in

(
k+1
2

)
dimensions (see remark in Section 4.2), so that

Xz,r
⊥ is effectively O(k2)-dimensional. This condition may also be generalized (or even removed) depending on

a priori knowledge on properties of the curvature, with obvious changes in our results (essentially only the value
of κ′, introduced later, is affected). The number k is what we will call the intrinsic dimension of M, at least in the
range of scales (Rmin, Rmax). It may change with the range of scales. In particular cases, it coincides with classical
notions of intrinsic dimension, notably when M is an embedded manifold and the range of scales considered is
small enough. So on the one hand it overlaps with standard notions of dimension on a reasonably large class
of sets, on the other hand it is a notion robust to perturbations, and is scale-dependent, therefore removing part
of the ill-posedness of the estimation problem. The volume growth condition in (3.6) is similar to the notion of
Ahlfors-David k-regular sets, but localized in both space and scale.

One may consider more general models of noise, with i.i.d. strictly subgaussian coordinates and an approxi-
mate spherical symmetry, but we postpone these technical issues here. We refer the reader to Appendix 11 for a
review of the definition and basic properties of subgaussian random variables, and to section 9.5 (and equations
(9.24) in particular) for a discussion of approximate spherical symmetry.
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The assumptions above are local in a neighborhood of z, and λmin, λmax, κ, vmin, vmax may depend on z, as well
as on k. We introduced factors of k in our conditions because they are the natural scalings for certain manifolds
(see Section 4), in the sense that in these particular cases the remaining parameters become independent of k.

Example 1. We specialize the general hypotheses above to various settings of interest:

(i) the “manifold case”: µX the normalized volume measure on a k-dimensional smooth compact Riemannian manifoldM.
Such a manifold has positive reach, guaranteeing the existence of a nontrivial interval [Rmin, Rmax]. In fact, typically
Rmin = 0. More generally, µX may be a measure on M which is absolutely continuous with respect to the volume
measure, with Radon-Nykodym derivative uniformly bounded above and below. Certain non-compact manifolds are
also possible, since our conditions are local. The “curvature” κ in general is not determined by any intrinsic metric
property that M may have, but in general depends on the embedding of M in RD (see Section 4).

(ii) As a special case of the above, consider the k-dimensional unit sphere Sk in Rk+1. This example helps identify some
natural scaling laws for the parameters, as a function of the intrinsic dimension k. For Sk (and a whole class of

manifolds) we show in Section 4 that λmax = λmin = 1, κ2 ∼ k−1 and vminµRk(Bk) ∼ k−
1
2 , and Rmax ∼ 1 where ∼

subsumes universal constants independent of k.

(iii) For a finite union of k-dimensional manifolds as in (i), the assumptions are satisfied except when z is in the intersection
of at least two manifolds. The manifolds do not need to have the same dimension k, in which case the assumptions hold
for different values of k depending on z. A particular case is finite unions of planes. Note that the conditions hold also
for certain infinite unions of manifolds. All that is needed is that intersections are isolated and, for the problem to be
well-conditioned in the sense that Rmax is not too small on sets of large measure, that the regions at a certain distance
from intersections are not too large.

3.4 Main results

We are interested in understanding the relationships between cov(Xz,r) and cov(X̃[Z̃,r]
n ). The former is the true

local covariance of µX restricted to Bz(r), where z ∈ M while the second is the observed empirical noisy covari-

ance of the sample points X̃[Z̃,r]
n that lie in BZ̃(r), where Z̃ = z + σN is a (random) noisy center. The latter is

the quantity observable by an algorithm. The covariance cov(X̃[Z̃,r]
n ) is a “corrupted” version of cov(Xz,r) because

of sampling and noise: sampling creates random fluctuations around the expected covariance, noise corrupts the
center (from z to z + σN ) and the points, causing points in Bz(r) to exit the ball, and points from outside Bz(r) to
enter the ball. We are interested in non-asymptotic results, for D large, that hold for finite n and for nonvanishing

noise size, guaranteeing that cov(Xz,r) and cov(X̃[Z̃,r]
n ) are close. In fact, it turns out that since the noise is typically

not negligible, it is natural to allow for a change in scale, and compare instead cov(Xz,r=) with cov(X̃[Z̃,r]
n ), where

r2
= = r2 − 2σ2D.

Our results show that, for a fixed point z, as soon as the noise has “size” smaller than “the scale of the curva-
ture”, there is a range of scales such that if O(k log k) points are available in Bz(r=), then indeed cov(Xz,r=) and

cov(X̃[Z̃,r]
n ) are essentially as close as it may be expected given the noise size; in particular the top k eigenvalues

(which are much larger than the remaining ones) of the two matrices are comparable, and so are the corresponding

eigenspaces, that represent approximate tangent planes. The “size of the noise” is measured by E[σ‖N‖] ∼ σ
√

D,
and the “the scale of the curvature” is measured roughly by 1

κ
√

k
(see Theorem 1 for a more precise statement).

We shall restrict our attention to the range of scales

r ∈
(

Rmin + 4σ
√

D +
1
6k

, Rmax − σ
√

D − 1
6k

)
. (3.7)

We would no need to restrict it now, but it would be imposed on us later anyway. Scales in this range are above
the scale of noise, and below the scale at which curvature ofM affects too severely the multi scale singular values.

We introduce some natural parameters: t will tune the probability of success, which will be in the form 1− ce−ct2 .
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Define

n := E[nz,r= ] = nµX(Bz(r=)) , ǫ2 = ǫ2r=,n,t :=
t2 k log k

n

(ǫ⊥)2 = (ǫ⊥r=,n,t)
2 =

t2k2 log(D ∧ n)
n

= ǫ2k logk(D ∧ n) , κ′ := κ((1 + ǫ⊥) ∧ k)

σ0 := σ
√

D .

(3.8)

These quantities represent, respectively, the expected number of (noiseless) points in Bz(r=), and the reciprocal of
a “local oversampling factor” for a k-dimensional covariance estimation, since O(t2k log k) points in Bz(r=) suffice
to estimate the leading portion of the covariance matrix in Bz(r=) with high confidence. In the normal direction
ǫ⊥ is the smallest of two terms, the first one coming from the covariance having effective rank k2, and the second

coming from the standard concentration rate
√

D/n. The latter kicks in only for n ≥ D, which is not the case of
interest here, but it is helpful to show consistency (the limit n → +∞) as a simple corollary of our results.

Theorem 1 (D large). Fix z ∈ M. Let the assumptions in Section 3.3 be satisfied. For D ≥ k2, σ0 constant, t ∈
(C, Cλmax ,λmin,δ,ǫ

√
D
k ), and ǫ = ǫr=,n,t ≤ 1

2λmax
, for r in the range of scales (3.7) intersected with

r ∈
(

4σ0

λ2
min − δ2λmaxǫ− ǫ2

λ2
min

(
Cσ0k

r ∨ 1
n

)− σ0κ′
t

,
λmax

4 ∧ √k

κ′

)
,

the following hold, with probability at least 1− Ce−Ct2 :

(i) ∆k(cov(X̃[Z̃,r]
n )) is the largest gap of cov(X̃[Z̃,r]

n );

(ii) ||cov(X̃[Z̃,r]
n )− cov(Xz,r=)− σ2ID|| ≤

(
σ2

0ǫ + λmaxσ0r +
(
λmax + 2σ0κ

′ + ǫ
n

)
r2 + O

(
r3

ǫ

))
ǫ
k .

(iii) if we let Πk and Π̃k be the spaces spanned by the top k singular vectors of cov(Xz,r=) and cov(X̃[Z̃,r]
n ), we have

| sin Θ(Πk, Π̃k)| ≤
σ2
0ǫ√
kD

+ 2
√

λmaxσ0ǫt
k + ǫλmax+σ0

√
k
D κ′

k r2 + λmaxκ′
k r3 +

κ′2
k λ2

max
λ2
min−κ′2r2 r4 + ǫ2r2

k

(
Cσ0k

r ∨ 1
n

)
λ2
min−κ′2r2

k r2 − σ2
0

D − σ0ǫ(2κ′r2+σ0ǫ)
k − ǫ2r2

k

(
Cσ0k

r ∨ 1
n

)
This Theorem is a special case of Theorem 2 when D is large and σ

√
D =: σ0 fixed. Here we are mostly

interested in the case t ≈ 1 and n ≈ k log k:

Corollary 1. Under the assumptions of Theorem 1, if δ ≪ λmin ≈ λmax ≈ 1, ǫ small enough and D large enough depending
on λmin, λmax, κ, σ, then ∆k is the largest gap with high probability for r in the range (3.7) intersected with

5σ0 ≤ r= ≤ λmax

4κk
.

If in addition n & k2 so that ǫ⊥ ≤ 1
2 , the upper bound of this interval may be increased to λmax

6κ .

The lower bound is comparable to the length of noise vector, the upper bound is comparable to the largest
radius where the curvature is not too large (see the proof of Proposition 1, and Figure 3). The geometry is that of a

rather hollow “tube” or radius
√

D around the support of µ, curving at scale roughly 1/κ′, and the Theorem guar-
antees, among other things, that for r larger than the scale of the noise and smaller than the radius of curvature,
with only k log k samples in a ball of radius r from noisy samples we obtain a faithful empirical estimate of the
local covariance matrix.
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Figure 3: A pictorial representation of the natural scalings, as well as the corresponding local random variables

for r in the good range of scales. The noise pushes points on M at distance roughly σ
√

D (w.h.p.), mostly in the

normal direction. Therefore we expect that good scales will correspond to r & σ
√

D. Also, r needs to be below the
“radius of curvature” of M, which turns out to be comparable to λmax/κ′. Since we only have access to z̃ and the
noisy data, we need to compare the covariance noisy data in BZ̃(r) with that of the clean data in a slightly smaller
ball, Bz(r=). In the scaling limit D → +∞, we impose that this picture is invariant, which is achieved by scaling σ

so that σ
√

D =: σ0 independently of D.
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3.4.1 Technical Results

The main Theorems above are consequences of Theorem 2 below, which builds upon Propositions 1 and 2.

• In Proposition 1 we study the perturbation cov(Xz,r=) → cov(X̃[z,r=]
n ). However, we do not have access to z,

which is not an observed data point, but only to a sample of Z̃. Likewise, for a fixed scale r and center z, we

do not have access to X̃[z,r=]
n but only to X̃[z,r=]

n .

• Proposition 2 then shows that with high probability, up to a small change in scale from r to r=, the covariance

computed from X̃[z,r=]
n and X̃[Z̃,r]

n are close, allowing us to translate our analysis above of cov(X̃[z,r=]
n ) to

cov(X̃[Z̃,r]
n ).

Our main Theorem combines these two perturbations.

Proposition 1. Let the assumptions in Section 3.3 hold for a fixed z ∈ M, and choose r= ∈ (Rmin, Rmax). Let n = nr=,n,
ǫ = ǫr=,n,t be as in (3.8), t ≥ C1, ǫ ≤ 1

C2
≤ 1

2 and choose γ = γr=,n,t and ϕ = ϕr=,n,t as follows:

2γ2 := λ2
min − δ2 − λmaxǫ , ϕ2 :=

γ2

1 + ǫ
− σκ′

√
k

(√
D

n
+ ǫ

)
(3.9)

Then, with probability at least 1− ce−ct2 , for r as above and such that

ǫ
σ
√

D

ϕ

[
λmax

ϕ
∨
(

1n≤CD + 4

√
n

D
1n≥CD

)]
≤ r ≤ λmax

4κ′

(
1 +

6γ2

λ2
max

)
(3.10)

we have

(i) ∆k(cov(X̃[z,r=]
n )) is the largest gap of cov(X̃[z,r=]

n );

(ii) the following bound holds

∥∥cov(X̃[z,r=]
n )−cov(Xz,r=)− σ2ID

∥∥ ≤ (2σ2

√
D

k log k
ǫ

(
1 +

√
D

k log k
ǫ1n≤CD

)

+
λmaxσ√

k
ǫ

(
1 +

√
D

k log k

)
r= +

(
ǫλmax√

k
+ σκ′

(
2

√
D

k log k
ǫ + 1

))
r=

2

√
k

+
2λmaxκ

′

k
r=

3 +
2κ′

k
r=

4

)
(1 + ǫ) =: E1,r= .

(iii) if we let Πk (respectively Π̃k) be the spaces spanned by the top k singular vectors of cov(Xz,r=) (respectively cov(X̃[z,r=]
n )),

for r in the range above we have

| sin Θ(Πk, Π̃k)| ≤
σ2
√

D
n t +

√
λmaxσ√

k

(√
D
n t + ǫ

)
t + ǫλmax+σ

√
kκ′

k r=
2 + λmaxκ′

k r=
3 +

κ′2
k λ2

max
λ2
min−κ′2r=2 r=

4

λ2
min−κ′2r=2

k r=
2 − σ21n≤CD − σ

√
D
n t
[

2κ′r=2√
k

+ σ1n≥CD + σ
√

D
n 1n≤CD

]
Proof. See Appendix 8.
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Corollary 2 (D large). With the same assumptions and notation as in Proposition 1. For n ≥ C, t ≥ C, and D large

compared to k, let σ0 := σ
√

D be independent of D, and assume ǫ ≤ 1
2 . Then with probability at least 1 − Ce−Ct2 , in the

range
3ǫσ0λmax

λ2
min − δ2 − λmaxǫ − 3σ0κ′

√
k
≤ r= ≤ λmax

4κ′

(
1 +

λ2
min − δ2 − λmaxǫ

λ2
max

)
we have that

(i) the largest gap of cov(X̃[z,r=]
n ) is the k-th gap;

(ii)

∥∥∥∥cov(X̃[z,r=]
n )−cov(Xz,r=)−σ2ID

∥∥∥∥ ≤ 3(σ2
0ǫ2+λmaxσ0ǫr+(λmax+σ0)ǫr2+κ

√
kr3(λmax+r))

k log k

We have neither access to a point z ∈ M, nor to Bz(r=) ∩M since our observations are points perturbed by
noise. We show that the effect of this perturbation may be offset by a change in scale, from r= to r, up to the
appearance of terms depending on the “geometric signal to noise ratio” r/σ.

Proposition 2. Let D ≥ C, and

r ∈
(

Rmin + 4σ
√

D +
1

6κ′
, Rmax − σ

√
D − 1

6κ′

)
∩
(

3σ
(√

D ∨ k
)

,

√
k

κ′

)
(3.11)

where C is a universal constant. Then, for t, v ≥ C, n = nr=,n ≥ t2, s2 < r2/k
12σ2D

√
D

||cov(X̃[z,r=]
n )− cov(X̃[Z̃,r]

n )|| ≤ v2

(
βs ∨ 1

n

)
r2 =: E2,r (3.12)

holds with

βs :=

(
1 +

s2σ
√

D

r
+
(

1 ∨ σ2D

r2/k

)√
log

r

3σk

)
σk

r

and with probability at least 1− ce−c((v2n)∧s4∧t2).

Proof. See Appendix 9.

We combine the two perturbations above to obtain the following

Theorem 2. Fix z ∈ M and let the assumptions in Section 3.3. Choose r in the range (3.11) intersected with (3σ(
√

D ∨
k),

√
k

κ′ ). With n and ǫ defined as in (3.8), t, v ≥ C1, ǫ ≤ 1
C2

≤ 1, 1 ≤ s2 ≤ r=
2/k

12σ2D

√
D. Then, with probability at least

1− ce−c((v2n)∧s4∧t2), if

ǫ
σ
√

D

ϕ

[
λmax

ϕ
∨
(

1n≤CD + 4

√
n

D
1n≥CD

)]
≤ r= ≤ λmax

4κ′

(
1 +

6γ2

λ2
max

)
(3.13)

where ϕ = ϕr,n,v,s is obtained from (3.9) by replacing γr,n,t with

2γ2
r,n,v,s := λ2

min − δ2 − λmaxǫr=,n,t − v2k

λ2
min

(
βs ∨ 1

n

)
.

we have:

(i) ∆k(cov(X̃[Z̃,r]
n )) is the largest spectral gap of cov(X̃[Z̃,r]

n );

(ii) ||cov(X̃[Z̃,r]
n )−cov(Xz,r=)−σ2ID|| ≤ E1,r= +E2,r, where E1,r= , E2,r are given in Proposition 2 and 1, respectively;
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(iii) if we let Πk and Π̃k be the spaces spanned by the top k singular vectors of cov(Xz,r=) and cov(X̃[Z̃,r]
n ), we have

| sinΘ(Πk, Π̃k)| ≤
σ2
√

D
n t +

√
λmaxσ√

k

(√
D
n t + ǫ

)
t + ǫλmax+σ

√
kκ′

k r2 + λmaxκ′
k r3 +

κ′2
k λ2

max
λ2
min−κ′2r2 r4 + E2,r

λ2
min−κ′2r2

k r2 − σ21n≤CD − σ
√

D
n t
[

2κ′r2√
k

+ σ1n≥CD + σ
√

D
n 1n≤CD

]
− E2,r

(3.14)

This result implies Theorem 1, which explores the regime we are most interested in, specifically n ≅ k · log k ·
log D ≪ D with σ

√
D = O(1). It is trivial to obtain other results in other interesting regimes, for example for

n → +∞ with k, D fixed (albeit in this case our results are not sharp, in the sense that when n ≫ D the terms

O(r3) and O(r4) would start decreasing with rate n−
1
2 ). In random matrix theory and free probability a regime of

interest is when D, n → +∞ with fixed ratio D/n = φ. In our context that would correspond to fixing the ratio
between D and n to φ, e.g. setting n ∼ D

φ t2k log k

λ2
max

.

Proof of Theorem 2. The proof follows from modifying the proof of Prop. 1 to include one final perturbation, the
perturbation given in Prop. 2, which may be upper-bounded by

v2


(

1 +
s2σ

√
D

r
+
(

1 ∨ σ2D

r2/k

)√
log

r

3σk

)
σk

r︸ ︷︷ ︸
=:βs

∨ 1
n

 r2 ≤ v2

(
kβs

λ2
min

∨ k

λ2
minn

)
λ2

minr=
2

k
,

with probability at least as in Proposition 2. From the proof of Proposition 1, one obtains that under the conditions

of Propositions 1 and 2, if r= satisfies (3.13) then ∆k(cov(X̃[Z̃,r]
n )) is the largest gap with probability as claimed.

Solving the above for r= completes the proof. The proof of (iii) follows similarly, by reasoning as in the proof of
(iii) in Proposition 1 and adding the perturbation of Proposition 2.

Proof of Theorem 1. This follows directly from Theorem 2 for D large, and choosing v2µX(Bz(r=))n = s4 = t2. One
then sees that

βs ≤ C
σ0k

r
, ϕ2 ≥

(
λ2

min − δ2λmaxǫ− ǫ2

λ2
min

(
Cσ0k

r
∨ 1

n

)
− σ0κ

′

t

)
1

2(1 + ǫ)
.

In order to prove (iii), we start from (3.14) and use the assumptions to simplify and upper bound various terms,

and in particular notice that E2,r ≤ Cǫ2r2

k

(
σ0k
r ∨ 1

n

)
.

Example 2. For the unit sphere Sk, we have λmin = λmax ∼ 1, κ ∼ k−
1
2 , κ′ ∼ 1, Rmin = 0, and Rmax ∼ 1.

3.5 Varying the scale

For a fixed point z, one may discretize the range of good scales in the results above at multiple values {rj} of r,
and consider the behavior of λi(cov(Xz,rj )) and its empirical and noisy versions. One may then apply the results
above for each r = rj and by taking union bounds derive bounds on the behavior of cov(Xz,rj ) for fixed z, as a
function of j.

In practice, in our application to estimation of intrinsic dimension, we do the above and determine the intrinsic
dimension by detecting which eigenvalues of

√
cov(Xz,r) grows linearly in r (those corresponding to the intrin-

sic dimension), quadratically (those corresponding to curvature directions), and which ones do not grow (those
corresponding to noise), and in which range of scales this holds.
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4 The manifold case

Consider a smooth compact Riemannian manifold M of dimension dim(M) isometrically embedded in RD, en-
dowed with its volume measure denoted by vol. We let µX = vol in RD, normalized to be a probability measure.
The usual assumptions are satisfied, with k = k(z) = dim(M), vmin dependent on vol(M) and upper bounds on
the curvature of M, under rather general conditions on M. In this case P [z,r] may be chosen to be the projection
on the k-dimensional tangent plane to M at z, translated along the normal direction to M at z to ensure that

E[Xz,r
⊥] = 0. Following H. Federer, let

reach(M) = sup{r ≥ 0 : tubr(M) ⊂ D(M)} ,

where D(M) = {y ∈ RD : ∃! x ∈ M : ||x − y|| = minx′∈M ||x′ − y||} and tubr(M) = {y ∈ RD : d(y,M) < r}. If
reach(M) > 0 then we may choose Rmin = 0 and Rmax = reach(M) for every z ∈ M.

Remark 1. Since our constructions and results are of a local nature (with the only assumption of global character being on
the reach), it is clear how to generalize the setting above to the case of non-compact manifolds, manifolds with boundaries,
and measures different from the volume measure.

Remark 2. We may choose a measure µX on M which is mutually absolutely continuous with respect to vol, and the usual

assumptions will still be satisfied, at least locally, depending on the bounds on the Radon-Nykodim derivative dµX

dvol .

Remark 3. The usual assumptions on Xz,r
⊥ allow for a lot of flexibility in the model: for example we could have a manifold

M as above, “corrupted” by complicated structures in the normal directions, which are small in the sense of our usual
assumptions on Xz,r

⊥.

Finally, we observe that the eigenvalues of cov(Xz,r) and the corresponding eigenspaces vary smoothly as a

function of r (and z!), and we may therefore smooth the empirical S.S.V.’s λ2
i (cov(X̃[z̃,r]

n )), for fixed i and z̃, as a
function of r. Such denoising of the S.S.V.’s, by taking into account that their expected growth as a function of r is
r2 (for the top k) and r4 (for the curvature ones), is justified by the near-independence of the covariance matrices
across well-separated scales.

4.1 The case of a manifold with co-dimension 1

LetM be a k-dimensional manifold embedded in Rk+1. Fix a point z ∈M. Let κ1, ...κk be the principal curvatures
of M at z. In appropriate coordinates (x1, x2, ..., xk, y), M is locally given by y = f(x), where:

f(x) =
1
2
(κ1x

2
1 + ... + κkx2

k) + O(||x||3), (4.1)

that is, the second order Taylor expansion of f is quadratic with coefficients given by the principal curvatures
[57]. We start by approximating M∩ Bz(r) by a set over which integration will be simpler: for small r, X0,r :=
{(x, f(x)) : ||(x, f(x))||Rk+1 ≤ r} satisfies

{(x, f(x)) : x ∈ Bk (rmin)} ⊆ X0,r ⊆ {(x, f(x)) : x ∈ Bk (rmax)}

where r{min,max} := r
√

1− 4−1κ2
{max,min}r

2, κmin = mini κi and κmax = maxi κi. The difference between the sets

involved is small and will be disregarded, since it would only produce terms which have higher order in ||x|| than
those we are estimating. The volume element is given by

dvol(x) =
√

1 + ||∇f ||2 = 1 +
1
2

k∑
i=1

κ2
i X

2
i + O(||x||4) ,

so that, up to higher order terms in r2, denoting the Lebesgue measure µRk by | · |,

|Bk(r)|
(

1 +
k

2(k + 2)
κ2

minr
2

)
≤ vol(X0,r) ≤ |Bk(r)|

(
1 +

k

2(k + 2)
κ2

maxr
2

)
.
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Therefore
vol(X0,r)
|Bk(r)| = 1 + O(r2) and |Bk(r)|

vol(X0,r) = 1 − O(r2), and we discard the higher order factors as they will

not affect the calculations that follow. The first k squared singular values corresponding to of X0,r are computed
as follows: by symmetry considerations the matrix of second moments is diagonal, up to second order in ||x||, in
the chosen coordinates. For r small, disregarding O(||x||4) terms, and for l = 1, . . . , k,

(λ[0,r]
l )2(f) =

1
vol(X0,r)

∫
Bk(r)

x2
l

√
1 + ||∇f ||2dx =

|Bk(r)|
vol(X0,r)

1
|Bk|

∫
Bk

x2
l

(
1 +

1
2

∑
i

κ2
i X

2
i

)
dx

= σ2
i (Bk)r2 + O(r4) = σ2

1(Bk)r2 + O(r4)

with Bk the unit k-dimensional ball. Similarly, for (λ[0,r]
k+1)2(f), we have

(λ[0,r]
k+1)2(f) =

|Bk(r)|
vol(X0,r)

[
1

|Bk(r)|
∫

Bk(r)

f(x)2dvol(x) − |Bk(r)|
vol(X0,r)

(
1

|Bk(r)|
∫

Bk(r)

f(x)dvol(x)

)2 ]
=
[
1
4

∑
i

κ2
i

(
ξ4
ii(Bk)− λ4

i (Bk)
)

+
1
2

∑
i<j

κiκj

(
ξ4
ij(Bk)− λ2

i λ
2
j(Bk)

) ]
r4 + O(r6)

(4.2)

where ξ4
ij(Bk) = 1

|Bk|
∫

Bk X2
i x2

jdx . Since the second and fourth moments of Sk−1, the (k − 1)-dimensional unit

sphere, are

λ2
l (Sk−1) =

1
k

, ξ4
lj(Sk−1) =

1 + 2δlj

k(k + 2)
for l, j = 1, . . . , k ,

the corresponding moments of the unit ball are

λ2
l (Bk) =

1
k + 2

, ξ4
lj(Bk) =

1 + 2δlj

(k + 2)(k + 4)
for l, j = 1, . . . , k .

These may be compared, for large k, with the moments of X ∼ N (0, 1
k Ik) in Rk, which are E[(X)2l ] = 1

k ,

E[(X)2l (X)2j ] = 1+2δlj

k2 . We may simplify (4.2):

(λ[0,r]
k+1)2(f) =

1
(k + 2)2(k + 4)

[
k + 1

2

k∑
i=1

κ2
i −

∑
1≤i<j≤k

κiκj

]
r4 . (4.3)

The gap between (λ[0,r]
l )2(f), for l = 1, . . . , k and (λ[0,r]

k+1)2(f) is large when this last expression is small. Considering

the scaling as a function of k, we see that (λ[0,r]
l )2(f) always has the natural scaling k−1r4, as in pur usual geometric

assumptions, while for (λ[0,r]
k+1)2(f) we observe that:

(i) In this context, the constant κ in our geometric assumptions may be chosen equal to κmax := maxi |κi|. If

this is independent of k, equation (4.3) implies that (λ[0,r]
k+1)2(f) scales at most like k−1r4 (as in geometric

assumptions), since the term in square brackets scales at most like k2. This guarantees a spectral gap in the
covariance of size independent of k.

(ii) There are cases where a combination of sizes and signs of the κi’s cause the term in square brackets in (4.3)

to be O(k), and thus κ will scale like k−
1
2 . This happens for example for the unit sphere Sk−1, or for the

hyperbolic paraboloid with κ1, . . . , κk−1 = 1 and κk = −1, as discussed in the next section.

4.1.1 Example: the sphere Sk and hyperbolic paraboloids

The expression (4.3), in the case of the k-dimensional unit sphere Sk, yields that in a small neighborhood of any
point, for l = 1, . . . , k

(λ[z,r]
l )2(Sk) =

1
k + 2

r2 ∼ r2

k
, (λ[z,r]

k+1)2(Sk) =
k

(k + 2)2(k + 4)
r4 ∼ r4

k2
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Figure 4: Left: Because of concentration of measure phenomena, in the case of Sk the size of our notion of curvature
κ2 is small, both in the sense that it scales like k−1 as a function of k, and it stays small on large neighborhoods
(of size O(1)). We take advantage of the same phenomenon when estimating the effect of the noise in the proof
of Prop. 2 in Appendix 9. Right: plot of (k + 1)λ2

l,z,r(Sk) for z equal to the north pole, as a function of the angle

subsumed by the cap Bz(r) ∩ Sk, for different values of k: we see that up to a scale O(1) independent of k the
k + 1-st S.S.V. is much smaller than the top k.

In particular, this implies that the curvature quantity κ2 in (3.6) scales like k−1, as a function of k. In the case of a
hyperbolic paraboloid with κ1, . . . , κk−1 = 1 and κk = −1, we obtain from (4.3):

(λ[z,r]
k+1)2(f) =

(3k − 2)
(k + 2)2(k + 4)

r4 ∼ 3r4

k2
.

Again, this implies the curvature quantity κ in (3.6) scales like k−
1
2 .

If k is even and we have a hyperbolic paraboloid with κ1, . . . , κ k
2

= 1 and κ k
2 +1, . . . , κk = −1, we obtain from

(4.3):

(λ[z,r]
k+1)2(f) =

k(k + 1)
2(k + 2)2(k + 4)

r4 ∼ r4

2k

Here we have κ bounded independently of k, which is sufficient for the number of samples to be linear in k.
Regarding vmin, we have Rmin = 0 and we may choose vmin = (µRk(Sk))−1; therefore

vminµRk(Bk) =
µRk(Bk)
µRk(Sk)

=
µRk(Bk)

(k + 1)µRk(Bk+1)
∼ 1√

k

A more intuitive way (which may be readily formalized using the ideas underlying Lemma 9) to find the
scaling, with respect to k, of the squared singular values of the sphere Sk is the following (see Figure 4). We start
by observing that 1 − δ of the mass of V k

r is concentrated in a ring of thickness ∼δ k−1 at the boundary of the
cap V k

r = B(0,...,0,1)(r) ∩ Sk (since the volume of V k
r , as a function of r, grows like rk). Therefore the projection of

V k
r onto the tangent plane at z will have covariance comparable to that of an annulus of thickness ∼ rk−1 cos θ0

and dimension k and radius r cos θ0
2 , which behaves like k−1r2Ik for θ0 . 1. This determines the scaling for

(λ[z,r]
1 )2, . . . , (λ[z,r]

k )2. As for the scaling of (λ[z,r]
k+1)2, it is the variance of the projection of V k

r onto the axis normal to
the tangent plane at z: at least for r not to small, this is a measure concentrated on an interval of size ∼ k−1r sin θ0,
which has variance ∼ k−2r4. Observe that this reasoning implies that the “curvature” κ we use may be small in a
neighborhood much larger than one may expect.
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4.2 The case of a manifold with general codimension

The case of a manifold of general co-dimension could be treated in similar fashion: let M be a k-dimensional
manifold embedded in RD. In appropriate coordinates (x1, . . . , xk, y1, . . . , yD−k) in Rk ⊕RD−k, M is locally given
by y = f(x) + O(||x||3), where:

f(x) =
1
2
(
xT H1x, . . . , xT HD−kx

)
(4.4)

where H1, . . . , HD−k ∈ Rk×k are the Hessians of f = (f1, . . . , fD−k) : Rk → RD−k. The computation for the first
k multiscale singular values proceeds as above, yielding once again that they do not depend on the curvatures of
M. For the remaining multiscale singular values, we proceed as follows. Let us consider the (k + 1)-st multiscale
singular value: it corresponds to an eigenvector vk+1 orthogonal to 〈x1, . . . , xk〉 (which is the span of the first k
multiscale singular vectors) and it is a direction of maximal variance forM in 〈y1, . . . , yD−k〉. In other words, vk+1

is the direction of a unit vector w maximizing the variance of

fw(x) := 〈f(x), w〉 = 〈(xT H1x, . . . , xT HD−kx), w〉 = xT = xT

(
D−k∑
l=1

wlHl

)
x ,

which, by the calculations for the case of codimension 1, is given by

1
2(k + 2)(k + 4)

[ ∥∥∥∥∥
D−k∑
l=1

wlHl

∥∥∥∥∥
2

F

− 1
k + 2

(
D−k∑
l=1

wlTr(Hl)

)2 ]
r4 . (4.5)

Also, observe that while the codimension ofM is as large as D−k, the range of f above is no more than k(k+1)/2-
dimensional, since dim(span{H1, . . . , HD−k}) ≤ k(k+1)/2. This implies that the rank of f as above is in fact at most(
k+1
2

)
. Therefore, we expect at most

(
k+1
2

)
squared singular values of size O(r4), due to the various curvatures,

obtained by maximizing (4.5) over increasingly smaller subspaces orthogonal to the already constructed tangent
and curvature directions.

Finally, we observe that similar calculations may be extended to classes of manifolds which are less than C2,
for example to manifolds that are locally graphs of Cα functions, by replacing Taylor expansions by residuals that
are Hölder of the appropriate order. This is because our notions of tangent approximations and curvatures are L2

notions, which are well-defined and stable even in situations were there is a lack of smoothness.

5 An algorithm for estimating intrinsic dimension

The results above suggest the following algorithm: for each z̃ in the training set and r > 0, we compute the

eigenvalues (λ̃[z̃,r]
i )2, i = 1, . . . , D, of cov(X̃[z̃,r]

n ). When r is large, if M is contained in a linear subspace of dimen-
sion K (K ≥ k) we will observe K large eigenvalues and D −K smaller noise eigenvalues (we will assume that

K < D). Clearly, k ≤ K . Moreover, {(λ̃[Z̃,r]
i )2}i=K+1,...,D will be highly concentrated and we use them to estimate

σ, which is useful per se. Viewing {(λ̃[Z̃,r]
i )2}i=K+1,...,D as a function of r, we identify an interval in r where the

noise is almost flat, thereby removing the small scales where the distortion due to noise dominates. From this

point onwards the algorithm will work on this restricted interval. We look at the first {(λ̃[Z̃,r]
i )2}i=1,...,K , and the

goal is to decide how many of them are due to the extrinsic curvature of M. But the curvature S.S.V.’s grow with

rate at most r4, while the “tangential” (non-curvature) S.S.V.’s grow with rate r: a least-square fit to {(λ̃[Z̃,r]
i )2}, as

a function of r, is used to tell the curvature S.S.V.’s from the tangential ones, yielding our estimate for k. Finally,

we estimate [ ˆRmin, ˆRmax] as the largest interval of r2’s in which ∆̃[z,r]

k̂
:= (λ̃[Z̃,r]

k̂
)2 − (λ̃[Z̃,r]

k̂+1
)2 is the largest gap.

The many details and available options are documented in the code2.

2www.math.duke.edu/ ˜ mauro

18



[k̂, ˆRmin, ˆRmax] = EstDimMSVD (X̃n, z̃, Kmax)

// Input:
// X̃n : an n×D set of noisy samples
// z̃ : a point in X̃n

// Kmax : upper bound on the intrinsic dimension k

// Output:
// k̂ : estimated intrinsic dimension at z̃
// ( ˆRmin, ˆRmax) : estimated interval of good scales

{k̂1, (λ̃
[z,r]

k̂1+1
)2} ← FindLargestNoiseSingularValue(X̃n, z̃)

ˆRmin← Smallest scale for which (λ̃
[z̃,r]

k̂1+1
)2 is decreasing and |Bz( ˆRmin)| & Kmax log Kmax

ˆRmax← Largest scale > Rmin for which (λ̃
[z̃,r]
1 )2 is nonincreasing

k̂← Largest i such that:

· for r ∈ ( ˆRmin, ˆRmax), (λ̃
[z̃,r]
i )2 is linear and (λ̃

[z̃,r]
i+1 )2 is quadratic in r, and

· ∆
[z̃,r]
i is largest gap for r in a large fraction of ( ˆRmin, ˆRmax)

( ˆRmin, ˆRmax)← Largest interval in which ∆
[z̃,r]

k̂
is the largest gap

Figure 5: Pseudo-code for the Intrinsic Dimension Estimator based on multiscale SVD.

5.1 Algorithmic and Computational Considerations

Instead of computing cov(X̃[z̃,r]
n ) for every z̃, r, we perform a subsampling in scale and in space, as follows. A

set Γ ⊂ X̃n is called a δ-net in X̃n if {Bz(2δ)}z∈Γ covers X̃n and any pair of points in Γ has distance larger than
δ. We select an increasing sequence 0 ≤ δ0 < · · · < δj < . . . with δj → ∞, and for every j we construct a δj-net,
called Γj . The construction of multiscale nets is of general interest, we refer the interested reader to [58, 59] and
references therein. For example, we may choose δj = 2jδ0, or in such a away that EX [|Bx(δj)|] grows linearly
in j, and stop at the smallest level J s.t. |ΓJ | < 10, say. Here and in what follows |Bx(δj)| is the number of

samples in Bx(δj). We compute (λ̃[z,r]
i )2 for r = δ0, . . . , δJ and, for r = δj , z ∈ Γj . Here i may range from

1 up to I := min{D, nr, K}, the maximum rank of cov(X̃[z̃,r]
n ), where K is a pre-specified parameter (that may

be D ∧ n). We therefore obtain a discretization of the continuous (in space and scale space) quantities (λ̃[z,r]
i )2.

Note that we still get an estimate of the intrinsic dimension at every point: given an x ∈ X̃n, at each scale j, we

associate x with the zx,j ∈ Γj that is closest to it, and we approximate (λ̃[x,δj ]
i )2 by (λ̃[zx,j ,δj ]

i )2. In order to avoid
artifacts due to the randomness of Γj , one may repeat this construction a few times and take the expectation (or

vote), over the runs, of all the quantities we are interested in. The cost of computing {(λ̃[z,rj ]
i )2}i=1,...,I by [60] is

O(D · |Bz(rj)| · (I + Cnn)), where Cnn is the (normalized) cost of computing a nearest neighbor, which, after the
preprocessing step of constructing the multiscale nets, is O(2ck log n), where c is a universal constant (e.g. [59]
and references therein). The procedure is repeated O(n/|Bz(rj)|) times at each scale (for each z ∈ Γj), and then
across all scales j = 0, . . . , J , with J = O(log n), for a total cost of O(D · n logn · (I + Cnn)). In the worst case,
I = min{D, n, K}, yielding O(D · n log n · (min{D, n, K} + Cnn)). Finally, we observe that our algorithm is very
highly parallelizable and easily distributable.

We have run rather extensive comparisons with other algorithms, see Figure 6.

5.2 Experimental Results

5.2.1 Manifolds

We test our algorithm on several data sets obtained by sampling manifolds, and compare it with existing algo-
rithms. The test is conducted as follows. We fix the ambient space dimension to D = 100. We let Qk, Sk, S,
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Figure 6: Top: Timing experiments for our algorithm: time to construct the multiscale nets (’M-Net’), calculation
of multiscale statistics (’M-Stats’) and the total time (’Est.Dim.’). All plots are in log-log scale. Left: time vs. n
for Sk(n, D, σ), for n = 1000, 2000, 4000, 8000, 16000, k = 8, D = 100, and σ = 0, 0.25√

D
. Times grow linearly in n,

with the noise slightly increasing the computational time of each sub-computation. Center: same as left, but with
D = 1000: the increased ambient dimensionality does not cause, in this instance, almost any increase in time, not
even by the meager factor of 10, which one would expect from the cost handling vectors which are 10 times larger
in distance computations. In particular, no curse of ambient dimensionality appears. Right: computation times as
a function of intrinsic dimension k = 2, 4, 8, 16, and notice a mild increase in computation time. Tests were run on
an Apple R© Mac Pro with 2 × 2.93Ghz Quad-Core Intel Xeon R© processors, 32 Gb of RAM, and Matlab R© 7.10 with
parallel mode enabled (the time reported is total CPU time across all CPU’s). Absolute values on the y-axis should
not be taken too seriously. Bottom:Comparison of running time between our algorithm and competitors (with the
parameters set as in all other experiments). “RTPMM” and “Smoothing” had complexity that grew too quickly in
n to make their inclusion practical. The same applies to “MFA” (3 orders of magnitude slower than “MSVD”), so
we ran 500 times faster by reducing the number of iterations/initializations (with respect to the default value of
these parameters), and, assuming a constant cost per iteration, multiplied the running time back by 500.
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Zk be, respectively, the unit k-dimensional cube, the k-dimensional sphere of unit radius, a manifold product of
an S-shaped curve of roughly unit diameter and a unit interval, and the Meyer’s staircase {χ0,k(· − l)}l=0,...,D.
Each of these manifolds is embedded isometrically in RK , where K = k for Qk, K = k + 1 for Sk, K = 3 for
S and K = D for Zk, and RK is embedded naturally in RD. Finally, a random rotation is applied (this should
be irrelevant since all the algorithms considered are supposed to be invariant under isometries); n samples are
drawn uniformly (with respect to the volume measure) at random from each manifold, and noise N ∼ σN (0, ID)
is added. We incorporate these parameters in the notation by denoting Qk(n, σ) the set of n samples obtained as
above, where the manifold is the k-dimensional unit cube and the noise has variance σ (and analogously for the
other manifold considered). We also consider a variant of these sets, where we dilate RK , after embedding the
manifold, but before any other operation, by a diagonal dilation with factors drawn uniformly at random in the
multiset {1, 1, 1, 1, 0.9, 0.9, 0.9, 0.8, 0.8}.

We consider here k = 6, 12, 24, 48 for Qk, k = 5, 11, 23, 47 for Sk, and l = 20 for Z l. The samples size is set
as n = 250, 500, 1000, 2000. We let the noise parameter σ = 0, 0.01, 0.025, 0.05, 0.1. For each combination of these
parameters we generate 5 realizations of the data set and report the most frequent (integral) dimension returned
by the set of algorithms specified below, as well as the standard deviation of such estimated dimension. We test
the following algorithms, which include volume-based methods, TSP-based methods, and state-of-art Bayesian
techniques: “Debiasing” [47], “Smoothing” [46] and RPMM in [61], “MLE” [62], “kNN” [63], “SmoothKNN” [64],
“IDE”, “TakEst”, “CorrDim” [51], “MFA” [65], “MFA2” [66]. It is difficult to make a fair comparison, as several of
these algorithms have one or more parameters, and the choice of such parameters is in general not obvious. We
attempted to optimize the parameters of the algorithms by running them on several training examples, and we
then fixed such parameters. The Bayesian algorithm “MFA” of [65], which implicitly estimates intrinsic dimension,
was run on the test set by the authors of [65], given the knowledge that no data set would have intrinsic dimension
larger than K = 100, which is the input to our algorithm. For “MFA2”, the authors of [66] were also given access to
the the code that we used to generate the manifolds used in order to fine tune the algorithm from [65] (but not the
knowledge of the manifolds in the test set), and therefore were able to somewhat tune and modify their algorithms
accordingly. While both “MFA” and “MFA2” were therefore given an advantage compared to the other methods,
the results show that no advantage in terms of performance was achieved.

5.2.2 Varifolds

We consider a few simple examples of how the analysis and algorithm apply to the case when the dimension
of the point cloud varies at different locations. We apply the analysis and the algorithm pointwise, to some toy
examples: to a data set used as benchmark for several algorithms in [45], and to the data sets that we analyze,
where the dimensionality is expected to change from point to point.

5.2.3 Real Data sets

In this section we describe experiments on publicly available real data sets and compare to previously reported
results. We consider the MNIST database3containing several thousands images of hand written digits. Each image
is 28 times 28 pixels. A mixture of ones and twos is considered in [44] and [63] who find k = 11.26 and k =
9 respectively. In Figure 13 we show the plot of the point-wise estimates at different points and the average.
Figure 13 shows the same plot for different digits. In Table 5.2.3 we report the dimension estimated for each
individual digit and compare with the smoothed Grassberger Procaccia estimator from [51] and the high rate
vector quantization approach in [49].

Next we consider the IsoMap faces database4 consisting of 698 images of size 64 times 64 pixels. We find an
average intrinsic dimension k = 2 (Figure 13). [67] finds k between 3 and 4 (smaller values at large scales), [68] find
k ∈ [3.65, 4.65], [51] find an intrinsic dimension k = 3 using either Takens, Grassberger Procaccia or the Smoothed
Grassberger Procaccia estimators, [69] find k = 4 and k = 3 depending on the way the point-wise estimates are
combined (average and voting, respectively), and finally [44] find k = 4.3.

3 http://yann.lecun.com/exdb/mnist
4http://isomap.stanford.edu/dataset.html
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Figure 7: Benchmark data sets: cube.

The face video database5 consists of 1965 images of size 20 by 28 pixels. We find an intrinsic dimension k = 2,
see Figure 13. [49] estimate k ∈ [4.25, 8.30].

Finally, we consider some data-sets whose intrinsic dimension has not been previously analyzed. The CBCL
faces database (http://cbcl.mit.edu ) contains 472 images of size 19 times 19 pixels. We find an intrinsic
dimension k = 2, see Figure 13. The 20 news group is a set of 1161 documents represented as vectors in 1153
dimensions, and we find an intrinsic dimension k = 9, see Figure 13.

5.3 Linear Bi-Lipschitz perturbations

The following lemma characterize the effect of a linear Bi-Lipschitz perturbation of the data.

Lemma 1 (Bi-Lipschitz perturbations). Suppose Xn = {xi}n
i=1 is a (deterministic) set of n points in RD with maxi ||xi|| ≤

r. Let Φ : RD → Rd a linear map of Xn into Rd satisfying, for every xi, xj in Xn, the bi-Lipschitz condition

(1− ǫ)||xi − xj ||2 ≤ ||Φxi − Φxj ||2 ≤ (1 + ǫ)||xi − xj ||2 . (5.1)

Then:
|λ2

i (cov(Xn))− λ2
i (cov(Φ(Xn)))| ≤ 4ǫr2 .

The above result is straightforward, and we report a short proof for the sake of completeness.

Proof. Let m = 1
n

∑n
i=1 Xi. The eigenvalues of cov(Xn) are the same as those of the n × n matrix 1

n (Xn − m ⊗
1)(Xn −m ⊗ 1)T , where Xn is the n ×D matrix representing the point cloud, and similarly for cov(ΦXn). Note

5http://www.cs.toronto.edu/˜roweis/data.html
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Figure 8: Benchmark data sets: sphere. Note the failures of our algorithm: at very high noise, at very small sample
size compared to intrinsic dimension (S11(250, σ), S47(2000, σ)).

that ( 1
n (Xn − m ⊗ 1)(Xn − m ⊗ 1)T )i,j = 1

n 〈Xi − m, Xj − m〉. Let D = {xi − xj : xi, xj ∈ Xn} be the set of all
differences between the points. ΦT Φ is close to the identity on the set D:

〈ΦT Φ(xi − xj), xi − xj〉 = 〈(I + E)(xi − xj), xi − xj〉 = ||xi − xj ||2
(

1 +
〈E(xi − xj), xi − xj〉

||xi − xj ||2
)

Our bi-Lipschitz condition implies
|〈E(xi−xj),xi−xj〉|

||xi−xj ||2 ≤ ǫ for all xi − xj ∈ D. Because E is symmetric, ||E|D|| =

maxz∈D
|〈Ez,z〉|
||z||2 ≤ ǫ. We may write x1 − 1

n

∑n
i=1 xi = 1

n

∑n
i=1(x1 − xi), and then estimate

〈ΦT Φ(x1 −m), x2 −m〉 = 〈 1
n

n∑
i=1

ΦT Φ(x1 − xi), x2 −m〉 = 〈 1
n

n∑
i=1

(I + E)(x1 − xi), x2 −m〉

= 〈x1 −m, x2 −m〉+
1
n

n∑
i=1

〈E(x1 − xi), x2 −m〉

Since | 1n
∑n

i=1〈E(x1 − xi), x2 −m〉| ≤ ||E||D(2r)(2r) = 4ǫr2, we have cov(Φ(Xn)) = cov(Xn) + 1
nR, where |Ri,j | ≤

4ǫr2 and R is n× n. The upper bound ||R|| ≤ n||R||max ≤ 4ǫr2n, where ||R||max = maxi,j |Ri,j |, implies

|λ2
i (cov(Xn))− λ2

i (cov(Φ(Xn)))| ≤ 4ǫr2 .

Example 3 (Johnson-Lindenstrauss [70]). We can consider taking Φ to be a multiple of a random projection. In particular,

let P : RD → Rd be a projection onto a random (in the sense of [70]) d dimensional subspace of RD , and let Φ =
√

D
d P .
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Z10,20(1000, σ)

0 1 2 3 4 5 6 7

x 10
−3

0

5

10

15

20

25

 

 
RTPMM
RPMM
MLE
IDE
CorrDim
TakEst
DeBias
kNN
SmoothkNN
MFA
MFA2
MSVD

Figure 9: Benchmark data sets: S-shaped manifold S and Meyer’s staircase Z . The results for Z20 are consistently
better than those for Z10, once fixed the number of points and the level of noise. This is consistent with the fact
that Z20 has a smaller effective curvature than Z10.

S47(4000, 0.01) Z20(500, 0.016)

Figure 10: Two examples that pose difficulties. Left: S47(4000, 100, 0.01) has large intrinsic dimension, even so,
with only 4000 samples the curvature is visible even in presence of (small) noise, albeit hard to automatically
detect. In this case the algorithm fails to identify a range of good scales. Right: Z20(1000, 1000, 0.016) has multiple
curvatures at multiple scales, and looks like a high-dimensional ball at large scale.

Then if

d ≥ 4 log n + log( 4
δ2 )

ǫ2
,
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Q6(1000, 0.00) 5 5 5 6 5 5 6 6 4 1 4 6

Q12(1000, 0.00) 7 9 9 10 10 10 10 12 7 1 3 12

Q24(1000, 0.00) 9 16 16 17 17 17 17 20 11 1 2 24

Q48(1000, 0.00) 11 26 25 29 28 28 28 32 19 1 2 48

S5(1000, 0.00) 4 5 5 5 5 5 5 5 4 1 9 5

S11(1000, 0.00) 7 9 9 10 10 10 10 10 8 1 12 11

S23(1000, 0.00) 10 17 16 18 18 18 18 18 13 1 14 23

S47(1000, 0.00) 11 27 26 31 30 31 29 29 21 1 14 48

S(1000, 0.00) 2 2 2 2 2 2 2 2 2 1 5 2

Z1(1000, 0.00) NaN NaN 2 93 0 14 2 68 3 1 15 1

Figure 11: This table contains the dimension estimates for a quite benign regime with 1000 samples and no noise.
Even in this setting, and for the simplest manifolds, the estimation of dimension is challenging for most methods.
Our algorithm fails with nonnegligible probability on S47(1000, 0.00) because of the curse of intrinsic dimension-
ality (see Figure 9).
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Figure 12: Our algorithm can produce pointwise estimates, albeit it is not designed to take advantage of any
“smoothness” or clustering property of the local dimension as a function of the point. Top left: a 2-sphere and
a segment. Top right: for every point we plot the estimated maximal good scale: it is large when sphere and
segment are far away, and small close to the intersection. Bottom left: The data is a very noisy 1-dimensional
spiral intersecting a noisy two-dimensional plane from [45]. Our algorithm assigns the correct dimension 1 to the
spiral (because of the noise), and dimension 2 to the plane. 86% of the points on the spiral are assigned a dimension
smaller than 2, and 77% of the points on the plane are assigned dimension 2 (or greater). Overall, clustering by
dimension gives an accuracy of 86%, which is not as good as the 97% reported in [45], the present state-of-art to
our knowledge (that uses knowledge about the number of clusters, and that each cluster is a smooth manifold, to
gather strength across multiple neighborhoods).
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Figure 13: For each data sets we plot the point-wise estimate for a subset of the points (blue) and the average across
the different points (red).
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Digit 0 1 2 3 4 5 6 7 8 9

MSVD 2 2 3 2 2 2 2 2 3 3

IDE 11 7 13 13 12 11 10 13 11 11

HRVQ (r = 2) 16 7 21 20 17 20 16 16 20 17

Figure 14: This table contains the intrinsic dimension estimate for each digit obtained with our method (MSVD),
with the smoothed Grassberger-Procaccia estimator from [51] and with high rate vector quantization methods in
[49].

equation (5.1) will be satisfied with probability larger than 1− δ.

Example 4 (Johnson-Lindenstrauss for manifolds [71]). If M is a well-conditioned manifold, i.e. M is smooth and has
positive reach, then by approximating M by a finite number of tangent planes, applying the Johnson-Lindenstrauss Lemma
to the portion of M associated to each chosen tangent plane, and taking union bounds, one sees that in this case a (rescaled

by
√

D
d ) random projection onto a d = O(k log D)-dimensional subspace will satisfy (5.1) w.h.p. . See [71] for the precise

conditions and statements.

5.4 Kernel methods

It seems common practice to estimate the intrinsic dimension of a data set by applying a manifold learning algo-
rithm, that produces a map Φl : M → Rl, for a given l considered a parameter. The map Φl is usually sought to
have small distortion in some sense. For example, ISOMAP [1], one of the first and most popular algorithms, tries
to minimize the distortion between geodesic distances on M and Euclidean distances between the image points
Φl(M) ⊆ Rl. It returns a residual variance defined as

resVarl := 1−
∑

xi,xj
dM(xi, xj) · ||Φl(xi)− Φl(xj)||(∑

xi,xj
dM(xi, xj)2

) 1
2
(∑

xi,xj
||Φl(xi)− Φl(xj)||2

) 1
2
∈ [0, 1] ,

which is minimized when dM(xi, xj) = ||Φl(xi) − Φl(xj)|| for every i, j. The vector (resVarl)l≥0 is often used
in practice as a spectrum (related to that of a MultiDimensional Scaling operator associated with the matrix of
geodesic distances on M) from which the intrinsic dimension of M may be inferred. However, there exist few
and weak guarantees for when this may indeed yield the correct dimension, which motivated the search for better
algorithms (e.g. [4, 72, 73]). The few simple experiments that follow suggest that the use of such algorithms to
infer intrinsic dimension is potentially misleading (see Figure 5.4). Moreover, we ran our algorithm on Φl(M),
with Φl computed by ISOMAP (for l = 50 and l = dim(M) + 1), and the results consistently underestimated the
true intrinsic dimension, except for S(1000, 0). We expect similar phenomena to be common to other manifold
learning algorithms, and leave a complete investigation to future work.

In [74] it is suggested that diffusion maps [7] may be used in order to estimate intrinsic dimension as well
as a scale parameter, for example in the context of dynamical systems where a small number of slow variables
are present. Rather than an automatic algorithm for dimension estimation, [74] suggests a criterion that involves

eyeballing the function
∑

i,j e−
||xi−xj||2

ǫ2 , as a function of ǫ, to find a region of linear growth, whose slope is an
estimate of the intrinsic dimension. Figure 5.4 shows that this technique may fail even with rather small amounts
of noise.

A promising approach, for which guarantees may be derived, would be to apply the eigenfunction or heat
kernels maps described in [72, 73]. Such mappings provide a 1 + ǫ bi-Lipschitz embedding of a ball centered at
a point z which has a near maximal radius Rz in the sense that balls of larger radius would not admit any 1 + ǫ
bi-Lipschitz embedding to Euclidean space. Combining these results together with Lemma 1 we deduce that the
present algorithm could be run in the range of, say, the heat kernel map of [72, 73], where balls around a point z
have been “maximally flattened”. In this way, the present algorithm becomes independent of the embedding of
the manifold in the ambient space, because such is the embedding of [72, 73]. Moreover, such independence is
achieved with the most favorable possible parameters, for example for Rmax essentially as large as possible.
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Figure 15: From left to right, top to bottom: (a) A realization of S(1000, 0) (red circles) and S(1000, 0.1) as in
section 5.2.1. (b) (resVarl)l for S(1000, 0), from which the intrinsic dimension 2 may be inferred. (c) (resVarl)l for
S(1000, 0.1), from which the intrinsic dimension seems hard to infer. Our algorithm, as shown in section 5.2.1,
handles these cases correctly (w.h.p.). (d) the vectors of (resVarl)l for Q10(1000, 0), S9(1000, 0), Q10(1000, 0.1),
S9(1000, 0.1): it seems hard to see a difference between the intrinsic dimensions 10 and 9, in both the noiseless
and noisy cases. (d) the vectors of (resVarl)l for Q10(1000, 0), S9(1000, 0), Q10(1000, 0.1), S9(1000, 0.1): it seems
hard to see a difference between the intrinsic dimensions 10 and 9, in both the noiseless and noisy cases. (e)
The dimension of S9(2000, 0.01) in R100 estimated according to the heuristic in [74] yields the wrong dimension
(∼ 8) even for small amounts of noise; this is of course not a rigorous test, and it is a heuristic procedure, not an
algorithm, as described in [74].
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6 Extensions

The work presented here may be extended in several directions, with minor modifications to the proofs. For ex-
ample, the usual assumptions may be weakened or changed in different directions without substantially changing
the conclusions. We mention a few cases here that may be of interest:

(i) The scaling of tangent and normal singular values may be changed, for example by assuming that there exist
0 < αT < αN such that

λ2
i (cov(Xz,r

||)) ⊆ k−1rαT [λ2
min, λ2

max] , max
1≤i<k

∆i(cov(Xz,r
||)) ≤ k−1rαT δ2

∥∥X⊥∥∥ ≤ √
kκr

αN
2 for a.s. , ||cov(Xz,r

⊥)|| ≤ κ2

k
rαN ,

tr(cov(Xz,r
⊥))

||cov(Xz,r
⊥)|| ≤ 2k2

The main results still hold with simple modifications. Moreover, if αT , αN are not known a priori, they may

be inferred from data: one may estimate αT from (λ̃[z,r]
1 )2 and αN from (λ̃[z,r]

K )2 (as functions of r).

(ii) The exponent in the scaling of the volume does not need to be exactly equal to k: this would only change the
“entropy” terms in the Theorems, used to lower bound, w.h.p., the number of points in a ball, but everything
else stays the same. This shows how the geometry and scaling of the covariance matrix is crucial to our
approach, rather than the scaling of the volume.

(iii) The log k factors are not needed if Xz,r
|| is assumed to be subgaussian, i.e. satisfies P(|〈Xz,r

||, θ〉| > t) ≤
2e−

t
λmaxr for any θ ∈ Sk−1, and r ∈ [Rmin, Rmax]. Then cov(Xz,r

||) may be approximated with a number of
samples that depends only linearly on k, without the extra log k factor [75]. In this (natural, in our opinion)
setting, all other assumptions being the same, the log k would disappear from all our results. Extending to
the case σN = σ||N‖+σ⊥N⊥ with σ|| 6= σ⊥ is possible, where σ||N‖ = P (z,r)σN and σ⊥N⊥ = (I−P (z,r))σN ,
by modifying the part of the proof in Appendix 9, in particular the upper bounds on the set I2. We believe
that robustness with respect to much larger classes of noises holds, in particular noise without spherical
symmetry.

(iv) The methods presented may of course be applied after kernelization, leading to estimates of the dimension
in the image of the kernel map. In particular, this may be combined with the maps introduced in [72, 73],
which provide provably bi-Lipschitz embeddings of large portions of a manifold. See also section 5.3 about
bi-Lipschitz perturbations.

7 Overview of previous work on dimension estimation

The problem of estimating intrinsic dimension has been considered in physics – for example to study attractors
of dynamical systems– and in statistics/signal processing– for the analysis of high dimensional data/signals. Dif-
ferent definitions of “intrinsic” dimension have been proposed in the different domains, in particular there exist
several notions of fractals dimensions: correlation dimension, Hausdorff dimension, box counting, packing di-
mension [76]. When the data are modeled as a manifold, possibly corrupted by noise, we can define the intrinsic
dimension, at least locally, as the dimension of the manifold.

There is a large body of literature at the intersection between harmonic analysis and geometric measure theory
([77, 26, 27, 28] and references therein) that explores and connect the behavior of multiscale quantities, such as
Jones’ β-numbers [77], with quantitative notions of rectifiability. This body of work has been our major inspira-
tion. The multiscale singular values we use are related to the multiscale β-numbers of Jones, but instead of fixing
a dimension and exploring the behavior of the appropriate β-number for that dimension, we explore all the di-
mensions simultaneously and deduce the suitable dimension from the behavior of this ensemble. While the past
analysis was done on continuous sets, the techniques in this paper allow to analyze what happens when we only
have a finite number of random samples from a measure, and, additionally, a perturbation by noise in the ambient
space. This is expected to be useful in other situations when sampled noisy data sets are analyzed by such tools.
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A survey of many proposed estimation techniques can be found in [12]. We focus on those methods for which
implementations are available and that we considered in our experiments. Some classical estimators originally
proposed in the physics literature are based on the notion of correlation integral and correlation dimension [53]:
the correlation integral is defined as

C(r) := P (‖X −X ′‖ ≤ r) , (7.1)

where X, X ′ are independent copies of X , and the correlation dimension is defined by kcd = limr→0
log C(r)

log r . In

practice one assumes that, for some constant c and r sufficiently small,

C(r) ∼ crkcd , (7.2)

and approximates the correlation integral from a finite number of observations {xi}n
i=1. Grassberger and Procaccia

[53] considered the following empirical proxy to C(r)

Cn(r) =
2

n(n− 1)

n∑
i<j

χ‖xi−xj‖≤r.

The above quantity can be computed for different values of r and the correlation dimension can be estimated from
log Cn(r) ∼ log c+ kGB log r using linear regression. A different estimator was proposed by Takens [50]: it is based
on assumption (7.2) and on a maximum likelihood estimate of the distribution of the distances among points. The
Takens estimator of the correlation dimension is given by

kT = −
 2

n(n− 1)

∑
1≤i<j≤n

log
(

Dij

r

)−1

where Dij = ‖Xi − Xj‖ are all the distances smaller than r. A smooth version of the Grassberger-Procaccia
estimator is proposed in [51] where, in the definition of correlation integral, the indicator function is replaced by a
suitable kernel function, that is

Un(h, m) =
2

n(n− 1)

n∑
1≤i<j≤n

Kh(‖xi − xj‖2) (7.3)

with Kh,ℓ(‖xi − xj‖2) = 1
hℓ K(‖xi − xj‖2/h2), where K : R+ → R+ is a suitable compactly supported kernel

function [51]. If ℓ = k it is shown in [51] that Un(h, ℓ) converges with high probability to

C

∫
M

p2(x)dx

for n →∞, provided that we choose h so that h → 0 and nhℓ →∞ (C is a suitable constant). With the same choice
of h, Un(h, ℓ) converges to 0 if ℓ > k and to ∞ if ℓ < k.
Note that, in all the above algorithms, rather than using different values of r we can consider (and vary) the
number of K nearest neighbors, letting r = rK , the distance to the K nearest neighbor, which is done in [47, 46],
where they consider estimators based on

Ln(rK) =
n∑

i=1

n∑
j=1

‖xi − xj‖2χ‖xi−xj‖≤rK
(xj).

It is possible to prove [48] that for n →∞, Ln(rK)n−((k−2)/k) converges to

bk,KC

∫
M

p(k−2)/k(x)dx
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where C depend both on k and K . For large n one could consider the approximate equation

Ln(rK) = ck,Kn(k−2)/k + εn.

Similarly to the Grassberger-Procaccia estimator, one can compute Ln(rK) for different n and use linear regression
to estimate k, but one has to further optimize w.r.t. ck,K . The estimators in [47, 46] are based on refinements of the
above idea.
Approaches similar to those described above have been proposed to approximate the intrinsic estimator at a
given point, essentially by fixing one of the two variables in (7.1) at some point x and considering C(x, r) =
P (‖X ′ − x‖ ≤ r). Similarly to (7.2), if C(x, r) ∼ N(x, r)rk and N(x, r) ∼ N0 then log C(x, r) = log N0 + k log r. If
we estimate C(x, r) for different values of r, then we can estimate the local intrinsic dimension by linear regression.
Levina and Bickel [44] propose a method based on the above intuition, approximating the process that counts the
number of points falling into a ball of radius r can be approximated by a Poisson process. In this way they derive
the maximum likelihood estimator

kLB =

(
1
nr

nr∑
i=1

log
(

r

‖x− xj‖
))−1

where xj , j = 1, . . . , nr, are points contained in the ball of radius r centered at x (in practice the nearest neighbor
version is used). This estimator is a local version of the Takens estimator. In [45] translated Poisson processes
are considered to improve the robustness of the above estimator towards noise and outliers, with a regularization
parameter α and a noise parameter σ (which are likely to be related) control the robustness levels. The authors
also propose a non local version of the above estimator, based on a mixture of processes with different parameters:
such a model can describe data that is a combination of a small number of regions with different dimension.

An intrinsic dimension estimator based on local SVD was first discussed in [39]– see also [43, 40]. The main
difference between the above algorithm and the one proposed in this paper is that instead of considering the
SVD at one scale, we proceed in a multiscale fashion. As we have discussed in the introduction this is related
to the choice of the size r of the local neighborhood which is guided by the following trade-off: if r is small the
linear approximation of the manifold is good but we are prone to see the effect of the noise, viceversa when
r is large there is a better robustness to noise but curvature might lead to an overestimation of the dimension
(the so called noise/curvature dilemma in [40]). The methods in [39, 43, 40] are restricted to work in a range of
very small scales where the linear approximation is exact, whereas, as a by product of our theoretical analysis,
we have a whole range of larger scales where we can clearly distinguish the eigenvalues due to the curvature
from those yielding the intrinsic dimension. This immediately translates into better noise robustness and sample
complexity properties, and is the likely explanation the the poor experimental results in [43], which could lead
one to prematurely conclude that eigenvalue methods are sensitive to noise and small sample size. Our empirical
analysis indicates that this is not the case.

There are several works studying the statistical properties of intrinisic dimension estimators in terms of finite
sample bounds and consistency. The consistency (without rates) of the Takens estimator is studied under very
general conditions in [52]. Sample bounds for the U-statistics (7.3) used in the smoothed Grassberger Procaccia
estimator are given in [51], where it is shown that the sample complexity is exponential in the ambient dimension.
The statistical properties of a local nearest neighbor estimator are studied in [69]; in this case the rates are still
exponential but only in the intrinsic dimension. It is worth noting that none of the previous theoretical analyses
consider the case where the data are corrupted with (possibly high dimensional) noise.

While working on this manuscript we were made aware by K. Vixie of the work in [41] (and some references
therein, in particular [55, 56]), where it is observed that the growth rate of singular values of data computed at
multiple scales may be used for detecting intrinsic dimension. While the local data whitening technique consid-
ered there is not well-suited with noisy data in high-dimension, in those references the authors do consider some
noisy data sets, mostly in low-dimensions. Our analysis extends those works by carefully analyzing the effects of
sampling and noise on the multiscale singular values, by providing finite sample size bounds, and by extending
these techniques to a setting far more general than the setting of smooth manifolds, which may be better suited for
the analysis of data sets in truly high dimensional spaces. Also, M. Davies pointed us to work in the dynamical
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systems community, in particular [23, 24, 25] where local linear approximations to the trajectories of dynamic sys-
tems are considered in order to construct reduced models for the dynamics, and local singular values are used to
decide on the dimension of the reduced system and/or on Lyapunov exponents. Finally, [78] discusses various tree
constructions for fast nearest neighbor computations and studies how they adapt to the intrinsic dimension of the
support of the probability measure from which points are drawn, and discusses and presents some examples of the

behavior of the smallest k such that (in the notation of this paper)
∑k

i=1 λ(cov(Xz,r)) ≥ (1− ǫ)
∑D

i=1 λ(cov(Xz,r)),
where ǫ is some fixed parameter (e.g. ǫ = 10−2). This should be contrasted with our approach, where all the
λ(cov(Xz,r)) are studied jointly as a function of r, rather than fixing a threshold ǫ; this also has the advantage,
when the samples are corrupted by noise with covariance of size σ2, of requiring the largest eigenvalues of the
covariance to be larger than σ2, rather than σ2D as required by the condition above.

The estimates we obtain on the multiscale covariance matrices, generalize somewhat a variety of estimates
in the literature, as they combine a nonlinear geometric model with noise, instead of focusing on a linear model
with noise, whether they are asymptotic in character (see e.g. [79, 80, 81, 82] and references therein) or in the
finite-sample size regime (see e.g. [83, 84]).

We recently became of aware of the work [85], which was written after [32, 19, 31] and cites at least some of
these results. The main result of [85], on perturbation of approximation of tangent planes, follows immediately for
the results of [32, 19, 31], and of course also as a very particular case of this work. The main differences between
[85] and [32] and this work are that only the smooth manifold case is considered there and the observation model
in [85] is not clearly specified, but our understanding is that the noisy matrices considered there are not naturally

observable, being those that in our notation correspond to X̃[z,r]
n , rather than X̃[Z̃,r]

n , which is really all that can be
observed.

Finally, recent work [65, 66] uses Bayesian methods to construct certain models for data, and as part of such
models the intrinsic dimension of data is estimated (while this occurs in both the papers cited, [66] explicitly
discusses this aspect). The comparisons we presented suggest that, for the particular task of estimating dimension,
such methods are less sensitive than other methods when noise corrupts the data (as they explicitly take noise into
account in the underlying model), but they may not be reliable dimension estimators. They also lack theoretical
guarantees, in particular finite sample size bounds. We conjecture that the difference in our experience with MFA,
compared to the results in [66], is due to the fact that all manifolds considered in [66] have very small curvature,
except for one example of a very low-dimensional manifold (a 2-d torus). We suspect that the priors imposed in
the models make them susceptible to gross errors in estimation, at least when the sample size is not extremely
large, and hyper parameters are not optimally set.
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8 Appendix: Proof of Proposition 1

8.1 Some Preliminary Observartions

In this section we prove Proposition 1 comparing cov(Xz,r=) with cov(X̃[z,r=]
n ), and establishing conditions that

guarantee that the k-th gap of cov(X̃[z,r=]
n ) is the largest gap, notwithstanding the high-dimensional noise in the

ambient space. We will use the following observation. If we condition on nz,r, then the samples X[z,r]
n have the

31



same distribution as nz,r copies of a random variable Xz,r, where we recall that Xz,r has distribution µz,r, where

µz,r(A) := µX(A ∩ Bz(r))/µX (Bz(r)) is the restriction of µX to Bz(r). Similarly, we can see X̃[z,r]
n as m i.i.d

sample from (µz,r)nz,r ∗ (µσN ), where µσN is the distribution of σN . Note that, in the absence of noise, we have

X̃[Z̃,r]
n = X[z,r]

n so that conditioning on nz,r = m

cov(X[z,r]
n ) =

1
m

X[z,r]
n

T

X[z,r]
n

and moreover

E
[
cov(X[z,r]

n )
]

= E
[
E
[

1
nz,r

X[z,r]
n

T

X[z,r]
n |nz,r

]]
= E [cov(Xz,r)|nz,r] = cov(Xz,r) .

This suggests that we can proceed by first conditioning on nz,r and then removing the conditioning.

Proof of Proposition 1. We stated the Proposition in terms of r= since in that form it is more easily combined with
Proposition 2 to yield 2; here, to ease the notation, we shall work with r instead of r=. Moreover, through out this
section, we will fix z ∈M and drop it from the notation.
We dispose the random variable nr as follows: first of all we have, if we let Ωt,0 = {nr > n

2 = 1
2µX(Bz(r))n}, then

using a Chernoff bound [86] and n ≥ 2t2k log k
µX (Bz(r)) :

P(Ωt,0) = P
(

nr ≥ n

2

)
≥ 1− e−

t2k
4 .

Then, we have

P
(
||cov(Xz,r)− cov(X̃[z,r]

n )|| ≤ ǫ||cov(Xz,r)||
)

≥ P
(
||cov(Xz,r)− cov(X̃[z,r]

n )|| ≤ ǫ||cov(Xz,r)|| | Ωt,0

)
P (Ωt,0)

≥ P
(
||cov(Xz,r)− cov(X̃[z,r]

n )|| ≤ ǫ||cov(Xz,r)|| | Ωt,0

)(
1− e−

t2k
4

) (8.1)

and therefore we proceed by bounding the interesting event conditioned on Ωt,0.
We split the perturbation from the true covariance matrix cov(X [r]) to the sampled noisy covariance matrix

cov(X̃n
[r]) into the following steps:

cov(X [r]) =

[
cov(X [r]||) cov(X [r]||, X [r]⊥)

cov(X [r]⊥, X [r]||) cov(X [r]⊥)

]
→P1︸︷︷︸

Wielandt’s
Lemma

[
cov(X [r]||) 0

0 cov(X [r]⊥)

]

→P2︸︷︷︸
Sampling

[
cov(X[r]

n

||
) 0

0 cov(X[r]
n

⊥
)

]
→P3︸︷︷︸

Diagonal
noise

cov(
˜
X[r]

n

||
) 0

0 cov(
˜
X[r]

n

⊥
)



→P4︸︷︷︸
Wielandt’s

Lemma

 cov(
˜
X[r]

n

||
) cov(

˜
X[r]

n

||
,
˜
X[r]

n

⊥
)

cov(
˜
X[r]

n

⊥
,

˜
X[r]

n

||
) cov(

˜
X[r]

n

⊥
)

 = cov(X̃n
[r])

where without loss of generality we assumed that range(P [r]) = 〈{ei}k
i=1〉, and with abuse of notation we con-

sidered cov(X [r]||) as a k × k matrix instead of a D × D matrix. The eigenvalues (sorted in decreasing or-

der, as usual) of the 5 matrices above will be denoted by {λ2
1, . . . , λ

2
D}, {(λ||1 )2, . . . , (λ||k)2, (λ⊥k+1)

2, . . . , (λ⊥D)2},
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{(λ||nr ,1)
2, . . . , (λ||nr ,k)2, (λ⊥nr ,k+1)

2, . . . , (λ⊥nr ,D)2},

{(λ̃||nr ,1)
2, . . . , (λ̃||nr ,k)2, (λ̃⊥nr ,k+1)

2, . . . , (λ̃⊥nr ,D)2}, {λ̃2
nr ,1, . . . , λ̃

2
nr ,D}, respectively. Except when specified otherwise,

we shall say that an event Ωt has high probability if P(Ωt) ≥ 1 − c1e
−c2t2 for all t ≥ c3, with c1, c2, c3 universal

constants.
P1 [Geometric cross-terms]: We bound the error in approximating cov(X [r]) by cov(X [r]||) and cov(X [r]⊥),

thereby showing that our usual Assumptions are equivalent to hypotheses on the spectrum of cov(X [r]): for r ∈
(Rmin, Rmax) ∥∥∥cov(X [r])− P [r](cov(X [r]))

∥∥∥ ≤ λmaxκ

k
r3

(
κλmaxr

λ2
min − κ2r2

∧ 1
)

(8.2)

In particular, the characteristic scale r ∼ λmin
κ is where the effect of “curvature” correction switches from O(r4) to

O(r3). We prove this bound by observing that cov(X [r]) =

(
cov(X [r]||) (X [r]||)T X [r]⊥

(X [r]⊥)T X [r]|| cov(X [r]⊥)

)
, and therefore the

result follows from Wielandt’s Lemma 10: for example for i = 1, . . . , k we have

0 ≤ λ2
i (cov(X [r]))− λ2

i (cov(X [r]||)) ≤ ‖cov(X [r]||, X [r]⊥)‖2
λ2
minr2

k − κ2r4

k

∧ ‖cov(X [r]||, X [r]⊥)‖

≤
κ2

k λ2
max

λ2
min − κ2r2

r4 ∧ λmaxκ

k
r3 .

The bounds for i = k + 1, . . . , D follow in the same manner.

We start by conditioning on nr = m. In the rest of the proof, we let ǫ := ǫ(k, m, t) =
√

t2k log k
m and assume

ǫ ≤ 1.
P2 [Tangent and normal sampling] By Proposition 7 we have, on an event Ωt,1 having high probability,

||cov(X[r]
n

||
)− cov(X [r]||)|| ≤ λmaxr

2

k

√
k log k

m
t +

r2

m
t2 ≤ λmaxr

2

k
ǫ (1 + ǫ) := P

||
2 , (8.3)

and 1√
m
||X[r]

n

||
|| ≤

√
λmaxr√

k

√
λmax + ǫ ≤ λmaxr√

k
(1 + ǫ). As for Xz,r

⊥, since it is bounded, and since centering only

reduces the norm of the matrix, we have (recalling that the bar notation indicates centering with respect to the
empirical mean)

||cov(X[r]
n

⊥
)|| ≤ κ2r4

k
((1 + ǫ′) ∧ k)2 =:

κ′2r4

k
,

||X[r]
n

⊥
|√

m
| ≤ κ′r2

√
k

||cov(X[r]
n

⊥
)− cov(X [r]⊥)|| ≤ κ2r4

k

(
ǫ′(1 + ǫ′) ∧ k2

)
=:

κ′′2r4

k
,

||X[r]
n

⊥
−X [r]

⊥||√
m

≤ κ′′r2

√
k

(8.4)

where ǫ′ =
√

t2k2 log(D∧m)
m , κ′ := κ((1 + ǫ′) ∧ k), κ′′ := κ(

√
ǫ(1 + ǫ′) ∧ k).

P3 [Tangential and normal noise]: We start by considering the perturbation cov(X[r]
n

||
) → cov(X[r]

n

||
+σN[r]

m

||
).

Since E[cov(N[r]
m

||
)] = Ik ,

||cov(X[r]
n

||
+ σN[r]

m

||
)−cov(X[r]

n

||
)− σ2Ik|| ≤ 2σ

m
||X[r]

n

||T
N

[r]

m

||
||+ σ2

∥∥∥cov(N[r]
m

||
)− cov(N [r]||)

∥∥∥ .

Since, by Proposition 8, on an event of high probability Ωt,2 we have

||cov(N[r]
m

||
)− Ik|| ≤

√
k

m
t ,

1√
m
||N[r]

m

||
|| ≤ 1 +

√
k

m
t .
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Therefore 1
m ||X[r]

n

||T
N

[r]

m

||
|| ≤ λmaxr√

k
(1 + ǫ)

(
1 +

√
k
m t

)
≤ λmaxr√

k
(1 + 3ǫ) , so that on Ωt,1 ∩ Ωt,2

||cov(X[r]
n

||
+ σN[r]

m

||
)− cov(X[r]

n

||
)− σ2Ik|| ≤

(
2λmax(1 + 3ǫ)r√

k
+ σ

)
σǫ , (8.5)

which implies

(λ̃||m,i)
2 ∈ (λ||m,i)

2 + σ2 +
(

2λmax(1 + 3ǫ)r√
k

+ σ

)
σǫ︸ ︷︷ ︸

P
||
3

·[−1, +1] . (8.6)

We record the following estimate, obtained by combining (8.3) and (8.5) and replacing 4ǫ by ǫ:

||cov(
˜
X[r]

n

||
)− σ2Ik − cov(X [r]||)|| ≤ ǫ

λmaxr√
k

(
r√
k

+ σ

)
(8.7)

Now we consider the perturbation cov(X[r]
n

⊥
) → cov(X[r]

n

⊥
+ σN[r]

m

⊥
). When m ≥ CD, by (11.2) and Propositions

8 and 10, on an event Ωt,3 of high probability we have

cov(X[r]
n

⊥
,N[r]

m

⊥
) =

1
m
||X[r]

n

⊥T

N
[r]

m

⊥
|| ≤ κ′r2

√
k

√
D

m
t

Moreover by Proposition 8, ||cov(N[r]
m

⊥
)− ID−k|| ≤

√
D
m t on an event Ωt,4,1 having high probability. Therefore on

Ωt,2 ∩ Ωt,3 ∩ Ωt,4,1 we have

||cov(X[r]
n

⊥
+ σN[r]

m

⊥
)− cov(X[r]

n

⊥
)− σ2ID−k|| ≤ 2σ

m
||X[r]

n

⊥T

N
[r]

m

⊥
||+ σ2||cov(N[r]

m

⊥
)− ID−k||

≤
(

2κ′r2

√
k

+ σ

)
σ

√
D

m
t (1 + ǫ) ,

and hence

(λ̃⊥m,i)
2 ∈ (λ⊥m,i)

2 + σ2 +
(

2κ′r2

√
k

+ σ

)
σ

√
D

m
t (1 + ǫ)︸ ︷︷ ︸

P⊥3,1

·[−1, 1] .

When m < CD, we use ||cov(X[r]
n

⊥
+ σN[r]

m

⊥
)− cov(X[r]

n

⊥
)|| ≤ 2σ

m ||X[r]
n

⊥T

N
[r]

m

⊥
||+ σ2||cov(N[r]

m

⊥
)||. By Propo-

sition 10, on an event Ωt,4,2 of high probability, letting δ1 := δ1(m, D, t) := C
√

m/D + t/
√

D,

||cov(N[r]
m

⊥
)|| ≤ D

m
(1 + δ1)2 ,

1√
m
||N[r]

m

⊥
|| ≤

√
D

m
(1 + δ1)

and on Ωt,2 ∩Ωt,3 ∩ Ωt,4,2

||cov(X[r]
n

⊥
+ σN[r]

m

⊥
)− cov(X[r]

n

⊥
)|| ≤

(
2κ′r2

√
k

+ σ

√
D

m
(1 + δ1)2

)
σ

√
D

m
t ,

so that

(λ̃⊥m,i)
2 ∈ (λ⊥m,i)

2 +

(
2κ′r2

√
k

+ σ

√
D

m
(1 + δ1)2

)
σ

√
D

m
t︸ ︷︷ ︸

P⊥3,2

(1 + ǫ) · [−1, 1] . (8.8)
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Letting Ωt,4 = Ωt,4,1 for m ≥ CD and Ωt,4 = Ωt,4,2 for m < CD , we have on an event Ωt,3∩Ωt,4 of high probability,
that:

(λ̃⊥m,i)
2 ∈ (λ⊥m,i)

2 + σ21(m≥CD) +
(
P⊥

3,11(m≥CD) + P⊥
3,21(m<CD)︸ ︷︷ ︸

=:P⊥3

) · [−1, +1] . (8.9)

P4 [Noisy cross-terms]: Assuming that (λ̃||m,k)2 > (λ̃⊥m,k+1)
2, by Wielandt’s Lemma 10, (λ̃||m,i)

2 < λ̃2
m,i for

i = 1, . . . , k and (λ̃⊥m,i)
2 > λ̃2

m,i for i = k + 1, . . . , D. Moreover, again by Wielandt’s lemma, the size of each

perturbation is bounded by ||B|| ∧ ||B||2
∆ , where ∆ = (λ̃||m,k)2 − (λ̃⊥m,k+1)

2, and

B := cov(X[r]
n

||
+ σN[r]

m

||
,X[r]

n

⊥
+ σN[r]

m

⊥
)

=
X[r]

n

||T
X[r]

n

⊥

m
+

σX[r]
n

||T
N

[r]

m

⊥

m
+

σN
[r]

m

||T
X[r]

n

⊥

m
+

σ2N
[r]

m

||T
N

[r]

m

⊥

m
.

Since X[r]
n

||
and X[r]

n

⊥
are not necessarily independent, on Ωt,1 we use the bound∥∥∥∥∥ 1

m
X[r]

n

||T
X[r]

n

⊥
∥∥∥∥∥ ≤ λmaxκ

′r3

k
(1 + ǫ) ,

which holds w.h.p.; by Proposition 8 and 10, on Ωt,1

1
m

∥∥∥∥∥X[r]
n

||T
N

[r]

m

⊥
∥∥∥∥∥ ≤ λmaxr√

k
(1 + ǫ)

((√
k

m
+

√
D

m

)
t +

√
D

m

√
1 +

t√
D

)

≤ λmaxr√
k

√
D

m
t (1 + 2ǫ) .

On Ωt,3 we have

1
m

∥∥∥∥∥N[r]

m

||T
X[r]

n

⊥
∥∥∥∥∥ ≤ κ′r2

√
k

(
1 +

√
k

m
t

)
≤ κ′r2

√
k

(1 + ǫ) .

Finally, by (11.2) and Propositions 8 and 9, for m ≥ CD

1
m

∥∥∥∥∥N[r]

m

||T
N

[r]

m

⊥
∥∥∥∥∥ ≤

(√
k

m
+

√
D

m

)
t̃ ≤

√
D

m
t

on an event Ωt,5 with high probability, by changing the universal constants in Proposition 9. For m ≤ CD we have
w.h.p. that

1
m

∥∥∥∥∥N[r]

m

||T
N

[r]

m

⊥
∥∥∥∥∥ ≤

(
1 +

√
D

m

)(
1 +

√
k

m

)
t̃ ≤

(
1 +

√
D

m

)
(t̃ + ǫ) ≤

√
D

m
t .

Summarizing, on a high probability event we have

||B|| ≤
(

λmaxκ
′r3

k
+

σκ′r2

√
k

+

√
λmaxσr√

k

√
D

m
t + σ2

√
D

m
t

)
(1 + 2ǫ) =: P4 .

The largest gap, part I. Let ∆̃i = λ̃2
m,i − λ̃2

m,i+1 for i = 1, . . . , D − 1, ∆̃D = λ̃2
m,D. We want to lower bound the

probability that ∆̃k = maxi=1,...,D ∆̃i. For 1 ≤ i < k:

∆̃i = λ̃2
m,i − λ̃2

m,i+1 ≤ (λ̃||m,i)
2 − (λ̃||m,i+1)

2 + P4

≤ (λ||m,i)
2 − (λ||m,i+1)

2 + 2P
||
3 + P4 ≤ (λ||i )2 − (λ||i+1)

2 + 2P
||
2 + 2P

||
3 + P4

≤ δ2r2

k
+ 2P

||
2 + 2P

||
3 + P4 .
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Object Bound

P1
λmaxκr3

k

(

λmaxκr3

λ2
minr2−κ2r4 ∧ 1

)

P
||
2

λmaxr2

k
ǫ (1 + ǫ)

P
||
3 σ

(

2λmaxr√
k

+ σ
)

ǫ(1 + 3ǫ)

P⊥3 σ
√

D
m

t

(

2κ′r2√
k

+ σ

(

1m≥CD +
√

D
m

(1 + δ1)
2 1m≤CD

))

(1 + ǫ)

P4

(

λmaxκ′r3

k
+ σκ′r2√

k
+ λmaxσr√

k

√

D
m

t + σ2
√

D
m

t

)

(1 + 2ǫ)

Figure 16: Bounding the Pi’s; recall that we have let ǫ =
√

t2k log k
m < 1, δ1 := C

√
m/D+ t/

√
D, κ′ := κ((1+ ǫ′)∧k),

where ǫ′ =
√

t2k2 log(D∧m)
m .

For i = k, using (8.6), (8.8) and (8.9):

∆̃k = λ̃2
m,k − λ̃2

m,k+1 ≥ (λ̃||m,k)2 − (λ̃⊥m,k+1)
2

≥ (λ||m,k)2 + σ2 − P
||
3 − (λ⊥m,k+1)

2 − σ21(m≥CD) −
(
P⊥

3 + σ21(m<CD)

)
≥ (λ||k)2 − κ′2r4

k
+ σ2 − σ2 − P

||
2 − P

||
3 − P⊥

3

≥ λ2
minr

2

k
− κ′2r4

k
− P

||
2 − P

||
3 − P⊥

3 .

For k < i ≤ D:

∆̃i ≤ λ̃2
m,k+1 ≤ (λ̃⊥m,k+1)

2 ≤ (λ⊥m,k+1)
2 + P⊥

3 + σ2 ≤ κ′2r4

k
+ P⊥

3 + σ2 .

Therefore, in order for ∆̃k to be the largest gap, we have the sufficient condition:

λ2
minr2

k
− κ′2r4

k
− P

||
2 − P

||
3 − P⊥

3 ≥
(

δ2r2

k
+ 2P

||
2 + 2P

||
3 + P4

)
∨
(

κ′2r4

k
+ P⊥

3 + σ2

)
. (8.10)

Remark 4. Note the “inflation effect” of noise: the increase in the bottom singular values by σ2 is somewhat mitigated by the
tangent singular values being “inflated” by σ2. This phenomenon had been noticed before in the literature (see e.g. [80, 81]).

Observe that (8.10) implies (λ̃||m,k)2 > (λ̃⊥m,k+1)
2, which we had assumed in P4.

The largest gap, part II. We now put together the bounds above in order to determine a range for r that guar-

antees ∆̃k is the largest gap with high probability. Restricting ourselves, following (8.1), for the rest of the proof
to Ωt,0, we have to consider only the case m ≥ n. But for each such m, ∩5

i=1Ωt,i has high probability (uniformly
in m) and the bounds in Table 16 hold with m replaced by the smaller quantity n, on an event of high probability
intersected with Ωt,6. Combining those with equation (8.10), upon letting 2γ2

n := λ2
min − δ2 − 3λmaxǫ(1 + ǫ), and

replacing Ct by t, increasing n as needed in order to maintain ǫ ≤ 1, inequality (8.10) is implied byr ≤ λmax
4κ′

(
1 + 6γ2

n

λ2
max

)
[

γ2
n

k(1+ǫ) − 2σκ′√
k

(√
D
n t + 1

)]
r2 −

[
λmaxσ√

k

(√
D
n t + ǫ

)]
r − σ2

√
D
n t
(
1n≥CD +

√
D
n 1n≤CD

)
≥ 0

where the first which inequality comes from curvature terms, and the second one from noise terms. Upon letting

ϕ2
n,t := γ2

n

1+ǫ − σκ′
√

k
(√

D
n + ǫ

)
, and using the assumption ǫ ≤ 1 to simplify various terms, we obtain that for r in

the range

ǫ
σ
√

D

ϕn,t

[
λmax

ϕn,t
∨
(

1n≤CD + 4

√
n

D
1n≥CD

)]
≤ r ≤ λmax

4κ′

(
1 +

6γ2
n

λ2
max

)
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the gap ∆k(cov(X̃n
[r])) is the largest gap with probability at least 1− ce−ct. Furthermore, since

cov(X [r]r) − cov(X̃n
[r]r) =

=

 cov(X [r]||)− cov(
˜
X[r]

n

||
) + σ2Ik cov(X [r]||, X [r]⊥)− cov(

˜
X[r]

n

||
,
˜
X[r]

n

⊥
)

cov(X [r]⊥, X [r]||)− cov(
˜
X[r]

n

⊥
,

˜
X[r]

n

||
) cov(X [r]⊥)− cov(

˜
X[r]

n

⊥
) + σ2ID−k

− σ2ID

combining all the bounds above we obtain∥∥∥∥cov(X [r]r) − cov(X̃n
[r]r) + σ2ID

∥∥∥∥ ≤
(

2σ2

√
D

n
t

(
1 +

√
D

n
t1n≤CD

)

+
λmaxσ√

k

(
ǫ +

√
D

n
t

)
r +

(
ǫλmax√

k
+ σκ′

(
2

√
D

n
t + 1

))
r2

√
k

+
2λmaxκ

′

k
r3 +

2κ′

k
r4

)
(1 + ǫ) .

Finally, recall that Πk (respectively Π̃k) is the space spanned by the top k singular vectors of cov(X [r]) (re-

spectively cov(X̃n
[r]) − σ2I). Then in order to prove the bound in (iii), we use the classical Davis-Kahan “sin θ”

Theorem, which gives

| sin Θ(Πk, Π̃k)| ≤ ||(cov(X [r])− cov(X̃n
[r]) + σ2I)Πk||

λ2
k(cov(X [r]))− λ2

k+1(cov(X̃n
[r])− σ2I)

≤ ||cov(X [r]||)− cov(
˜
X[r]

n

||
) + σ2I ||||+ ||cov(X [r]||, X [r]⊥)− cov(

˜
X[r]

n

||
,
˜
X[r]

n

⊥
)||

|λ2
k(cov(X [r])− λ2

k+1(cov(X [r]))| − |λ2
k+1(cov(X [r])) − λ2

k+1(cov(X̃n
[r])− σ2I)|

≤
σ2
√

D
n t +

√
λmaxσ√

k

(√
D
n t + ǫ

)
t + ǫλmax+σ

√
kκ′

k r2 + λmaxκ′
k r3 +

κ′2
k λ2

max
λ2
min−κ′2r2 r4

λ2
min−κ′2r2

k r2 − σ21n≤CD − σ
√

D
n t
[

2κ′r2√
k

+ σ1n≥CD + σ
√

D
n 1n≤CD

] .

9 Appendix: Proof of Proposition 2

In all that will follow we shall fix z and r and prove a bound on ||cov(X̃[z,r=]
n )− cov(X̃[Z̃,r]

n )||.

9.1 Some Preliminary definition

Recall that r2
= := r2−2σ2D and let r2

− := r2 − σ2D. Let Z̃M be a closest point to Z̃ onM: Z̃M ∈ argminy∈M
∥∥∥Z̃ − y

∥∥∥.

We let, in what follows,

ξ :=
σ
√

D

r
, d := D − k , ρ(x) := ||x− Z̃M||

f(r) :=
√

r2 + σ2d , s(r) :=
√

r2 − σ2d , q := s2σ2
√

D + 4t0σr−(1 + 2κk−
1
2 r−)

(9.1)

where we will choose the parameters s, t0 later, and with the following constraints:

r√
k
∈
(

3σ

√
k ∨ D

k
,
1
κ

)
, s2 ≤

√
D , t20 ∈

(
0, log

r/
√

k

3σ
√

k

]
. (9.2)

37



where σ is small enough so that the first interval is not empty. The lower bound on r is required in order to work
at scales larger than the scale of the noise, and the upper bound is motivated by (8.2), which shows that at larger

scales the curvature terms dominate. The interval is not empty if the “scale of noise” σ
√

D is below the “scale of

the curvature”, here
√

k/κ. For these values of the parameters we have the the following bound on “noise to signal

ratio”: ξ < 1
3

(√
D
k ∧ 1

)
, i.e. r > 3σ(

√
D ∨ k), and

q ≤ s2D− 1
2 ξ2r2 + 4t0σr−

(
1 +

2r−
r

)
≤ (ξs2 + 12t0)

ξr2

√
D
≤ c4,ξ,s,t0

ξr2

√
D

= c4,ξ,s,t0σr . (9.3)

with c4,ξ,s,t0 := ξs2 + 12t0.
Numerical constants will be denoted by C and their value may change at every instance.

Remark 5. We may assume all the realizations of the noise {Ni}n
i=1, are such that {σNi}n

i=1 are bounded by σ2D(1 +
C ln(n∧D√

D
) ≈ σ2D. Thus by a tiny reduction in the number of samples, we may assume we have i.i.d., bounded noise vectors.

We do not address here how this outlier detection step is implemented algorithmically (see for example [87]). A result showing
that the removal of a small number of outliers as described here has a negligible effect on the covariance matrices we considered
may be found in Appendix E of [32].

9.2 General Proof Strategy

To derive a bound on on ||cov(X̃[z,r=]
n )− cov(X̃[Z̃,r]

n )||, we consider some intermediate, objects obtained perturbing
sets of points, and relating the corresponding covariance matrices. A basic idea that we use throughout this section
is that if two (possibly random) nested sets contains roughly the same number of points, then the corresponding
covariance matrices are also close (in operator norm and with high probability). This intuition is made precise in
the two following Lemmata of which we shall make extensive use.

Lemma 2 (Covariance perturbation, worst case). Let Yn be any (deterministic) set of n points in RD and E ⊆ Yn such
that |E| ≤ ⌊ǫ · n⌋, 0 < ǫ ≤ 1. Then

||cov(Yn)− cov(Yn \E)|| ≤ 6ǫM2. (9.4)

Proof. For a set A ⊂ RD let m(A) = 1
|A|
∑

x∈A x, C(A) = 1
|A|
∑

x∈A x⊗ x, so that cov(A) = C(A)−m(A)⊗m(A).
Then

||cov(Yn)−cov(Yn \E)||
≤ ||C(Yn)− C(Yn \E)||+ ||m(Yn)⊗m(Yn)−m(Yn \E)⊗m(Yn \E)||
≤ ||C(Yn)− C(Yn \E)||+ 2M ||m(Yn)−m(Yn \E)||

Let e = |Yn \E|, then we have

||m(Yn)−m(Yn \E)|| ≤ || 1
n

∑
x∈Yn

x− 1
e

∑
x∈Yn\E

x|| =

|| 1
n

∑
x∈E

x + (1− n

e
)
1
n

∑
x∈Yn\E

x|| ≤ 2ǫM.

The same reasoning gives ||C(Yn)−C(Yn \E)|| ≤ 2M2ǫ, simply replacing x with x⊗x and noting that ||x⊗x|| ≤
M2. Then (2) easily follows combining the above inequalities.

Recalling definitions (3.2), (3.3),(3.4),(3.5), in the next lemma we extend the above result allowing to random
sets.
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Lemma 3 (Covariance Perturbation, random case). Let Xn be n i.i.d. copies of a random variable X with distribution
µX . Let A, B be two (µX -measurable) sets in RD , with B ⊆ A, µX(B) ≤ δµX(A), and A bounded by M , and write
nB = nB(X), nA = nA(X). Then for s ≥ 1, t > 0, n ≥ t2/µX(A):

P
(

nB ≤ 4s2

(
δ ∨ 1

µX(A)n

)
nA

)
≥ 1− e−

1
8 t2 − 2e−

1
3 s2(δµX (A)n∨1) ,

and with the same probability and conditions,

||cov(An)− cov(An \Bn)|| ≤ Cs2

(
δ ∨ 1

µX(A)n

)
M2, (9.5)

where An \ Bn = {Xi ∈ Xn | i ∈ IA(X) \ IB(X)}. The same conclusion, with M2 replaced by M2 + σ2D, holds if

An (resp. Bn) is replaced by Ãn := An + Yn (resp. B̃n) where Yn are n i.i.d. copies of a random variable Y which is

independent of X and bounded, ||Y || ≤ σ
√

D.

Proof. Let Ω := {nA ≤ 1
2µX(A)n}: the assumption on n and Chernoff’s bound [86] imply P (Ω) ≤ e−

1
8 t2 . Now nB

is Bin(n, µX(B)); let ñB be Bin(n, δµX(A) ∨ 1
n ). Then on Ω:

P
({

nB > 2(1 + s2)
(

δ ∨ 1
µX(A)n

)
nA

}
∩ Ωc

)
≤ P

(
nB > (1 + s2)

(
δ ∨ 1

µX(A)n

)
µX(A)n

)
≤ P

(
ñB > (1 + s2)

(
δµX(A) ∨ 1

n

)
n

)
= P

(
ñB > (1 + s2)E[ñB ]

)
≤ e−

s2
3 (δµX (A)n∨1)

for any s ≥ 1, the last line also following from a Chernoff inequality [86]. Thus for any s ≥ 1, n ≥ t2/µX(A):

nB ≤ 4s2

(
δ ∨ 1

µX(A)n

)
nA

with probability at least 1− e−
1
8 t2 − 2e−

1
3 s2(δµX (A)n∨1). An application of Lemma 2 yields the desired bound. The

case when noise is added follows in a similar fashion.

Given the above results the proof of Prop. 2, develops in two steps:

(i) recentering: we first show that X̃[z,r=]
n and

˜
X[Z̃,r−]

n are close w.h.p., in the sense that the set of sample points
within distance r= of z ∈ M is roughly equivalent to the set of points within distance r− of a noisy center

Z̃ = z + σN /∈M; thus by a change in scale, we can move from a center z ∈ M to a noisy center Z̃ /∈M. We
prove this by bounding the following perturbations:

˜
X[Z̃,r−]

n → ˜
X[Z̃,r−]

n ∪A1,t0 \A2,t0 → X̃[z,r=]
n ,

where

A1,t0 :=
˜

X
[z,
√

r2
=−q]

n ∩ ˜
X[Z̃,r−]

n

c

= {X̃i : ||Xi − z|| <
√

r2
= − q ∧ ||Xi − Z̃|| > r−}

A2,t0 :=
˜

X
[z,
√

r2
=+q]

n

c

∩ ˜
X[Z̃,r−]

n = {X̃i : ||Xi − z|| >
√

r2
= + q ∧ ||Xi − Z̃|| < r−}

(9.6)

where s2, t0 are parameters to be chosen later. The first perturbation is small once we show that |A1,t0 |

and |A2,t0 | are small relative to | ˜
X[Z̃,r−]

n |; the second perturbation is small once we prove that
˜

X
[z,
√

r2
=+q]

n \
˜

X
[z,
√

r2
=−q]

n , which contains the set where
˜

X[Z̃,r−]
n ∪ A1,t0 \ A2,t0 and X̃[z,r=]

n differ, has small cardinality

relative to | ˜
X[Z̃,r−]

n |. Lemma 3 below then implies that ||cov(X̃[z,r=]
n )− cov(

˜
X[Z̃,r−]

n )|| is small.
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(ii) Bringing in the noise: the second step is to show that the sets X̃[Z̃,r]
n and

˜
X[Z̃,r−]

n are close w.h.p.: the set of

noisy points that were within distance r− of Z̃ before they were corrupted by noise is roughly equivalent to

the set of noisy points within distance r of Z̃ . In other words, intersecting with a ball and then adding noise
is equivalent to adding noise and then intersecting with a ball of slightly different radius. To this end we
bound the following perturbations:

X̃[Z̃,r]
n = (X̃[Z̃,r]

n ∩ ˜
X[Z̃,r]

n ) ∪ I → X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n = (

˜
X[Z̃,r−]

n \Q1) ∪Q2 → ˜
X[Z̃,r−]

n ,

where

I := X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n

c

={X̃i : ||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| > r}

Q1 :=
˜

X[Z̃,r−]
n

c

∩
(
X̃[Z̃,r]

n

)c

={X̃i : ||Xi − Z̃|| ∈ [σ
√

d, r−) ∧ ||X̃i − Z̃|| > r}

Q2 :=
˜
X[Z̃,r]

n ∩ ˜
X[Z̃,r−]

n

c

∩ X̃[Z̃,r]
n ={X̃i : ||Xi − Z̃|| ∈ [r−, r] ∧ ||X̃i − Z̃|| < r}

(9.7)

The first perturbation is small if |I| is small relative to |X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n |, and the second perturbation is small

if both |Q1| and |Q2| are small relative to | ˜
X[Z̃,r−]

n |. Once this is established, Lemma 3 allows us to conclude

that ||cov(X̃[Z̃,r]
n )− cov(

˜
X[Z̃,r−]

n )|| is small.

Table 17 summarizes the bounds we will give on the perturbations above (and the probabilities with which

such bounds hold). We define the following event characterizing when Z̃ = z + σN is not an “outlier”:

Ωs,0 := {ω : | ||N(ω)||2 − σ2D| ≤ s2σ2
√

D} , (9.8)

which has probability at least 1− 2e−Cs4
for s2 ≤ √

D.

9.3 Basic estimates and Lemmata

Lemma 4 (Distance of Z̃ to M). Let Z̃M be a closest point to Z̃ in M. Under our usual assumptions, with probability at

least 1− 6e−cs4

σ2D
(
1− (8

√
2 + 1)s2D− 1

2

)
≤
∥∥∥Z̃ − Z̃M

∥∥∥2

≤ σ2D
(
1 + s2D− 1

2

)
. (9.9)

Proof. By definition of Z̃M, on Ωs,0:
∥∥∥Z̃ − Z̃M

∥∥∥2

≤
∥∥∥Z̃ − z

∥∥∥2

≤ σ2D
(
1 + s2D− 1

2

)
. Furthermore,

∥∥∥z − Z̃M
∥∥∥ ≤∥∥∥z − Z̃

∥∥∥+
∥∥∥Z̃ − Z̃M

∥∥∥ ≤ 2σ
√

D
(
1 + s2D− 1

2

) 1
2

, so that

Z̃M ∈ Bz

(
2σ
√

D
(
1 + s2D− 1

2

) 1
2
)

. Letting P (z,2σ
√

D(1+s2D− 1
2 )

1
2 ) be the approximate tangent plane projection as

in our usual assumptions, and writing Z̃M − z = Z̃
||
M + Z̃⊥M and Z̃ − z = σ(N || + N⊥), the subgaussian condition

on the noise gives that, on Ωs,0, with probability at least 1− 4e−cs4
:

|〈Z̃ ||M, σN ||〉| ≤ s2σ

(
2σ
√

D
(
1 + s2D− 1

2

) 1
2
)

, |〈Z̃⊥M, σN⊥〉| ≤ s2σκk−
1
2

(
4σ2D

(
1 + s2D− 1

2

))
for s2 ≤ D. Since σ

√
D ≤

√
k

2
√

2κ
and s2 ≤ √

D, by our usual assumptions:∥∥∥Z̃M − Z̃
∥∥∥2

=
∥∥∥Z̃M − z

∥∥∥2

+
∥∥∥z − Z̃

∥∥∥2

+ 2〈Z̃ ||M, σN ||〉+ 2〈Z̃⊥M, σN⊥〉

≥
∥∥∥z − Z̃

∥∥∥2

+ 2〈Z̃ ||M, σN ||〉+ 2〈Z̃⊥M, σN⊥〉

≥ σ2D
(
1− s2D− 1

2

)
− 8

√
2s2σ2

√
D = σ2D

(
1− (8

√
2 + 1)s2D− 1

2

)
.
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Removing the conditioning on Ωs,0, the bound (9.9) is obtained, with the desired probability.

Define, for r1 > r2,

VZ̃(r1, r2) :=
µ(BZ̃(r1) \BZ̃(r2))

µ(BZ̃(r2)
=

µ(BZ̃(r1))
µ(BZ̃(r2)

− 1 . (9.10)

Lemma 5 (Volume estimates). With our usual assumptions, r1 ≥ r2 > d(Z̃,M),

µX(BZ̃(r1))
µX(BZ̃(r2))

≤
(

r1

r2

)2k
1− d(Z̃,M)2

r2
1

1− d(Z̃,M)2

r2
2

k

,
µX(BZ̃(r2))
µX(BZ̃(r1))

≥
(

r2

r1

)2k
1− d(Z̃,M)2

r2
2

1− d(Z̃,M)2

r2
1

k

(9.11)

If in addition 0 < s2 ≤ √
D, on Ωs,0 (as in (9.8)), we have

VZ̃(r1, r2) ≤ e
2k

r1−r2
r2

(

1+
(

1+
r1−r2

r2

)

(

1− d(Z̃,M)2

r2
2

)−1)

− 1 (9.12)

and if furthermore r1−r2
r2

≤ (2k)−1 and r2 ≥ r=, we also have

VZ̃(r1, r2) ≤ 10k
r1 − r2

r2
. (9.13)

Finally, always on Ωs,0, for c5,s,ξ ≤ 1, c6,ξ,s ≥ 1, both tending to 1 as either s2D− 1
2 or ξ tend to 0,

c5,s,ξµX(BZ̃(r−)) ≤ µX(Bz(r=)) ≤ c6,ξ,s µX(BZ̃(r−)) (9.14)

Proof. By the usual assumptions, if we let ρ2
i = r2

i − d(Z̃,M)2, i = 1, 2, we have the following estimates:

µX(BZ̃(r1))
µX(BZ̃(r2))

=
vZ̃(ρ1)
vZ̃(ρ2)

(
ρ1

ρ2

)k

=
vZ̃(ρ2 + (ρ1 − ρ2))

vZ̃(ρ2)

(
ρ1

ρ2

)k

≤
(

1 +
ρ1 − ρ2

ρ2

)k (
ρ1

ρ2

)k

≤
(

ρ1

ρ2

)2k

from which the first inequality in (9.11) follows. The other bounds are proved similarly. To prove inequality (9.13),

letting d2 = d2(Z̃,M) and ∆r = r1 − r2 for notational convenience, we have

VZ̃(r1, r2) ≤
(

r2 + ∆r

r2

)2k
(

(r2 + ∆r)2 − d2

r2
2 − d2

)k

− 1 ≤
(

1 +
∆r

r2

)2k
(

1 +
∆r

r2

2 + ∆r
r2

1− d2

r2
2

)k

− 1

and (9.12) follows by using the inequality (1 + x)α ≤ eαx. In order to obtain (9.13) we proceed as follows:

VZ̃(r1, r2) ≤
(

1 + 2k
∆r

r2

)(
1 + k

∆r

r2

2 + ∆r
r2

1− d2

r2
2

)
− 1

≤
(

1 + 2k
∆r

r2

)(
1 + k

∆r

r2

(
2 +

2
k

))
− 1 ≤ 10k

∆r

r2
,

where we used the inequality (1 + x)α ≤ 1 + αx for x ∈ [0, 1/α], applied to x = ∆r/r2 and α = 2k for the first

term in the product above, and x = ∆r
r2

(
2 + ∆r

r2

)(
1− d2

r2
2

)−1

and α = k for the second term, and observed that

our assumptions guarantee that x ≤ 1/α in both cases.

We now prove the volume comparison estimate (9.14). Let ζZ̃ =
∥∥∥Z̃ − Z̃M

∥∥∥.

µX(Bz(r=)) = vz(r=)µRk(Bk)rk
= , µX(BZ̃(r−)) = vZ̃(

√
r2− − ζ2

Z̃
)µRk(Bk)(r2

− − ζ2
Z̃
)

k
2 .
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Assume ζ2
Z̃
∈ σ2D[1− 13s2√

D
, 1 + s2D− 1

2 ] and
∥∥∥z − Z̃

∥∥∥2

∈ σ2D[1− s2D− 1
2 , 1 + s2D− 1

2 ], which by Lemma 4 and (9.8)

happens with probability at least 1− ce−cs4
for s2 ≤ √

D. Then, since ξ2

1−2ξ2 ≤ 1/4,

rk
=

(
1− s2CξD

− 1
2

) k
2 ≤ (r2

− − ζ2
Z̃
)

k
2 ≤ rk

=

(
1 +

13
4

s2D− 1
2

) k
2

.

By the smoothness of vZ̃(ρ) in ρ:

vZ̃(r=)
(
1− s2CξD

− 1
2

) k
2 ≤ vZ̃(

√
r2− − ζ2

Z̃
) ≤ vZ̃(r=)

(
1 +

13
4

s2D− 1
2

) k
2

(9.15)

Finally, the smoothness of vZ̃(ρ) in Z̃ gives:

vz(r=)
(

1−
(
1 + s2D− 1

2

) 1
2 √

Cξ

)
≤ vZ̃(r=) ≤ vz(r=)

(
1 +

(
1 + s2D− 1

2

) 1
2

/2
)

(9.16)

Combining the estimates above we obtain that (9.14) holds with probability at least 1− ce−cs4
for s2 ≤ √

D, where

c5,s,ξ =
(

1− s2

4
√

D

)k (
1− 1

2

(
1 + s2D− 1

2

) 1
2
)

c6,ξ,s =
(

1 +
13s2

4
√

D

)k (
1 +

1
2

(
1 + s2D− 1

2

) 1
2
)

.

9.4 Recentering

The goal of this section is to prove the following result.

Proposition 3. Let the usual bounds (9.2) hold. Conditioning on Ωs,0 defined in (9.8), for v ≥ 1, t > 0 and n ≥
Ct2/µX(Bz(r=)), let s2 < r2/k

12σ2D

√
D and set t20 := C(1 ∨ log r/

√
k

3σ
√

k
): then on an event Ωv,t,1 having probability as in

Table 17, we have

||cov(X̃[z,r=]
n )− cov(

˜
X[Z̃,r−]

n )|| ≤ Cv2

(
(c4,ξ,s,t0 ∨ 1)

σk

r
∨ 1

µX(Bz(r=))n

)
r2
− .

Proof. It follows by combining the results of Lemmata 6 and 8 that

||cov(
˜

X[Z̃,r−]
n )− cov(X̃[z,r=]

n )|| ≤ Cv2

((
c6,ξ,se

−t20 + c4,ξ,s,t0

ξk√
D

)
∨ 1

µX(Bz(r=))n

)
r2
−

≤ Cv2

(
(c6,ξ,s ∨ c4,ξ,s,t0)

σk

r
∨ 1

µX(Bz(r=))n

)
r2
−

by setting t20 := C(1 ∨ log r/
√

k

3σ
√

k
). Since c6,ξ,s ≤ C by our usual bounds (9.2), we obtain the desired estimate.

Lemma 6. Let the usual bounds (9.2) hold and t0 be as defined there. Define the random sets A1,t0 ,A2,t0 as in (9.6):

A1,t0 :=
˜

X
[z,
√

r2
=−q]

n ∩ ˜
X[Z̃,r−]

n

c

= {X̃i : ||Xi − z|| <
√

r2
= − q ∧ ||Xi − Z̃|| > r−}

A2,t0 :=
˜

X
[z,
√

r2
=+q]

n

c

∩ ˜
X[Z̃,r−]

n = {X̃i : ||Xi − z|| >
√

r2
= + q ∧ ||Xi − Z̃|| < r−}
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Conditioning on a given sample Xn(ω), ω ∈ Ω and Ωs,0 := {ω : | ||N(ω)||2−σ2D| ≤ s2σ2
√

D} as in (9.8), for v ≥ 1, t > 0,
and n ≥ Ct2/µX(Bz(r=)), on an event having probability at least as in Table 17, we have

||cov(
˜

X[Z̃,r−]
n )− cov(

˜
X[Z̃,r−]

n ∪A1,t0 \A2,t0)|| ≤ Cv2

(
c6,ξ,se

−t20 ∨ 1
µX(Bz(r=))n

)
r2
− . (9.17)

Proof. This Lemma is a consequence of the following two Lemmata, that estimate the cardinality of A1,t0 ,A2,t0

relative to that of
˜

X[Z̃,r−]
n , and of an application of the covariance perturbation Lemma 3:

||cov(
˜

X[Z̃,r−]
n )− cov(

˜
X[Z̃,r−]

n ∪A1,t0 \A2,t0)|| ≤ Cv2

(
c6,ξ,se

−t20 ∨ 1
µX(Bz(r=))n

)
(r2
− + σ2D)

≤ Cv2

(
c6,ξ,se

−t20 ∨ 1
µX(Bz(r=))n

)
1 + ξ2

1− ξ2
r2
− .

This implies the desired bounds after recalling our usual assumptions on ξ.

Lemma 7. Let the usual bounds (9.2) hold and t0 be as defined there. Conditioning on Ωs,0 defined in (9.8), and with
c6,ξ,s ≥ 1 as in Lemma 5, we have

E[|A1,t0 |] ≤ ne−t20µX(Bz(r=)) , E[|A2,t0 |] ≤ c6,ξ,s ne−t20µX(Bz(r=)) ,

Proof. We work in Bz(
√

r2
= − q), and with the associated projection P || as in our usual assumptions. We have

X − z = X || + X⊥ and z − Z̃ = σ(N || + N⊥). Then:

||X − Z̃||2 = ||X − z||2 + σ2||N ||2 + 2σ〈X ||, N ||〉+ 2σ〈X⊥, N⊥〉 (9.18)

and EN ||X − Z̃||2 = EN ||X − z||2 + σ2D. Fix x ∈ Bz(
√

r2
= − q) ⊆ Bz(r−): the subgaussian condition on the noise

implies:

PN

(
|σ〈X ||, N ||〉| > t0σr−

)
≤ 2e−t20 , PN

(
|σ〈X⊥, N⊥〉| > t0σκr2

−k−
1
2

)
≤ 2e−t20 , (9.19)

i.e. the event Ωt0,x := {|σ〈X ||, N ||〉| > t0σr−} ∩ {|σ〈X⊥, N⊥〉| > t0σκk−
1
2 r2
−} has probability at most 4e−t20 . On

such an event (hence with the same probability) X ∈ BZ̃(r−), since

||X − Z̃||2 ≤ ||X − z||2 + σ2D + s2σ2
√

D + 2t0σ(r− + κk−
1
2 r2
−) ≤ r2

= − q + σ2D + q = r2
− .

Therefore Lemma 5 implies

E[|A1,t0 |] =
n∑

i=1

P
(
||Xi − z|| <

√
r2
= − q , ||Xi − Z̃|| > r−

)
=

n∑
i=1

P
(
||Xi − Z̃|| > r−

∣∣ ||Xi − z|| <
√

r2
= − q

)
· P
(
||Xi − z|| <

√
r2
= − q

)
≤ ne−t20 µX(Bz(

√
r2
= − q)) ≤ ne−t20 µX(Bz(r=)) .

To prove the second bound in (9.19), on Ωs,0 we let r̃−2 := r−2 + σ2D(1 + s2D− 1
2 ): then Xi ∈ BZ̃(r−) implies

Xi ∈ Bz(r̃−). Working on Bz(r̃−) and using the associated projection P || as in our usual assumptions, for Xi− z =
X
||
i +X⊥

i and Z̃−z = σ(N ||+N⊥), the bounds (9.19) hold with r̃− replacing r−, on an event Ω′t0 having probability

at least 1− 4e−t20 . But then Xi ∈ Bz(
√

r2
= + q), since from (9.18) we have

||Xi − z||2 = ||Xi − Z̃||2 − σ2||N ||2 − 2σ〈X ||
i , N ||〉 − 2σ〈X⊥

i , N⊥〉
≤ r2

− − σ2D + s2σ2
√

D + 4t0σ
(
r− + 2κk−

1
2 r2
−
)

= r2
= + q ,
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This implies, by applying Lemma 5 as above,

E[|A2,t0 |] =
n∑

i=1

P( ||Xi − z|| >
√

r2
= + q , ||Xi − Z̃|| < r− ) ≤ c6,ξ,s ne−t20 µX(Bz(r=)) .

Lemma 8. Let the usual bounds (9.2) hold. Additionally, assume that

s2 <
r2/k

12σ2D

√
D, t0 <

r/
√

k

144σ
√

k
. (9.20)

Conditioning on Ωs,0 defined in (9.8), let A1,t0 ,A2,t0 be as in (9.6). For v ≥ 1, t > 0 and n ≥ t2/µX(Bz(r=)), on an event

of probability at least 1− 2e−
1
3 v2((δ2n)∨1) − e−

1
8 t2 , we have

||cov(
˜

X[Z̃,r−]
n ∪A1,t0 \A2,t0)− cov(X̃[z,r=]

n )|| ≤ Cv2

(
c4,ξ,s,t0

σk

r
∨ 1

µX(Bz(r=))n

)
r2
− . (9.21)

Proof. On Ωs,0 we have the inclusions
˜

X
[z,
√

r2
=−q]

n ⊆ ˜
X[Z̃,r−]

n ∪A1,t0\A2,t0 ⊆
˜

X
[z,
√

r2
=+q]

n and
˜

X
[z,
√

r2
=−q]

n ⊆ X̃[z,r=]
n ⊆

˜
X

[z,
√

r2
=+q]

n , so the set where
˜

X[Z̃,r−]
n ∪ A1,t0 \A2,t0 and X̃[z,r=]

n differ is contained in
˜

X
[z,
√

r2
=+q]

n \
˜

X
[z,
√

r2
=−q]

n . In
order to use (9.13) and (9.3) we observe that with the conditions (9.20) we have√

r2
= + q −√r2

= − q√
r2
= − q

≤ q

r2
= − q

≤ c4,ξ,s,t0σr

r2
= − c4,ξ,s,t0σr

≤ c4,ξ,s,t0σ/r

1− 2ξ2 − c4,ξ,s,t0σ/r

≤2ξ2≤ 1
2

2c4,ξ,s,t0σ/r

1− 2c4,ξ,s,t0σ/r
<

1
2k

,

since the last inequality is equivalent to asking 2c4,ξ,s,t0σ/r < 1/(2k + 1) which is implied by (9.20). Then:

µX(Bz(
√

r2
= + q) \Bz(

√
r2
= − q)) = Vz(

√
r2
= + q,

√
r2
= − q)µ(Bz(

√
r2
= − q))

≤ 10k
(√

r2
= + q −

√
r2
= − q

) (
r2
= − q

)− 1
2 µ(Bz(r=)) ≤ 40c4,ξ,s,t0σ

√
k/(r/

√
k) · µ(Bz(r=)) .

The bound (9.21) follows by an application of Lemma 3 (and recalling that r2
= + σ2D = r2−).

9.5 Bringing in the noise

We will show that the following perturbations are small (in the sense of cardinality of sets):

X̃[Z̃,r]
n = (X̃[Z̃,r]

n ∩ ˜
X[Z̃,r]

n ) ∪ I → X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n = (

˜
X[Z̃,r−]

n \Q1) ∪Q2 → ˜
X[Z̃,r−]

n

and conclude that the eigenvalues of the associated covariance matrices are close. As we compare the analysis and

algorithm centered at a noisy point Z̃ , and not a point on M, we will be dealing with two natural distances:

. distance of a point from Z̃M; this will be our variable of integration in what follows and will determine the
volume of the sets we will be considering.

. distance of a point from Z̃ , which determines the probability of entering or exiting BZ̃(r) when noise is added.
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Ωv,t,i Event definition Upper bound for δi Probability

Ωv,t,1
||cov(X̃

[z,r=]
n )− cov(

˜
X

[Z̃,r−]
n )||

≤ Cv2
(

δ1 ∨ 1
nr=

)

r2
−

δ1 :=
(

c4,ξ,s,t0 ∨ 1
)

σk
r 1− 4e−

1
3 v2(δ1nr=∨1) − 2e−

1
8 t2

Ωv,t,2
||cov(X̃[Z̃,r]

n )− cov(X̃[Z̃,r]
n ∩ X̃

[Z̃,r]
n )||

≤ Cv2
(

δ2 ∨ 1
nr=

)

r2
δ2 := c8,ξ,s

σk
r 1− 2e−

1
3 v2(δ2nr=∨1) − e−

1
8 t2

Ωv,t,3
||cov(X̃[Z̃,r]

n ∩ X̃
[Z̃,r]
n )− cov(

˜
X

[Z̃,r−]
n )||

≤ Cv2
(

δ3 ∨ 1
nr=

)

r2
δ3 := σk

r

(

1 ∨ σ2D
r2/k

)

√

log r/
√

k

3σ
√

k 1− 4e−
1
3 v2(δ3nr=∨1) − 2e−

1
8 t2

Figure 17: Events Ωv,t,i, i = 1, . . . , 3, their definitions and lower bounds on their probabilities; here t > 0, v ≥ 1, n ≥
t2/µX(Bz(r=)), our usual assumptions hold, and we have conditioned on Ωs,0 defined in (9.8). We conclude that

cov(X̃[z,r=]
n ) and cov(X̃[Z̃,r]

n ) are close when all of the above are small; each δi may be replaced with an upper bound,
in particular for each δi we may substitute δ = maxi δi. Ωs,t,1 and Ωs,t,2 are from recentering; Ωs,t,3,Ωs,t,4,Ωs,t,5 from
noise.

Lemma 9 (Concentration of measure on spherical caps). For 0 ≤ θ ≤ π, we define V D−1
θ to be the spherical cap of SD−1

centered at the north pole and subsuming an angle θ. Let µSD−1 denotes the normalized (i.e. µSD−1 (SD−1) = 1) Hausdorff
measure on SD−1. The function

h(θ) := µSD−1 (V D−1
θ ) ,

satisfies the following properties:

1. 0 = h(0) ≤ h(θ) ≤ h(π) = 1 for every 0 ≤ θ ≤ π, and h(θ) is strictly increasing.

2. If θ = π
2 − t for any 0 ≤ t ≤ π

2 , h(θ) ≤ e−
1
2 t2D.

For a proof of these facts, see Lec. 19 of [88]. The angle subsumed by the spherical cap
(
x + ||N || · SD

) ∩BZ̃(r)
is

θ0(r, R, ||N ||) := arccos
((

R2 + ||N ||2 − r2
)
/ (2R||N ||)) (9.22)

for values of r, R, ||N || for which the argument of arccos is in [−1, 1]. If a point x is at distance R from Z̃ , if N has a
spherically symmetric distribution we would have

PN

(
x + N ∈ BZ̃(r)

∣∣||N || = l
) ≈ h(θ0(r, ||x − Z̃||, l))

PN

(
x + N /∈ BZ̃(r)

∣∣||N || = l
) ≈ h(π − θ0(r, ||x− Z̃||, l)) (9.23)

All we shall need, in fact, is that the above relations hold approximately, with universal constants (independent of
k, D, x, z, r, l):

PN

(
x + N ∈ BZ̃(r)

∣∣||N || = l
) ≈ h(θ0(r, ||x − Z̃||, l))

PN

(
x + N /∈ BZ̃(r)

∣∣||N || = l
) ≈ h(π − θ0(r, ||x− Z̃||, l))

(9.24)

In what follows, in order to ease the notation, we will actually assume the equalities (9.23), i.e. that the distribution
of N is exactly spherically symmetric. The arguments are readily generalized to distributions which are only
approximately spherical in the sense of (9.24). A simple computation shows that θ0 is decreasing in ||N || for
R2 < ||N ||2 + r2 and decreasing in R for R2 > ||N ||2− r2. Finally, the following simple observations will be useful:
if θ0(r, R, ||N ||) = π/2± ǫ implies

R = r

(
1− 1

2
(||N ||/r)2 ∓ ǫ||N ||/r + O

(
ǫ2 (||N ||/r)2 + (||N ||/r)4

))
. (9.25)
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9.5.1 I is negligible: comparing X̃[Z̃,r]
n = (X̃[Z̃,r]

n ∩ ˜
X[Z̃,r]

n ) ∪ I with X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n

The goal of this section is to show that cov(X̃[Z̃,r]
n ) and cov(

˜
X[Z̃,r−]

n ) are close. We write X̃[Z̃,r]
n = (X̃[Z̃,r]

n ∩˜
X[Z̃,r]

n )∪I,
where I is the (random) set of points that enter BZ̃(r) when noise is added, see (9.7).

Proposition 4. Let the usual bounds (9.2) hold. Conditioning on Ωs,0 defined in (9.8), for t > 0, v ≥ 1 and n ≥
t2/µX(Bz(r=)), on an event Ωv,t,2 having probability as in Table 17, we have

||cov(X̃[Z̃,r]
n )− cov(X̃[Z̃,r]

n ∩ ˜
X[Z̃,r]

n )|| ≤ Cv2

(
c8,ξ,s

σk

r
∨ 1

µX(BZ̃(r−))n

)
r2 , (9.26)

where c8,ξ,s := C(1 + Cξc6,ξ,sv
−1
min), with c6,ξ,s and Cξ defined in (9.14) and (3.3).

Proof. We estimate E[|I|] relative to E[|X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n |] and then apply Lemma 3. The points in BZ̃(r−) have a

probability larger than 1/2 of staying in BZ̃(r) when noise is added:

E[|X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n |] ≥ E[|X̃[Z̃,r]

n ∩ ˜
X[Z̃,r−]

n |] ≥ 1
2

E[| ˜
X[Z̃,r−]

n |] =
1
2
µX(BZ̃(r−))n,

therefore it will be enough to compute the expected cardinalities of I relative to nr− = µX(BZ̃(r−))n. For r+ > r
to be chosen later, we partition I into the sets

I1 = {X̃i : ||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ∈ [r, r+]} , I2 = {X̃i : ||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ≥ r+} .

Since σ||N || ∼ σ
√

D, we expect the majority of I to be from I1.
Step 1: bounding |I1|. Conditioning on Ωs,0, and with our usual assumptions, we prove

(µX(BZ̃(r−))n)−1 E[|I1|] ≤ Ce−Cξ2D
(
eCξ2k − 1

)
. (9.27)

For each i define the events

Ωt1,i =
{
|σ||Ni||2 − σ2D| ≤ t1σ

2
√

D
}

, Ω2,i := Ωt1,i ∩ {||Xi − Z̃|| ∈ [r, r+]} (9.28)

Clearly P(Ωt1,i) ≥ 1− 2e−c(t21∧t1
√

D). We estimate

(µX(BZ̃(r−))n)−1 E[|I1|] = (µX(BZ̃(r−))n)−1
n∑

i=1

P(||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ∈ [r, r+])

= (µX(BZ̃(r−))n)−1

( n∑
i=1

P(||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ∈ [r, r+] ∧Ωt1,i︸ ︷︷ ︸
Ω2,i

)+

P(||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ∈ [r, r+] ∧ Ωc
t1,i)

)
≤ (µX(BZ̃(r−))n)−1

( n∑
i=1

P(||X̃i − Z̃|| < r
∣∣Ω2,i)P(Ω2,i) + P(Ωc

t1,i)P(||Xi − Z̃|| ∈ [r, r+))
)

≤
(

1
n

n∑
i=1

1
P(Ω2,i)

∫
Ω2,i

P(||X̃i − Z̃|| < r | ||Xi − Z̃||, ||NXi || ) dP + 2e−c(t21∧t1
√

D)

)
· µX(BZ̃(r+) \BZ̃(r))

µX(BZ̃(r−))

≤
(

1
n

n∑
i=1

1
P(Ω2,i)

∫
Ω2,i

h( θ0(r, ||Xi − Z̃||, ||NXi || ) ) dP + 2e−c(t21∧t1
√

D)

)
VZ̃(r+, r−)

≤
(
h( θ0( r, r, σ

√
D(1− t1D

− 1
2 ))) + 2e−C(t21∧t1

√
D)
)

VZ̃(r+, r−) ,

(9.29)
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since on Ω2,i, θ0( r, ||Xi − Z̃||, ||NXi || ) ≤ θ0( r, r, σ
√

D(1− t1D
− 1

2 ) ). We have

cos(θ0(r, r, σ
√

D(1− t1D
− 1

2 ))) =
(
σ
√

D(1 − t1D
− 1

2 )
)

/ (2r) = ξ
(
1− t1D

− 1
2

)
/2 ;

thus if θ0 := π
2 − t, we obtain t = arcsin(ξ

(
1− t1D

− 1
2

)
/2) ≥ ξ

(
1− t1D

− 1
2

)
/2 and by Lemma 9

h(θ0(r, r, σ
√

D(1− t1D
− 1

2 ))) ≤ e−
1
2 t2D ≤ e

− 1
32 ξ2D

(

1−t1D− 1
2
)2

.

We choose t1 = ξ
√

D; by our usual assumptions we have

(r+ − r−) /r− ≤ ξ2/
(
1− ξ2

) ≤ 2ξ2 , d(Z̃,M)2/r2
− ≤ 2ξ2/

(
1− ξ2

) ≤ 4ξ2 ,

so Lemma 5 (in particular, estimate (9.12)) implies:

(µX(BZ̃(r−))n)−1 E[|I1|] ≤
(
e−Cξ2D(1−ξ)2 + 4e−C(ξ2∧ξ)D)

)
VZ̃(r+, r−) ≤ Ce−Cξ2D

(
eCξ2k − 1

)
.

Step 2: bounding |I2|. Conditioning on Ωs,0, and with our usual assumptions, we prove that:

(µX(BZ̃(r−))n)−1 E[|I2|] ≤ c8,ξ,se
−Cξ2D

(
eCξ2k − 1

)
, (9.30)

with c8,ξ,s = Cξ,kc6,ξ,sv
−1
min. To see this, let:

Al := BZ̃(
√

r2 + (l + 1)2σ2D) \BZ̃(
√

r2 + l2σ2D)

pl := P
(
||X − Z̃|| ∈

(√
r2 + l2σ2D,

√
r2 + (l + 1)2σ2D

]
∧ ||X + σN − Z̃|| < r

)
and observe that E[|I2|] ≤

∑∞
l=1 plµX(Al)n ≤ CξµRk(Bk)rkn by condition (3.3) in our usual assumptions and the

bounds (9.14), provided that pl ≤ Ce−Cl2 (observe that the condition ξ2k < 1/2 required for (3.3) to hold follows
from our standing assumptions on ξ). To see that this bound in fact holds, observe that for a point x to enter

BZ̃(r), two independent conditions must be met: σ||N || ≥ l
2σ
√

D and N must point in the right direction. The

subgaussian condition on the noise gives P(σ||N || ≥ l
2σ
√

D) ≤ 2e−
1
4 l2 . To upper bound the probability that N

points in the appropriate direction, fix x such that ||x − Z̃||2 ≥ r2 + l2σ2D; let φ be the angle formed by the line

segment connecting x and Z̃ and a tangent line to SD−1

Z̃
(r) passing through x, so that sin(φ) = r/

√
r2 + l2σ2D.

The probability that N points in the appropriate direction is upper bounded by µSD−1(V D−1
φ ). Letting t = π

2 − φ,

we obtain t = arccos(r/
√

r2 + l2σ2D) ≥ π/2 · (1 − r/
√

r2 + l2σ2D) ≥ 1/2 · lσ√D/
√

r2 + l2σ2D. By Lemma 9 the

probability of pointing in the right direction is bounded by e
−C l2ξ2

1+l2ξ2 D
and therefore pl ≤ e

−l2−C l2ξ2

1+l2ξ2 D
. Using

our usual assumptions on ξ, we now prove (9.30):

(µX(BZ̃(r−))n)−1 E[|I2|] ≤
∑∞

l=1 plµX(Al)
µX(BZ̃(r−))

≤ e
−C ξ2

1+ξ2 D

µX (BZ̃(r−))

∞∑
l=1

e−l2µX(Al) ≤ Cξe
−Cξ2DµRk(Bk)rk

µX (BZ̃(r−))

≤ Cξc6,ξ,sv
−1
min

(
1

1− ξ2

) k
2

e−Cξ2D ≤ c8,ξ,se
−Cξ2D

(
e

Cξ2k

1−ξ2 − 1
)

≤ c8,ξ,se
−Cξ2D

(
eCξ2k − 1

)
.

To complete the proof, an application of Lemma 3 yields the estimate

||cov(X̃[Z̃,r]
n )− cov(X̃[Z̃,r]

n ∩ ˜
X[Z̃,r]

n )|| ≤ Cv2

(
c8,ξ,se

−Cξ2D
(
eCξ2k − 1

)
∨ 1

µX(BZ̃(r−))n

)
r2 .

The desired estimate (9.26) is obtained by observing that on the one hand, if ξ ≤ 1/(3
√

k) then e−Cξ2D
(
eCξ2k − 1

)
≤

Ce−Cξ2Dξ2keC/9 ≤ CξkD− 1
2

(
ξ
√

D
)

e−C(ξ
√

D)2 ≤ CξkD− 1
2 , and when ξ ≥ 1

3
√

k
, e−Cξ2D

(
eCξ2k − 1

)
≤ e−Cξ2(D−k) ≤

Ce−CD/k ≤ CξkD−1/2.
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9.5.2 Comparing X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n = (

˜
X[Z̃,r−]

n ∪Q2) \Q1 with
˜

X[Z̃,r−]
n

Proposition 5. Let our usual assumptions hold and, furthermore, let D ≥ C. Conditioning on Ωs,0, for t > 0, v ≥ 1 and
n ≥ t2/µ(Bz(r=)), on an event Ωv,t,3 having probability as in Table 17, we have

||cov(X̃[Z̃,r]
n ∩ ˜

X[Z̃,r]
n )− cov(

˜
X[Z̃,r−]

n )|| ≤ Cv2

(
β ∨ 1

µX(BZ̃(r−))n

)
r2 . (9.31)

where

β :=
σk

r

(
1 ∨ σ2D

r2/k

)√
log

r

3σk
.

Proof. Recall the definitions (9.7):

Q1 = {X̃i ∈ BZ̃(r) : ||Xi − Z̃|| ∈ [σ
√

d, r−)} , Q2 = {X̃i ∈ BZ̃(r) : ||Xi − Z̃|| ∈ [r−, r]}
The bound (9.31) is proved by combining the bounds (9.32) and (9.35) below for E[|Q1|] and E[|Q2|] respectively,
followed by an application of Lemma 3.
Bounding |Q1|. We will prove that, as soon as D ≥ C

(µX(BZ̃(r−))n)−1 E[|Q1|] ≤ C
σk

r

√
log

r

3σk
. (9.32)

To see this, for any r̃− ∈ [σ
√

d, r−) (to be chosen later), we have

E[|Q1|] =
n∑

i=1

P( ||X̃i − Z̃|| > r ∧ ||Xi − Z̃|| ∈ [σ
√

d, r−) )

=
n∑

i=1

P( ||X̃i − Z̃|| > r
∣∣ ||Xi − Z̃|| ∈ [σ

√
d, r̃− ) · P( ||Xi − Z̃|| ∈ [σ

√
d, r̃− ) (9.33)

+
n∑

i=1

P( ||X̃i − Z̃|| > r
∣∣ ||Xi − Z̃|| ∈ [r̃−, r−) ) · P( ||Xi − Z̃|| ∈ [r̃−, r−) ) . (9.34)

By (9.23), if Xi is at distance R from Z̃ , the probability that Xi + Ni /∈ BZ̃(r) is given by h(π − θ0(r, R, ||Ni||)).
Note that π − θ0(r, R, ||N ||) is increasing in both R and ||N ||. By an identical argument to that in 9.5.1 (and (9.29)
in particular), with Ωt1,i as in (9.28), we obtain the following bound on (9.33):

n∑
i=1

P( ||X̃i − Z̃|| > r | ||Xi − Z̃|| ∈ [σ
√

d, r̃−) ) · P( ||Xi − Z̃|| ∈ [σ
√

d, r̃− ))

=
n∑

i=1

(
P( ||X̃i − Z̃|| > r | ||Xi − Z̃|| ∈ [σ

√
d, r̃−), Ωt1,i ) · P(Ωt1,i)

+
n∑

i=1

P( ||X̃i − Z̃|| > r | ||Xi − Z̃|| ∈ [σ
√

d, r̃−), Ωc
t1,i ) · P(Ωc

t1,i)
)

P( ||Xi − Z̃|| ∈ [σ
√

d, r̃− )

≤
(
h(π − θ0(r, r̃−, σ

√
D(1 + t1D

− 1
2 ))) + 2e−C(t21∧t1

√
D)
)

µX(BZ̃(r̃−) \BZ̃(σ
√

d))n

≤
(
e−

1
2 ǫ2D + 2e−Ct21

)
µX(BZ̃(r̃−))n ≤ 4e−Ct21µX(BZ̃(r−))n
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where the bound in the line before the last follows by applying Lemma 9 after choosing r̃− so that π−θ0(r, r̃−, σ
√

D(1+
t1D

− 1
2 )) = π

2 − ǫ, i.e., by (9.25),

r̃− = r

((
1− 1

2
ξ2
(
1 + t1D

− 1
2

)2
)
− ǫσ

√
D
(
1 + t1D

− 1
2

)
+ O

((
ǫ2ξ2 + ξ4

)
(1 + t1D

− 1
2 )2
))

,

and the last bound is a consequence of imposing t1 ≤
√

D and choosing ǫ = Ct1/
√

D to balance the two exponen-
tial terms.

In order to bound (9.34) we will need the following estimates, which hold as soon as our usual assumptions on

ξ are satisfied, t1 ≤
√

D as above: first of all d(Z̃,M)2

r2
−

≤ 2ξ2

1−ξ2 , and moreover

r− − r̃−
r̃−

≤ r
√

1− ξ2 − r(1 − ξ2

2 (1 + t1D
− 1

2 )2) + ǫσ
√

D(1 + t1D
− 1

2 ) + rO(ξ4 + ǫ2ξ2)

1− r(1 − ξ2

2 (1 + t1D− 1
2 )2) + ǫσ

√
D(1 + t1D− 1

2 ) + rO(ξ4 + ǫ2ξ2)

≤ 2ξ2t1D
− 1

2 + 2ǫξ + O(ξ4 + ǫ2ξ2)
1− 2ξ2 − 2ǫξ + O(ξ4 + ǫ2ξ2)

≤ Cξt1√
D

as soon as t1 <
√

D and choosing ǫ as above. By Lemma 5

n∑
i=1

P( ||X̃i − Z̃|| > r
∣∣ ||Xi − Z̃|| ∈ [r̃−, r−) ) · P( ||Xi − Z̃|| ∈ [r̃−, r−) ) ≤ µX

(
BZ̃(r−) \BZ̃(rσ−)

)
n

≤ VZ̃(r−, r̃−)µX(BZ̃(r−))n ≤
(

e
Ckt1ξD− 1

2

(

1+
(

1+Ct1ξD− 1
2
)(

1− 2ξ2

1−ξ2

)−1
)

− 1

)
µX(BZ̃(r−))n

≤
(

eCt1ξkD− 1
2 − 1

)
µX(BZ̃(r−))n ≤ C

t1ξk√
D

µX(BZ̃(r−))n .

as soon as t1 < C
√

D/(ξk). Combining our bounds for (9.33) and (9.34), we obtain:

E[|Q1|]
µX(BZ̃(r−))n

≤ 4e−Ct21 + Ct1
ξk√
D
≤ C

ξk√
D

√
log

√
D

3ξk
,

by choosing t21 = 1 ∨ log
√

D
3ξk , proving (9.32). Note that the conditions we imposed above on t1 are satisfied under

our usual assumptions and D ≥ C. By Lemma 3 we have, with probability as in Table 17, the bound (recall that
r2 + σ2D) ≤ (1 + ξ2)r2 ≤ 4

3r2)

||cov(
˜

X[Z̃,r−]
n ∪Q2)− cov(

˜
X[Z̃,r−]

n ∪Q2 \Q1)|| ≤ Cv2

 ξk√
D

√
log

√
D

3ξk
∨ 1

µX(BZ̃(r−))n

 r2 .

Bounding |Q2|. We now estimate |Q2|, and prove that as soon as D ≥ C

(µX(BZ̃(r−))n)−1 E[|Q2|] ≤ C
ξk√
D

(1 ∨ ξ2k)

√
log

√
D

3ξk
. (9.35)

By an argument similar to that in 9.5.1, we choose rσ+ ∈ [r−, r] so that θ0(r, rσ+ , σ
√

D(1− t1D
− 1

2 )) = π
2 − ǫ, i.e., by

(9.25),

rσ+ = r

((
1− 1

2
ξ2
(
1− t1D

− 1
2

)2
)

+ ǫσ
√

D
(
1− t1D

− 1
2

)
+ O

((
ǫ2ξ2 + ξ4

)
(1− t1D

− 1
2 )2
))

,
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which implies
rσ+−r−

r−
≤ Cξt1√

D
. For this choice of rσ+ , we have the bounds σ2D

r2
σ+

≤ σ2D
r2
−

≤ ξ2

1−ξ2 ≤ 2ξ2, and, by

Lemma 5, µ(BZ̃(rσ+))/µ(BZ̃(r−)) ≤ (1 + ǫξ(1 + t1D
− 1

2 ))2k(1− 2ξ2)k and

µ(BZ̃(r))
µ(BZ̃(rσ+))

≤ µ(BZ̃(r))
µ(BZ̃(r−))

≤
(

1
1− ξ2

)k
(

1− ξ2(1 + s2D− 1
2 )

1− ξ2(1 + s2D− 1
2 )/ (1− ξ2)

)k

≤ eCξ2k .

Then

E[|Q2|]
µX(BZ̃(r−))n

=
1

µX(BZ̃(r−))n

n∑
i=1

P( ||X̃i − Z̃|| < r ∧ ||Xi − Z̃|| ∈ [r−, r] )

=
1

µX(BZ̃(r−))n

n∑
i=1

P( ||X̃i − Z̃|| < r
∣∣ ||Xi − Z̃|| ∈ [r−, rσ+ ] ) · P( ||Xi − Z̃|| ∈ [r−, rσ+ ] )

+
1

µX(BZ̃(r−))n

n∑
i=1

P( ||X̃i − Z̃|| < r
∣∣ ||Xi − Z̃|| ∈ [rσ+ , r] ) · P( ||Xi − Z̃|| ∈ [rσ+ , r] )

≤ VZ̃(rσ+ , r−) +
(
h(θ0(r, rσ+ , σ

√
D(1− t1D

− 1
2 ))) + 2e−C(t21∧t1

√
D)
) µ(BZ̃(r))

µ(BZ̃(r−))

≤
(
e

C ξk√
D

t1 − 1
)

+
(
e−

1
2 ǫ2D + 2e−Ct21

)
eCξ2k

≤
t1≤

√
D

kξ ,ǫ=
2t1√

D

C
ξk√
D

t1 + e−C(t21−ξ2k)

≤ C
ξk√
D

(1 ∨ ξ2k)

√
log

√
D

3ξk
,

where we chose ǫ = 2t1D
− 1

2 , t21 = ξ2k + 1
C log

√
D

3ξk . Lemma 3 implies that with probability as in Table 17

||cov(
˜

X[Z̃,r−]
n ∪Q2)− cov(

˜
X[Z̃,r−]

n )|| ≤ Cv2

ξk(1 ∨ ξ2k)√
D

√
log

√
D

3ξk
∨ 1

µX(BZ̃(r−))n

 r2 .

9.6 Putting it all together

We finally recall, and prove, the following Proposition 2:

Proposition 6. Let D ≥ C,

r ∈
(

Rmin + 4σ
√

D +
1
6κ

, Rmax − σ
√

D − 1
6κ

)
∩
(

3σ
(√

D ∨ k
)

,

√
k

κ

)
(9.36)

where C is a universal constant and σ is small enough so that the interval for r is not empty. Then, for t, v ≥ 1, n ≥
t2/µ(Bz(r=)), s2 < r2/k

12σ2D

√
D

||cov(X̃[Z̃,r]
n )− cov(X̃[z,r=]

n )|| ≤ Cv2

(
βs ∨ 1

µX(Bz(r=))n

)
r2 (9.37)

holds with

βs :=

(
1 +

s2σ
√

D

r
+
(

1 ∨ σ2D

r2/k

)√
log

r

3σk

)
σk

r

and with probability at least 1− Ce−C(v2nµ(BZ̃ (r=))∧s4∧t2).

50



Proof. This follows from combining the perturbations in Propositions 3,4 and 5, whose bounds are summarized in

Table 17: we have that for t, v ≥ 1, 1 ≤ s2 ≤ √
D, n ≥ t2/µX(Bz(r=)), and conditioned on Ωs,0:

||cov(X̃[Z̃,r]
n )− cov(X̃[z,r=]

n )||

≤ Cv2

((
c4,ξ,s,t0 + c8,ξ,s +

(
1 ∨ σ2D

r2/k

)√
log

r

3σk

)
σk

r
∨ 1

µX(Bz(r=))n

)
r2

≤ Cv2


(

s2σ
√

D

r
+ 1 +

(
1 ∨ σ2D

r2/k

)√
log

r

3σk

)
σk

r︸ ︷︷ ︸
βs

∨ 1
µX(Bz(r=))n

 r2 ,

(9.38)

by recalling that t20 = log r
3σk (as in Proposition 3), so that

c4,ξ,s,t0 ≤ C

(
s2σ

√
D

r
+
√

log
r

3σk

)
,

and noting that c8,ξ,s ≤ C since σ
√

D/r ≤ 1/3. The bound (9.38) holds with probability at least 1−Ce−Cv2βsE[nr= ]−
Ce−Ct2 , conditioned on Ωs,0. Removing the conditioning on Ωs,0, whose complement had probability at most

2e−Cs4
, we obtain that (9.37) holds with probability at least 1− Ce−C(v2nµ(BZ̃(r=))∧s4∧t2).

Finally, we determine the restrictions on r= in terms of Rmin, Rmax, the parameters that determined the range
where our volume growth and covariance estimation assumptions hold. In Sections 9.4-9.5 we have assumed that
all the radii involved lied in [Rmin, Rmax], so we need to impose r= ± (2σ2D + q(r)) ∈ [Rmin, Rmax], which is

implied, upon noting that q ≤ 1
6

r2

k , by the restriction in (9.36).

10 Appendix: Results from linear algebra and perturbation theory

Lemma 10 (Wielandt’s inequality [89]). Let A ∈ Rn×n be a symmetric matrix in the form

A =
(

B C
CT D

)
with B ∈ Rr×r, C ∈ Rr×s and D ∈ Rs×s, with n = r + s. Let λi(E) denote the i-th largest eigenvalue of a matrix E. If
λr(B) > λ1(D), then

0 ≤ λi(A)− λi(B) ≤ λ1(CT C)
λi(B) − λ1(D)

∧ ||C|| for 1 ≤ i ≤ r ,

0 ≤ λj(D)− λr+j(A) ≤ λ1(CT C)
λr(B)− λj(D)

∧ ||C|| for 1 ≤ j ≤ s .

The statement in [89] is only for positive definite matrices, but the result for general symmetric matrices follows
easily by adding a multiple of the identity matrix that is large enough to make the matrices positive definite.

11 Random vectors, random matrices and covariances

We briefly recall some notations. We define the covariance and the empirical covariance of a random variable Y as

cov(Y ) = E[(Y − E[Y ])⊗ (Y − E[Y ])]

cov(Yn) =
1
n

n∑
i=1

(Yi − En[Y ])⊗ (Yi − En[Y ]) , En[Y ] =
1
n

n∑
i=1

Yi
(11.1)
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where Y := Y −E[Y ], and Y1, . . . , Yn are i.i.d. copies of Y . Moreover, cov(Y, X) = E[(Y −E[Y ])⊗ (X−E[X ])] is the
cross-covariance between two random variables Y, X , and cov(Yn,Xn) its empirical counterpart. Note that, we

often view a sample Xn as a matrix, so that for example we can write cov(Yn,Xn) = 1
nY

T

nXn, where Yn denotes
a sample centered with respect to its empirical mean.

We are interested in the concentration properties of the empirical covariance and cross-covariance operators
under different assumptions on Y and X . In particular, we are interested in the case when X, Y are bounded or
subgaussian. We note the following elementary identity:

cov(Yn,Xn) = En[(X − E[X ])⊗ (Y − E[Y ])]− (E[X ]− En[X ])⊗ (E[Y ]− En[Y ]) . (11.2)

As usual, in all that follows C, c will denote a universal constant whose value may change from line to line. For
bounded random vectors we have the following known results:

Proposition 7. Let Z be a random variable in Rd with E[Z] = 0 and ||Z|| ≤ √
M a.s. Let Z1, . . . , Zn be i.i.d. copies of Z .

(i) for any t > 0 we have

P

(
||En[Z]|| >

√
M

n
t

)
≤ 2e−ct2 . (11.3)

(ii) for any t > 0 and n ≥ C t2M log(d∧n)
||cov(Z)|| ,

P

(
||cov(Zn)− cov(Z)|| > ||cov(Z)||

√
M log(d ∧ n)
||cov(Z)||n t +

M

n
t2

)
≤ 4e−ct2 . (11.4)

Proof. (i) follows from [90, 91]. (ii) follows from Corollary 5.52 in [38], together with (11.2) and (i).

We remark, as it is done in [38] after Corollary 5.52, that the crucial quantity in determining the sampling
requirement in (ii) above is not the ratio M/||cov(Z)|| but the effective rank tr(cov(Z))/||cov(Z)||. We use this
observation for example to obtain the bounds in (8.4).

Definition 2. A real-valued random variable Z is called strictly subgaussian if for all t > 0

E
[
etZ
] ≤ e

E[Z2]t2

2 .

We will write Z ∼ SSub(σ2), where σ2 = E[Z2].

We summarize in the following Proposition some well-known properties of strictly subgaussian random vari-
ables:

Proposition 8. Let Z1, . . . , Zd ∈ R be i.i.d., Zi ∼ SSub(1), and Z = (Z1, . . . , Zd) ∈ Rd.
Then

(i) E[Zi] = 0 and for every t > 0, P (|Zi| > t) ≤ 2e−t2/2.

(ii) For every v ∈ Rd we have 〈Z, v〉 ∼ SSub(||v||22).
(iii) E[||Z||2] = d, and there exists a universal constant c such that for all t > 0

P
(∣∣||Z||2 − d

∣∣ > t
√

d
)
≤ 2e−ct2 , P

(
||Z|| >

√
d +

√
t

4
√

d
)
≤ 2e−ct2 .

(iv) If Z1, . . . , Zn are i.i.d. copies of Z , then

P

(
||En[Z]||2 >

d

n
+

√
d

n
t

)
≤ 2e−ct2 , P

(
||En[Z]|| >

√
d

n

√
1 +

t√
d

)
≤ 2e−ct2
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(v) If Z1, . . . , Zn are i.i.d. copies of Z , then with probability at least 1− 2e−ct2

(
√

d− C
√

n− t) ∨ (
√

n− C
√

d− t) ≤ σmin([Z1| . . . |Zn]) ≤
σmax([Z1| . . . |Zn]) ≤ (

√
d + C

√
n + t) ∧ (

√
n + C

√
d + t) .

(vi) Let Z1, . . . , Zn be i.i.d. copies of Z . Then for t ≥ C, n ≥ Ct2d, we have

P

(
‖cov(Zn)− Id‖ >

√
d

n
t

)
≤ 4e−ct2

and for n ≤ Ct2d we have

P

(
‖cov(Zn)‖ >

d

n

(
1 + C

√
n

d
+

t√
d

)2
)
≤ 4e−ct2 .

Proof. These results are combinations of standard facts [92], so we only sketch the proofs. (i) and (ii) are proved by
using the definition of strictly subgaussian and using the moment generating function. For (iii), the computation
of E[||Z||2] is trivial, and to prove the concentration inequality one can either use the moment generating function
again, or (ii) together with an ǫ-net argument for discretizing Sd−1 and a union bound. In order to prove (iv) we
simply use (ii) and (iii). In order to prove (v) one uses standard ǫ-net arguments to discretize the unit sphere,
together with (iii) and a union bound. Finally, (vi) follows from E[Z] = 0, n ≥ Ct2d, so that by a Corollary to

Theorem 39 in [38], with probability at least 1− 4e−ct2

||cov(Zn)− σ2Id|| ≤
∥∥∥∥∥ 1

n

n∑
l=1

Zl ⊗ Zl − E[Z ⊗ Z]

∥∥∥∥∥+ ||En[Z]||2

≤ C

√
d

n
t +

d

n
+

√
d

n
t ≤ C

√
d

n
t .

For n ≤ Ct2d, since ||cov(Zn)|| ≤ ||1/n
∑n

i=1 Zi ⊗ Zi|| (since the centering by the empirical mean decreases the

norm of the matrix) we have, by (v), with probability at least 1− 4e−ct2

||cov(Zn)|| ≤≤
(√

d

n
+ C +

t√
n

)2

≤ d

n

(
1 + C

√
n

d
+

t√
d

)2

The following result is useful in controlling the norm of cross covariance operators when the range of X, Y is
of dimension k, d respectively. These types of bounds are quite well-known, and we report here the version we
need for the reader’s convenience; the techniques are also used in results that follow.

Proposition 9 (Norm of product of random matrices). Let N1 ∈ Rn×k, N2 ∈ Rn×d have i.i.d. subgaussian entries with
mean 0 and subgaussian moment 1. Then for c, C universal constants,

P

(
1
n
||NT

1 N2|| >
√

k + d

n
t

)
≤


ce−c(k+d)t2 , t ∈ C ·

(
1,
√

n
k+d

)
ce−c

√
n(k+d)t , t ≥ C max

{√
n

k+d ,
√

k+d
n

}
.

(11.5)

and otherwise

P

(
1
n
||NT

1 N2|| >
(

1 +

√
d

n

)(
1 +

√
k

n

)
t

)
≤ 4e−c(n+d∧k)t .. (11.6)
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This result implies that ||NT
1 N2||, as a function of the inner dimension n, grows only like

√
n, thanks to the

cancellations due to the independence of N1 and N2. It is easy to see that a similar estimate would hold for
cov(N1,N2) as soon as n ≥ Ck, by using (11.2) and (iv) in Proposition 8 in the cases covered by (11.5), and by
observing that ||N{1,2}|| ≤ ||N{1,2}|| in the case covered by (11.6).

Proof of Proposition 9. The format of the argument is standard: we discretize the unit sphere in the domain and
range to finite nets, and estimate the size of the operator by restricting to the net and taking union bounds over the
high probability events on which we can control the norm of the operator applied to each vector in the net. LetN d

be an ǫ1-net for Sd−1 and let N k be an ǫ2-net for Sk−1. Observe that by a standard volume estimate we can choose
the nets so that |N d| ≤ (1 + 2/ǫ1)d and |N k| ≤ (1 + 2/ǫ2)k. Then

||NT
1 N2|| = max

x∈Sd−1,y∈Sk−1
〈NT

1 N2x, y〉 ≤ (1− ǫ1)−1(1− ǫ2)−1 max
x∈Nd,y∈Nk

〈NT
1 N2x, y〉 .

Therefore:
P(||NT

1 N2|| > t) ≤ P( max
x∈Nd,y∈Nk

|〈NT
1 N2x, y〉| > t(1− ǫ1)(1 − ǫ2))

≤
∑

x∈Nd,y∈Nk

P(|〈NT
1 N2x, y〉| > t(1− ǫ1)(1 − ǫ2))

≤ |N d| |N k|P(|〈N2x,N1y〉| > t(1 − ǫ1)(1− ǫ2))

≤ 5k+d P(|〈N2x,N1y〉| > t/4) .

by choosing ǫ1 = ǫ2 = 1/2. Since the entries of N1, N2 are i.i.d subgaussian, and ||x||2 = ||y||2 = 1, N2x has
i.i.d. subgaussian entries and so does N1y, with the same subgaussian moments as the entries of N2 and N1

respectively. Moreover N2x and N1y are independent, so 〈N2x,N1y〉 is the sum of n independent subexponential
random variables, and therefore (e.g. Cor. 17 in [38])

P(||NT
1 N2|| > t) ≤ cec1(k+d)−c2 min{ (t/4)2

n ,t/4} . (11.7)

If t ≤ 4n, the last upper bound is nontrivial for, say, c1(k + d) < c2
2

t2

16n . Substituting t by t
√

n(k + d), we obtain

P
(
||NT

1 N2|| >
√

n(k + d)t
)
≤ ce−c(k+d)t2 , t ∈ C ·

(
1,

√
n

k + d

)
.

On the other hand, if t ≥ 4n, the upper bound in (11.7) is nontrivial for, say, c1(k+d) < c2t
8 , and letting substituting

t with t
√

n(k + d), we obtain

P
(
||NT

1 N2|| >
√

n(k + d)t
)
≤ ce−c

√
n(k+d)t , t ≥ C ·max

{√
n

k + d
,

√
k + d

n

}
.

The second inequality follows from the trivial bound ||NT
1 N2|| ≤ ||N1||||N2|| and bound (11.9) in the next Propo-

sition.

Proposition 10. Let B ∈ Rk×n and A ∈ Rn×d, with A and B independent random matrices. Also suppose that A has
i.i.d. subgaussian entries with subgaussian moment 1. Then for t ≥ C

P
(
||BA|| > ||B||√d + k t

)
≤ 2e−c(d+k)t2 . (11.8)

In particular, when B = In and d ≥ n, then for t ≥ C

P
(
||A|| > √

d + n t
)
≤ 2e−c(d+n)t2 , (11.9)

which may be simplified, when d ≥ n and for t ≥ C, to

P
(
||A|| >

√
d t
)
≤ 2e−cdt2 .
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Proof. When B is deterministic, the proof of this Proposition is analogous (in fact, easier) to that of Proposition 9,
the only difference being that all the r.v.’s in sight are subgaussian (instead of subexponential). An even simpler
proof of (11.9) may be found in [93]. To extend the result to include non-deterministic B, note:

P(||BA|| > t||B||(
√

d +
√

k)) = EA,B [ 1||BA||>t||B||(√d+
√

k) ]

= EB [ EA,B [ 1||BA||>t||B||(√d+
√

k) |B ] ]

= EB [ EA [ 1||BA||>t||B||(√d+
√

k) |B ] ]

≤ EB [ 2e−c(d+k)t2 ] = 2e−c(d+k)t2 .

Here we use the fact that due to independence pA|B = pA.
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