Empirical Comparison between Hierarchical Fragments Based and
Standard Model Based Object Recognition Systems

Sharat Chikkerur Lior Wolf

Abstract

The fragment-based architecture of Ullman’s group [16, 12] which resulted in the recent work of
Epshtein and Ullman [4] is a biologically motivated object recognition framework which bears similarities
to the model of visual cortex developed in our lab [2, 14]. The fragment based method holds several
advantages over our standard model approach such a top down part localization mechanism, minimal
construction etc that are not currently available within the standard model. However, as far as we
know, it has not been evaluated on standard datasets, nor compared to other existing systems. Also,
there is no publicly available implementation of fragment based algorithms. Here, we provide such an
implementation and compare the current instantiations of the two frameworks with regards to recognition
capabilities on publicly available datasets. This work is not meant to capture the full potential of the two
research directions. Rather, it is meant as a snapshot in time of their current capabilities with respect
to their performance in object classification tasks.

1 Introduction

Physiological investigations have shown that object categorization in the primate visual systems is based
on a hierarchy of features that progressively increase in complexity, ranging from simple line detectors
to even entire objects (See [10, 13] for review). It is not surprising then, that biologically motivated
object classification systems that use a similar hierarchical organization outperform holistic and part based
counterparts [6, 1]. Some of the most recent hierarchical approaches to object recognition include Epshtein
and Ullman’s image fragment based technique [5] and Reisenhuber, Serre, Poggio et. al’s [13] computational
model of the visual cortex (the ’standard model’). In this memo, we present qualitative, as well as objective
comparison between Epshtien and Ulmann’s hierarchical fragment based classifier and the 'standard model’.
While, Epshtein and Ulmann’s system has shown promising results on some data sets, it has not been
evaluated on publicly available standard data sets or objectively compared to other existing approaches. The
standard model on the other hand was extensively compared to other front-end vision algorithms [14, 13, 11].
Here, we present a publicly available implementation of the fragment based classification system and perform
empirical evaluation over standard datasets. We compare its performance with that of the standard model
and a simple pixel based SVM classifier (used as an empirical measure of the data complexity).

2 Fragment Based Feature Hierarchies

2.1 Overview

In fragment based classifiers [9, 1, 16], the informative features in the images are represented by means of
patches (fragments) taken from the training examples. The part based representation captures the commonly
occuring object features, and at the same time accounts for intra-class variations. In [5], Epshtein and Ullman
extend this approach by using a hierarchical architecture where each candidate fragment or feature derived
from the training set is itself composed of informative sub-fragments. In the following sections, we outline



Figure 1: Fragment Hierarchy

their training and classification procedure in some detail. The reader is advised to refer to [4] for more
details.

The algorithm takes as input positive and negative examples of the object categories and yields a feature
hierarchy, such as the one shown in Figure 1. The training is divided into three distinct steps as outlined
below.

1. Feature Selection: The features used for classification consists of image parts extracted from the set
of training images. To begin with, the algorithm extracts several thousands of fragments of various sizes
and from various positions within the positive and negative training examples. Among these, only a few
fragments are selected such that the mutual information between the selected fragments and the class
is maximized. In order to avoid evaluating mutual information for all possible subsets of fragments, a
greedy approach is used. Once the most informative fragment is chosen, the next fragment is chosen to
maximize the additional mutual information w.r.t the class while minimizing the mutual information
with the already chosen fragments. The motivation and details about this mutual information driven
feature selection process can be found in [8]. Once the optimal fragments are selected, a new set of
positive and negative images is generated by selecting the regions where the fragments were detected
in the original positive/negative training set. The most informative sub-fragments are generated by
repeating the feature selection process using the new training data.

2. Region of Interest(Receptive Field) Optimization: In this step, each fragment and sub-fragment
is associated with a receptive field or a region of interest, in which the fragment is assumed to be
present. The region of interest has to be carefully chosen, since a very large receptive field leads
to false positives and a very small receptive field will miss most feature occurences. Therefore, the
receptive field is optimized to achieve a balance between these two extremes. The optimization is done
by maximizing mutual information between the fragment and the class. Unlike the feature selection
stage, the detection is based on results within the receptive field.

3. Weight selection and classification: The classification is done by overlaying a neural network
over the fragment hierarchy (See Figure 2.1). Initially the weights are chosen to be a random value
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between 0 and 1. Then, for each image in the training set, the response of the network is computed as
follows. For each position of the parent fragment within its receptive field, a weighted response of its
sub-fragments is evaluated. The response of the sub-fragment in turn, is computed as the maximum
weighted response due to all its children within its receptive field (However, if the node is a leaf node,
its response is considered to be the maximum normalized correlation measure within its receptive field).
It is to be noted that the receptive fields are defined relative to the node’s parents and therefore change
with position of the parent fragment. The object is said to be detected if the final response at the
root node crosses a certain threshold. Once all the reponses are computed, the weights are optimized
using back-propagation algorithm. However, the response with these new weights are not the same as
before, since the response at each level now depend upon the new weights. The weights and responses
are iteratively optimized until the response converges. This usually occurs within five iterations in our
implementation. It is also to be noted, that the weights are optimized together at all levels of the
hierarchy.

3 Standard Model

3.1 Overview

The standard model provides a framework for computer vision that is consistent with biological evidence
and in some cases even predicted it [13] . It is 'standard’ because it attempts to consolidate all the widely
accepted facts and observations about the primate visual system in a single model. However, it does not
attempt to explain everything in the visual pathway. It has a narrow focus of explaining feed-forward
mechanism in the first 100-150ms of the recognition phase. What happens after this or how the abundant
feedback connections operate is not well known. But the following are widely accepted facts about the nature
of object recognition in the primate visual cortex

1. The features and cells used for recognition are organized in the hierarchy with complexity and invariance
increasing at each level (See [13] for review).

2. The processing sub units increase in number at each successive layer.
3. Rapid (100-150ms) object recognition does not involve any feedback mechanisms.
4. Learning occurs at each stage of the process.

The model is built up using a hierarchy of simple (S) and complex (C) units (here the term wnit is
used instead of cell to distinguish the entities in the standard model from their countepart in biology). The
structure mimics similar organization found in the visual cortex, originally discovered by the breakthrough
work of Hubel and Wiesel [10]). In the biological visual system, the S1 cells respond selectively to small
lines at specific orientation. The response of these cells have been shown to be very well approximated by
Gabor filters tuned at specific orientation and frequencies [3]. Complex cells on the other hand pool inputs
from several afferent S cells. In a similar fashion, the S units in the standard model provide selectivity to
specific stimulus while the C units provide invariance by aggregating information from the afferent S units.
The receptive field of the units increases as we go higher up in the hierarchy. A simplified version of the
architecture is shown in Figure 4. Here the S1 units consists of a bank of simple gabor filters at several scales
and orientations. The specific shape of the filters were designed based on physiological evidence [3]. The C1
units aggregate information from several S1 units within its receptive field using a simple max-like operation.
This operation done by the C units is the key to the invariance exhibited by the standard model, since the
C cell responds to the afferent pattern occuring anywhere within its receptive field. As the receptive field
increases in the higher layers, the S units respond to increasing complex patterns and the C layers provide
increasing invariance in position and to some extent in scale.
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Figure 4: Standard Model Architecture

3.2 Training and Classification

For our comparison we use the simple two layer model used in [14] as our base-line for the standard model.
During training S1 and C1 features are obtained by filtering the image with a bank of gabor filters and
performing max operation on them. Instead of relying upon a universal dictionary of shapes [13] as in the
more biologically precise model, the work in [15] relies upon learning object specific features in order to
improve classification performance. After the C1 features are computed, random patches of various sizes are
derived from the training images and form the S2 features that respond selectively to the object class. The
S2 units have a gaussian like tuning function. The C2 cells again aggregate information from several S2 cells
using a max operation. The C2 features (1000 in our current implementation) are used as a feature vector
representating the class and used for training an SVM classifer.

4 Qualitative Comparison

4.1 Similarities

Figure 4.1 highlights the similarity between the two hierarchical models. Apart from the hierarchical
organization of the two classifiers, there are other non-obvious similarities such as the following.

1. In most cases, the leaf nodes of hierarchy resemble simple edge, line and corner detectors. While
the fragment based system explicitly learns these features from the training data, the standard model
hardwires such simple detectors in the S1 layers with parameters that are consistent with physiological
observations [14]. Therefore, if we compare the two models, the leaf nodes in the fragment based
system represent the S1 layer of the standard model in a loose sense.

2. The fragment based model considers the response of a node as the maximum weighted response within
its receptive field. As mentioned in [4], this directly emulates the HMAX behavior of the C layers in
the standard model.

3. The parent fragments represent complex features composed of more simple features. The relative
positions of the sub-fragments within their parent is captured by the receptive fields learnt during
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Figure 5: Qualitative Comparison

Ll
1L

F '—g
«—

training. This can be compared with the complex S2 features that are derived by combining outputs
of the afferent C1 layers, with the C1 layers directly modeling the receptive field.

4.2 Differences

The major differences between the two models are outlined in Table 1.

5 Experimental Comparison

In this section, we compare the performance of the two classifiers and also a simple pixel based SVM
classifier that indicates to some extent the complexity of the task. We used images from the caltech database
(http://www.vision.caltech.edu/html-files/archive.html) representing the standard data-sets and also from
the Weizmann database (http://www.wisdom.weizmann.ac.il/ borise/hierarchies.htm) on which [4] results
are based. The results reported are based on the best performance over three trials for each system. Summary
statistics showing the minimum total error( False positive + False negatives) along with ROC area are given
in Table 2

1. Weizmann Faces: This data-set consists of well segmented faces of caucasian and korean men. Out
of these, we used 100 images for training and 100 for testing. The non-class images consisted of generic
background images drawn from the caltech dataset.

2. Weizmann Cows: This data-set consists of segmented cow images. Out of these, we used 150 cows
and non-cows images for training and the same number for testing. The non-class images consisted of
an equal number of generic background images.

3. Caltech Leaves: The face dataset consists of 186 images of leaves from three different species taken
against various backgrounds. Out of these, we used a random split of 89 training and 97 testing images.
The non-class images consisted of 91 and 93 images an taken from a pool of generic background images.
The splits in all the datasets that follow are consistent with those reported by [7].

4. Caltech Faces: This dataset consists of 450 images of about 27 individuals taken against various
cluttered backgrounds. Out of these, we used a random split of 218 training and 218 testing images.



Fragment Hierarchy [4]

| Standard Model [14]

Low level features are learnt from
training examples

Low level features are hard-wired based
on physiological data

Classification is based on a neural net-
work model (at all levels)

The standard model based classifier
used in this comparison [14], uses tra-
ditional SVM classifier (only at the last
level)

Uses sigmoid like transfer function at
the nodes, emulating a feed forward
neural network

Uses an gaussian tuning function, em-
ulating a radial basis network

Informative fragments are selected by
maximizing mutual information

Informative fragments at the S2 layer
are based on random selection of frag-
ments of various sizes

Both the fragments and the receptive
fields are learnt during training

Learning occurs only in the S2 lay-
ers. The receptive field size (size of the
C1,C2 afferents) are fixed

The receptive fields are optimized by
maximizing mutual information

The receptive fields are fixed

Feature locations can be detected us-
ing a top down approach

Currently, no such feature is present

Table 1: Major differences between the two models

The non-class images consisted of an equal number of images taken from a pool of generic background
images.

. Caltech Motorcycles: This dataset consists of 826 images of motorcycles taken from the side. Out
of these, we used a random split of 401 training and 401 testing images. The non-class images consisted
of 270 training and 228 testing images drawn from a pool of background images.



| Database | Classifier | ROC area (range 0-1) | Min. error (range: 0-1) |
Weizmann Faces SVM 0.9900 0.00
Fragment 0.9898 0.01
Std. Model | 0.9990 0.00
Weizmann Cows SVM 0.9446 0.2067
Fragment 0.9030 0.2000
Std. Model | 0.9650 0.1600
Caltech Leaves SVM 0.9410 0.2541
Fragment 0.8446 0.1156
Std. Model | 0.9820 0.0515
Caltech Faces SVM 0.8593 0.3687
Fragment 0.8919 0.2719
Std. Model | 0.9911 0.0533
Caltech Motor Cycles | SVM 0.9133 0.3228
Fragment 0.8268 0.4412
Std. Model | 0.9993 0.0201

Table 2: Summary statistics for the empirical comparison

6 Conclusion

The qualitative compairson between the fragment hierarchy and the standard model shows that both the
models share several traits in feature representation and classification. However, the fragment based classifier
has several advantages due to its construction (at the cost of not being biological plausible) such as (i)
minimal representation (as opposed to fixed hierarchy in the standard model), (ii) learning in both the
feature detection and size of the receptive fields (as opposed to fixed receptive fields in the standard model),
and (iii) ability to locate detected features using top-down tracing (the standard model, yields very little
information apart from the object category after classification). With regards to performance, it can also
be observed that it performs has high accuracy on well segmented datasets, but its performance degrades
under more cluttered conditions (such as those in the caltech database). While minimal in construction,
the training process is iterative and computationally expensive. The standard model on the other hand has
an overcomplete representation, but also exhibits a higher level of invariance and robustness in cluttered
conditions and consequently performs better than pixel based SVM classifier and part-based hierarchical
classifier. The learning is fairly straight forward and computationally efficient compared to the hierarchical
fragment based classifier.

7 Implementation

Both the standard model code and our implementation of the fragment based hierarchical classifier along
with the instruction for use is freely available at http://cbcl.mit.edu/cbcl/software-datasets. The standard
model may take about an hour to a couple of hours to train on a dual processor. Our current implementation
of the fragment-based hierarchical model takes about a day or more to train on a dual processor (primarily
to compute all the correlations). We have also posted matlab workspaces that contain the already trained
hierarchies, weights and ROIs along with the positive and negative images and also the contexts they were
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Figure 6: Comparative performance over Weizmann datasets



Ganuine accept rate

rate

Genuine accapt

0B

n.?

T . [ R R T T T T
— I
—. —_r
g - — .
I!‘ 1 Caltech Leaves Dataset
b =
af | | T
1 J
r’ -
s | B
I e
1 |
sj_ =1 E
I
fi F 1
11
.
T A
I
| 4
5
| |_ std. mu:-uell
|
61l [ =="sum | -
|
<L 4
|
A
5I 1 1 1 1 1 1 1 1 1
[ | 0.2 0.3 0.+ 0.5 n.s a7 0.4 1.9 1
Falze accept rate
ROC
T T T T T T T — I
— N
I —_————, =
4 - —_
- -
e
i I'J._.-— |
g
—_ e
T rI
Pt L Caltech Faces Data=set
—- £
'
L L
= -
£ l"l
L r r
- J]
| [
- I I
' 1
A I |——— 5 U i |
rl |
| II |— 5td. rrl-:-del|
-! I |_'_' Fragments |
o
U
I !I 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.4

False accept rate

Figure 7: Comparative performance over Caltech datasets

10




- ;
- 4 |_'_"Fragmeanierarchp|

Std. modell T

I . Caltech Wotor Cveles

Genuine accept rate
[=1
-1
wm
T
LS
[ =
1

] 1 ] 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 .7 0.3 0.9 1
False accept rate

Figure 8: Comparative performance over Caltech datasets (contd.)

detected in at all levels of the hierarchy.
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