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1 Introduction

The semi-supervised setting in statistical learning theory has been investigated in
various recent papers [3], [2],[18]. The interest for this problem is especially moti-
vated by the large variety of applications where a large amount of unlabelled data
are available, but for which the process of labelling may be expensive or imprac-
tical. The practitioner is then faced with the problem of somehow exploiting all
the available information on the phenomenon coded in the unlabelled data. Tradi-
tionally statistical learning theory has mostly studied the learning process in the
so-called supervised setting [16],[11],[7],[6], [5],[13] where a set of input-output cou-
ples is given. It is clear that unlabelled data give some extra information regarding
the marginal probability distribution on the input space. A natural starting point
to a theoretically founded approach to semi-supervised learning is the analysis of
the optimal rates achievable when the marginal distribution is known. This was
the main goal of [4] and [8] where a criterion for the choice of the regularization
parameter for regularized least-squares (RLS) on reproducing kernel Hilbert spaces
(RKHS) was shown, leading to optimal rates in a marginal dependent minimax
sense. In that case the optimal regularization parameter was expressed in terms of
the effective dimension, the trace of a certain operator defined by the kernel and
the marginal distribution itself.

This paper considers the following natural step in the analysis of semi-supervised
learning: exploiting unlabelled data in order to replace effective dimension with an
empirical version of it while conserving asymptotically optimal performances.

The plan of the paper is as follows. In section 2 we briefly recall the main concepts
of statistical learning and define the RLS algorithm on RKHS. We also overview the
main result of [4] giving a rule for the optimal choice of the regularization parameter
in terms of the effective dimension. In section 3 we define the empirical counterpart
of effective dimension. This can be expressed quite naturally by the empirical kernel
matrix associated to a set of independent unlabelled data. The main result of this
section is a concentration result relating empirical effective dimension and effective
dimension. Finally in section 4 we generalize the main theorem of [4] to the empirical
case, prove asymptotic optimality, and present a sketch of an explicit procedure
that can achieve optimal rates when enough independent unlabelled samples are
available. Let us stress that the procedures presented here have not been designed
to be computationally effective but rather to be simple and instructive. In fact the
aim of this analysis is focusing on the theoretical issues that should be considered
while developing model selection techniques in the semi-supervised setting.
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2 Learning Theory

We consider a compact input space X ⊂ IRd and an output space Y = [−M, M ] ⊂
IR. The space Z = X×Y is endowed with a probability measure ρ(x, y) = ρX(x)ρ(y|x),
where ρX(x) denotes the marginal probability measure on X and ρ(y|x) the con-
ditional probability measure of y given x. The probability measure ρ is fixed but
unknown. The data we are given is a training set of ` pairs of examples z = (x,y) =
{(xi, yi)}`

i=1 drawn i.i.d. with respect to ρ, that is z ∈ Z`. Roughly speaking the
goal of learning is to design a procedure that, given the training set z, provide us
with a function fz that will correctly estimate the label y given new points x, i.e.
we want fz to generalize. In this paper we analyze regularized least-squares (RLS)
algorithm when the hypothesis space is chosen to be a reproducing kernel Hilbert
space (RKHS). For any given λ > 0 and training set z, RLS algorithm defines an
estimator fλ

z as the solution of the following minimization problem

min
f∈H

{1
`

∑̀

i=1

(yi − f(xi))2 + λ ‖f‖2
H}, (1)

where ‖·‖H is the norm in the RKHSH [1]. Roughly speaking the first term measures
how much the estimator f fits the data whereas the second term is a penalization
which constraints the complexity of the solution. The parameter λ balances out the
two terms. The intuition behind the algorithm is that the regularization parameter
λ allows to pass from overfitting to oversmoothing so that a good choice of the
regularization parameter on the basis of the given data, λ = λ(z, `), allows to
prevent both. In this sense we can think of the regularization parameter choice as
a model selection procedure ? . The question is then how to choose λ in order to
obtain good generalization properties. To formalize the problem we can consider
the squared loss function (y − f(x))2 and introduce the expected loss

I[f ] =
∫

X×Y
(y − f(x))2dρ(x, y).

We assume that the above functional admits a minimizer on H that we denote with
fH. If H is dense ?? in the space of square integrable functions with respect to ρ,
then fH is the regression function

fρ =
∫

Y
ydρ(y|x).

In this case the problem is to find an estimator whose error is close to that of fH.
In this paper we study a consistency property of RLS, in fact we want to define a
choice for λ` = λ(`) such that for every ε > 0

lim
`→∞

P
[
I[fλ`

z ]− I[fρ] ≥ ε
]

= 0.

? Though it might happen that no explicit structure of models (spaces) is consid-
ered.
??This is the case for universal kernels (for example for gaussian kernel) and we
refer to [14] for details on the subject.
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While studying consistency the crucial issue is indeed the convergence rate. In fact,
this gives information on the finite sample behavior of the considered algorithm.
Unfortunately there are classic results [10] showing that convergence rates are ob-
tainable only under suitable assumptions on the probability distribution underlying
the learning problem. Hence as we look for convergence rates we previously have
to clarify the class of probability distributions M to which we restrict our analysis.
The natural question arising, before starting the consistency analysis of a given al-
gorithm, is that of the best attainable rates under the prior assumption ρ ∈M. The
answer to this question is then given in term of minmax optimality results, that is
studying lower bounds of the quantity

inf
fz

sup
ρ∈M

[E(I[fz]− I[fH])]

where the infimum is taken w.r.t. all the possible learning algorithms z → fz.
Usually the class M is characterized through some assumption on the minimizer
fH, for example smoothness or approximability properties. In [4] upper and lower
bounds for RLS are proposed in the case where fH has approximability properties
in a RKHS.

After recalling some basic concepts about RKHS we briefly review the main results
in [4] that we develop in the following sections.

2.1 RKHS and Covariance Operators

We briefly recall some ideas on RKHS we use in the following (see [1] for a broader
introduction to the subject). A RKHS is a Hilbert space of functions uniquely
defined by a symmetric positive definite function K : X × X → IR, namely the
kernel. We say that K is positive definite if for all m > 0, x1, . . . xm ∈ X and
c1, . . . cm ∈ IR the following inequality holds

m∑

i,j=1

cicjK(xi, xj) ≥ 0.

We will assume throughout that the kernel is bounded, that is

sup
x∈X

K(x, x) ≤ κ.

It will be useful to recall that the following operators are naturally defined

• Covariance operator T : H → H

T :=
∫

X
〈·,Kx〉HKxdρX(x).

• Empirical covariance operator Tx : H → H.

Tx :=
1
`

∑̀

i=1

〈·,Kxi〉HKxi ,
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where we set Kx = K(·, x) and x = (xi)`
i=1. The operators T and Tx can be proved

to be positive, self-adjoint, Hilbert-Schmidt and trace-class (see, for example, the
appendix in [9]).

2.2 Optimal a Priori Choice for Regularized Least Squares

We now recall the results in [4] about RLS algorithm that we develop in the following
sections.

Since we look for convergence rates we first clarify the assumptions on the proba-
bility measure ρ we consider. To this aim we define the family of priors

F(a,R) := {f ∈ H | T−af ∈ H with
∥∥T−af

∥∥
H ≤ R},

where a ∈ (0, 1/2] and R > 0. Moreover we consider the population version of the
RLS algorithm and let fλ be the solution of the problem

min
f∈H

{
∫

X×Y
(y − f(x))2dρ(x, y) + λ ‖f‖2

H}.

If we let ‖·‖ρ be the norm in the space of square integrable functions with respect
to ρ, according to [4] we can define the following quantities:

A(λ) :=
∥∥∥fλ − fH

∥∥∥
2

ρ
B(λ) :=

∥∥∥fλ − fH
∥∥∥

2

H

measuring the approximation error in the norm ‖·‖ρ and in the norm ‖·‖H respec-
tively. Moreover we define the effective dimension

N (λ) := Tr[(T + λ)−1T ]

which plays the role of a capacity measure for the RLS algorithm. When fH ∈
F(a,R) the following inequalities hold

A(λ) ≤ λc
∥∥T−af

∥∥2

H , B(λ) ≤ λc−1
∥∥T−af

∥∥2

H , (2)

where c = 2a + 1 (see Lemma 6 in [4]). Moreover if the eigenvalues (tn)∞n=1 of the
operator T fulfill tn = O(n−b) for some b > 0 then

N (λ) = O(λ−1/b), (3)

see again Lemma 6 in [4]. Finally we recall that the stochastic order symbol is
defined by the following equivalence [15]

X` = OP (h`) ⇔ lim
D→0

lim
`→∞

supP [ |X`| > Dh`] = 0.

The following theorem summarizes the main result in [4].

Theorem 1 Let z be a training set drawn i.i.d according to ρ and fλ
z the RLS

estimator.
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(1) Let 0 < η < 1. If

` ≥ Cηκ

2λ
max{N (λ),

√
2/Cη}

then with probability greater than 1− η,

I[fλ
z ]− I[fH] ≤ Cη

(
A(λ) +

κ2B(λ)
`2λ

+
κA(λ)

`λ
+

κM

`2λ
+

MN (λ)
`

)

where Cη = 128 log2(8/η).

(2) Assume fρ ∈ F(a, R), a ∈ (0, 1/2] and that the eigenvalues (tn)∞n=1 of the
operator T fulfill tn = O(n−b) for some b > 0. If we choose the unique value
λ0 = λ0(`) such that

N (λ0) = `λc
0

then
I[fλ0

z ]− I[fH] = OP (`−
cb

cb+1 ) (4)

where c = 2a + 1.

Remark 1 The rate in (4) can be shown to be optimal in a minmax sense with
respect to the considered class of probability distributions [4].

Remark 2 If the hypothesis space H is finite dimensional then the convergence
rate is `−1.

3 Empirical Effective Dimension

In this section we show that effective dimension can be empirically estimated from
a set of unlabelled data.

Definition 1 Let x = (x)m
i=1 a set of m inputs. We define the empirical effective

dimension as
Nx(λ) := Tr[(Tx + λ)−1Tx].

The main result of this section is the following concentration result relating the
effective dimension to the empirical effective dimension.

Theorem 2 Let λ > 0, m ∈ N and x = (x)m
i=1 a set of m input values drawn i.i.d.

according to ρX . Let 0 < η < 1, ∆ > 0 if

m ≥ Γ(∆, η, λ) :=
(

4
κ

λ∆

(
1 +

κ

λ

)
ln

2
η

)2

.

the following inequality holds with probability 1− 2η

|N (λ)−Nx(λ)| ≤ ∆.
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3.1 Proof

To prove the above theorem we need the following probabilistic inequality for ran-
dom variables in Hilbert spaces due to [12]. We use in particular the following simple
restatement of of Th. 3.3.4 of [17], whose proof can be found in [4].

Lemma 3 Let (Ω,F , P ) be a probability space and ξ be a random variable on Ω
taking values in a real separable Hilbert space K. Assume that there are two positive
constants H and σ such that

‖ξ(ω)‖K ≤
H

2
a.s (5)

E[‖ξ‖2
K ]≤ σ2. (6)

Let ` ∈ N and 0 < η < 1, then

P`

[
(ω1, . . . , ω`) ∈ Ω` |

∥∥∥∥∥
1
`

∑̀

i=1

ξ(ωi)− E[ξ]

∥∥∥∥∥
K

≤
(

H

`
+

σ√
`

)
2 log

2
η

]
≥ 1− η. (7)

We can now prove Theorem (2).

PROOF. We first claim that

|N (λ)−Nx(λ)| = |Tr((T + λ)−1T − (Tx + λ)−1Tx)| ≤ ∆N1(x) + ∆N2(x), (8)

where

∆N1(x) = Tr((T + λ)−1(T − Tx)) and ∆N2(x) =
κ

λ2
‖T − Tx‖

where ‖·‖ is the norm in the Banach space of linear bounded operators form H to
H. We start by considering the following simple algebraic equalities

(T + λ)−1T − (Tx + λ)−1Tx = (9)
(T + λ)−1(T − Tx) + [(T + λ)−1 − (Tx + λ)−1]Tx =
(T + λ)−1(T − Tx) + (T + λ)−1(Tx − T )(Tx + λ)−1Tx.

Recalling that ∥∥(T + λ)−1
∥∥ ≤ 1

λ

∥∥(Tx + λ)−1
∥∥ ≤ 1

λ

we have

Tr((T + λ)−1(Tx − T )(Tx + λ)−1Tx) (10)

=
1
m

m∑

i=1

〈
(T + λ)−1(Tx − T )(Tx + λ)−1Kxi ,Kxi

〉
H ≤

κ

λ2
‖T − Tx‖ ,
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and (8) follows by taking the trace of (9) and using Inequality (10).

To finish the proof we need to give probabilistic bounds on ∆N1(x) and ∆N2(x),
to this purpose we are going to use Lemma 3. We first give the bound on ∆N1(x).
Let us consider the random variable ξ1 : X → IR

ξ1(x) :=
〈
Kx, (T + λ)−1Kx

〉
H .

It is straightforward to check that

|ξ1(x)| ≤ κ

λ

and moreover

1
m

m∑

i=1

ξ1(xi) = Tr((T + λ)−1Tx) E[ξ1] = Tr((T + λ)−1T ).

We can then apply Lemma 3 with H = σ = κ/λ to get with probability greater
than 1− η

∆N1(x) ≤ 2κ

λ
ln

2
η

(
1
m

+
1√
m

)
.

Finally we study the bound on ∆N2(x). Recall that both T and Tx are Hilbert-
Schmidt operators so that we can apply Lemma (3). If we let L2(H) be the space
of Hilbert-Schmidt operators from H to H and we denote with ‖·‖L2(H) the Hilbert-
Schmidt norm the uniform norm is dominated by the norm ‖·‖L2(H). Then we can
introduce the random variable ξ2 : X → L2(H)

ξ2(x) := 〈·,Kx〉HKx.

Again it is easy to check that
‖ξ2‖L2(H) ≤ κ

and moreover
1
m

m∑

i=1

ξ2(xi) = Tx E[ξ2] = T.

Applying Lemma 3 with H = σ = κ we get with probability greater 1− η

∆N2(x) ≤ 2κ2

λ2
ln

2
η

(
1
m

+
1√
m

)
,

and the theorem is proved.

4 Optimal parameter choice in Semi-supervised Setting

In Theorem 1 to define an optimal a priori choice for the regularization parameter
for a given prior we need to know the effective dimension N (λ). In a semi-supervised
setting we can use the concentration result of the previous section to replace N (λ)
with an empirical estimate based on unlabelled data. The goal of this section is to
show that using such an estimate we can define a data-dependent parameter choice
achieving the optimal convergence rate.
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4.1 Main Result

Recall that if we know N (λ) we can choose the value λ0 according to Theorem
1 to achieve the optimal rate. The idea behind our parameter choice is to replace
N (λ) with an approximation based on unlabelled data. Roughly speaking, to ensure
that the parameter choice based on unlabelled data is still optimal we have to
suitably control the quality of the empirical estimate for N (λ). To clarify this we
let 0 < α− < 1 < α+ be two fixed constants and define the values λ+

` and λ−` such
that

α+N (λ+
` ) = `(λ+

` )c and α−N (λ−` ) = `(λ−` )c. (11)

It is possible to show that if we choose either λ+
` or λ−` we get the same convergence

rate as choosing λ0. Intuitively we want our estimates for N (λ) to lie, with high
probability, between α+N (λ) and α−N (λ) for each value of λ. In this case we expect
to be able to select λ so that the good asymptotic properties are maintained.

We now formalize the above idea. The first step toward the definition of our para-
meter choice rule is to consider a suitable discretization criterion for λ. This is most
reasonable from a practical point of view and will not prevent us to obtain optimal
convergence results. The following assumption describe the discretization procedure
that we are going to consider.

Assumption 1 We discretize the possible values for the regularization parameter
considering 0 < λk ≤ λk−1 with k = 1, 2, . . . such that

λk ≥ qλk−1. (12)

The following assumption describes the regularization parameter choice we consider.

Assumption 2 We assume the index k(`) ∈ N be such that if we let λ̂+
` := λk(`)

and λ̂−` = λk(`)−1 then, the following conditions hold true

α−N (λ̂+
` ) ≤ `(λ̂+

` )c and α+N (λ̂−` ) ≥ `(λ̂−` )c. (13)

In Section 4.3 we show how to actually find λ̂+
` in an iterative way. Next theorem

shows that choosing λ = λ̂+
` we can actually achieve the same rate of the optimal

value λ0.

Theorem 4 Under the same hypotheses of Theorem 1 Item 2, if Assumption 1
holds and the random variables (k(`))`∈N, with values on N, fulfill Assumption 2 with
probability greater than 1− η̄(`) for some η̄(`) → 0. Then defining λ` := λ̂+

` := λk(`)

one has
I[fλ`

z ]− I[fH] = OP (`−
cb

cb+1 ) (14)

where c = 2a + 1.
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4.2 Proof

Before giving the proof of Theorem (4) we collect a few simple results on our para-
meter choice in the following Lemma.

Lemma 5 Let λ̂+
` , λ̂−` as in Assumption 2 and λ+

` , λ−` as in (11). Then

(1) the following inequalities hold

λ̂+
` ≥ λ−` and λ̂−` ≤ λ+

` . (15)

(2) λ̂+
` → 0 as ` →∞.

(3) The following inequality holds true

(λ̂+
` )c +N (λ̂+

` )/` ≤ (qc + (α−)−1)(λ+
` )c (16)

.

PROOF. We first prove Item 1 by contradiction. If we let λ̂+
` < λ−` then

N (λ̂+
` ) ≥ N (λ−` )

so that by Assumption 2

α−N (λ−` ) ≤ `(λ̂+
` )c < `(λ−` )c

which is impossible because of (11). Similarly one can prove that λ̂−` ≤ λ+
` . The

proof of Item 2 follows from Item 1 and Assumption 1, In fact we have

λ̂+
` ≤ qλ̂−` ≤ qλ+

`

and the proof follows since λ+
` → 0 as ` →∞. Finally from Assumption 1 and Item

1 we have
(λ̂+

` )c ≤ qc(λ̂−` )c ≤ qc(λ+
` )c

and from Item 1 and (11)

N (λ̂+
` )/` ≤ N (λ−` )/` = (α−)−1(λ−` )c ≤ (α−)−1(λ+

` )c.

Putting the above inequalities together we get (16)

We are now ready to prove Theorem (4).

PROOF. [Theorem 4] The proof is similar to that of Theorem (1) Item 2 (see [4]).
We assume that k(`) is a random variable fulfilling Assumption 2 with confidence

10



level 1− η(`) where η(`) → 0 as ` →∞. Recall that c > 1, if we let 0 < η < 1 then
with confidence level at least 1− η(`)

`λ̂+
` = `(λ̂+

` )1−c(λ̂+
` )c ≥ (λ̂+

` )1−cα−N (λ̂+
` ).

Since 1− c < 0, from Lemma (5) Item 2 we know that it exists `(η) ∈ N such that

P

[
` ≤ Cηκ

2λ̂+
`

max{N (λ̂+
` ),

√
2/Cη}

]
≤ η(`)

for ` > `(η). If we now consider to choose the value λ̂+
` then we have

P

[
X` > Cη

(
A(λ̂+

` ) +
κ2B(λ̂+

` )

`2λ̂+
`

+
κA(λ̂+

` )

`λ̂+
`

+
κM

`2λ̂+
`

+
MN (λ̂+

` )
`

)∣∣∣λ̂+
`

]
≤ η

where Cη = 128 log2(8/η) and X` = I[f
λ̂+

`
z ] − I[fH]. Using Lemma 6 in [4] we can

simplify the form of the above bound. In fact it is easy to show (see the proof of
Theorem (1) in [4]) that asymptotically the first and the last term in the bound
prevail so that a positive constant C

′
and a natural number `

′
(η) exist for which

P

[
X` > C

′
Cη

(
A(λ̂+

` ) +
N (λ̂+

` )
`

)∣∣∣λ̂+
`

]
≤ η, ∀` > `

′
(η).

If we now apply (2) and Lemma (5) Item 3, we can rewrite the above bound using
stochastic order symbol [15]. In fact a positive constant C

′′
exist for which

P
[
X` > D(λ+

` )c
] ≤ 8e−

√
D/128C

′′
+ η(`),

if D > 128C
′′
(qc + (α−)−1) log2 8 and ` > `

′′
(D), then we have

I[f
λ̂+

`
z ]− I[fH] = OP

(
(λ+

` )c
)
.

Recalling (see again Lemma 6 in [4]) that if the eigenvalues of T satisfy tn = O(n−b)
then N (λ) = O(λ−

1
b ), from the definition of λ+

` we have

`(λ+
` )c = O((λ+

` )−
1
b )

which implies (λ+
` )c = O(`−

bc
bc+1 ) and the theorem is proved.

4.3 Model Selection from Unlabelled Data

In this section we present an explicit procedure to find from unlabelled data the
index k(`) satisfying Assumption 2 with a given confidence level 1 − η̄(`). The
corresponding regularization parameter choice λ` := λ̂+

` := λk(`) plays the central
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role in Theorem 4. The fundamental condition to accomplish our scheme is to have
unlabelled data available, from now on we indicate with

unlabelled(m) → x with |x| = m (17)

the procedure providing us with m ∈ N unlabelled examples.

First we describe the procedure that for each value of λ provides us with the ap-
proximation of N (λ) we need for a fixed confidence level 1 − η and relative error
0 < δ < 1. We let

Γ(∆, η, λ)

as in Theorem (2) and recall that

Nx(λ) = Tr((Tx + λI)−1Tx) = Tr((K + λI)−1K).

where Kij = k(xi, xj). We now first give the procedure eff_dim(λ, η) and then
briefly explain it.

eff_dim(λ, η)

• j = 1

• do unlabelled(Γ(2−j , 2−(j+1)η, λ)) → x;j+=1

• until Nx(λ) ≥ 2−j+1

• unlabelled(Γ(2−jδ, 2−1η, λ)) → x

• return Nx(λ)

It is easy to show, applying theorem 2, that with probability greater than 1 − η,
N , the output of eff_dim(λ, η), is bounded from above and from below in terms
of N (λ), formally we have

P [ (1− δ)N (λ) ≤ N ≤ (1 + δ)N (λ)] ≥ 1− η,

where δ is the constant appearing in the text of eff_dim.

eff_dim is called by the procedure mod_sel given below. mod_sel(`, η) returns
the integer k(`) fulfilling with confidence level 1 − η Assumption 2 used in the
previous section. The idea behind the procedure is simply exploring the grid (λk)k

until a crossing between the approximation term `λc and our estimate of N (λ)
is encountered. Clearly this strategy is performed while properly controlling the
accuracy of the estimate of N (λ) and its confidence level.
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mod_sel(`, η)

• k, j = 1

• σ = sign(eff_dim(λk, 2−1η(`))− `(λk)c)

• do k = k + σ; j+ = 1

• until σ(eff_dim(λk, 2−jη(`))− `(λk)c) ≥ 0

• return k + σ−1
2
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