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Abstract

This paper bridges the gap between variable selection methods (e.g., Pearson coefficients, KS test) and dimensionality reduc-
tion algorithms (e.g., PCA, LDA). Variable selection algorithms encounter difficulties dealing with highly correlated data,
since many features are similar in quality. Dimensionality reduction algorithms tend to combine all variables and cannot
select a subset of significant variables.

Our approach combines both methodologies by applying variable selection followed by dimensionality reduction. This
combination makes sense only when using the same utility function in both stages, which we do. The resulting algorithm
benefits from complex features as variable selection algorithms do, and at the same time enjoys the benefits of dimensionality
reduction.1
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1 Introduction

The question of which kind of measurements to use is
fundamental to the design of any visual learning system,
whether it is a supervised system or not. Since gray level
features are sometimes limited in learning objects, e.g.
faces [18], often other, more informative variables are used.
Examples include wavelets [16], wavelet-like features [22]
and statistics of pixels around interest points [7, 12].

These highly informative measurements can be exploited
in the supervised case by feeding them directly into a clas-
sifier, as done in the above citations. Alternatively, one
can compute the mutual information (or other scores) be-
tween the labels and single variables [21] or subsets of the
variables [17]. These methods and other variable selec-
tion methods benefit from having a set of informative fea-
tures. However, dimensionality reduction algorithms, such
as PCA and FDA, do not, in general, benefit from using
informative, uncorrelated features. A wavelet transform,
for example, can be seen as a rotation in the input space
[10], which no distance based algorithm (e.g., PCA, LDA,
ISOMAP, LLE) benefits from.

On the other hand, while dimensionality reduction algo-
rithms do well on sets of correlated features, variable se-
lection methods perform poorly. They fail to pick relevant
variables, because the score they assign to correlated fea-
tures is too similar, and none of the variables is strongly
preferred over another.

Hence, variable selection and dimensionality reduction
algorithms have complementary advantages and disadvan-
tages. Dimensionality reduction algorithms thrive on corre-
lation between variables but fail to select informative fea-
tures from a set of more complex features. Variable selec-
tion algorithms fail when all the variables are correlated but
do well with informative variables. The scheme we propose
is simple: first extract informative features from the data.
Then, apply a variable selection algorithm. Last, apply di-
mensionality reduction to extract the most informative di-
rections. The key point here is to use the same optimization
function at all stages. This guarantees that the maximization
of the dimensionality reduction stage is not undermined by
the feature selection stage but instead benefits. When com-
bining a random pick of a feature selection algorithm with a
dimensionality reduction algorithm, the resulting optimiza-
tion is not clear. We show in the experiments that in this
case the results are considerably worse.

The combined optimization function searches for the
variable selection that maximizes the information content
of the data’s most informative directions. We use a simple
algebraic definition, which similar to principle component
analysis (PCA), uses the variance of a direction as its in-
formation content score. Instead of strict (binary) variable
selection, which makes our optimization an intractable enu-

meration problem, we suggest a variable weighting scheme.

2. Motivation
We find that the role of feature selection is not well under-
stood, even by some very experienced researchers. For ex-
ample, many people believe that SVM will always pick a
hyperplane which uses only the relevant features because “it
chooses the best hyperplane”. A more sophisticated claim
would say that the generalization ability of the SVM de-
pends on the margin, which does not change with the ad-
dition of irrelevant features. These claims ignore, however,
the dependence of the SVM performance on the radius of
the data, which increases with the number of features. More
background on variable selection in the supervised setting
can be found in [3, 23].

Since there are fewer algorithms for feature selection in
the unsupervised setting, this case is even less understood.
In Fig. 1, we demonstrate the importance of feature selec-
tion when combined with PCA. The data was generated by
two 3D Gaussians with random parameters. Additional 200
dimensions were generated in a similar manner. These di-
mensions were each permuted separately, to remove any
class membership information in those dimensions2.

As can be seen from Fig. 1, PCA does not perform well
in the presence of the irrelevant features, i.e it fails to sepa-
rate the clusters. An application of the simple Algo. 2 pre-
sented below solves the problem, and the good separation
between the clusters is clear. This was done without using
any label information.

The loss of rotation invariance. The algorithms we use
in this work weight each feature separately. They are not
invariant to the change of coordinates. This might seem
troubling at first, as PCA and LDA are both kernel methods
(methods that depend only on the similarity matrix (kernel)
between every two data points) and enjoy invariance to uni-
tary transformations of the data. However, in the context of
feature selection, it can be shown that rotation invariance is
not a desirable property.

For the supervised case, Ng [15] has shown that for any
rotationally invariant classification algorithm, there exist at
least one classification problem that is solvable by simply
thresholding one variable, but which cannot be learned by
this algorithm with a reasonably sized dataset: The required
size will be linear in the total number of features, while
some feature selection algorithms will need only the loga-
rithm of it. In the unsupervised case, the situation is similar.
If an algorithm is rotationally invariant, then all of the infor-
mation except the data’s dimension is contained in the dis-
tances between every two points (i.e, in the kernel matrix).

2Matlab: M = [rmvrnd(rand(203, 1)−0.5, diag(rand(203, 1)+
.5, 50))′,mvnrnd(rand(203, 1) − 0.5, diag(rand(203, 1) +
.5, 50))′];fori = 4 : 203, M(i, :) = M(i, randperm(100));
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Figure 1: This figure demonstrates the importance of feature selection in the unsupervised setting, and that even though our algorithms
and PCA use similar optimization functions, they are very different in their capabilities of dealing with irrelevant variables: (a) Three
relevant dimensions out of 203. The rest of the dimensions are similar but were permuted to remove any class membership information;
(b) The first 2 principle components of only the 3 relevant dimensions; (c) PCA of the whole 203 dimensions; (d) The results of applying
PCA after weighting according to the α weights recovered by Algo. 1.

However, the kernel matrix is corrupted by the irrelevant
features. In fact, for a linear kernel, where the similarity
between every two points is just the dot product, the ker-
nel matrix is the sum of the kernel matrix of the relevant
features, and of that of the irrelevant features. Decompos-
ing the kernel back to the two matrices is almost impossible
when dealing with a large number of irrelevant features.

Using random matrix theory, we can try estimate the
severity of the situation. Let our q data points be repre-
sented as the columns of the matrix M = [M1>,M2>]>,
where M1 is an n1 × q matrix containing the n1 relevant
variables of our data, and M2 is an n2×q matrix containing
the irrelevant data. Assume further that every feature (row
of the matrix M ) is normalized to have a variance of 1. The
kernel matrix A = M>M , is the sum of A1 = M>

1 M1 and
A2 = M>

2 M2 (throughout this work A will denote such a
kernel matrix of the form A = M>M , and B will denote
its dual – the covariance matrix B = MM>. In many cases
we will use the fact that they share the same eigenvalues to
switch between the two).

In what is the ideal situation for most spectral clustering
algorithms, the relevant data is composed out of two equally
sized very tight clusters. These clusters would be centered
around two points positioned as far as possible from each
other in<n1 , e.g, one cluster might contain q/2 points equal
to [1, 1, ..., 1]>/sqrt(q), and the other cluster might con-
tain q/2 copies of the point [−1,−1, ...,−1]>/sqrt(q). The
kernel matrix of the relevant data A1 will be a rank 1 matrix
with an eigenvalue n1.

Assume now that in our ideal situation, the irrelevant
variables (the elements of the matrixM2) are i.i.d zero mean
Gaussians with variance 1/q (so the variance of each row
has an expectation of 1). The matrix A2 here is called a
Wishart matrix, and its first eigenvalue distributes with a
mean of n2/q

2(
√
n2 +

√
q)2 [8].

Let v1 be the only eigenvector of A1 with a positive
eigenvalue. Rotating M2 by multiplying it from the right
with a q × q rotation matrix R, would not change its dis-
tribution (follows from the basic properties of Gaussians).
Hence v>1 A2v1 has the same distribution as e>1 A2e1, e1 be-
ing a vector of 1 followed by q − 1 zeros. Thus, v>1 A2v1

has the same distribution as the top left element of A2. This
element is just the square norm of a vector of n2 random
Gaussians with mean zero and variance 1/q, and distributes
according to a Chi-squared distribution around a mean of
n2/q

2.
Since v>1 Av1 = v>1 A1v1+v

>
1 A2v1, it distributes around

a mean of n1 + n2/q
2. Similarly, let u1 be the first eigen-

vector of A2. Then u>1 Au1 ≥ u>1 A2u1, which concen-
trates around n2/q

2(
√
n +

√
q)2. When n1 + n2/q

2 <<
n2/q

2(
√
n2 +

√
q)2, v1 is not distinguishable from u1 and

any unsupervised kernel method would fail.
The situation is worse in less ideal cases, where the real

data is noisy, and the irrelevant data has a non-random struc-
ture. When the number of irrelevant features grows, rota-
tionally invariant algorithms will fail since they only see
the matrix A. Non rotationally invariant algorithms can
identify a group of features that lead to a decomposition
A = A1 + A2 such that A1 is not likely to be a random
matrix and A2 is likely to be a random matrix.

3. Weighting Variables for Unsupervised Di-
mensionality Reduction

Given a dataset where each example is a vector in <n, our
goal is to weigh the variables such that the most informative
directions in the reweighed data contain as much informa-
tion as possible. Similarly to the PCA approach, we use the
variance along this direction as a score for its information
content. We combine these scores for the dataset’s k most
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informative directions to obtain the information content of
the whole dataset.

Let M be our data matrix with n rows, each represent-
ing a variable, and q data samples as columns. We then
weigh each variable i by a positive weight

√
αi

3. Let
D = diag(

√
α) be the diagonal weighting matrix and let

M̃ = DM be our reweighed data matrix.
A projection of the weighted data onto a direction vec-

tor w (a vector on the n-dim sphere) produces a new vari-
able v = wT M̃ with variance

∑k
i=1(v(i) − v̄)2. Since we

are only concerned with the variances, we can subtract the
average of each variable from the data matrix and assume
that the mean of each row in M is 0. Therefore, the means
of each row in M̃ are also zero, as well as the mean of v.
Hence, the variance of the new variable v is given by the
simple dot product vT v.

We wish to find a norm 1 weight vector α and k or-
thonormal directions W = [w1|w2|w3|...|wk] which maxi-
mize the score: ||(var(v1), var(v2), ..., var(vk))||2, where
vi = wTi M̃ , i = 1..k are the projections of the weighted
data onto those directions.

This is equivalent to maximizing
∑k

i=1(var(w
T
i DM))2 =

∑k
i=1(w

T
i DMMTDwi)

2 =

=
∑k

i=1 w
T
i (DMMTD)(DMMTD)wi. Setting the

matrix Bα = DMMTD, this amounts to maximizing
trace(W TBαBαW ) = ||WTBα||2F .

This trace is maximized for any fixed α when W is just
the first k columns ofU , andUdiag([σ1, σ2, ..., σn])U is the
SVD of the matrixBα

4[9] . The values of the maximization
function would in that case be:

∑k
i=1 σ

2
i .

The singular values of the positive definite matrix Bα =
M̃M̃T are just its eigenvalues. These eigenvalues are the
squares of the singular values of the matrix M̃ , which are
also the square roots of the eigenvalues of Aα = M̃T M̃ =
MT diag(α)M .

This relation between the right and left singular values
of the matrix M̃ is similar to the use of the kernel trick for
many algorithms. The pairs of matrices Aα/Bα and Q/W
are pairs of duals for this optimization problem. By this du-
ality we can maximize the expressions involving Bα with-
out having to deal with the square roots in the matrix D.

From the above discussion, the maximization of
trace(W TBαBαW ) subject to W being orthonormal and
α having a norm of 1, is equivalent to the maximization of
trace(QTAαAαQ) for an orthonormal Q and the same α.
An algorithm for this optimization problem was suggested
in [24], where the problem of finding a set of features which
is optimal for clustering into k clusters was considered. This
algorithm is termed the Q− α algorithm, and is embedded

3The representation of the vector α as the vector of the element wise
squares of the actual weights (

√

α) is done in order to make the resulting
optimization problem bilinear.

4W can be any other orthonormal basis of this k-dim subspace as well.

in step two of the algorithm below.

Algorithm 1 (Weighting for PCA) Let N be an n × q in-
put matrix. Perform the following steps:

1. Center the data to have a mean of 0 and normalize it to have
a norm of 1 in each variable. Let M be the normalized data
matrix, with rows m>1 , ...,m

>

n .

2. Let Q(0) be some orthonormal q × k matrix. Perform the
following steps with iterations index r = 1, 2, ...:

(a) Let G(r) be a matrix whose (i, j) components are

(m>i mj)m>i Q
(r−1)Q(r−1)>mj .

(b) Let α(r) be the leading eigenvector of G(r).

(c) Let A(r) =
∑n

i=1
α

(r)
i mim>i .

(d) Let Q(r) be the first k eigenvectors of Aα.

(e) Increment index r and go to step a.

3. Reweight the data M̃ = diag(
√
α)M .

4. Compute the Principle Components W of the matrix M̃ .

From the discussion in [24], the resulting weight vec-
tor α would be sparse and composed out of positive ele-
ments. Note that although our goal is somewhat different
than the one suggested there (increasing information con-
tent, and not supporting k good clusters), we get a similar
algorithm. The main difference is the centering of the data,
which seems to have a large significance in practice.

3.1. A parameter free algorithm

Algo. 1 above is an iterative algorithm which converges to
a local maxima. This iterative nature allows it to search
for a subset of features among a large amount of irrelevant
data. However, sometimes we might prefer a non-iterative
algorithm which is guaranteed to return the same solution in
every run. Also, in many situations we are willing to sacri-
fice some accuracy of the returned weights for the ability to
work faster with many more variables. The algorithm pre-
sented next is an approximation of Algo. 1 which archives
both goals, and is also parameter free.

The basic idea behind the approximation algorithm is
simple. When we optimize for second order expressions
like

∑k
i=1(var(w

T
i DM))2, those components with the

largest values are going to dominate the expression. For
that reason, the result is not going to change much whether
we are optimizing the first k most informative directions,
or any l > k most informative directions. The score we
maximize is probably going to remain high for successful
weighting and low for unsuccessful ones. Moreover, most
of the time we do not have any information about the cor-
rect parameter k in advance, and we might want to increase
the information content in all possible directions.

Based on these intuitions we explore the case where
k = min(q, n). Since the trace of a matrix is the sum
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of its eigenvalues, the optimization problem of maximizing
trace(QTAαAαQ) becomes maximizing trace(AαAα) =
trace(MT diag(α)MMT diag(α)M). This expression is bi-
linear in α and can be written as maximizing αTHα, where
Hij = trace(mim

T
i mjm

T
j ) = (mT

i mj)trace(mim
T
j ) =

(mT
i mj)

2.

Algorithm 2 (Parameter Free Weighting for PCA) Let
M be an n× q normalized and centered input data matrix.
Perform the following steps

1. Let H = (MMT ).2, where the .2 means taking the square
of each element separately.

2. Let α be the leading eigenvector of H .

3. Re-weight the data and apply PCA on M̃ = diag(
√
α)M

We implement both steps of the algorithm in a parallel
scheme. In each stage, only a part of the matrix H is loaded
into memory. This enables us to handle up to 105 features
and hundreds of data points, while still maintaining a rea-
sonable running time.

The results of Algo. 2 are less sharp than those of Algo.
1. The ratio of the average weights between the relevant and
irrelevant features is lower with parameter free algorithm.
An example is shown in Fig. 2. In this experiment, the first
3 variables are chosen from 4 multivariate normal distribu-
tions with diagonal covariance matrices. The remainder of
the 200 variables are selected from the same distributions
but are each permuted independently. In this way, the re-
maining 200 features give no information about the under-
lying cluster from which the data points stem. As it follows,
the assignment of weights by taking the first PCA of the
data is uninformative for feature selection purposes. Algo.
1 assigns very high weights to the relevant variables, and
much less to the rest. Algo. 2 successfully detects the rele-
vant variables, but assigns somewhat higher weights to the
irrelevant variables.

4. Supervised variable selection for FDA

We next describe how to handle the supervised case. In [24]
a different solution is suggested using a kernel as close as
possible to the ideal block diagonal kernel. Here we take
a different approach, viewing the matrix Aα as the ker-
nel for a Kernel Fisher’s Discriminant (KFD) analysis [14].
The kernel case of Fisher Discriminant Analysis (FDA) was
treated in the past for two class classification and for regres-
sion. We extend it to the multi-class case, then match it with
the appropriate variable selection. Due to space constraints,
the derivations are moved to the appendix.

Algorithm 3 (Supervised Variable Selection) Let M be
an n × q input data matrix containing samples from l
classes. Let M (i) be an n× qi matrix containing only those
samples taken from class i. Perform the following steps
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Figure 2: Comparison of on a synthetic dataset where the first 3
variable are relevant. Only the first 50 variables are shown. Algo. 1
produces sharper results than Algo. 2. The first PCA does not
detect the relevant variables.

1. Perform an eigen-decomposition of the matrix A =
MTM = EDET

2. Compute the means µ = 1
q
M1q , µ(i) = 1

qi
M (i)1qi

3. Let H =
∑l

i=1
qi((MED−1ETMT ). ∗ (µµT −µ(i)µT −

µµ(i)T + µµT )), where the .∗ means multiplying each ele-
ment separately

4. Let G =
∑l

i=1
qi((MED−1ETMT ). ∗ (M (i)M (i)T −

qiµ
(i)µ(i)T ))

5. Let α be the leading eigenvector of H − λG

5. Analysis
The choice of the optimization criteria. The optimization
criteria used for the weighting is based on a simple algebraic
definition of an informative score of a data matrix. It gives
rise to a simple quadratic form which is easy to solve. De-
scribed using the eigenvalues σ1, σ2, ... of the matrix Bα,
the optimization criteria simply becomes

∑k
i=1 σ

2
i . This

utility function is closely related to the square loss function
in the supervised case. In general, we can try to optimize
similar utility functions

∑k
i=1 f(σi), where f is any (mono-

tonic) function.
For simplicity, we are going to refer in the discussion

below only to the case where k = min(q, n) (the case of
Algo. 2). If F is the matrix version of the function f then it
is easy to show that trace(F (B)) =

∑
i f(σi). The result-

ing optimization problem might be hard to solve directly.
However, it can be approximated using the Taylor series of
the function f up to any order. If there are not too many
variables, one can use quadratic programming in order to
solve these approximations.
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Why not use f(x) = x ? There is a special case where
the function f is the identity function. This choice of f
would result in a weighting scheme that simply tries to max-
imize the trace of the kernel matrix Aα. The problem would
transform into max αTu where each element of the vector
u is just ui = trace(mim

T
i ) = mT

i mi. The maximum is
obtained when α = u√

uTu
.

However, kernels with a large trace (such as those re-
turned by the previous optimization criteria) are bad for
generalization [4] (this is not obvious without reading the
reference. As an intuition: for kernels with large elements
along the diagonal, each point is separated from all other
points). Since generalization is crucial for unsupervised
feature selection, just as it is in the supervised case, we
would like to achieve good clustering, but we would not
like to use a kernel Aα that supports any random clustering.

Note that in both Algo. 1 and Algo. 2, the trace of the
kernel (Aα) is controlled by the constraint on α. The trace
of the kernel is the same as the trace of the covariance ma-
trix Bα. The covariance matrix is a sum of rank-1 matrices,
each with a trace of 1 (all features are normalized to have
a norm of 1) but weighted by a corresponding weight α2

i .
Since the trace operator is linear, the trace of the covariance
matrix is the same as the norm of the vector α, which is
constrained to be 1.

Why use f(x) = x2 ? Recall from Sec. 2 that the
main clue to help us identify whether a kernel matrix
A is good is that A should not seem random. Hence,
we can turn to random matrix theory to help us define
a good kernel. The Gaussian Ensemble (GE) is proba-
bly the most basic symmetric random matrix. It is de-
fined as a family of real symmetric n × n matrices A such
that the upper triangular elements are independent Gaus-
sians with zero-mean and variance 1 along the diagonal,
and variance 1/2 elsewhere (Matlab: A = randn(n);
A = (A+A’)/2;). Given a matrix A we can verify its
probability to be in this family simply by computing the
product of all the (n2 + n)/2 independent Gaussians, i.e.,
P (A ∈ GE) ∼ Πi<je

−Aij/4Πie
−Aii/2 = Πi,je

−Aij/2 =

e||A||
2

F /2. Hence, the probability of a matrix A being ran-
dom is proportional to the exponent of the square of its
Frobenius norm. Recall that ||A||2F = trace(AA>), which
is the sum of the eigenvalues of AA>, which for a sym-
metric matrix, is the sum of the squares of its eigenvalues.
Hence, a matrix with a high sum of squared eigenvalues is
not likely to be a random GE matrix. This gives a direct
motivation to the use of this score. In order to handle the
k < n case of Algo. 1, we add the assumption, common to
spectral techniques, that the information is contained only
in the matrix elements which are spanned by the first few
eigenvectors of it. Hence, if Q is the n × k matrix holding
the eigenvectors of A, and recall that QQ> is the projection
matrix to the linear subspace spanned by the columns of Q,

then if QQ>A has a high score it is unlikely to be random.
In this case, the score is only approximated, since the el-
ements of QQ>A are not independent, even for a random
matrix.

6. Experiments
Face Recognition. We first applied our methods to per-
form face recognition. We used two publicly available
datasets: the YALE dataset [25] and the AR dataset [13].
The YALE dataset contains 15 different persons, each one
photographed 11 times under different illumination, under
different expression and with or without glasses. For the
AR dataset we used only the 50 males, each having 14 im-
ages. For both datasets we created 20 instances of similar
experiments, where 3 images per person were picked ran-
domly to be the training set for that person. The rest served
as test set.

We compared several algorithms: The eigenface method
[20] which uses PCA to reduce the dimension of the face
images; the fisherface method [2] which applies multi-class
Fisher discriminant analysis to face images after they have
been reduced in dimension using PCA; Both methods after
applying conventional feature selection algorithms; an ap-
plication of eigenfaces after variable weighting using Algo.
2; and application of fisherfaces after variable weighting
using Algo. 2. All methods were tested twice: for gray
level images and for wavelets. As expected, Algo. 2 and
all other 3 feature selection algorithms did not work well
when dealing with gray level values directly, and those re-
sults are omitted from the table. When applying eigenfaces
and fisherfaces directly to the data without any feature se-
lection, gray level performed better than haar wavelets.

We also compared the results with similar variants using
Algo. 1 and 3, which for these datasets did not perform bet-
ter than Algo. 2. This was probably due to the large number
of classes (person identities) used in each experiment. All
of these are omitted from the table below.

The values in each cell in Table 1 are the average recog-
nition rate (in percent) over 20 runs, and the standard devi-
ation of the results. Results are shown for all methods for
the PCA dimension which gave the best results. For fea-
ture selection (FS) we show the best out of three supervised
methods (Pearson coefficients, Fisher criterion score, and
the Kolmogorov-Smirnov test) and for the best percentile of
kept features. It turns out that for these datasets the Fisher
criterion score did the best out of the three, and this perfor-
mance occurred when keeping 40-50% of the features.

As shown in Table 1, the use of wavelets together with
Algo. 2 improves the results both for eigenfaces and for
fisherfaces. For the YALE dataset, running Fisher using
Algo. 2 with weighting of wavelet features performed better
than the Fisher results on gray levels for 75% of the trials,
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DataSet PCA PCA + Haar FS + PCA Algo. 2 +PCA Fisher Fisher + Haar FS + Fisher Algo. 2 +Fisher
Yale 70.0 ± 2.5 64.5 ± 2.2 67.6 ± 4.9 81.2 ± 2.4 83.4 ± 3.2 81.8 ± 3.1 83.4 ± 2.7 88.2 ± 2.4
AR 62.9 ± 2.4 32.2 ± 1.6 62.9 ± 4.4 70.6 ± 1.8 91.9 ± 1.3 90.4 ± 1.8 90.9 ± 1.6 94.6 ± 0.8

Table 1: Face recognition precision on two databases, Yale and AR. Results indicate percentage of test examples correctly identified plus
or minus the standard deviation across 20 independent trials. In each trial 3 images per person served as training images, and the rest as
testing. Results are recorded for seven algorithms: PCA is an application of eigenfaces; PCA + Haar is an application of PCA on Haar
wavelet; FS + PCA is the best filtering method out of Pearson coefficient, Fisher score, and KS test applied to wavelet coefficients followed
by eignefaces; Algo. 2 + PCA is an application of eigenfaces after re-weighting the haar wavelet data according to Algo. 2. The rest of the
columns report results for similar experiments but with Fisherfaces instead of eigenfaces.

Figure 3: Top two rows show the first 10 principle components
of the wavelets weighted by Algo. 2 on the YALE dataset. Bottom
rows show the first 10 wavelet features picked by Algo. 2 on the
same experiment.

and performed the same for 15%. For the AR dataset, the
method using wavelets+Algo. 2+Fisher gave the best per-
formance for all trials.

Figure 3 shows the first principle components of the
wavelets for a specific YALE dataset experiment. The
wavelet features have been weighted according to Algo. 2
and then the principle components were computed. Also
shown are the wavelets chosen by this algorithm. The algo-
rithm tends to choose large/medium sized wavelets.

Car Detection. We applied Algo. 2 to a car detection in
static images task. We used the car images database from
UIUC [1]. The goal is to locate the cars accurately in a
number of large grayscale images. The test images vary
in size, and may contain multiple cars. The training data
consists of 500 car images and 550 non-car images.

We compared four sets of features: the gray level val-
ues, Haar wavelets, Haar wavelets weighted by Algo. 2,
and Haar wavelets weighted by Algo. 3. We transformed
each training image to the feature space, and learned a tem-
plate using a linear Support Vector Machine 5. Using the
fact that the transformation to the wavelet feature space was
linear, as well as the variable weighting, we were able to

5For Algo. 2 we also tried LDA, and received almost identical results

(a) (b)

(c) (d)

Figure 4: Template for car detection learned via SVM from
four different feature sets. (a) histogram equalized gray levels (b)
Haar wavelets (c) Algo. 2 on Haar wavelets (d) Algo. 3 on Haar
wavelets.

transform the learned template in features space back into
an image, as shown in Fig. 4. We searched for this tem-
plate using normalized cross correlation in the test images,
and then used the same neighborhood suppression as de-
scribed in [1], yielding a set of car detections weighted by
strength of correlation. When compared against the ground
truth locations included alongside the test data, one is able
to construct a Precision-Recall (PR) curve.

The PR curves we calculated are presented in Fig. 5. As
shown in the graph, SVM on gray levels performs at about
the same level as the component based detector presented
in [1]. SVM on wavelet features does worse and SVM
on Algo. 2 weighted wavelet features does better. SVM
on Algo. 3 weighted wavelet features does better than all
other methods. Weights returned by Algo. 3 were extremely
sparse, with over 90% of the total magnitude of the weights
assigned to only 25 of the wavelets. Thus Algo. 3 combined
with SVM enables the control of the run-time of the learned
classifier much like Boosting does.

Place recognition. For this experiment we used the data
collected by Torralba et. al.[19], in order to compare su-
pervised learning algorithms. Given an image, the goal is
to classify it into one of ten categories: conference-room,
corridor, elevator lobby, inside elevator, kitchen, lab, office,
open area, plaza and street. The data consists of 50, 757
frames collected over 17 sequences using a wearable cam-
era. While this method achieves good identification results
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Figure 5: Precision-Recall curve for the UIUC car dataset. SVM
templates are learned using gray levels, Haar wavelets, Algo. 2
weighted wavelets and Algo. 3 weighted wavelets.

by using temporal information, the task of identifying a
single frame is quite difficult. For example, it is not easy
to distinguish a lab from an office or a conference room.
Each frame in the dataset was represented by a vector of
384 dimensions, consisting of the output of steerable fil-
ters applied to the input 120 × 160 image at several scales.
This representation, together with the frame annotation, was
made publicly available by the authors of [19].

We conducted repeated one-vs-all experiments. In each
experiment 100 random examples of one place catagory
served as the set of positive training examples, and 100 ran-
dom examples from the rest of the frames served as negative
examples. The results were then tested on a much larger
set of testing examples, which contained equal numbers of
positive and negative examples. Each such one-vs-all ex-
periment was repeated three times.

In [19] the authors used the gentle boost algorithm on
top of PCA. In our experiments, SVM always outperfoms
the boosting algorithm. Moreover, in all of our experi-
ments, PCA did not help at all (not even for boosting),
hence we used the original 384 dimensional data. The re-
sults we obtained are 26.67% error for an 80 dimensional
PCA followed by a linear SVM, 25.10% for linear SVM,
and 23.17% for Algo. 2 weighting of the features followed
by an SVM. The results improve to 22.83% error when us-
ing Algo. 3 weighting and then SVM.

7. Conclusions
We presented variable weighting algorithms that were de-
signed to preprocess the data before applying dimension-
ality reduction algorithms. In their parameter-free form
(Algo. 2, and Algo. 3), they are very simple to implement,

and can be applied to tens of thousands of features. We
show that using these algorithms we can effectively apply
dimensionality reduction algorithms to datasets of uncorre-
lated variables, benefiting from both worlds of dimension-
ality reduction and feature selection.
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A. Derivation of multi-class kernel FDA, and Alg. 3

Consider q data points M1,M2, ...,Mq with mean µ which
are assigned to l classes. Each class Ci contains qi exam-
ples with mean µi. The FDA ([6]) examines orthogonal
directions which maximize the inter-class variance, while
minimizing each inner-class variance. This is done by max-
imizing the ratio wTSBw

wTSWw
, where SB =

∑l
i=1 qi(µi −

µ)(µi − µ)T is the between class scatter matrix, and SW =
∑l

i=1

∑
N∈Ci

(N − µi)(N − µi)
T is the within class scat-

ter matrix. This maximization problem is solved by con-
sidering the largest generalized eigenvectors of the pair
(SB , SW ). It is not difficult to show that each of the di-
rections w returned by the FDA is a linear combination
w =

∑n
i=1 γiMi.

Let M (i), i = 1..l be the matrix composed only of mea-
surements arising from class Ci. Let A = MTM , A(i) =

MTM (i)T

(q × qi matrix), and let 1p be a vector of p ones.
Substituting the expression for w as a linear combination
w = Mγ in the ratio to be maximized, we get: wTSBw

wTSWw
=

γTRγ
γTSγ

where R =
∑l

i=1 qi(
1
qi
A(i)1qi

− 1
qA1q)(

1
qi
A(i)1qi

−
1
qA1q)

T and S =
∑l

i=1 qiA
(i)(Iqi

− 1
qi
1qi

1Tqi
)A(i)T .

This derivation is similar to [14], except that we handle
multiple classes, and therefore need to extract more than

one direction w. Let these directions be noted as w(i),
i = 1..l. Note that there is no one-to-one correspondence
between the directions and the classes. Similar to FDA,
we constrain every two extracted directions w(i), w(j) by
w(i)Tw(j) = γ(i)TAγ(j) = δij . To make the form of
the constraint simpler, we transform our coordinate sys-
tem. Let A = EDET be an eigenvalue decomposition
of A, containing only eigenvectors with non-zero eigenval-
ues. Define φ(i) = D1/2ET γ(i). The matrices S and R
are spanned by the column space of the matrix A. There-
fore, out of all possible solutions to this linear equation
φ(i) = D1/2ET γ(i), the one which maximizes our crite-
ria γTRγ

γTSγ
is given by γ(i) = ED−1/2φ(i). We therefore

maximize φTD−1/2ETRED−1/2φ
φTD−1/2ETSED−1/2φ

subject to the directions φ

being orthogonal, i.e φ(i)Tφ(j) = δij
Variable selection is done by replacing the kernel ma-

trix A with the matrix Aα =
∑n

i=1 αimim>i , and the ma-

trices A(k) with the matrices A(k)
α =

∑n
i=1 αimim

(k)>
i ,

where m(k)
i is a vector containing the values of the ith

variable, but only for the points that belong to class Ck.
With this replacement, based on the formulas for S and
R, both the numerator and the denominator are linear in
α. However the ratio is not. We therefore investigate an-
other way to maximize the numerator and minimize the de-
nominator. We maximize: (φTD−1/2ETRED−1/2φ) −
λ(φTD−1/2ETSED−1/2φ). Note that an optimization
function which is similar in spirit was used by Jebara [11]
in the context of invariance learning.

The optimization problem becomes bi-linear with re-
spect to α, and variable selection algorithms simi-
lar to the ones above can be derived. For sim-
plicity, we just show the analog of Algo. 2, cre-
ated by maximizing trace((φTD−1/2ETRED−1/2φ) −
λ(φTD−1/2ETSED−1/2φ)) over α. Algo. 3 above is sim-
ply achieved by rearranging the terms of the maximization
problem, such that the bilinear nature is apparent.
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