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Abstract 
Traditionally, human texture perception has been studied using artificial textures made of random-dot patterns or 
abstract structured elements. At the same time, computer algorithms for the synthesis of natural textures have improved 
dramatically. The current study seeks to unify these two fields of research through a psychophysical assessment of a 
particular computational model, thus providing a sense of what image statistics are most vital for representing a range 
of natural textures. We employ Portilla and Simoncelli’s 2000 model of texture synthesis for this task (a parametric 
model of analysis and synthesis designed to mimic computations carried out by the human visual system). We find an 
intriguing interaction between texture type (periodic v. structured) and image statistics (autocorrelation function and 
filter magnitude correlations), suggesting different processing strategies may be employed for these two texture 
families under pre-attentive viewing.  
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Introduction 
The visual perception of textures has been an area of interest spanning a wide variety of disciplines from art to 
computer science. The fields of computer vision, perception, and graphics have each made significant contributions to 
our overall understanding of texture perception and representation, albeit in quite different ways.  
 
Psychophysical studies of texture perception 

Psychophysicists are of course most interested in what representations and rules the human visual system uses 
to process textures. In this endeavor, Bela Julesz stands out as one the earliest and arguably most important contributors 
to the field. The famous “Julesz conjecture” continues to guide research in human texture perception to this day, having 
originated in a 1962 article (Julesz, 1962) wherein Julesz hypothesized that textures that differed only in 3rd-order or 
higher pixel statistics would be indiscriminable by human observers. This early version of the conjecture was proved 
false by Julesz himself years later (Julesz, Gilbert, Shepp, & Frisch, 1973) and the hypothesized “bar” for human 
discriminability of textures has been pushed past 3rd-order statistics (Julesz, Gilbert, & Victor, 1978) to a possible 
resting place at 4th order statistics (Klein & Tyler, 1986). However, recent working analyzing the formalism of creating 
extreme-order textures (Tyler, 2004a) suggests that the global statisitics should not be the sole focus of texture 
research. Local processes that human observers use to compare different texture samples may be of more importance. 
(Tyler, 2004b). 

The majority of studies concerned with the psychophysics of human texture perception make use of random-
dot textures, making pixel-level texture analysis a relevant tool. Though useful as a model world for examining texture 
processing strategies, it must be acknowledged that random textures are hardly representative of the set of natural 
textures we encounter in everyday experience. Indeed, these textures violate key facts regarding the structure of natural 
images that have been well-known for some time, specifically the redundancy of natural images (Attneave, 1954; 
Barlow, 1961). Human observers have implicit knowledge of this redundancy (Kersten, 1987), suggesting that it may 
be better to study natural textures that match statistical properties of the real world. Natural images have been used to 
study what higher-level image qualities are used to group textures along salient dimensions (Rao & Lohse, 1996), but 
little effort has been made to examine low-level representations of photographic textures using psychophysical 
methods. 
 
Analysis and synthesis of photographic textures 

A useful body of work to consider as a means of resolving this difficulty is the growing number of algorithms 
proposed in the computer vision literature for texture analysis and synthesis. All of these algorithms share the goal of 
using small samples of some original texture as a starting point for the reconstruction of arbitrarily large amounts of the 
same texture. The end result should ideally be indistinguishable from the true texture, although no algorithm can truly 
remove all artifacts of the synthesis process. Rather than random-dot textures, these algorithms are most often applied 
to natural textures and have been very successful at creating convincing images for graphics applications. Given that 
these algorithms operate on natural textures, we will consider them as a useful vehicle for studying the perception of 
such images by human observers. 

Clearly the quality of the final reconstruction produced by any of these algorithms informs us as to the utility 
of both the representation used for the original texture and the process by which that representation is used to generate 
novel images. However, for us to truly feel confident in relating the computational procedure used for texture synthesis 
to human perceptual processes it is helpful if the algorithm uses representations employed by the human visual system. 
For this reason, several texture synthesis strategies that produce strikingly good reproductions of target textures will not 
be considered here. For example, “image quilting” strategies (Efros & Freeman, 2001) have no true “representation” of 
a texture, in that patches of the original image are reassembled to make the synthetic version. In a sense, the original 
image is the only representation of the texture used. Likewise, pixel-growing strategies (Efros & Leung, 1999) are 
equally problematic in that they represent texture in terms of the distribution of individual pixels in the original image. 
Synthesis requires a time-consuming search process through the sample provided for analysis. While both of these 
procedures (and their associated variants) are extremely useful for graphics applications, we shall not consider non-
parametric processes at present.  

To achieve a deeper insight as to what statistics are important for the visual processing of natural textures, we 
turn instead to parametric models of texture analysis and synthesis. These models utilize the idea that filters resembling 
those found in early visual cortex provide information useful for texture segmentation and classification (Bergen & 
Adelson, 1988; Bergen & Adelson, 1986). Texture analysis by such filters has proven quite successful at modeling pre-
attentive segmentation performance (Malik & Perona, 1990). Filter-based analysis has also contributed to a formal 
definition of Julesz’ “textons” (Julesz, 1981) in terms of clustered filter outputs (Malik, Belongie, Leung, & Shi, 2001). 
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In terms of texture synthesis, Heeger and Bergen’s model (Heeger & Bergen, 1995) demonstrated the utility of 
“steerable filters” (Simoncelli & Freeman, 1995) for the synthesis of stochastic textures that lacked global structure or 
distinct textural sub-regions.  
 
The model of Portilla and Simoncelli 
 Heeger and Bergen’s model has been improved upon in many ways since its initial presentation. In particular, 
to overcome the inability of the original model to reproduce extended contours and other large-scale structures in the 
target texture, additional constraints across scales and orientations were introduced by Portilla and Simoncelli 
(Simoncelli, 1997; Simoncelli & Portilla, 1998; Portilla & Simoncelli, 1999; Portilla & Simoncelli, 2000). We opt in 
the current study to use their model as a basis for exploring the necessary and sufficient statistics for the successful 
synthesis of various kinds of photographic texture. There are several reasons for this choice. First, Portilla and 
Simoncelli’s model produces very high-quality syntheses of textures Second, synthesis can be achieved relatively 
quickly, meaning a library of synthesized textures can be created in a reasonable time frame. This is in contrast to the 
FRAME model of texture synthesis (Zhu, Wu, & Mumford, 1996; Zhu, Wu, & Mumford, 1997), which is very 
powerful, but slow. Finally, the implementation of the algorithm allows for “lesioning” of the code to remove certain 
parameters from the synthesis process. This last aspect of the model makes it particularly attractive for our purposes, as 
it allows us to synthesize textures lacking certain statistical constraints, and assess how well the final image 
approximates the target texture. 

The Portilla-Simoncelli model utilizes four large sets of parameters to generate novel texture images from a 
specified target. In all cases, a random-noise image is altered such that its distributions of these parameters match those 
obtained from the target image. The first of these parameter sets is a series of 1st-order constraints (Marginals) on the 
pixel intensity distribution derived from the target texture. The mean luminance, variance, kurtosis and skew of the 
target are imposed on the new image, as well as the range of the pixel values. Second, the local autocorrelation of the 
target image’s low-pass counterparts in the pyramid decomposition is measured (Coeff. Corr), and matched in the new 
image. Third, the conditional histograms of coefficient amplitude pairs at neighboring scales, spatial positions, and 
orientations are matched in the new image (Mag. Corr.). Finally, cross-scale phase statistics are matched between the 
old and new images (Phase).  Portilla and Simoncelli report on the utility of each of these parameter subsets in their 
description of the model, but offer no clear perceptual evidence beyond the visual inspection of a few example images. 
The current study aims to carry out a true psychophysical assessment, in the hopes that doing so will more clearly 
demonstrate which statistics are perceptually important for representing natural textures.  
 We present the results of two experiments, designed to test the aforementioned parameter subsets value in 
producing textures that are indiscriminable from the target texture under pre-attentive conditions. We note that this is 
markedly different than analyzing the resulting images under full scrutiny, as the kinds of artifacts and errors that may 
seem glaring given an attentive analysis of an image may be invisible under pre-attentive conditions. Our strategy is to 
first produce synthetic textures that are not matched to the target texture for one or more of the parameter families 
previously mentioned. We then determine how discriminable patches drawn from these images are from patches drawn 
from the original texture under brief presentation. In so doing, we explicitly assume a local windowing model of texture 
processing similar to a recently proposal of Tyler’s (Tyler, 2004b). We compare discriminability of “lesioned” textures 
to the discriminability of synthetic textures created using the full set of statistical parameters in the model.  This allows 
us to determine how much each parameter subset contributes to the final synthesis. Further, we break down our target 
textures into two families (roughly “periodic” and “structured” textures) to see whether or not different statistics are 
needed to convincingly synthesize specific categories of images. 
 
Methods 
Subjects 
A total of 16 subjects participated in the two experiments described here, eight in each of our two experiments. Subject 
age ranged from 19-27 years, and all subjects had normal or corrected-to-normal vision. 
 
Stimuli 
Original textures - 12 256x256 texture samples were chosen from a set of textures available via the NYU Laboratory 
for Computational Vision (http://www.cns.nyu.edu/~eero/software.html). Several textures are Brodatz images (Brodatz, 
1996) while the remainder are original photographs collected by the NYU laboratory. The images were selected to 
conform to two pre-conceived visual categories, pseudoperiodic and structured textures. For our purposes, we will 
consider pseudoperiodic textures to be those textures with repeating middle to large-scale structures. Structured 
textures are defined as those textures composed of discrete elements that are not repeated in a predictable way across 
the image (Figure 1). 
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Figure 1 – The collection of textures used to create synthetic images for Experiments 1 and 2. The top row contains textures that are 
composed of repeated structural elements but lack strong periodicity or global structure. The bottom row contains textures that have 
strong periodicity. 
 
"Lesioned" textures - Five synthetic versions of each original texture image were created using Portilla and Simoncelli's 
algorithm. The first four images were created by choosing to ignore one family of statistical measurements taken from  
the original image while performing the synthesis procedure. In order, marginal statistics, raw autocorrelation statistics, 
filter magnitudes, and cross-scale phase measurements were removed from consideration one at a time for each 
condition. The fifth category of synthesized textures was created by synthesizing each texture using the full set of 
statistical constraints.  
 Each synthesized image was 256x256 pixels in size, using parameters extracted from a 192x256 pixel patch 
taken from the original texture. The original textures were cropped to remove any artifacts introduced by the small text 
credits at the bottom of each image. Examples of the synthesized textures created from a particular target texture are 
displayed in Figure 2.  

 

 
Figure 2 –“Lesioned” texture images created using the Portilla and Simoncelli algorithm to synthesize textures from our original 
images using either the full set of statistical parameters (far right) or using all but one subset of those parameters. From left to right, 
the images in this figure were constructed without explicit matching of first-order constraints (mean, range, variance, kurtosis and 
skew), subband coefficient correlation, subband magnitude correlation, and cross-scale local phase information. 
 
"Pair-wise impoverished" textures - For Experiment 2, we create four new categories of texture images by synthesizing 
texture patterns using the marginal statistics alone, and also the marginal statistics plus each of the three remaining 
parameter subsets added in one at a time . While the images in Experiment 1 allow us to discuss the necessity of each 
subset of parameters for texture synthesis, these images are designed to give us insight as to the sufficiency of these 
subsets for successful texture reconstruction. The reason for using  “pair-wise” images rather than synthesizing textures 
using each parameter subset in isolation is that in inspecting Figure 2, it is obvious that those images lacking the same 
first-order statistics as their parent textures are strikingly different from the other lesioned images. This is the case 
because encapsulated in those first-order measurements are highly salient global image properties like overall contrast 
and mean luminance of the image. From this, we expect that  first-order properties will certainly prove to be necessary 
for good synthesis in Experiment 1. This means that testing sets of images that lack these properties will be relatively 
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useless. Instead, we include these parameters in all cases, allowing us to test the first-order properties themselves for 
sufficiency as well as the remaining parameter subsets (with the caveat that pixel distributions are always matched). 
 

 
Figure 3 – “Pairwise” lesioned images created by including the 1st order statistics in all synthetic textures with the addition of: (from 
left to right) nothing additional, subband coefficient correlation, subband magnitude correlation, cross-scale phase information, and 
all parameters in the Portilla and Simoncelli algorithm. 
 
Texture Quadrants – Finally, each texture was divided into mutually exclusive quarters 128x128 pixels in size and 
windowed by a circular mask to remove any orientation-specific interactions between the contours of the image frame 
and those contours contained within the texture itself (Figure 4).  
 

 
 

Figure 4 – An original texture (left) and a windowed patch taken from the top left quadrant of the original image (right). This simple 
circular mask was meant to reduce any unwanted enhancement of horizontal and vertical edges brought on by the rectangular 
window of the original texture. 
 
Procedure 
Subjects were seated approximately 100 cm. from a 17" Dell Ultrasharp monitor. All stimulus display and response 
recording functions were controlled via the Matlab Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).  
In all three experiments, subjects were to perform a 3AFC "oddball" task, in which three unique texture patches were 
presented on each trial, one of which was a patch drawn from a synthesized version of the original texture from which 
the two distractor patches were drawn. Subjects were not familiarized with the textures previously, and all three texture 
patches in a given trial were distinct images. These measures were taken to ensure that neither high-level information 
nor pictorial matching strategies could contribute to subjects' performance. 

On each trial, the three images were displayed at the vertices of an equilateral triangle such that the distance 
between each image and central fixation was approximately 3.5 degrees of visual angle. Each stimulus was 
approximately 2 degrees of visual angle in diameter, and the entire stimulus triad was onscreen for 250 ms before a 
response was collected. Breaks were scheduled every 240 trials. Subjects indicated the location of the oddball texture 
patch via the '1','2', and '3' keys to indicate left, top, and right respectively. Both accuracy and response time were 
recorded on each trial. 
 All 6 pairs of texture quadrants were used as distractors twice for each texture in each condition, and two 
texture "oddball" patches were used 6 times each in each condition to ensure that overall frequency of synthesized and 
veridical textures remained balanced. In total, subjects completed 72 trials per "lesion" condition for each of our two 
texture familes for a total of 720 trials.  
 
Results 
Experiment 1 – In our first experiment, we are looking for evidence that subsets of statistical constraints collected by 
the Portilla and Simoncelli algorithm are differentially important for the successful synthesis of our two texture families 
(periodic and structured). In particular, this experiment assesses the degree to which each subset of parameters is 
necessary for the synthesis of each type of texture by removing one set of constraints at a time.  
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 A 2-way ANOVA (with repeated measures) was run on both the accuracy and reaction time data. The 
accuracy data revealed a highly significant of texture “lesioning” (p < 0.0001) as well as a highly significant interaction 
between texture category and lesion (p < 0.0001). There was no main effect of texture category (p > 0.15). The RT data 
yields little in the way of interesting results, save for a main effect of texture lesioning (p < 0.001) which indicates that 
all subjects were fastest to respond to images lacking first-order statistics. 

In Figure 5, we see that as we predicted the first-order statistics of our texture distributions are clearly 
necessary for successful synthesis. Subjects are at ceiling at detecting the “oddball” texture when these constraints are 
removed. Further, the interaction between lesion and texture category appears to be driven by the differential 
importance of raw coefficient correlation and magnitude correlation for our two families of textures. To be more 
specific, pseudoperiodic textures seem to rely relatively equally (and weakly) on both of these sets of parameters, given 
that the removal of each results in a relatively low level of correct detections. In contrast, the magnitude correlation 
statistics are clearly quite necessary for successful synthesis of structured textures, while the coefficient correlations 
seem to contribute almost nothing to the full synthesis. We note that in neither case do the constraints on cross-scale 
phase contribute substantially to the performance of subjects on this task, indicating that under pre-attentive conditions 
these constraints matter very little. 
 

 
Figure 5 – Plot of the average performance on the oddball detection task as a function of both texture category and texture lesion 
(mean values +/- standard error). Note both the clear importance of first-order statistics at left, as well as the interaction between the 
necessity of coefficient and magnitude correlation for periodic and structured textures.  
 
To confirm this assessment of the results, we conducted post-hoc Tukey-Kramer tests within each texture category 
between each of the 4 “lesion” conditions and the “Full Set” condition. We find that for pseudoperiodic textures, only 
the removal of the first-order statistics produces a rate of oddball detection significantly greater than the “Full Set” 
images (p < 0.05). However, for the structured textures, we find that both the removal of the first-order statistics and 
the removal of the magnitude correlation statistics produce rates of oddball detection significantly greater than that of 
the “Full Set” textures (p < 0.05). 
 
Experiment 2 – In this second experiment, we are testing the sufficiency of both 1st order statistics in isolation and pair-
wise combinations of 1st-order information and the remaining three parameter subsets for producing successful 
synthetic texture images. In these results we will be looking for cases where the inclusion of parameter subsets gives 
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rise to low rates of oddball detection. This will indicate that the subsets included may be sufficient for producing 
synthetic textures viewed under pre-attentive conditions. 
 As in Experiment 1, we ran a 2-way ANOVA with repeated measures on the accuracy and RT data, with 
inclusion condition and texture family as factors. As before, we find no effect of texture family (p = 0.10) but 
significant effects of inclusion condition (p < 0.00001) and a significant interaction between our two factors (p < 
0.0001). The RT data again provided nothing more than a main effect of included statistics, with faster RTs in the 
“Marginals only” condition. 

We note in Figure 6 that the inclusion of 1st order statistical constraints alone results in a rate of oddball 
detection that is at ceiling. This indicates that though these parameters are certainly necessary for synthesis, they are 
certainly not sufficient. Of interest however, is the relationship between the other three parameter subsets. Specifically, 
we notice that for structured textures magnitude correlation proves to be quite useful for synthesis, producing rates of 
oddball detection comparable to the “Full Set” images. For pseudoperiodic textures, the rate of oddball detection is 
higher, indicating that these measurements are less useful for producing successful textures within this family of 
images. Raw coefficient correlation produces comparable rates of detection for both texture families, while the 
inclusion of phase constraints produces quite high rates. For structured textures, this rate is somewhat lower than 
ceiling (perhaps an indication that cross-scale phase provides some small amount of useful information), but overall 
demonstrates the insufficiency of phase information for texture synthesis.  

 
Figure 6 – Rates of oddball detection for both texture families as a function of included statistics. Marginals alone, and the pair-wise 
inclusion of marginals and cross-scale phase provide poor syntheses. Magnitude correlations and marginals together result in good 
synthesis of structured textures. For pseudoperiodic textures, the inclusion of both raw coefficient correlations and magnitude 
correlations result in intermediate quality syntheses, indicating weak sufficiency. 
 

As before, post-hoc Tukey-Kramer tests were run to confirm our intuitions regarding the interaction of 
inclusion condition and texture family. In comparing the “Full Set” responses to the other conditions within texture 
families, we find that for structured textures all conditions differ significantly (p<0.05) from the “Full Set” rate of 
oddball detection, with the sole exception being subband magnitude correlation. For pseudoperiodic textures, we find 
that only the 1st order-only condition and the cross-scale phase condition differ significantly (p<0.05) from the “Full 
Set.” Both raw coefficient correlation and magnitude correlation could be considered weakly sufficient given this 
analysis, although we note that the size of these differences are large enough to warrant skepticism. It is our belief that 
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the sufficiency of 1st-order statistics and magnitude correlation for structured textures is more clearly indicated by this 
experiment. 
 
Discussion 
We have found in our pre-attentive discrimination task that different sets of statistics are important for the synthesis of 
pseudoperiodic and structured texture images. In terms of the necessity of each subset of parameters, we find that 1st 
order pixel statistics such as the mean, variance, and range of luminance values are vitally important for creating 
perceptually matched textures from a target image. This is hardly surprising given how easily human observers can 
discriminate between different brightness and contrast levels. Of more interest is the reliance of each texture family on 
autocorrelation and filter magnitude statistics. Periodic textures demonstrate a weak need for both of these measures, 
although neither set of statistics alone proved absolutely necessary for the synthesis of these images. Structured 
textures, by comparison, appeared to rely quite heavily on the magnitude correlation statistics, while demonstrating no 
need for preservation of the local autocorrelation statistics. Neither texture appeared to rely on cross-scale phase 
statistics for synthesis, suggesting that these measurements may only be important for texture images that undergo 
scrutiny.  
 In terms of the sufficiency of our parameter subsets, we find that preserving only 1st-order measurements of 
the pixel distribution is clearly not enough to create a convincing synthetic image. Again, this is not surprising given 
that the human visual system is known to have strong representations of higher-order features (like edges) that will not 
be preserved through balancing only pixel-based statistics. Also, as expected from the results of Experiment 1, cross-
scale phase statistics combined with proper 1st-order measurements result in extremely poor syntheses. Again, it is the 
imposition of  the autocorrelation and coefficient magnitude constraints that prove most useful in this task. Mirroring 
the data from Experiment 1, we find that pseudoperiodic textures of intermediate quality can be produced by including 
the autocorrelation constraints or magnitude constraints alone (so long as 1st-order properties are preserved). Structured 
textures also conform to our expectations given the data from Experiment 1, as the magnitude constraints coupled with 
1st-order properties result in synthetic images that are of good quality compared to the images produced with the full set 
of constraints. 
 The results of these two experiments align with some previously reported results concerning periodic textures, 
especially with regard to the role of the autocorrelation function in representing such textures (Fujii, Sugi, & Ando, 
2003). The necessity (and insufficiency) of 1st-order image properties is also not a new or surprising contribution. 
However, what we see as the primary point of interest presented by this work is the perceptual role of cross-scale phase 
statistics and the magnitude correlations introduced by Portilla and Simoncelli. In the first case, we point out that 
neither the inclusion or absence of cross-scale phase information affected the synthesis process in any way that 
indicated this information was of perceptual use under pre-attentive viewing. This is sensible given the parafoveal 
viewing conditions of the task and the brief presentation time, but still implies that such measurements may not be used 
to characterize textures at a low level.  In the second case, we note that the magnitude correlations imposed on synthetic 
images are shown by this study to be at least as important as the autocorrelation function for the perceptual similarity of 
periodic textures under pre-attentive conditions. This is somewhat surprising, as for highly repetitive textures one might 
have suspected the raw coefficient correlations would capture the majority of important image structures. More 
strikingly, we note that for structured textures these statistics are extremely important for perceptual similarity. Indeed, 
through matching only these parameters and 1st-order properties one can create synthetic images that are not of 
significantly lower quality than those made with the entire set of constraints.  
 At this point, it is useful to reflect upon whether or not these findings are a result of the specific set of textures 
chosen for this task. While individual textures can behave idiosyncratically in the synthesis process, we find 
qualitatively similar results across the individual textures used here and across different subjects. The only exception to 
this rule are two synthetic textures that almost all subjects found highly discriminable from the target images regardless 
of what parameter subsets were included: typed text and the coarse stone tiling displayed in the upper left of Figure 1. 
Given that the deviation in these two cases from the average performance was an overall ceiling effect, we are not 
concerned about the effects on the group data (especially given the fact that these two textures came from different 
texture families). We take this as good evidence that the two families of textures we have used are legitimately different 
in the context of this task. More generally, it may be that different models of synthesis (and therefore perceptual 
analysis) could be more sensible than a unified model for all texture families.  
 An important final caveat however concerns the discriminability of the “Full Set” images from the target 
textures. In our 3AFC task, chance performance was 33%, a rate of oddball detection lower than that displayed by all 
but a few of our subjects. Overall, this indicates that even in the most difficult condition our synthetic textures were still 
reliably discriminable from their respective targets. In all cases, we are only able to consider the necessity and 
sufficiency of the parameters included relative to this baseline. We do not see this as especially problematic either, but 
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it does indicate that there is still a fair amount of work to be done as far as creating more powerful texture synthesis 
algorithms. We are limited to testing the statistical constraints imposed by this particular model, and though they seem 
both reasonable and useful we must remember that there remains an infinite number of image statistics that may prove 
better in the future. A simple extension of this work would be the inclusion of color images, as the results from the 
Portilla and Simoncelli algorithm when applied to full-color textures are extremely impressive. The added salience of 
color information may push discriminability down closer to chance performance, making claims about absolute 
necessity and sufficiency more reasonable. Creating these images requires a somewhat more complicated synthesis 
process (Liang, Simoncelli, & Lei, 2000), but would also get us closer to our stated goal of examining the perception of 
“real world” textures.  
 
Conclusions 
We have used a parametric model of texture synthesis as a tool for examining the necessity and sufficiency of different 
statistical measures for the perceptual similarity of texture images. We have found that different requirements apply for 
periodic textures as opposed to structured textures, notably in the need for autocorrelation measurements and 
conditional histograms of edge-like filter magnitudes. Cross-scale phase statistics were found to be of little use under 
pre-attentive conditions, while 1st-order pixel properties were demonstrated to be vital for capturing global image 
similarity. These results demonstrate the value of using computational models for texture synthesis to address 
perceptual questions regarding texture processing. It is hoped that this may help to bridge the gap between the 
communities of graphics, machine vision, and psychophysical texture research. Moreover, the 3AFC task presented 
here represents a modest contribution towards the formulation of texture discrimination tasks that make explicit the 
importance of local texture analysis in the human visual system. 
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