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Abstract

Tuning to an optimal stimulus is a widespread property of neurons in cortex. We propose that such tuning
is a consequence of normalization or gain control circuits. We also present a biologically plausible neural
circuitry of tuning.
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1 Introduction

Across the cortex, especially in the sensory areas, many
neurons respond strongly to some stimuli, but weakly
to others, as if they were tuned to some optimal fea-
tures or to particular input patterns. For example, neu-
rons in primary visual cortex show Gaussian-like tun-
ing in multiple dimensions, such as orientation, spatial
frequency, direction, velocity. Moving further along the
ventral pathway of primate cortex, V4 neurons show
tuned responses to different types of gratings or con-
tour features [8, 15], and some IT neurons are respon-
sive to a particular view of a face or other objects
[11, 13].

In other sensory modalities, neural tuning is also
common. Olfactory neurons in the fly respond to par-
ticular mixtures of molecules, or odors [25]. Auditory
neurons of a song bird can be tuned to sound patterns,
or motif [9]. In the case of the motor system, the activity
of a spinal cord neuron is related to a particular pat-
tern of force fields or limb movements [16]. The tuning
of a neuron may be sharp and sparse in some cases, or
distributed and general in other cases [12], but despite
qualitative differences, such tuning behavior seems to
be one of the major computational strategies for repre-
senting and encoding information in cortex.

Consequently, tuning in cortex is often characterized
and approximated with a multidimensional Gaussian
function in many models. In [15], contour feature tun-
ing in V4 is fitted with a Gaussian function in curvature
and angular position space. In [2], a similar Gaussian
function is used to characterize the response of the af-
ferent cells to the IT neurons. In the model of visual ob-
ject recognition by Riesenhuber and Poggio, which at-
tempts to describe quantitatively the first few hundred
milliseconds of visual recognition, the Gaussian func-
tion is one of the two key operations for providing se-
lectivity [19].

Even though Gaussian-like tuning behavior in cortex
is widely acknowledged, it remains a major puzzle in
neuroscience: how could such multidimensional tun-
ing be implemented by neurons? The underlying bio-
physical mechanism is not understood. In Hubel and
Wiesel’s model of V1, the tuning properties of simple
and complex cells are explained in terms of the geom-
etry of the afferents: for simple cells, the alignment of
several non-oriented LGN afferents would give rise to
the orientation selectivity (see [7] for a review, and [21]
for a quantitative model). Although attractively sim-
ple and intuitive, this explanation is challenged by a
competing theory that maintains orientation selectivity
is enforced, if not created, by the recurrent neural cir-
cuitry within V1 [1, 6, 23]. The tuning along non-spatial
dimensions such as velocity or color, however, can not
rely on the geometric arrangements only. Furthermore,
tuning in other sensory modalities (e.g., auditory or ol-
factory neurons) and in higher visual areas where the

tuning seems to be of a more abstract nature (e.g., the
complex shape tuning in IT) would require a more gen-
eral mechanism.

In this paper, we propose a biophysically plausible
solution to the puzzle of Gaussian-like tuning.

2 A general mechanism for cortical tuning

As mentioned in the introduction, many neurons show
tuning, which is often described in terms of a multidi-
mensional Gaussian function:

f(~x) = e|~x−~w|2/2σ2

. (1)

The key operation in Eqn. 1 is |~x− ~w|2, the computation
of similarity between two vectors, which determines a
tuned response around a target vector ~w. However, we
do not have any obvious neural circuitry or biophys-
ical mechanism for such operation. How, then, could
Gaussian-like tuning arise in cortex?

One possible answer to this puzzle is hinted by the
following mathematical identity, which relates the Eu-
clidean distance measure, which appears in the Gaus-
sian function, with the normalized scalar product:

|~x − ~w|2 = −2~x · ~w + 1 + |~w|2, if |~x| = 1. (2)

In other words, the similarity between two normalized
vectors, ~x and ~w, can be measured with a Euclidean dis-
tance as well as a scalar product, or the angle between
two vectors. Hence, Eqn. 2 suggests that Gaussian-like
tuning can arise from a normalized scalar product op-
eration.∗

The advantage of considering normalized scalar
product as a tuning operation is its biophysical plau-
sibility. Unlike the computation of Euclidean distance
or a Gaussian function, both normalization and scalar
product operations can be readily implemented with a
network of neurons. The scalar product or the weighted
sum can be computed by the dendritic inputs to a
cell with different synaptic weights. The normaliza-
tion across the inputs can be achieved by a divisive
gain control mechanism involving inhibitory interac-
tions [3, 4, 10, 18]. The neural response may be subject
to extra nonlinearities, such as sigmoid or rectification,

∗This relationship was pointed out by Maruyama, Girosi
and Poggio in [14], where the connection between the mul-
tilayer perceptron and the neural network with radial basis
function is explored. Their analysis is based on the exact form
of this identity (i.e., the input ~x to the Euclidean distance is
normalized as well as the input to the scalar product). In this
paper, we examine a looser connection between the Euclidean
distance and the normalized scalar product (i.e., the input to
the Euclidean distance is not, but the input to the scalar prod-
uct is normalized):

|~x − ~w|2 ↔
~x · ~w

|~x|
.
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in the soma or the axon. Together, the normalized scalar
product with a nonlinear transfer function can give rise
to a Gaussian-like tuning function, as shown in the next
section.

While many neurophysiological experiments have
found tuning behaviors in cortex, theoretical studies
[16, 17] also indicate that a network based on radial ba-
sis functions (like Gaussian) indeed is a plausible com-
putational scheme capable of learning. Here, learning is
defined as a capacity for generalizing an input-output
mapping from a finite number of data. In a learning
neural network with radial basis functions, the “hid-
den” units show Gaussian-like tuning behavior to the
input. More concretely, a computational model with a
network of Gaussian template-matching units is shown
to be capable of performing object recognition, while re-
producing the shape selectivity and invariance proper-
ties of IT neurons [19, 20].

3 One plausible neural circuit for tuning

Eqn. 2 suggests that a crucial element for tuning is the
normalization, which can be expressed mathematically
as

Ri =
xi

√

∑

j∈N

x2
j

. (3)

Eqn. 3 can be implemented by a pool of neurons N ,
whose individual responses are divisively normalized
by the collective response across the pool, giving rise to
the following two important properties.

1. Individual neural response is normalized: The
response of each neuron is divided by the total
response of the pool that includes other neurons
as well as itself. The normalization factor is al-
ways greater than the numerator in Eqn. 3. Hence,
the neural response is upper bounded and oper-
ates within a well-defined dynamic range (i.e., Ri ∈
[0, 1]).

2. Collective response across the pool is normalized:
The sum of neural responses within the normaliza-
tion pool is also normalized (i.e., Ri can be thought

of as the ith component of a normalized vector ~R,

with |~R| = 1). This aspect of normalization re-
ceived less attention in the past, but it may be the
underlying mechanism for cortical tuning, which is
the focus of this paper.

How would a network of neurons accomplish such
divisive normalization across the pool? In the past, sev-
eral plausible neural circuits for gain control mecha-
nism have been proposed and explored in various con-
texts. [18] considered forward and recurrent shunting
inhibition circuits for gain control within fly’s visual
system. Many researchers have used the normalization

mechanism to explain the contrast-dependent, saturat-
ing neural responses in primary visual cortex [3, 4, 10]
and center-surround effects within receptive field [5]. In
[22], similar divisive normalization scheme was shown
to increase independence of neural signals, despite the
dependencies in image statistics.

Fig. 1a presents one simple and plausible neural cir-
cuitry for divisive normalization. This circuit is based
on Heeger’s model of gain control in simple cells, where
the inhibitory (possibly of shunting type) feedback con-
nections perform the pool normalization [10]. With a
certain choice of nonlinearities, this model has a steady
state solution that is close to Eqn. 3. The normaliza-
tion is “close enough” in the sense that the denominator
may contain a constant (related to the strength of shunt-
ing inhibition) or the nonlinearity may not exactly be
the square root of summed squares (see Appendix A).

Another crucial operation for tuning according to
Eqn. 2 is the scalar product, which can be directly ac-
complished by the synapses (neglecting dynamics). In
~x · ~w, ~w corresponds to a vector of synaptic weights, and
~x to the presynaptic inputs, as shown in Fig. 1b.

Combined together, the circuits in Fig. 1 are the basic
elements for a network that can compute normalized
scalar product, which in turn would produce tuning be-
havior in a general multidimensional input space.

4 Comparison between the Gaussian
function and the normalized scalar
product

In this section, two different representations of tuning
are compared. One is the Gaussian function, based on
Euclidean distance measure, and the other is based on
normalized scalar product (NSP). They are related to
each other by Eqn. 2, and we show that both forms
of tuning are qualitatively equivalent and can be made
quantitatively close.

Mathematically, the Gaussian tuning function and
the normalized scalar product with a sigmoid nonlin-
earity are represented as

RGauss = e|~x−~w|2/2σ2

, (4)

RNSP =
1

1 + e−α( ~x·~w

|~x|+c
−β)

. (5)

The sigmoid is a commonly-used transfer function for
modeling the relationship between the presynaptic and
postsynaptic activations or membrane depolarizations
in neurons. It sharpens the tuning behavior created by
normalized scalar product and allows a better approx-
imation of the Gaussian function, as the parameters α
and β are adjusted.†

†In our simulation, a nonlinear fitting routine (nlinfit in
Matlab) was used to find the best α and β with fixed c = 0.1
in RNSP for a given ~w and σ.
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Figure 1: Simple neural circuits for: (a) Divisive normalization, y = x1/(c +
√

∑

j x2
j ) based on [10]. This circuit

is just one possibility. Divisive normalization may be computed alternatively by feedforward (instead of feedback)
inhibition at the dendrites as in [18]. (b) Scalar product, y =

∑

j xjwj = ~x · ~w. (c) Normalized scalar product. This
circuit can produce Gaussian-like tuning.

For RGauss, ~w specifies the center of the Gaussian
function in a multidimensional space. The Gaussian
width σ determines the sharpness or sensitivity of tun-
ing (σ need not be the same along different dimensions).
For RNSP , ~w specifies the direction of the feature vector
along which the response is maximal, and the param-
eters α and β determine the sharpness of the tuning.
In both cases, the response is maximal if the input ~x is
matched to the target ~w.

Fig. 2 shows a few direct comparisons between
RGauss and RNSP . Although not identical, RNSP and
RGauss exhibit comparable tuning behaviors. Because
of the normalization, the dimensionality of RNSP is
one less than that of RGauss. With the same number
of afferents n, the Gaussian tuning function may be
centered at any points in Rn, whereas the normalized
scalar product is tuned to the direction of the vector in
Sn or Rn−1. An obvious way of avoiding such limi-
tation is to assume a constant dummy input and to in-
crease the dimensionality of the input vector, which was
the approach taken here as in [14]. Then, the normal-
ized scalar product may be tuned to any arbitrary vec-
tor ~w, just like the Gaussian function (see Appendix B
for more discussions on this issue).

5 Discussion

In this paper, we described how the normalized scalar
product can account for the tuning of neural responses.
We also sketched a plausible neural circuit.

The normalization for tuning provides some new in-
sights and predictions. For example, along the ventral
pathway of primate visual cortex, the receptive field
size on average increases, and neurons show tuning to
increasingly complex features [11]. In order to build a

larger receptive field and to increase feature complex-
ity, the neurons may be pooling from many afferents
covering different parts of receptive fields. The affer-
ent cells within the pool would interact via normal-
ization operation, whose interaction may appear as a
center-surround effect as observed in V1 [5]. If indeed
a general mechanism for tuning, normalization would
be present in other cortical areas, where similar center-
surround or interference effects may be observable.

The effects of normalization may also appear when-
ever the response of one afferent in the normalization
pool is modulated (for example, an attentional mecha-
nism through a feedback connection). Change in one
neuron’s response may affect not only the output of the
network, but the response of other afferent neurons in
the normalization pool.

We also note that this scheme for cortical tuning has
implications for learning and memory, which would be
accomplished by adjusting the synaptic weights accord-
ing to the activation patterns of the afferent cells.

Interestingly, similar neural circuits may be involved
in increasing the invariance properties of neurons. It
has been observed that IT neurons show certain degree
of translation and scale invariance [2, 13], and so do
the V4 neurons [15]. One way of producing invariance
is the maximum operation, whose approximate imple-
mentation may involve a form of pool normalization
[26]. A computational model [19, 20] has shown that
Gaussian-like tuning and maximum operations were
sufficient to capture object recognition processing in vi-
sual cortex. We claim here that similar inhibitory neural
circuits with different nonlinearities (see Appendix C)
may accomplish both operations.

In the past, various neural micro-circuits have been
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(c) Comparison in higher dimensions (d = 5, 10, 20)
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Figure 2: Comparison of RGauss and RNSP in several dimensions. Note that in all cases, the Gaussian tuning
function can be approximated by the normalized scalar product followed by a sigmoid nonlinearity. The parameters
α and β in the sigmoid are found with nonlinear fitting, while c was fixed at 0.1. As pointed out in Appendix B,
a dummy input was introduced to obtain tuning to an arbitrary ~w (i.e., RNSP is in Sn+1). (a) Comparison in 1-
dimension: RGauss (black) with σ = 0.2 and RNSP (red) are shown for w = 1 (left) and w = 0.5 (right). (b) Similar
comparisons in 2-dimension: ~w = (1, 1) (top) and ~w = (0.4, 0.6) (bottom). (c) Comparisons in higher dimensions.
Since the visualization of the entire function is difficult for high dimensions, 1000 random points are sampled from
the space. The same nonlinear fitting routine was used to find the parameters in RNSP . The width of Gaussian is

scaled according to σ = 0.2
√

d, where d is the dimensionality.

proposed to implement a normalization operation. The
motivation was to account for gain control. We make
here the new proposal that another role for normalizing
local circuits in brain is to provide the key step for mul-
tidimensional, Gaussian-like tuning. In fact this may
be the main reason for the widespread presence of gain
control circuits in cortex where tuning to optimal stim-
uli is a common property.
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Appendix A: Normalization circuit

The model in Fig. 1 is based on [10], and the steady-state responses of the neurons (neglecting dynamics) are deter-
mined by the following:

G =

√

∑

j

R2
j , (6)

Ri = xi ·
[

1 − G

c

]

+

. (7)

The inhibitory signal G depends on the pooled responses. The particular choice of nonlinearity (square root of
summed squares) yields a mathematically convenient form of normalization. Other choices can produce tuned
responses, although they are not as easy to track analytically. The response Ri is proportional to the input xi, subject
to an inhibitory signal operating multiplicatively. Such multiplicative interaction may arise from the inhibition of
shunting type, as noted in [24]. The rectification operation for ensuring positive neural response is denoted by [ ]+.
With a little algebra,

Ri =
xi

c +
√

∑

j x2
j

, (8)

which is the same as Eqn. 3, except for the positive constant c, related to the strength of inhibition. Because of c, the
above equation is not the true normalization in a mathematically rigorous sense, but as shown in Appendix B, this
approximate normalization is enough to create Gaussian-like tuning.
Finally,

y =
∑

i

wiRi, (9)

resulting in normalized scalar product, capable of producing tuning behavior.
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Appendix B: Optimal templates in normalized scalar product

Since the scalar product ~x · ~w measures the cosine of the angle between two vectors, the maximum occurs when
those two vectors are parallel. Because it is also proportional to the length of the vector, a simple scalar product is
not as flexible as Gaussian function which can have an arbitrary center. We may assume that both vectors ~x and
~w are normalized (~x by pool normalization and ~w by Oja’s rule [6], for example), so that only the direction within
the input space is relevant. However, a more flexible, simple workaround is to assume a constant dummy input,
which introduces an extra dimension and allows tuning for any ~w [14]. This constant may be the resting activity of
a neuron.
Using the result of derivation from the previous section and assuming such dummy unit (indexed with d in wd and
xd), the response of the normalizing neural circuit is given by

y =

n
∑

j=1

wj xj + wd xd

c +

√

√

√

√

n
∑

j=1

x2
j + x2

d

, (10)

which can be viewed as a normalized scalar product in (n + 1)-dimension. Then, using elementary calculus, it is
easy to verify that by choosing wd and xd, the maximum response occurs when ~x = ~w, for arbitrary wi.
Let’s take the partial derivative:

∂y

∂xi
=

wi

c +

√

√

√

√

n
∑

j=1

x2
j + x2

d

−

n
∑

j=1

wj xj + wd xd



c +

√

√

√

√

n
∑

j=1

x2
j + x2

d





2 ·
1
2 2 xi

√

√

√

√

n
∑

j=1

x2
j + x2

d

. (11)

Setting ∂y
∂xi

= 0,

0 = wi



c +

√

√

√

√

n
∑

j=1

x2
j + x2

d





√

√

√

√

n
∑

j=1

x2
j + x2

d − xi





n
∑

j=1

wj xj + wd xd



 . (12)

Setting xi = wi, ∀i and simplifying the expression,

wd = c

√

∑n
j=1 w2

j

x2
d

+ 1 + xd. (13)

As long as the above condition is met, any arbitrary ~w can serve as an optimal template, and since wd and xd can be

freely chosen, it is easily satisfied. In particular, set xd = 1 and wd = c
√

∑n
j=1 w2

j + 1+1, as done in the simulations

for Fig. 2.

Appendix C: Maximum-like operation

With slightly different nonlinearities in normalization, similar gain control circuit could be used to perform
maximum-like operation on the inputs to a neuron [26]. Consider the following divisive normalization (compare
with Eqn. 8):

Ri =
xq+1

i

c +
∑

j xq
j

. (14)

For sufficiently high q,

Ri =

{

xi, if xi = xmax

0, if xi 6= xmax
(15)

With y =
∑

i wiRi where wi = 1, the final output is the maximum of the inputs.
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