MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY
A.l. Memo No. 1611 June, 1997
C.B.C.

1.
B.C.L.. Memo No. 151

Estimating Dependency Structure as a Hidden
Variable

Marina Meila Michael 1. Jordan Quaid Morris

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

This paper introduces a probability model, the mizture of trees that can account for sparse, dynamically
changing dependence relationships. We present a family of efficient algorithms that use EM and the
Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors,
including the Dirichlet and the MDL priors.

Copyright © Massachusetts Institute of Technology, 1996

This report describes research done at the Dept. of Electrical Engineering and Computer Science, the Dept. of Brain and
Cognitive Sciences, the Center for Biological and Computational Learning and the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Dept. of Defense and by the Office of Naval Research. Michael 1. Jordan is a NSF Presidential
Young Investigator. The authors can be reached at M.I.T., Center for Biological and Computational Learning, 45 Carleton
St., Cambridge MA 02142, USA. E-mail: mmp®@ai.mit.edu, jordan@psyche.mit.edu, quaid@ai.mit.edu.

1 INTRODUCTION

A fundamental feature of a good model is the ability to
uncover and exploit independencies in the data it is pre-
sented with. For many commonly used models, such as
neural nets and belief networks, the dependency struc-
ture encoded in the model is fixed, in the sense that it
is not allowed to vary depending on actual values of the
variables or with the current case. However, dependency
structures that are conditional on values of variables
abound in the world around us. Consider for example
bitmaps of handwritten digits. They obviously contain
many dependencies between pixels; however, the pattern
of these dependencies will vary across digits. Imagine a
medical database recording the body weight and other
data for each patient. The body weight could be a func-
tion of age and height for a healthy person, but it would
depend on other conditions if the patient suffered from
a disease or were an athlete.

Models that are able to represent data conditioned
dependencies are decision trees and mixture models, in-
cluding the soft counterpart of the decision tree, the mix-
ture of experts. Decision trees however can only repre-
sent certain patterns of dependecy, and in particular are
not suited for representing sparse dependencies. Mix-
tures are more flexible and the rest of this paper will be
focusing on one special case called the mizture of span-
ning trees.

We will consider domains where the observed vari-
ables are related by pairwise dependencies only and these
dependencies are sparse enough to contain no cycles.
Therefore they can be represented graphically as a tree.
The structure of the dependencies may vary from one
instance to the next. We index the set of possible de-
pendency structures by a structure variable z (that can
be observed or hidden) thereby obtaining a mizture.

In the framework of graphical probability models, tree
distributions enjoy many properties that make them at-
tractive as modelling tools: they have a flexible topology,
are intuitively appealing, sampling and computing like-
lihoods are linear time, simple efficient algorithms for
marginalizing and conditioning (quadratic or less in the
dimension of the problem) exist. Fitting the best tree to
a given distribution can be done exactly and efficiently.
Trees can capture simple pairwise interactions between
variables but they can prove insufficient for more com-
plex distributions. Mixtures of trees enjoy most of the
computational advantages of trees and, in addition, they
are universal approximators over the space of all dis-
tributions. Therefore, they are appropriate as density
estimators for domains where the dependency patterns
become tree like when a possibly hidden variable is in-
stantiated. But given the rich history of mixture models
as classifiers they appear promising for these task as well.

Mixture models have been extensively used in the
statistics and neural network literature. Of relevance to
the present work are the mixtures of Gaussians, whose
distribution space, in the case of continuous variables
overlaps with the space of mixtures of trees. Mixtures
of factorial distributions, a subclass of tree distributions,
have been investigated recently by [8]. Work on fitting
a tree to a distribution in a Maximum-Likelihood (ML)

1

framework has been pioneered by Chow and Liu [1] and
was extended to polytrees by Pearl [10] and to mixtures
of trees with observed structure variable by Geiger [5]
and Friedman [4].

This work presents efficient algorithms for learning
mixture of trees models with unknown or hidden struc-
ture variable. The following section introduces the
model; then, section 3 develops the basic algorithm for
its estimation from data in the ML framework. Section 4
discusses the introduction of priors over mixtures of trees
models and presents several realistic factorized and non-
factorized priors for which the MAP estimate can be
computed by modified versions of the basic algorithm.
The properties of the model are verified by simulation in
section 5 and section 6 concludes the paper.

2 THE MIXTURE OF TREES
MODEL

In this section we will introduce the mixture of trees
model and the notation that will be used throughout
the paper. Let V' denote the set of variables of interest.
According to the graphical model paradigm, each vari-
able is viewed as a vertex of a graph. Let r, denote the
number of values of variable v € V| &, a particular value
of v, x4 an assignment to the variables in the subset A
of V. To simplify notation zy will be denoted by .

We use trees as graphical representations for families
of probability distributions over V' that satisfy a com-
mon set of independence relationships encoded in the
tree topology. In this representation, an edge of the tree
shows a direct dependence, or, more precisely, the ab-
sence of an edge between two variables signifies that they
are independent, conditioned on all the other variables
in V. We shall call a graph that has no cycles a tree! and
shall denote by E its edge set. A probability distribution
T that is conformal with the tree (V, F) is a distribution
that can be factorized as:

H(u,v)EE TUU (l‘u, l‘v)
T(x) =

[Lev To(ay)tev=t

Here degv denotes the degree of v, e.g. the number of

edges incident to node v € V. The factors T, and T,
are the marginal distributions under 7"

(1)

Tuv(£u,£v) = ZT(anxvaxV—{u,v})
Tv—{u,v}
Ty(z) = Y T(x,2v_{u}).
Tv_{}

The distribution itself will be called a tree when no con-
fusion is possible. If the tree is connected, e.g. 1t spans
all the nodes in V, it is often called a spanning tree.

An equivalent representation for 7" in terms of condi-
tional probabilities 1s

T(x) =] Toipac)(@l@pare))

veEV

(2)

'Tn the graph theory literature, our definition corresponds
to a forest. The connected components of a forest are called
trees.

The form (2) can be obtained from (1) by choosing an
arbitrary root in each connected component and recur-
Typa(v)
Toa(v)

root. pa(v) represents the parent of v in the thus di-
rected tree or the empty set if v is the root of a con-
nected component. The directed tree representation has
the advantage of having independent parameters. The
total number of free parameters in either representation
is Z(u,v)EET Tuly = 3 ey (degy — 1)ry.

Now we define a mixture of trees to be a distribution
of the form

sively substituting by Ty |pa(v) starting from the

Qz) = Y MT"(x) (3)

with
M >0, k=1,..,m; > X =1 (4)
k=1

From the graphical models perspective, a mixture of
trees can be viewed as a containing an unobserved choice
variable z, taking value k € {1,...m} with probability
Ar. Conditioned on the value of z the distribution of
the visible variables x is a tree. The m trees may have
different structures and different parameters. Note that
because of the structure variable, a mixture of trees 1s
not properly a belief network, but most of the results
here owe to the belief network perspective.

3 THE BASIC ALGORITHM: ML
FITTING OF MIXTURES OF
TREES

This section will show how a mixture of trees can be
fit to an observed dataset in the Maximum Likelihood
paradigm via the EM algorithm [2]. The observations are
denoted by {z!, z%, ..., #V}; the corresponding values
of the structure variable are {2/, i =1,... N}.
Following a usual EM procedure for mixtures, the Ex-
pectation (E) step consists in estimating the posterior
probability of each tree to generate datapoint

== vy O
> AT (2]
Then the expected complete log-likelihood to be maxi-
mized by the M step of the algorithm is
E[l. |2b " model] =

m N
= > Telloghe + Y PH(a’) log T¥(a')]
k=1

i=1

Prly’ = ket N model] = 1(7)

(6)

N
Uy = > w(), k=1,...m (7)
i=1

P*(a") = 74(i)/ T (8)
The maximizing values for the parameters A are A7°Y =
[';/N. To obtain the new distributions 7%, we have to
maximize for each k& the expression that is the negative
of the crossentropy between P* and T*.
N
> PRt log T*(2')

i=1

9)

2

This problem can be solved exactly as shown in [1]. Here
we will give a brief description of the procedure. First,
one has to compute the mutual information between each
pair of variables in V under the target distribution P

Puv (an $v)
Iuv l%‘:v Puv($u, l‘v) IOg Pu(xu)P,U (xv) s
(10)

Second, the optimal tree structure Erp is found by
a Maximum Weight Spanning Tree (MWST) algorithm
using I, as the weight for edge (u,v),Vu,v € V. Once
the tree is found, its marginals T, (or Ty)y), (u,v) € Er
are exactly equal to the corresponding marginals P, of
the target distribution P. They are already computed as
an intermediate step in the computation of the mutual
informations I, (10).

In our case, the target distribution for 7% is repre-
sented by the posterior sample distribution P*. Note
that although each tree fit to P* is optimal, for the en-
compassing problem of fitting a mixture of trees to a
sample distribution only a local optimum is guaranteed
to be reached. The algorithm is summarized in figure 1.

This procedure is based on one important assumption
that should be made explicit now. It is the Parameter
independence assumption: The distribution Tvk|pa(v)
for any k, v and value of pa(v) is a multinomial with
ry — 1 free parameters that are independent of any other
parameters of the mizture.

Shared structure It is possible to constrain the m
trees to share the same structure, thus constructing a
truly Bayesian network. To achieve this, it is sufficient
to replace the weights in step M4 by >, It and run
the MWST algorithm only once to obtain the common
structure Ep. The tree stuctures obtained by the basic
algorithm are connected. The following section will give
reasons and ways to obtain disconnected tree structures.

Missing variables are handled elegantly by trees.
Any number of nonadjacent missing variables can be
marginalized out in O(maxyr,) time and this bound
grows exponentially with [, the size of the largest con-
nected subset of missing variables.

Observed but unknown structure variable An
interesting special case 1s the situation when the struc-
ture variable is in fact one of the observed variables (or
a small subset thereof), but we don’t know which one?
To discover it, one can either: build several mixtures
by conditioning on each one of the observables and then
compare their posteriors, or: build one standard mix-
ture model and then compare the mutual information
between the structure variable and each of the others to
identify the most likely candidate.

4 MAP MIXTURES OF TREES

In the previous section we have shown how to fit the ML
mixture of spanning trees to a set of observations using
the EM algorithm. Now we will extend the above proce-
dure to the broader problem of finding the Maximum a
Posteriori (MAP) probability mixture of trees for a given
dataset. In other words, we will consider a nonuniform
prior P[model] and will be searching for the mixture of

u,v € V,usv.

Input:Dataset {z',... 2
Initial model m, T%, X*, k=1,...m

Fi%ure 1: The Basic Algorithm: ML Fitting of a Mixture of Trees
}

Procedure MWST(weights) that fits a maximum weight spanning tree over V'

Iterate until convergence:

E step: compute v., Pk(x’) fork=1,...m,1=1,...N by (5), (7), (8)
M step:

M1, X < Tg/N, k=1,...m

M2. compute marginals P*, P* wo eV, k=1,...m

M3. compute mutual information If,u,v €V, k=1,...m

M4. call MWST({ 1%, 1) to generate Eqw for k=1,...m

M5. T, — PF, ;TF — PFfor (w,v) € Epe, k=1,...m

trees that maximizes

log P[model|z"] = log Plx"|model] (11)
+ log P[model] + constant.

Factorized priors The present maximization problem
differs from the ML problem solved in the previous sec-
tion only by the addition of the term log P[model]. We
can as well approach it from the EM point of view, by
iteratively maximizing

E [log P[model|z® N 21N = log P[model] (12)
+ E[lc(l‘l"”N,Zl"”N|mOd61)]

It is easy to see that the added term does not have any
influence on the E step,which will proceed exactly as
before. However, in the M step, we must be able to
successfully maximize the r.h.s. of (12). In usual EM
application this is enabled by the fact that we obtain a
separate set of equations for the parameters of each mix-
ture component. Therefore, we will look for priors over
the trees parameters that also satisfy this decomposition.
They are of the form

Plmodel] = P[A1. m] ﬁ P[T}] (13)
k=1

This class of priors is in agreement with the param-
eter independence assumption and includes the conju-
gate prior for the multinomial distribution which is the
Dirichlet prior. A Dirichlet prior over a tree can be repre-
sented as a table of fictitious marginal probabilities P/*
for each pair u,v of variables plus an equivalent sample
size N’ that gives the strength of the prior [7]. Tt is now
straightforward to maximize the a-posteriori probability
of a tree: one has to replace the marginals P in step
M2 by

Pt = (NPE, + N'PF)/(N + N'). (14)
The Dirichlet prior implies the knowledge of detailed
prior information about the model. In particular it
implies that the number of mixture components m 1s
known. When this is not the case, but there is informa-
tion about the marginal relations between the variables
one can introduce it in the form of one table of fictitious
marginals and and an equivalent sample size N’. From it
one can create a fictitious dataset of size N’ to augment
the true training set. Then, the training should proceed
just like for an ordinary ML model fitting.

3

MDL (Minimum Description Length) priors
are even less informative priors. They attempt to bal-
ance the number of parameters that are estimated with
the amount of data available, usually by introducing a
penalty on model complexity. For mixtures of trees one
can proceed in two fashions, differing on whether they
maintain or drop the parameter independence. First we
will describe methods to reduce the number of parame-
ters while keeping them independent.

Edge pruning and prior on m. To control the
number of components m, one can introduce a prior
P[m] and compare model posteriors obtained from (11).
To penalize the number of parameters in each compo-
nent notice that adding a link (u, v) in a tree contributes
Ayy = (ry —1)(ry — 1) parameters w.r.t. a factorized dis-
tribution. One can also choose a uniform penalty A, =
1. Introducing a prior P[T] o exp [—ﬁ ZUUEET Auv]
is equivalent to maximizing the following expression for
each mixture component (the mixture index k being
dropped for simplicity)

argmax Z Ty — BAL]
Er uveFEp

= argmax Z Waw

T uveFEp
(15)
To achieve this for any choice of Ay, it suffices to re-
place the weights in step M4 by W}, and to modify the
MWST procedure so as to consider only positive weight
edges. This prior is a factorized prior as well?
Smoothing (or regularization) methods consider
one comprehensive model class (full spanning trees and
a sufficiently large m) and within it introduce a bias to-
wards a small effective number of parameters. Here we
discuss a few techniques that can be applied to trees and
direct the reader to consult the vast existing literature
related to smoothing in clustering and discrete probabil-
ity estimation for futher information on this subject.
¢ Penalizing the entropy of the structure variable
by introducing the penalty term —aH (A1,). In this
case, the A; cease being decoupled, and the resulting
system of equations has to be solved numerically.
e Smoothing with the marginal. One computes the
pairwise marginals for the whole dataset P!%'*! and re-
places the marginals P by
Pf, = (1-a)Pf +aPl™ 0<a<l (16)
?Note that to use P[m] together with edge pruning on has
to compute the normalization constant in (11).

This method and several variations thereof are discussed
in [9]. Tts effect is to give a small probability weight to
unseen instances and to draw the components closer to
each other, thereby reducing the effective value of m.
For the method to be effective in practice « is usually a
function of I'y, and va.

5 EXPERIMENTAL RESULTS

We have tested our model and algorithms for their abil-
ity to retrieve the dependency structure in the data, as
classifiers and as density estimators.

For the first objective, we sampled 30,000 datapoints
from a mixture of 5 trees over 30 variables with r, = 4
for all vertices. All the other parameters of the generat-
ing model and the initial points for the algorithm were
picked at random. The results on retrieving the original
trees were excellent: out of 10 trials, the algorithm failed
to retrieve correctly only 1 tree in 1 trial. This bad re-
sult can be accounted for by sampling noise. The tree
that wasn’t recovered had a A of only 0.02. Instead of re-
covering the missing tree, the algorithm fit two identical
trees to the generating tree with the highest A. The dif-
ference between the log likelihood of the samples of the
generating model and the approximating model was 0.41
bits per example. On all the correctly recovered trees,
the approximating mixture had a higher log likelihood
for the sample set than the generating distribution.

We investigated the performance of mixtures of trees
on two classification tasks from the UCI repository. For
both tasks, we trained one model on the whole training
set, treating the class variable like any ohter variable.
In the testing phase, a new instance was classified by
picking the most likely value of the class variable given
the other variables settings.

The first task used the Glass database [6]. The data
set has 214 instances of 9-dimensional continuous valued
vectors. The class variable has 6 values. The continuous
variables were discretized in 4 uniform bins each. We
tested mixtures with different values of m, variable de-
grees of smoothing with the marginals and values of g
for edge pruning. In smoothing with the marginals the
coefficient «v was inversely proportional to the marginal
count I'y PE for each marginal PF,. For edge pruning
we used a uniform penalty A,,. For comparison we
tried also mixtures of factorial distributions of different
sizes. One seventh of the data, picked randomly at each
trial, was used for testing and the rest for training. We
replicate for comparison results obtained and cited in [8]
on training/test sets of the same size. Table 2 shows
a selection of the results we obtained. Smoothing with
marginals proved to be bad for classification; therefore
those results are not shown. The effect of edge pruning
seems not to be significant on classification although, as
expected, it increases the test set likelihood.

The second data set used was the Mushroom database
[11]. This data set has 8124 instances of 23 discrete at-
tributes (including the class variable, which is treated
like any other attribute for the purpose of model learn-
ing). The training set comprised 6000 randomly chosen
examples, and the test set was formed by the remaining
2124. The smoothing methods used were a) a penalty ap

4

on the entropy of the mixture variable and b) smoothing
with the marginal according to (16) or similarly with a
uniform distribution. The smoothing coefficient a s was
divided between the mixture components proportionally
to 1/T';. For this dataset, smoothing was effective both
in reducing overfitting and in improving classification
performance. The results are shown in table 1. The
soft classification colums expresses an intergrated mea-
sure of the confidence of the classifier. It is visible that
besides the classification being correct, the classifier also
has achieved high confidence.

We also tested the basic algorithm as density esti-
mator by running it on a subset of binary vector rep-
resentations of handwritten digits and measuring the
compression rate. The datasets consists of normalized
and quantized 8x8 binary images of handwritten digits
made available by the US Postal Service Office for Ad-
vanced Technology. One dataset contained images of
single digits in 64 dimensions, the second contained 128
dimensional vectors representing randomly paired digit
images. The training, validation and test set contained
6000, 2000, and 5000 exemplars respectively. The data
sets, the training conditions and the algorithms we com-
pared with are described in [3]. We tried mixtures of 16,
32, 64 and 128 trees, fitted by the basic algorithm. The
training set was used to fit the model parameters and
the validation set to determine when EM has converged.
The EM iteration was stopped after the first decrease
in the log-likelihood on the validation set. For each of
the two datasets we chose the mixture model with the
highest log-likelihood on the validation set and using it
we calculated the average log-likelihood over the test set
(in bits per example). These results are shown in table
3. The other algorithms mentioned in the table are the
mixture of factorial distributions (MF), the completely
factorized model (which assumes that every variable is
independent of all the others) called “Base rate”, the
Helmholtz Machine trained by the wake-sleep algorithm
[3] (Helmholtz Machine), the same Helmholtz Machine
where a mean field approximation was used for train-
ing (Mean Field) and a fully visible and fully connected
sigmoid belief network.

The results are very encouraging: the mixture of trees
is the absolute winner for compressing the simple digits
and comes in second as a model for pairs of digits. This
suggests that our model (just like the mixture of factor-
ized distributions) is able to perform good compression
of the digit data but is unable to discover the indepen-
dence in the double digit set. A comparison of particular
interest 1s the comparison in performance between the
mixture of trees and the mixture of factorized distribu-
tion. In spite of the structural similarities, the mixture
of trees performs significantly better than the mixture
of factorial distribution indicates that there exists some
structure that is exploited by the mixture of spanning
trees but can’t be captured by a mixture of independent
variable models.

6 CONCLUSIONS

This paper has shown a way of modeling and exploit-
ing sparse dependency structure that is conditioned on

Table 1: Performance of mixture of trees models on the MUSHROOM dataset. m=10 for all models.

Algorithm Correctly | Soft class | Test compression | Train compression
classified | > yiue/N | (bits/datapoint) (bits/datapoint)

No smoothing 998 997 27.63 27.09
Smooth w/ marginal 1 9999 27.03 26.97
Apr = 03, ap = 20
Smooth w/ uniform 1 9997 27.39 27.02
apy = 0.3, ap =200

Table 2: Performance of different algorithms on the GLASS dataset. MST is mixtures of spanning trees, MF is a

mixture of factorial distributions.

Algorithm Classification | #runs || Algorithm Classification | #runs
performance performance

MST m=30 g =0 * 82 10 MF m=35 73 2
MST m=30 g =.02 71 10 MF m=40 .63 1
MST m=30 3 =.1 70 1 MF m=48 *.80 8
MST m=30 3 =1. .67 2 MF from [8] *.84

MST m=35 3 0 71 3 Flexible Bayes from [8] .66

MST m=40 5 =. 73 3 C4 from [8] .66

MST m=25 3 :0 a7 14 1Rw from [8] .66

Table 3: Compression rates (bits per digit) for the single
digit (Digit) and double digit (Pairs) datasets. MST is
mixtures of spanning trees, MF is a mixture of factorial
distributions. A * marks the best performance on each
dataset.

Algorithm Digits | Pairs
gzip 44.3 89.2
Base Rate 59.2 118.4
MF 37.5 92.7
Mean Field 39.5 80.7
Helmholtz Machine 39.1 80.4
Fully Visible Bayes Net | 35.9 *72.9
MST *34.6 79.6

values of the data. Without literally being a belief net,
the mixture of trees that we introduced, by playing on
variable topology independencies, is one in spirit. Trees
do not suffer from the exponential computation demands
that plague both inference and structure finding in wider
classes of belief nets. The algorithms presented here are
linear in m and N and quadratic in |V|. The loss in mod-
elling power is compensated by using mixtures instead
of single trees. The possibility of pruning a mixture of
trees can play a role in classification, as a means of au-
tomatically selecting the variables that are relevant for
the task.

The importance of using the right priors in construct-
ing models for real-world problems can hardly be under-
estimated. In this context, two issues arise: 1. how 1s it
possible to devise good priors over the class of mixtures
of trees models 7 and 2. what is the computational bur-
den involved in taking priors into account 7 The present
paper has offered partial answers to both these ques-
tions: it has presented a broad class of priors that are
efficiently handled in the framework of our algorithm and
it has shown that this class includes important priors like

5

the MDL prior and the Dirichlet prior.

ACKNOWLEDGEMENTS

Thanks to Brendan Frey for making the digits datasets
available to us.

References

[1] C. K. Chow and C. N. Liu. Approximating discrete
probability distributions with dependence trees. "ITFEF
Transactions on Information Theory”, 1T-14(3):462—
467, MAy 1968.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, B, 39:1—
38, 1977.

Brendan J. Frey, Geoffrey E. Hinton, and Peter Dayan.
Does the wake-sleep algorithm produce good density es-
timators? In D. Touretsky, M. Mozer, and M. Has-
selmo, editors, Neural Information Processing Systems,
number 8, pages 661-667. MIT Press, 1996.

Nir Friedman and Moses Goldszmidt. Building classifiers
using Bayesian networks. In Proceedings of the National
Conference on Artificial Intelligence (AAAI 96), pages
1277-1284, Menlo Park, CA, 1996. AAAI Press.

Dan Geiger. An entropy-based learning algorithm of
bayesian conditional trees. In Proceedings of the 8th
Conference on Uncertainty in Al, pages 92-97. Morgan
Kaufmann Publishers, 1992.

U.C. Irvine

B. German. Glass identification database.
Machine Learning Repository.

David Heckerman, Dan Geiger, and David M. Chick-
ering. Learning Bayesian networks: the combination
of knowledge and statistical data. Machine Learining,
20(3):197-243, 1995.

Petri Kontkanen, Petri Myllymaki, and Henry Tirri.
Constructing bayesian finite mixture models by the EM
algorithm. Technical Report C-1996-9, Univeristy of
Helsinky, Department of Computer Science, 1996.

[9]

[10]

[11]

Hermann Ney, Ute Essen, and Reinhard Kneser. On
structuring probabilistic dependences in stochastic lan-
guage modelling. Computer Speech and Language, 8:1—
38, 1994.

Judea Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
man Publishers, San Mateo, CA, 1988.

Jeff Schlimmer. Mushroom database. U.C. Irvine Ma-
chine Learning Repository.

