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Abstract

This paper introduces a probability model� the mixture of trees that can account for sparse� dynamically
changing dependence relationships� We present a family of e�cient algorithms that use EM and the
Minimum Spanning Tree algorithm to �nd the ML and MAP mixture of trees for a variety of priors�
including the Dirichlet and the MDL priors�
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� INTRODUCTION

A fundamental feature of a good model is the ability to
uncover and exploit independencies in the data it is pre�
sented with� For many commonly used models� such as
neural nets and belief networks� the dependency struc�
ture encoded in the model is �xed� in the sense that it
is not allowed to vary depending on actual values of the
variables or with the current case� However� dependency
structures that are conditional on values of variables
abound in the world around us� Consider for example
bitmaps of handwritten digits� They obviously contain
many dependencies between pixels� however� the pattern
of these dependencies will vary across digits� Imagine a
medical database recording the body weight and other
data for each patient� The body weight could be a func�
tion of age and height for a healthy person� but it would
depend on other conditions if the patient su�ered from
a disease or were an athlete�

Models that are able to represent data conditioned
dependencies are decision trees and mixture models� in�
cluding the soft counterpart of the decision tree� the mix�
ture of experts� Decision trees however can only repre�
sent certain patterns of dependecy� and in particular are
not suited for representing sparse dependencies� Mix�
tures are more 	exible and the rest of this paper will be
focusing on one special case called the mixture of span�
ning trees�

We will consider domains where the observed vari�
ables are related by pairwise dependencies only and these
dependencies are sparse enough to contain no cycles�
Therefore they can be represented graphically as a tree�
The structure of the dependencies may vary from one
instance to the next� We index the set of possible de�
pendency structures by a structure variable z 
that can
be observed or hidden� thereby obtaining a mixture�

In the framework of graphical probability models� tree
distributions enjoy many properties that make them at�
tractive as modelling tools� they have a 	exible topology�
are intuitively appealing� sampling and computing like�
lihoods are linear time� simple e�cient algorithms for
marginalizing and conditioning 
quadratic or less in the
dimension of the problem� exist� Fitting the best tree to
a given distribution can be done exactly and e�ciently�
Trees can capture simple pairwise interactions between
variables but they can prove insu�cient for more com�
plex distributions� Mixtures of trees enjoy most of the
computational advantages of trees and� in addition� they
are universal approximators over the space of all dis�
tributions� Therefore� they are appropriate as density
estimators for domains where the dependency patterns
become tree like when a possibly hidden variable is in�
stantiated� But given the rich history of mixture models
as classi�ers they appear promising for these task as well�

Mixture models have been extensively used in the
statistics and neural network literature� Of relevance to
the present work are the mixtures of Gaussians� whose
distribution space� in the case of continuous variables
overlaps with the space of mixtures of trees� Mixtures
of factorial distributions� a subclass of tree distributions�
have been investigated recently by ��� Work on �tting
a tree to a distribution in a Maximum�Likelihood 
ML�

framework has been pioneered by Chow and Liu �� and
was extended to polytrees by Pearl ��� and to mixtures
of trees with observed structure variable by Geiger ��
and Friedman ���

This work presents e�cient algorithms for learning
mixture of trees models with unknown or hidden struc�
ture variable� The following section introduces the
model� then� section � develops the basic algorithm for
its estimation from data in the ML framework� Section �
discusses the introduction of priors over mixtures of trees
models and presents several realistic factorized and non�
factorized priors for which the MAP estimate can be
computed by modi�ed versions of the basic algorithm�
The properties of the model are veri�ed by simulation in
section � and section � concludes the paper�

� THE MIXTURE OF TREES

MODEL

In this section we will introduce the mixture of trees
model and the notation that will be used throughout
the paper� Let V denote the set of variables of interest�
According to the graphical model paradigm� each vari�
able is viewed as a vertex of a graph� Let rv denote the
number of values of variable v � V � xv a particular value
of v� xA an assignment to the variables in the subset A
of V � To simplify notation xV will be denoted by x�

We use trees as graphical representations for families
of probability distributions over V that satisfy a com�
mon set of independence relationships encoded in the
tree topology� In this representation� an edge of the tree
shows a direct dependence� or� more precisely� the ab�
sence of an edge between two variables signi�es that they
are independent� conditioned on all the other variables
in V � We shall call a graph that has no cycles a tree� and
shall denote by E its edge set� A probability distribution
T that is conformal with the tree 
V� E� is a distribution
that can be factorized as�

T 
x� �

Q
�u�v��E Tuv
xu� xv�Q
v�V Tv
xv�deg v��


��

Here deg v denotes the degree of v� e�g� the number of
edges incident to node v � V � The factors Tuv and Tv
are the marginal distributions under T �

Tuv
xu� xv� �
X

xV�fu�vg

T 
xu� xv� xV�fu�vg�

Tv
xv� �
X

xV�fvg

T 
xv� xV�fvg��

The distribution itself will be called a tree when no con�
fusion is possible� If the tree is connected� e�g� it spans
all the nodes in V � it is often called a spanning tree�

An equivalent representation for T in terms of condi�
tional probabilities is

T 
x� �
Y

v�V

Tvjpa�v�
xvjxpa�v�� 
��

�In the graph theory literature� our de�nition corresponds
to a forest� The connected components of a forest are called
trees�
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The form 
�� can be obtained from 
�� by choosing an
arbitrary root in each connected component and recur�

sively substituting
Tvpa�v�
Tpa�v�

by Tvjpa�v� starting from the

root� pa
v� represents the parent of v in the thus di�
rected tree or the empty set if v is the root of a con�
nected component� The directed tree representation has
the advantage of having independent parameters� The
total number of free parameters in either representation
is
P

�u�v��ET
rurv �

P
v�V 
degv � ��rv�

Now we de�ne a mixture of trees to be a distribution
of the form

Q
x� �
mX

k��

�kT
k
x� 
��

with

�k � �� k � �� � � � �m�
mX

k��

�k � �� 
��

From the graphical models perspective� a mixture of
trees can be viewed as a containing an unobserved choice
variable z� taking value k � f�� � � �mg with probability
�k� Conditioned on the value of z the distribution of
the visible variables x is a tree� The m trees may have
di�erent structures and di�erent parameters� Note that
because of the structure variable� a mixture of trees is
not properly a belief network� but most of the results
here owe to the belief network perspective�

� THE BASIC ALGORITHM� ML

FITTING OF MIXTURES OF

TREES

This section will show how a mixture of trees can be
�t to an observed dataset in the Maximum Likelihood
paradigmvia the EM algorithm ��� The observations are
denoted by fx�� x�� � � � � xNg� the corresponding values
of the structure variable are fzi� i � �� � � � Ng�

Following a usual EM procedure for mixtures� the Ex�
pectation 
E� step consists in estimating the posterior
probability of each tree to generate datapoint xi

Pryi � kjx�����N �model� � �k
i� �
�kT

k
xi�P
k� �k�T

k�
xi�

��

Then the expected complete log�likelihood to be maxi�
mized by the M step of the algorithm is

Elc jx�����N �model� � 
��

�
mX

k��

�klog�k �
NX

i��

P k
xi� logT k
xi��

�k �
NX

i��

�k
x
i�� k � �� � � �m 
��

P k
xi� � �k
i���k� 
��

The maximizing values for the parameters � are �newk �
�k�N � To obtain the new distributions T k� we have to
maximize for each k the expression that is the negative
of the crossentropy between P k and T k�

NX

i��

P k
xi� logT k
xi� 
��

This problem can be solved exactly as shown in ��� Here
we will give a brief description of the procedure� First�
one has to compute the mutual information between each
pair of variables in V under the target distribution P

Iuv �
X

xuxv

Puv
xu� xv� log
Puv
xu� xv�

Pu
xu�Pv
xv�
� u� v � V� u ��v�


���

Second� the optimal tree structure ET is found by
a Maximum Weight Spanning Tree 
MWST� algorithm
using Iuv as the weight for edge 
u� v�� �u� v � V � Once
the tree is found� its marginals Tuv 
or Tujv�� 
u� v� � ET

are exactly equal to the corresponding marginals Puv of
the target distribution P � They are already computed as
an intermediate step in the computation of the mutual
informations Iuv 
����

In our case� the target distribution for T k is repre�
sented by the posterior sample distribution P k� Note
that although each tree �t to P k is optimal� for the en�
compassing problem of �tting a mixture of trees to a
sample distribution only a local optimum is guaranteed
to be reached� The algorithm is summarized in �gure ��

This procedure is based on one important assumption
that should be made explicit now� It is the Parameter
independence assumption� The distribution T k

vjpa�v�

for any k� v and value of pa
v� is a multinomial with
rv� � free parameters that are independent of any other
parameters of the mixture�

Shared structure It is possible to constrain the m
trees to share the same structure� thus constructing a
truly Bayesian network� To achieve this� it is su�cient
to replace the weights in step M� by

P
k
Ikuv and run

the MWST algorithm only once to obtain the common
structure ET � The tree stuctures obtained by the basic
algorithm are connected� The following section will give
reasons and ways to obtain disconnected tree structures�
Missing variables are handled elegantly by trees�

Any number of nonadjacent missing variables can be
marginalized out in O
maxvrv� time and this bound
grows exponentially with l� the size of the largest con�
nected subset of missing variables�
Observed but unknown structure variable An

interesting special case is the situation when the struc�
ture variable is in fact one of the observed variables 
or
a small subset thereof�� but we don�t know which one�
To discover it� one can either� build several mixtures
by conditioning on each one of the observables and then
compare their posteriors� or� build one standard mix�
ture model and then compare the mutual information
between the structure variable and each of the others to
identify the most likely candidate�

� MAP MIXTURES OF TREES

In the previous section we have shown how to �t the ML
mixture of spanning trees to a set of observations using
the EM algorithm� Now we will extend the above proce�
dure to the broader problem of �nding the Maximum a
Posteriori 
MAP� probability mixture of trees for a given
dataset� In other words� we will consider a nonuniform
prior P model� and will be searching for the mixture of
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Figure �� The Basic Algorithm� ML Fitting of a Mixture of Trees
Input�Dataset fx�� � � � xNg

Initial model m� T k� �k � k � �� � � �m
Procedure MWST� weights � that �ts a maximum weight spanning tree over V

Iterate until convergence�
E step� compute �ik� P

k�xi� for k � �� � � �m� i � �� � � �N by �
�� ���� ���
M step�

M�� �k � �k�N� k � �� � � �m
M�� compute marginals P k

v � P
k

uv� u� v � V� k � �� � � �m
M�� compute mutual information Ikuvu� v � V� k � �� � � � m
M�� call MWST�f Ikuv g� to generate ETk for k � �� � � �m
M�� T k

uv � P k

uv� �T
k

v � P k

v for �u� v� � E
Tk

� k � �� � � �m

trees that maximizes

logP modeljx�����N � � logP x�����N jmodel� 
���

� logP model� � constant�

Factorized priors The present maximization problem
di�ers from the ML problem solved in the previous sec�
tion only by the addition of the term logP model�� We
can as well approach it from the EM point of view� by
iteratively maximizing

E
�
logP modeljx�����N � z�����N �

�
� logP model� 
���

� Elc
x
�����N � z�����N jmodel��

It is easy to see that the added term does not have any
in	uence on the E step�which will proceed exactly as
before� However� in the M step� we must be able to
successfully maximize the r�h�s� of 
���� In usual EM
application this is enabled by the fact that we obtain a
separate set of equations for the parameters of each mix�
ture component� Therefore� we will look for priors over
the trees parameters that also satisfy this decomposition�
They are of the form

P model� � P ������m�
mY

k��

P Tk� 
���

This class of priors is in agreement with the param�
eter independence assumption and includes the conju�
gate prior for the multinomial distribution which is the
Dirichlet prior� A Dirichlet prior over a tree can be repre�
sented as a table of �ctitious marginal probabilities P �k

uv

for each pair u� v of variables plus an equivalent sample
size N � that gives the strength of the prior ��� It is now
straightforward to maximize the a�posteriori probability
of a tree� one has to replace the marginals P k

uv in step
M� by

�P k
uv � 
NP k

uv � N �P �k
uv��
N � N ��� 
���

The Dirichlet prior implies the knowledge of detailed
prior information about the model� In particular it
implies that the number of mixture components m is
known� When this is not the case� but there is informa�
tion about the marginal relations between the variables
one can introduce it in the form of one table of �ctitious
marginals and and an equivalent sample size N �� From it
one can create a �ctitious dataset of size N � to augment
the true training set� Then� the training should proceed
just like for an ordinary ML model �tting�

MDL �Minimum Description Length� priors
are even less informative priors� They attempt to bal�
ance the number of parameters that are estimated with
the amount of data available� usually by introducing a
penalty on model complexity� For mixtures of trees one
can proceed in two fashions� di�ering on whether they
maintain or drop the parameter independence� First we
will describe methods to reduce the number of parame�
ters while keeping them independent�
Edge pruning and prior on m� To control the

number of components m� one can introduce a prior
P m� and compare model posteriors obtained from 
����
To penalize the number of parameters in each compo�
nent notice that adding a link 
u� v� in a tree contributes
�uv � 
ru���
rv��� parameters w�r�t� a factorized dis�
tribution� One can also choose a uniform penalty �uv �
�� Introducing a prior P T � � exp

�
��
P

uv�ET
�uv

�

is equivalent to maximizing the following expression for
each mixture component 
the mixture index k being
dropped for simplicity�

argmax
ET

X

uv�ET

�Iuv � ��uv� � argmax
ET

X

uv�ET

Wuv


���
To achieve this for any choice of �uv it su�ces to re�
place the weights in step M� by W k

uv and to modify the
MWST procedure so as to consider only positive weight
edges� This prior is a factorized prior as well�

Smoothing �or regularization�methods consider
one comprehensive model class 
full spanning trees and
a su�ciently large m� and within it introduce a bias to�
wards a small e�ective number of parameters� Here we
discuss a few techniques that can be applied to trees and
direct the reader to consult the vast existing literature
related to smoothing in clustering and discrete probabil�
ity estimation for futher information on this subject�
� Penalizing the entropy of the structure variable
by introducing the penalty term ��H
������m�� In this
case� the �k cease being decoupled� and the resulting
system of equations has to be solved numerically�
� Smoothing with the marginal� One computes the
pairwise marginals for the whole dataset P total

uv and re�
places the marginals P k

uv by

�P k
uv � 
�� ��P k

uv � �P total
uv � � 	 � 	 � 
���

�Note that to use P �m� together with edge pruning on has
to compute the normalization constant in �����

�



This method and several variations thereof are discussed
in ��� Its e�ect is to give a small probability weight to
unseen instances and to draw the components closer to
each other� thereby reducing the e�ective value of m�
For the method to be e�ective in practice � is usually a
function of �k and P k

uv�

� EXPERIMENTAL RESULTS

We have tested our model and algorithms for their abil�
ity to retrieve the dependency structure in the data� as
classi�ers and as density estimators�

For the �rst objective� we sampled ������ datapoints
from a mixture of � trees over �� variables with rv � �
for all vertices� All the other parameters of the generat�
ing model and the initial points for the algorithm were
picked at random� The results on retrieving the original
trees were excellent� out of �� trials� the algorithm failed
to retrieve correctly only � tree in � trial� This bad re�
sult can be accounted for by sampling noise� The tree
that wasn�t recovered had a � of only ����� Instead of re�
covering the missing tree� the algorithm �t two identical
trees to the generating tree with the highest �� The dif�
ference between the log likelihood of the samples of the
generating model and the approximatingmodel was ����
bits per example� On all the correctly recovered trees�
the approximating mixture had a higher log likelihood
for the sample set than the generating distribution�

We investigated the performance of mixtures of trees
on two classi�cation tasks from the UCI repository� For
both tasks� we trained one model on the whole training
set� treating the class variable like any ohter variable�
In the testing phase� a new instance was classi�ed by
picking the most likely value of the class variable given
the other variables settings�

The �rst task used the Glass database ��� The data
set has ��� instances of ��dimensional continuous valued
vectors� The class variable has � values� The continuous
variables were discretized in � uniform bins each� We
tested mixtures with di�erent values of m� variable de�
grees of smoothing with the marginals and values of �
for edge pruning� In smoothing with the marginals the
coe�cient � was inversely proportional to the marginal
count �kP

k
uv for each marginal P k

uv� For edge pruning
we used a uniform penalty �uv� For comparison we
tried also mixtures of factorial distributions of di�erent
sizes� One seventh of the data� picked randomly at each
trial� was used for testing and the rest for training� We
replicate for comparison results obtained and cited in ��
on training test sets of the same size� Table � shows
a selection of the results we obtained� Smoothing with
marginals proved to be bad for classi�cation� therefore
those results are not shown� The e�ect of edge pruning
seems not to be signi�cant on classi�cation although� as
expected� it increases the test set likelihood�

The second data set used was the Mushroom database
���� This data set has ���� instances of �� discrete at�
tributes 
including the class variable� which is treated
like any other attribute for the purpose of model learn�
ing�� The training set comprised ���� randomly chosen
examples� and the test set was formed by the remaining
����� The smoothingmethods used were a� a penalty �P

on the entropy of the mixture variable and b� smoothing
with the marginal according to 
��� or similarly with a
uniform distribution� The smoothing coe�cient �M was
divided between the mixture components proportionally
to ���k� For this dataset� smoothing was e�ective both
in reducing over�tting and in improving classi�cation
performance� The results are shown in table �� The
soft classi�cation colums expresses an intergrated mea�
sure of the con�dence of the classi�er� It is visible that
besides the classi�cation being correct� the classi�er also
has achieved high con�dence�

We also tested the basic algorithm as density esti�
mator by running it on a subset of binary vector rep�
resentations of handwritten digits and measuring the
compression rate� The datasets consists of normalized
and quantized �x� binary images of handwritten digits
made available by the US Postal Service O�ce for Ad�
vanced Technology� One dataset contained images of
single digits in �� dimensions� the second contained ���
dimensional vectors representing randomly paired digit
images� The training� validation and test set contained
����� ����� and ���� exemplars respectively� The data
sets� the training conditions and the algorithms we com�
pared with are described in ��� We tried mixtures of ���
��� �� and ��� trees� �tted by the basic algorithm� The
training set was used to �t the model parameters and
the validation set to determine when EM has converged�
The EM iteration was stopped after the �rst decrease
in the log�likelihood on the validation set� For each of
the two datasets we chose the mixture model with the
highest log�likelihood on the validation set and using it
we calculated the average log�likelihood over the test set

in bits per example�� These results are shown in table
�� The other algorithms mentioned in the table are the
mixture of factorial distributions 
MF�� the completely
factorized model 
which assumes that every variable is
independent of all the others� called !Base rate"� the
Helmholtz Machine trained by the wake�sleep algorithm
�� 
Helmholtz Machine�� the same Helmholtz Machine
where a mean �eld approximation was used for train�
ing 
Mean Field� and a fully visible and fully connected
sigmoid belief network�

The results are very encouraging� the mixture of trees
is the absolute winner for compressing the simple digits
and comes in second as a model for pairs of digits� This
suggests that our model 
just like the mixture of factor�
ized distributions� is able to perform good compression
of the digit data but is unable to discover the indepen�
dence in the double digit set� A comparison of particular
interest is the comparison in performance between the
mixture of trees and the mixture of factorized distribu�
tion� In spite of the structural similarities� the mixture
of trees performs signi�cantly better than the mixture
of factorial distribution indicates that there exists some
structure that is exploited by the mixture of spanning
trees but can�t be captured by a mixture of independent
variable models�

� CONCLUSIONS

This paper has shown a way of modeling and exploit�
ing sparse dependency structure that is conditioned on
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Table �� Performance of mixture of trees models on the MUSHROOM dataset� m��� for all models�
Algorithm Correctly Soft class Test compression Train compression

classi�ed
P

�true�N �bits	datapoint� �bits	datapoint�
No smoothing ���� ���� ����� �����
Smooth w marginal � ����� ����� �����
�M � ���� �P � ��
Smooth w uniform � ����� ����� �����
�M � ���� �P � ���

Table �� Performance of di�erent algorithms on the GLASS dataset� MST is mixtures of spanning trees� MF is a
mixture of factorial distributions�
Algorithm Classi�cation #runs Algorithm Classi�cation #runs

performance performance
MST m��� � �� $��� �� MF m��� ��� �
MST m��� � ���� ��� �� MF m��� ��� �
MST m��� � ��� ��� � MF m��� $��� �
MST m��� � ��� ��� � MF from �� $���
MST m��� � �� ��� � Flexible Bayes from �� ���
MST m��� � ��� ��� � C� from �� ���
MST m��� � �� ��� �� �Rw from �� ���

Table �� Compression rates 
bits per digit� for the single
digit 
Digit� and double digit 
Pairs� datasets� MST is
mixtures of spanning trees� MF is a mixture of factorial
distributions� A $ marks the best performance on each
dataset�

Algorithm Digits Pairs
gzip ���� ����
Base Rate ���� �����
MF ���� ����
Mean Field ���� ����
Helmholtz Machine ���� ����
Fully Visible Bayes Net ���� $����
MST 
���� ���

values of the data� Without literally being a belief net�
the mixture of trees that we introduced� by playing on
variable topology independencies� is one in spirit� Trees
do not su�er from the exponential computation demands
that plague both inference and structure �nding in wider
classes of belief nets� The algorithms presented here are
linear inm and N and quadratic in jV j� The loss in mod�
elling power is compensated by using mixtures instead
of single trees� The possibility of pruning a mixture of
trees can play a role in classi�cation� as a means of au�
tomatically selecting the variables that are relevant for
the task�

The importance of using the right priors in construct�
ing models for real�world problems can hardly be under�
estimated� In this context� two issues arise� �� how is it
possible to devise good priors over the class of mixtures
of trees models � and �� what is the computational bur�
den involved in taking priors into account � The present
paper has o�ered partial answers to both these ques�
tions� it has presented a broad class of priors that are
e�ciently handled in the framework of our algorithm and
it has shown that this class includes important priors like

the MDL prior and the Dirichlet prior�
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