
MIT Progress Report Summary - 2005 

 
1.  Specific Aims 
 
The MIT project involves both computation as well as physiology in monkeys.  Computational 
modeling of visual cortex may interact daily with experiments in the nearby physiology labs of E. 
Miller and J. DiCarlo.  We continue to be guided by the model of recognition, which itself evolving 
as an effect of the experiments, in our efforts to understand the properties of selectivity and 
invariance of recognition, especially with image clutter, in IT and PFC cortex of behaving 
macaque monkeys and the relations between identification and categorization. 
 
In particular, DiCarlo and Poggio (with Riesenhuber) are testing the effects of clutter on the 
selectivity and invariance of IT neurons.  In the second part of this project Miller and Poggio (with 
Riesenhuber) are investigating the neural bases of the recognition tasks of identification and 
categorization.  In addition, Poggio (with Koch) is working on biophysically plausible circuits for 
the two key operations in the recognition model – the max-like operation and the Gaussian-like 
multidimensional tuning.  The work involves a close collaboration with CalTech on the 
computational side and with Northwestern on the experimental side. 
 
Our specific aims are listed below from the original proposal: 
 
Aim A.1: To determine the baseline IT neuronal relationships of  a) shape-selectivity and clutter-

tolerance, and  b) position-tolerance and clutter-tolerance. 
 
Aim A.2: To re-examine the relationship of shape-selectivity and clutter-tolerance and the 

relationship of position-tolerance and clutter-tolerance in the same monkeys after 
extensive training in clutter. 

 
Aim B.1: To determine if there is a common neural substrate for different recognition tasks. 
 
Aim B.2: To study the neural bases of the interaction of identification and categorization in 

Categorical Perception. 
 
Since the beginning of our project, we added three new collaborative aims: 
 
Aim N.1: To explore the mechanisms underlying the Gaussian-like tuning of cortical cells. 
 
Aim N.2: To refine the model and check its prediction about properties of V4 cells (using data 

from Reynolds and Desimone and especially in ongoing collaborations with the Harvard 
lab of Dr. Livingstone and the JHU lab of Dr. Connors). 

 
Aim N.3: To test the performance of the model on complex, natural images and compare it to the 

performance of humans and the response of neurons in the monkey IT and PFC. 

 
2.  Studies and Results 
 
“New” aim N.1: We planned to study computationally (with CalTech) and experimentally (with 
Northwestern) the circuitry underlying the max operation.  A paper has been published in the 
meantime.  While we are continuing to work on this problem, we also started to work on the 
related and new question of the neural basis for the other key operation in the model:  Gaussian-
like multidimensional tuning of cortical cells.  We are focusing on a Gaussian-like operation 
described as a normalized dot product, followed by a sigmoidal nonlinearity.  The operation may 
be implemented by a local circuit utilizing shunting inhibition. 



 
“New” aim N.2: We are investigating the feature selectivity within the intermediate visual areas 
before IT (such as V4 and V2), by replicating the tuning properties of the neurons to various 
visual stimuli.  While incorporating more realistic normalization-based Gaussian-like tuning (Kouh 
and Poggio, 2004) in the model, we have developed a systematic methodology to quantitatively fit 
shape selectivity of model neurons to experimental data (Cadieu et al. 2005).  Using this 
technique, we have shown that the position-specific tuning for boundary conformation of V4 
neurons (Pasupathy and Connor 2001) is consistent with the model.  We are also comparing and 
analyzing the responses of V4 and model neurons to gratings and sparse noise stimuli, using the 
data from Freiwald and Livingstone (2005).  Furthermore, we can fit well the data of Reynolds, 
Chelazza and Desimone on a weighed average effect in V4 (in the absence of attention).  With 
the currently available data, the estimation of model parameters is underconstrained and 
produces multiple solutions but it is still possible to obtain a set of model units with consistent 
shape tuning and invariance properties.  We can use the set of candidate model units to make 
predictions to a new set of stimuli.  We are continuing to collaborate with V4 physiologists 
(Connor, Freiwald, and Livingstone) on both the modeling of existing data and the design of new 
experiments to gain further understanding of intermediate shape tuning in the ventral stream. 
 
“New” aim N.3: We recently proposed a new biologically plausible learning rule.  When 
passively exposed to many natural images the model generates a dictionary of shape-tuned units 
from V4 to IT.  We found that learning improves drastically the recognition performance of the 
model in clutter (aim A.2).  Extensive tests on large-scale real-world object-recognition tasks 
suggest that the model can: 1) handle the recognition of many different object categories in 
clutter, 2) learn from very few training examples (on the order of 30 positive training examples) 
and 3) outperform some of the best computer vision systems.  Preliminary results (see new aim 
N.2) already suggest that the tuning properties of the C2 units generated by the model after 
learning are consistent with V4 data (Pasupathy and Connors, 2001).  The ability of the model to 
generate a set of shape-tuned units compatible with neural data and at the same time compete 
with state-of-the-art computer vision systems suggests that we have the capability to make robust 
non-trivial predictions.  We plan to compare the model performance with both humans and a 
population of IT neurons on various difficult -- but feedforward -- recognition tasks (ultra-rapid 
categorization e.g. animal vs. non-animal, face vs. non-face, etc).  We conjecture (see CalTech 
report) that computationally difficult tasks such as categorization of natural scenes (e.g. as 
containing animals and non-animals) can be done in a feed-forward architecture.  If simulations of 
the standard model and human psychophysics will support the conjecture, we may then be able 
to argue that we have a satisfactory model of the feedforward path in the ventral stream of visual 
cortex. 
 
Aim A.1: We have made significant progress on this aim.  Three monkeys have been trained in 
object recognition tasks using isolated visual stimuli.  Two monkeys have been trained to identify 
specific visual objects with different eye movements and one monkey has been trained in a 
sequential object recognition task that requires the detection of a specific shape (the target 
shape) embedded in a temporal sequence of shapes drawn from the same, parameterized shape 
space (the distractors).  We have collected response data from single IT neurons in all three of 
those monkeys (104 IT neurons to date).  The main visual conditions we have focused on thus far 
are rapid, passive viewing conditions where isolated objects, pairs of objects, or triplets of objects 
are presented randomly at a rate of 5 stimulus conditions per second.  This presentation 
paradigm was used to isolate the feed-forward component of the IT response to visual stimuli (i.e. 
little time for top-down attentional shifts) and to speed data collection.  In addition, IT neurons 
show robust object selectivity at this presentation rate and it is consistent with the presentation 
rate produced spontaneously by free viewing monkeys.  These data have allowed us to 
systematically examine and characterize the effect of placing distractor objects in each IT 
neuron’s RF while a ‘preferred’ object is also present.  In contrast to the predictions (in our 
proposal) suggested from the original version of the standard model, this is true even for 
distractor objects that are very dissimilar from the ‘preferred’ object and produce no detectable 
response when presented in isolation.  As expected from the model and from previous 



experimental data, most IT neurons are not idealized object detectors in that they do not respond 
equally to preferred objects in spite of the presence of non-preferred objects.  Our results show 
that, across a wide range of stimulus conditions, IT neuronal responses to multiple objects – 
averaged across neurons -- are very well predicted by the average of their responses to the 
constituent objects.  The observations about the average response are consistent with various 
phenomenological models (without a computational motivation) in which the output of each IT 
neuron is normalized by, e.g., the total synaptic drive into IT and/or the total spiking activity out of 
IT.  However, the observed averaging effect poses strong additional constraints on computational 
models of recognition and in particular on the new version of the standard model (described 
earlier) which attempts to explain properties of visual recognition together with properties of 
neurons in intermediate areas (V1, V2, V4, IT).  In particular, the experimental data on the 
averaging effect are likely to provide constraints on the form of the normalization operation. 
 
Aim A2:  Because we sought to first understand the ‘baseline’ clutter tolerance properties of IT 
neurons, we have not given our monkeys extensive experience in the same recognition tasks in 
the presence of distractor objects or other clutter.  However, to lay the groundwork for under-
standing the effect of experience on IT clutter tolerance, we have:  1) characterized ‘baseline’ IT 
responses in clutter (animals not trained in clutter, described above); and  2) made a significant 
extension of the model to account for the effect of visual experience in the tuning of neurons from 
area V4 to IT. 
 
In terms of the model, we have developed a new, more detailed version involving learning and 
similar but more specific mechanisms for max and tuning.  Instead of the hardwired units of the 
original model, we assume that simple (S2) units and complex (C2) units (corresponding to V4 in 
the model) become tuned to patches of C1 units (corresponding to complex cells in V1/V2) 
activity that repeat across different images of the same objects.  We have simulated a simplified 
version of Foldiak’s trace rule to generate S2 and C2 cells that become tuned to complex features 
of images.  After presentation of many natural images, the units become tuned to complex 
features ─ for instance of face-components ─ if a sequence of face images (in the presence of 
background) is presented (in general objects are not at the same position and scale).  Learning is 
task-independent and simply relies on temporal continuity (e.g. the same object being present 
during a temporal sequence of images).  The same process is iterated in PIT (S3 and C3 cells) 
where now the neurons become tuned to patches of activities in V4.  We also assume, 
consistently with available data, that there are direct projections from V2 (roughly corresponding 
to the S1 and C1 cells of the model) to PIT generating S2b units with more selectivity (they are 
tuned to larger patches with a larger number of subunits than the S2 units in V4).  Interestingly 
the model with its associated learning rules creates a redundant dictionary of features in PIT with 
different degrees of complexity/selectivity and invariance.  For instance, PIT neurons receiving 
direct projections from V2 are tuned to complex features learned from experience and consisting 
of configurations of several subunits of the V1 type (each one with a limited range of scale and 
position invariance, similarly to complex cells in V1).  Projections from V4 to PIT support simpler 
feature cells with a larger degree of invariances. 
 
Aim B1: We examined a population of 144 PFC neurons and 151 ITC neurons while monkeys 
alternated between categorizing our morph stimuli into "cats" versus "dogs" and matching 
specific, individual, category members.  As in previous studies, we found that the activity of some 
PFC neurons encoded category, others the specific individuals.  The majority of PFC neurons 
showed similar activity across the two tasks.  This suggests common substrates for each task or 
perhaps adoption of a "hybrid" strategy in which the monkeys simultaneously encode the 
category membership as well as the identity of individuals (Freedman, Serre, Riesenhuber, 
Poggio, Miller).  We also tested for task specificity by recording from PFC and ITC neurons while 
monkeys performed our categorization task versus passive viewing of the same stimuli.  Task 
versus passive viewing had a large effect on PFC, but not ITC activity. 
 
Aim B2: Monkeys are currently being prepared for this aim (Roy, Miller).  This task requires that 
monkeys be overtrained on the categorization task in order to produce effects of categorical 



perception.  So, the monkeys used for Aim B1 will be used for this aim once the experiments for 
Aim B1 are completed. 

 
3.  Plans 
 
Aim 1: We have prepared a manuscript describing the effect of multiple objects on the 
responses of IT neurons in both arbitrary and parameterized shape spaces (describe above, to 
be submitted in the next two weeks).  Although these data shed new light on the rapid, feed-
forward representation of multiple stimuli (clutter) in IT, and some of the results agree with the 
model some do not agree with the predictions in the original proposal.  Specifically, almost all IT 
neurons studied thus far show response suppression when a second (distractor) object is 
presented along with a preferred object, no matter how dissimilar the distractor object is from the 
preferred object, while versions of the model predicted recovery from suppression for dissimilar 
distractor objects.  There are several non-exclusive possibilities that could explain this 
discrepancy between the data collected thus far and the model:  1) physiology: perhaps IT 
neurons show different clutter tolerance properties when the animal is actively performing a 
recognition task (relative to the passive viewing conditions we have used so far),  2) physiology: 
perhaps we have not yet recorded from neurons using their true ‘preferred’ objects (the conditions 
in which the model  most robustly predicts no interference from other, dissimilar objects),  3) 
physiology: perhaps, by focusing on neurons with sharp selectivity (tuning within an object class), 
we have missed clutter tolerance effects seen in neurons with broader selectivity,  4) 
computational.  The standard MAX model is incorrect in some assumptions and/or missing 
important components that exist in the brain. 
 
We are re-examining and re-verifying the conditions and the assumptions under which the 
rebound effect will be measurable.  We are currently pursuing each of these possibilities.  
Specifically, we are:  1) testing IT neurons under the same stimulus conditions but with the animal 
actively performing the target detection task;  2) continuing the search for neurons that are 
relevant for the recognition task the monkey was trained on (e.g., by showing selectivity for one of 
the target objects the monkey was trained to discriminate from distractors), as these neurons are 
most suitable to test the model predictions;  3) investigating the clutter tolerance properties of IT 
neurons with broader selectivity (e.g., responding to well to all faces but not to cars);  4) 
measuring the monkeys’ psychometric curves for recognition in clutter to establish whether the 
monkeys are in fact able to perform the task. 
 
We expect these recording to be largely complete in the first animal in the next several months.  
Even more critical than the U curve effect as a constraint on the class of plausible models is the 
average response of most neurons in IT.  We know that both the old and the new version of the 
model show an average effect in IT for toy stimuli as an effect of both the tuning and the max-like 
operations; we also know that the original version of the model gives only an approximate 
average for the real stimuli (so the agreement with the data is not very good), but we do not know 
yet how well and under which conditions the new version of the model with the normalization-
based tuning (see aim N1 above) may be consistent with the IT clutter “averaging” effect 
described above.  We expect to explore the new version of the standard model and constrain it 
appropriately exploiting these data in a few weeks. 
 
Aim A.2: We still plan to train each monkey to detect the target shapes in the presence of 
flanking distractor shapes (clutter).  However, because of the unexpected observations described 
in Aim A1 (above), we have focused our efforts on understanding IT response properties in clutter 
without extensive training (Aim A1). 
 
 



CalTech Progress Report Summary - 2005 

 
1.  Specific Aims 
 
The Caltech project is organized around the central theme of attentional aspects of object recognition, 
using visual psychophysics, single cell electrophysiology in the human medial temporal lobe, and 
computational and biophysical modeling.  The research is organized into three aims:  (1) Psychophysics 
of attention and recognition in natural scenes parallels electrophysiological work, using both familiar and 
unfamiliar stimulus categories, to better understand how attention acts at the neuronal level.  This will 
determine the limits of the current feed-forward recognition and saliency models.  (2)  Integrate our 
saliency model with the feed-forward recognition system central to our Conte Center to implement 
attentional modulation of object recognition.  (3) Ongoing work with Poggio’s group seeks to investigate 
single neuron and network models of how the MAX operation could be carried out in cortex, aiming to 
account for the results obtained by the Ferster group. 

 
2.  Studies and Results 
 
Face Identification without Engaging Spatial Attention:  The processing of naturalistic stimuli has 
come under a fair amount of attention (Li et al, 2002; Rousselet et al., 2002; Braun, 2003; Kayser, 2004).  
Li and colleagues showed that the visual system can categorize natural scenes more efficiently than 
artificial geometric shapes, concluding that the attentional demands of a task are not determined by the 
complexity of the stimuli used, but by their nature – natural scenes versus artificial stimuli.  We reported 
that this type of pre-attentive processing of natural stimuli extends to discriminating the gender of a face – 
a task that involves discriminating between stimuli which share the same features and only differ subtly in 
the spatial arrangement of these features (Reddy et al., 2004).  These results are in contrast to the finding 
that subjects cannot distinguish between rotated letters (e.g. ‘T’ versus ‘L’), or a red-green bisected disk 
from its mirror image, under similar conditions.  In the present study, we investigate whether even finer 
discriminations, at the level of the individual, can be performed in the near-absence of attention. 
 
Using the dual-task paradigm, in which subjects perform face-identification along with a task that is known 
to remove attention, we test whether subjects’ performance on face-identification suffers when attention is 
removed.  Subjects were required to perform face identification on a set of faces of current celebrities, as 
well as faces of unknown individuals (whom the subjects were exposed to for just 30s prior to the start of 
the experiment).  In the near-absence of attention, performance on this task is not significantly impaired 
for all but two of our subjects, on the set of famous faces as well as on faces that subjects are not familiar 
with.  This is surprising considering that subjects make their decision about the identity of the face based 
on viewing each face for less than 200ms on each trial.  While performing face identification on a set of 
inverted faces, the subjects’ performance was significantly impaired in the near-absence of attention.  
These results thus suggest that visual system is able to make complex judgments of natural stimuli, even 
when attention is not fully available.  Neuronal populations which show a high degree of specificity for 
famous individuals or buildings (Quian-Quiroga et al., 2005), could form the basis for the high 
performance we observe on the celebrity identification task in the absence of attention. 
 
When does visual attention modulate hemodynamic activity in cortex?  Many studies have reported 
that hemodynamic activity in visual cortex is reduced in the absence of selective attention.  These reports 
are at odds with psychophysical data showing that observers are able to efficiently categorize natural 
stimuli outside the focus of attention.  To reconcile these two lines of evidence, we study the effects of 
attentional modulation on face-selective responses in the fusiform gyrus using fMRI.  Different from 
previous fMRI studies in which an “attended” condition (where subjects make a behavioral report on 
targets) is compared to an “unattended” condition (where the targets are behaviorally irrelevant), we 
included a third condition in which the targets were outside the spatial focus of selective attention yet 
remained behaviorally relevant, enabling us dissociate behavioral relevance and attentional modulation.  
Whether or not subject had to spatially attend to the faces in order to discriminate male from female faces 



made no difference to the amplitude or time-course of BOLD activity in the fusiform face area (FFA) 
provided that the faces had to be discriminated.  We observed a decrease in BOLD activity in the FFA 
when faces were behaviorally irrelevant.  The modulation of the hemodynamic response as a function of 
the subject’s behavior is region specific, as it does not extend to the parahippocampal place area. 
 
Neural Correlates of Change Blindness in the Human Medial Temporal Lobe:  Observers are often 
unaware of changes made to the visual environment when attention is not focused at the location of the 
change (change blindness).  Its correlates at the single cell level remain unclear.  We recorded from the 
medial temporal lobe (MTL) of patients with pharmacologically intractable epilepsy, implanted with depth 
electrodes and microwires, to localize the focus of seizure onsets.  Subjects were presented with one set 
of 4 simultaneously presented images twice, each time for 1s, with a brief blank interval of 1.5s between 
the 2 presentations.  On half the trials, a change occurred at one of the four locations, and subjects had to 
report whether they detected the change or not.  In separate "screening" sessions, specific images 
that cells were visually responsive to ("preferred stimuli") were determined.  In collaboration with Dr. 
Itzhak Fried at UCAL, we investigated neuronal responses when the set of preferred stimuli were used as 
changing elements.  We recorded from about 700 cells in 9 patients of which 29 were visually responsive 
under this paradigm in Dr. Fried’s lab.  These were located in the amygdala, hippocampus, entorhinal 
cortex and parahippocampal gyrus.  Similar to the finding of the MIT report in their recordings in monkey 
IT, the majority of our cells in the human MTL respond much less to a preferred stimulus (here natural 
scenes) when in the presence of three distracting images compared to when the image is presented by 
itself (the firing rate is reduced by ca 80%).  Over these cells, the preferred stimuli elicited significantly 
higher firing rates on correct trials (e.g. change detection) compared to incorrect (e.g. change blindness) 
trials.  For each cell, we were able to predict on a trial-by-trial basis (using a ROC analysis) whether or not 
a change occurred 67% of the time on average.  This prediction was significantly higher than chance on 
correct trials, but on incorrect trials prediction was at chance.  On a trial-by-trial basis, we are also able to 
predict the behavioral decision of the subject above chance (59%; choice probability).  Thus, the firing 
rates of certain MTL cells might constitute a neural correlate of change detection and change blindness. 
 
Task Switching with Top-down Cues:  By focusing their visual attention on a given task (e.g. detecting 
an animal in an image), humans can increase their efficiency in this task compared to the naïve condition.  
How much time does it take to load the necessary instructions to bias the attention system effectively?  
We investigated this question in a task switching paradigm.  In this paradigm, the subjects are presented 
with a grayscale image of a natural scene with a colored frame around the image.  The image contains an 
animal, or a vehicle, or neither (distracter).  The frame around the image is orange, blue, or purple.  After 
the task SOA (typically 120 ms) the image and the colored frame were masked.  Subjects were trained on 
four different detection tasks in a block design – “animal”, “vehicle”, “orange”, and “blue”.  The task SOA 
and the saturation of the isoluminant colored frames were adjusted such that the subjects achieved 
between 85% and 95% performance during training.  During testing, we introduced a task switching 
condition in addition to the blocks with individual tasks.  For switching blocks, subjects were instructed to 
solve two out of the four possible tasks during a particular block.  In each trial, the subjects had to perform 
one of the two tasks, which was cued by a brief symbolic cue (a simple geometric shape at fixation).  We 
varied the time between cue onset and stimulus onset (cue SOA) between 800-0 ms and introduced two 
control conditions in which the cue only appears when the stimulus is replaced by the mask, or 300 ms 
later when the mask disappears.  The subjects were asked to respond only to successful detection of the 
target by briefly releasing a mouse button.  We measured the subjects’ performance in the task as well as 
their reaction times.  With these measures, we could compute the switching cost as the difference in 
performance between task-repeat and task-switch trials in task-switch blocks, and the mixing cost as the 
difference in performance between task-repeat trials in task-switch blocks and trials in single-task blocks. 
 
We found significant mixing cost of around 100-150 ms in reaction time and around 5% in number of 
correct trials in all cases.  Surprisingly, the tasks could be performed equally well whether the cue was 
presented 800 ms before the stimulus onset, or only after mask onset.  This leads to the conclusion that 
top-down attention is not a major factor in the performance in these experiments.  Rather, subjects 
appear to be able to hold attributes of the stimulus in memory and make their decision about the correct 
response after they perceive the cue. 
 



Modeling Feature Sharing between Object Detection and Top-down Attention:  Visual search and 
other attentionally demanding processes are often guided from the top down when a specific task is given 
(e.g. Wolfe et al., 2004).  In the simplified stimuli commonly used in visual search experiments, e.g. red 
and horizontal bars, the selection of potential features that might be biased for is obvious (by design).  In 
a natural setting with real-world objects, the selection of these features is not obvious, and there is some 
debate which features can be used for top-down guidance, and how a specific task maps to them (Wolfe 
and Horowitz, 2004).  Learning to detect objects provides the visual system with an effective set of 
features suitable for the detection task, and with a mapping from these features to an abstract 
representation of the object. 
 
Together with Poggio’s group, we developed a model in which V4-type S2 features are shared between 
object detection and top-down attention.  As the model familiarizes itself with objects, i.e. it learns to 
detect them, it acquires a representation for features to solve the detection task.  We propose that by 
cortical feedback connections, top-down processes can re-use these same features to bias attention to 
locations with higher probability of containing the target object.  Our implementation of the model 
outperforms pure bottom-up attention.  The performance of our model, which uses only grayscale 
information, is comparable to a top-down bias for skin hue. 
 
Deployment of Feature-Based Top-Down Attention in Visual Search:  Artificial search arrays are 
used to investigate which features and combinations thereof attract top-down attention (pop-out).  If the 
combination of features of the target does not pop-out, the reaction time (RT) for finding the target 
increases proportionally as a function of the number of distractors.  This is a consequence of the 
requirement of some sort of serial scanning of some of the distractors.  Multiple principal serial search 
strategies could be utilized: random search, serial search of all distractors which share one or multiple 
features with the target or a combination thereof.  If the search strategy for a known target is to serially 
search all the items that share a certain feature dimension with the target, this would allow us to 
investigate which features are used for top-down deployment of attention in visual search. 
 
We recorded eye movements while subjects searched for a known target in search arrays composed of 
colored oriented bars.  At the beginning of each trial, the target alone is shown at the center of the screen, 
followed by a search array composed of 49 items, one of which is always the target.  Subjects (n=5) took 
on average 8 fixations to find the target.  We constructed a conservative computational model with perfect 
memory for all previous saccades to generate realistic, but random, saccades.  The computational model 
requires on average 25 fixations to find the target, while the subjects require 8 on average.  In most trials, 
subjects serially search the distractors which share one of the features (e.g., color or orientation) with the 
target.  Surprisingly, color turns out to be the dominant feature: even if the two colors are very close (hard 
to distinguish) and the two orientations used are as different as possible (0 and 90 degrees), color is used 
as the feature for top-down attentional deployment.  We repeated the same search experiment for a large 
number of trials on the same subjects over multiple days.  The search strategy used for a given search 
array is highly consistent, both for the same subject over a long period of time as well as across subjects.  
We thus conclude that the feature sets used for top-down deployment are highly stereotypic. 

 
3.  Plans 
 
We will continue our research as outlined in the original proposal.  As a new aim, in the coming year, our 
group, in conjunction with Poggio’s, are considering the type of operations that can be performed in feed-
forward, hierarchical networks, such as the standard model, with and without attention and eye 
movements.  We make several assumptions.  (1) The only role of eye movements is to bring a particular 
part of the retinal input under the high resolution at the fovea.  We further assume that the network has 
been trained for a particular task.  This mimics the role of expectation.  It is known from the work of Mack 
and Rock (in attentional blindness) that an unexpected visual stimulus may be perceptually invisible even 
though the observer is directly looking at it. 
 
We define a discrimination task as immediate when it can be carried out with a single eye fixation and in 
the (near) absence of spatial, focal attention.  Under these conditions, we conjecture (1) that such a 



simple discrimination (including that between natural scenes containing animals and non-animals) can be 
done in a feed-forward architecture; (2) that when a task can only be performed with spatial attention 
(such as telling a red-green from a green-red disk in the periphery) or using multiple fixations, feedback  
is  essential.  This may requires additional processing time.  (3) Discrimination tasks that fall within the 
equivalence class defined by some particular invariance require selective, focal attention. 



Georgetown Progress Report Summary - 2005 

 
1.  Specific Aims 
 
The Georgetown subcontract was originally part of the MIT project, the subcontract arising from Dr. 
Riesenhuber’s move to Georgetown University to start a lab there.  Thus, activities at Georgetown are 
directly related to the aims of the original MIT project, i.e., its Aims A (investigating the neural 
mechanisms underlying object recognition in clutter) and B (to determine if there is a common neural 
substrate for different recognition tasks).  In parallel, we have amplified the original aims by exploring 
extensions of the computational model at the core of our center to quantitatively model not just 
physiological data but also human object recognition performance and brain activity as measured by 
fMRI.  We chose to develop this approach with the object class of human faces.  This object class is 
particularly interesting, not just because of its great importance for cognition, but also because current 
theories of human object recognition ascribe a special status for faces, claiming that the neural 
mechanisms underlying face recognition differ from those for other, generic objects, e.g., by using 
“configural” processing.  Our modeling results (submitted for publication) indicate that the same model 
that drives the physiological experiments can also quantitatively account for human face processing 
performance and brain activation as measured by fMRI.  We then used our computational model of 
human face processing to generate novel, quantitative predictions for psychophysics and fMRI based on 
simulated “face cell” activations, with very encouraging preliminary results (see below).  This is quite 
exciting as it significantly broadens the scope of the model and opens the door to use the computational 
model as a tool to go beyond current “black box” models of neural disorders involving object recognition 
deficits (such as autism, dyslexia or schizophrenia), with the goal of mechanistically linking behavioral 
differences to differences at the level of neural processing, thus identifying potential targets for 
therapeutic intervention.  The preliminary results have been so encouraging that we have started a 
collaboration with a neurologist at Georgetown University Medical Center with the aim of applying this 
approach to study the neural mechanisms underlying face processing deficits in autism. 

 
2.  Studies and Results 
 
Aim A.1:  We have continued testing the model predictions regarding recognition in clutter using human 
psychophysical experiments.  In our earlier studies we had trained subjects on novel objects and then 
tested subjects’ recognition performance for these objects presented together with other, distractor 
objects whose similarity to the target object was parametrically controlled.  Key advantages of this 
approach are its good control over stimulus set and prior experience with the stimuli, and we collaborated 
with DiCarlo’s group to develop a similar paradigm for the physiology project based on the human pilot 
experiment.  A drawback of the “novel object” approach, however, in particular for human studies is that it 
requires extensive training.  In the past year, we thus focused our efforts on an object class for which 
every human is an “expert” (and thus does not require training): faces.  Based on published physiological 
data on monkey face cell tuning specificity, brain imaging data on FFA (fusiform face area, a brain area 
crucial to human face perception) selectivity from fMRI, and human behavioral data on face discrimination 
performance, we have developed a computational model of face neurons in the FFA.  The simulations 
show that the data on face processing can be well accounted for in our standard modeling framework as 
a result of extensive experience with faces, without having to postulate additional “face-specific” 
mechanisms, in line with our earlier psychophysical results which were published in the reporting period 
(Riesenhuber et al. 2004).  The modeling results have now been submitted for publication (Rosen & 
Riesenhuber).  We are currently testing novel model predictions regarding a quantitative link between 
face neuron responses, BOLD contrast in fMRI, and behavior.  This approach is illustrated in Figure 1 
(Jiang & Riesenhuber).  In addition, we are conducting psychophysical experiments on face perception in 
clutter (Jarudi, Jiang, Riesenhuber).  Preliminary results (based on 8 subjects) indicate that target 
detection performance as a function of similarity of target and simultaneously presented clutter object 
might follow a U-shape, as predicted in the proposal. 
 



Aim B.1:  We have collaborated with Earl Miller and Jefferson Roy to develop an experimental paradigm 
and stimuli to train and test monkeys on a category switching task (see MIT progress report) which will 
allow us to test model predictions regarding the neural mechanisms underlying different recognition tasks, 
in particular the split into a generic shape-based representation for the target object class providing input 
to task-specific circuits.  Neural recordings have been completed and data are currently being analyzed.  
In parallel, we have developed a human subject version of the original categorization task, using morphed 
cars instead of the cat/dog morphs employed in the monkey study, to avoid confounds with subjects’ 
preexisting categories for the animal stimuli.  Using a morph space spanned by four prototypes (the same 
size currently being used in the monkey studies), we have now trained 12 subjects (for up to nine hours 
each) on a categorization task, using an optimized training procedure.  After training, subjects were able 
to categorize the morphed stimuli at high accuracy.  We are currently investigating categorical perception 
effects to inform the design of the monkey paradigm for Aim B.2 (Jiang & Riesenhuber). 
 
 
 

 
 
Figure 1: Illustration of the integrative approach of predicting human behavioral performance and fMRI BOLD contrast 
based on our model of face neurons (FN).  (a) Average distance (with standard error) between model face unit (FU) 
activity patterns for faces images of varying similarity.  Face pairs were created using a photo-quality morphing 
systems (Vetter & Blanz, 1999).  x-axis gives intra-pair dissimilarity (in equidistant “steps” in morph space, with 10 
steps (=d10) corresponding to the distance between two different face prototypes and intermediate steps 
corresponding to faces that are morphs of the two prototypes), y-axis shows difference between activity patterns over 
182 FU not including units tuned to any of the morphed faces.  The model predicts a direct link between FN tuning 
specificity and discrimination performance.  If face discrimination is based on the comparisons of FN activation 
patterns, performance should increase with dissimilarity between target (T) and distractor (D) faces, as the 
corresponding activation patterns get increasingly dissimilar.  Crucially, due to the tight tuning of FNs, for some T-D 
dissimilarity, both will activate disjoint subpopulations of FNs, and performance should asymptote, as further 
increasing the T-D dissimilarity will not increase the dissimilarity of FN activation patterns.  Likewise, in an fMRI rapid 
adaptation paradigm (fMRI-RA), adaptation of FFA FN stimulated with pairs of faces of increasing dissimilarity should 
decrease, and asymptote when the faces activate different subpopulations of FN.  Using the results in (a), we 
quantitatively predicted the T-D dissimilarity for which BOLD-contrast and behavior were expected to asymptote.  
Crucially, activity pattern distance appears to saturate at around d5, with the distances at d5 and d7 (or d6 and d8) 
not statistically significantly different, p>0.26 (p>0.14), whereas d3 and d5 (d4 and d6), although of equal physical 
dissimilarity, were significantly different, p<0.0001 (p<0.008).  (b) shows experimental 2AFC face discrimination 
results (9 subjects).  Subject performance asymptotes around morph step 6, in close agreement with the prediction in 
(a).  (c) Time course of BOLD-contrast (% signal change relative to a fixation baseline) in one pilot subject’s FFA for 
an fMRI-RA experiment which measures BOLD contrast response to rapidly presented pairs of faces of varying 
dissimilarity (3,5, and 7 morph steps apart).  The different curves show responses to image pairs of different 
similarity.  Very importantly, the BOLD contrast signal saturates around d5, in quantitative agreement with the 
predictions in (a). 

 



3.  Plans 
 
Aim A:  We will continue the psychophysical testing of the model predictions for recognition in clutter, in 
particular the U-shape prediction for recognition performance.  A second focus will be to investigate 
learning effects: If subjects are trained on a novel object class, how robust is their recognition 
performance to clutter? Can it be improved through training?  The model predicts that improving 
recognition performance in clutter requires learning at intermediate levels of the visual system (e.g., 
V4/PIT, see the results by Serre and Poggio in the MIT project).  We also intend to explore this question 
in fMRI (funded separately), with significant synergies for the Conte project, in particular the physiology 
studies of DiCarlo, and the psychophysics of Koch. 
 
Aim B:  We will continue the collaboration with Miller’s group, and also continue the human studies on 
categorization and categorical perception.  We also intend to perform fMRI studies (funded separately) of 
the human subjects trained on the categorization task and relate the findings to the monkey results. 
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1.  Specific Aims 
 
We continue to study the summation of signals within the receptive fields of complex cells in area 17 of 
cat visual cortex, and the mechanisms underlying the summation properties we observe.  As discussed in 
the last progress report, our early data, now published in the Journal of Neurophysiology (2004 92:2704-
13) were somewhat at odds with one of the classical papers on complex cells by Movshon et al. (J 
Physiol. 1978 283:79-99).  These authors showed that spatial interactions between pairs of pairs flashed 
in the receptive fields of complex cells showed a substructure that resembled the receptive fields of 
simple cells.  That is, for flashed bars of the same polarity (bright/bright or dark/dark), when they were 
close together, they facilitated one another and when they were far apart they antagonized one another.  
The opposite occurred when the bars were of opposite polarity to one another (bright/dark).  We, on the 
other hand, had found that the interaction between bars in the pair was independent of polarity or 
separation, and that the interaction was MAX-like in that the response to the pair was similar to largest of 
the responses to the individual bars.  In our experiments, however, we had not tested a complete set of 
bar pairs at all possible locations, but had tested a few locations in each cell and averaged the results 
together. 
 

 
 
Figure 1.  Intracellularly recorded responses of 2 complex cells in area V1 of the cat visual cortex.  Top row and left 
column: responses to a briefly flashed, optimally oriented bar at 12 different positions within the receptive field.  The 
rest of matrix shows the responses to simultaneously flashed pairs of bars (blue).  Green traces show the sum of the 
responses to the two bars of the pair when presented individually.  The inset shows the MAX index as a function of 
the relative distance between the bars in a pair for all pairs. 

 
2.  Studies and Results 
 
In order to explore the apparent discrepancy between our data and the Movshon et al. data, we have now 
recorded from a number of complex cells and flashed pairs of bars at all possible combinations of 
receptive field positions.  Two example cells are shown in Figure 1.  The response (intracellularly 
recorded membrane potential) to single bars flashed at 12 positions across the receptive field are shown 
along the top row (red) and repeated along the left side.  The matrix of traces shows the responses to 
each possible pair of bars.  The red traces in each cell of the matrix are the individual responses; the 
green trace is the arithmetic sum of the individual responses; the blue trace is the actual response to the 
pair.  The cell on the right shows the MAX-like behavior that we described previously.  No matter what the 
position of the bars in the pair, the summation is MAX-like in that the response to a pair is generally 



comparable to the larger of the two individual responses.  When the MAX index is plotted as a function of 
bar separation (inset), the plot is relatively flat and averages near 0. 
 
The cell on the left behaves more as Movshon et al. described complex cells.  The MAX index in this case 
is clearly dependent on the separation distance between the bars.  The negative indices at small 
separations indicate suppression such that the response to the pair is smaller than either of the individual 
responses.  And the positive indices at larger separations indicate facilitation or summation between the 
stimuli such that the responses are larger than either of the two individual responses (though somewhat 
smaller than their sum). 
 
The two cell types that are represented in Figure 1 also differ in their spatial frequency selectivity, as 
predicted by their spatial interaction.  In Figure 2, the spatial frequency selectivity of the left- and right-
hand cells in Figure 1 are the 3rd and 2nd plots from the top.  The cell with uniform MAX-like behavior has 
broader spatial frequency tuning and a lower peak spatial frequency, as would be predicted by a Fourier 
transform of the spatial interaction profile. 
 

 
 
Figure 2.  Spatial frequency tuning curves from 4 cells in area V1 of the cat visual cortex.  Data are normalized and 
shifted vertically for clarity.  Measurements are of mean depolarization of membrane potential evoked by drifting 
gratings of different spatial frequencies.  Red curves, data; blue curves, fits.  The second and third curves from the 
top are for the right-hand and left-hand cells in Figure 1. 

 
3.  Significance 
 
From these results, we can state with some confidence that there really is a population of cells in the 
visual cortex that specifically perform a MAX-like computation on the visual image.  These cells are 
distinct from the cells that are more classically defined as complex.  And, the MAX-like cells may have 
distinct receptive field properties from the classically-defined complex cells. 

 
4.  Plans 
 
It seems then, that Movshon et al. reported on only a subset of complex cells in area 17 and that there is 
an additional population with very different properties than the ones they described.  We will continue to 
explore these cell types and their differences.  We are interested in whether these two different cell types 
lie at the ends of a continuum or constitute two distinct populations, where (what layers) they are located 
in the cortex, whether they differ in receptive field properties such as size, orientation specificity, direction 
selectivity, length summation, and whether they differ in synaptic connectivity.  To test the latter, we will 



place a stimulating electrode in the lateral geniculate nucleus and measure the latency of evoked PSPs.  
Shorter latencies (< 2.3 ms) are indicative of direct, monosynaptic connections.  Longer latencies (> 3.0 
ms) are indicative of indirect, or polysynaptic connections via other cortical neurons.  We will also be able 
to identify, though the antidromic responses of the cells, whether they project to subcortical structures 
such as the lateral geniculate or superior colliculus. 
 
In addition we will explore the cellular mechanisms underlying the different types of summation in these 
cells.  By recording the visually evoked changes in membrane potential while polarizing the cell with 
different levels of injected current, we can estimate the excitatory and inhibitory synaptic conductances 
underlying the potentials.  These conductances will likely differ qualitatively in the two types of cells.  Our 
colleague Ilan Lampl at the Wiezmann Institute, for example, suggests that MAX-like behavior might be 
produced by nonlinear summation of inhibitory inputs combined with linear summation of excitatory 
inputs.  Other models of the mechanisms underlying the MAX-like behavior of complex cells are being 
developed by members of Dr. Poggio’s and Dr. Koch’s groups.  Both the intrinsic properties of cortical 
neurons (synaptic and voltage gated currents) and the properties of the local circuit are being considered.  
Where possible, our experiments will be designed to test these models specifically. 
 
 


