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Abstract

Selective visual attention is believed to be responsible for serializing visual information for recognizing one object at a time in a complex
scene. But how can we attend to objects before they are recognized? In coherence theory of visual cognition, so-called proto-objects form volatile
units of visual information that can be accessed by selective attention and subsequently validated as actual objects. We propose a biologically
plausible model of forming and attending to proto-objects in natural scenes. We demonstrate that the suggested model can enable a model of
object recognition in cortex to expand from recognizing individual objects in isolation to sequentially recognizing all objects in a more complex
scene.
c© 2006 Published by Elsevier Ltd
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1. Introduction

Attention as a selective gating mechanism is often compared
to a spotlight (Posner, 1980; Treisman & Gelade, 1980),
enhancing visual processing in the attended (“illuminated”)
region of a few degrees of visual angle (Sagi & Julesz, 1986). In
a modification to the spotlight metaphor, the size of the attended
region can be adjusted depending on the task, making attention
similar to a zoom lens (Eriksen & St. James, 1986; Shulman &
Wilson, 1987). Neither of these theories considers the shape and
extent of the attended object for determining the attended area.
This may seem natural, since commonly attention is believed
to act before objects are recognized. However, experimental
evidence suggests that attention can be tied to objects, object
parts, or groups of objects (Duncan, 1984; Egly, Driver, &
Rafal, 1994; Roelfsema, Lamme, & Spekreijse, 1998). How can
we attend to objects before we recognize them?

Several computational models of visual attention have
been suggested. Tsotsos et al. (1995) use local winner-take-
all networks and top-down mechanisms to selectively tune
model neurons at the attended location. Deco and Schürmann
(2000) modulate the spatial resolution of the image based on
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a top-down attentional control signal. Itti, Koch, and Niebur
(1998) introduced a model for bottom-up selective attention
based on serially scanning a saliency map, which is computed
from local feature contrasts, for salient locations in the order
of decreasing saliency. Making extensive use of feedback
and long-range cortical connections, Hamker (2005a, 2005b)
models the interactions of several brain areas involved in
processing visual attention, which enables him to fit both
physiological and behavioral data in the literature. Closely
following and extending Duncan’s Integrated Competition
Hypothesis (Duncan, 1997), Sun and Fisher (2003) developed
and implemented a common framework for object-based and
location-based visual attention using “groupings”. Presented
with a manually preprocessed input image, their model
replicates human viewing behavior for artificial and natural
scenes. However, none of these models provides a satisfactory
solution to the problem of attending to objects even before they
are recognized.

Rensink (2000a, 2000b) introduced the notion of proto-
objects in his interpretation of apparent blindness of observers
to fairly dramatic changes in a scene when the original and
the modified scenes were separated by a blank screen for a
few milliseconds (Rensink, Oregan, & Clark, 1997; Simons &
Levin, 1998). Rensink described proto-objects as volatile units
of visual information that can be bound into a coherent and
stable object when accessed by focused attention.
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Fig. 1. Illustration of the processing steps for obtaining the attended region. The input image is processed for low-level features at multiple scales, and center-
surround differences are computed (Eq. (6)). The resulting feature maps are combined into conspicuity maps (Eq. (9)) and, finally, into a saliency map (Eq. (10)).
A winner-take-all (WTA) neural network determines the most salient location, which is then traced back through the various maps (marked in red) to identify the
feature map that contributes most to the saliency of that location (Eqs. (11) and (12)). Spreading of attention in this winning feature map around the most salient
location (Eq. (14)) yields a binary map that is used as a mask for obtaining the proto-object region as well as for object-based inhibition of return.
In a related concept, Kahneman and Treisman (1984)
introduced “object files” as a term for object-specific
collections of features in an analogy to case files at a police
station. The main difference between proto-objects and object
files is the role of location in space. Kahneman and Treisman
treat the spatial location of an object as just another property
of the object, as just another entry in the related object file.
In coherence theory, on the other hand, spatial location has
a prominent role as an index for binding together various
low-level features into proto-objects across space and time
(Rensink, 2000b). See Serences and Yantis (2006) for a recent
review of coherence theory and its connections to selective
attention.

In this paper we describe a biologically plausible model for
generating and attending to proto-object regions. Furthermore,
we demonstrate that the model of object recognition in cortex
by Riesenhuber and Poggio (1999b) can indeed use these proto-
objects successfully to serialize object recognition in multi-
object scenes.

2. Model architecture

Our attention system is based on the Itti et al. (1998)
implementation of the saliency map-based model of bottom-up
attention by Koch and Ullman (1985), which models selective
attention to salient locations in a given image. We extend this
model by a process of inferring the extent of a proto-object at
the attended location from the maps that are used to compute
the saliency map (Fig. 1). In order to explain our extensions in
a consistent notation, we first review the Itti et al. (1998) model
briefly.

The input image I is sub-sampled into a dyadic Gaussian
pyramid by convolution with a linearly separable Gaussian filter
and decimation by a factor of two. Conventionally, convolution
in the x direction is followed by decimation in the x direction,
and then the procedure is repeated for the y direction (Burt
& Adelson, 1983; Itti et al., 1998). By computing convolution
results only for pixels that survive subsequent decimation we
were able to improve the efficiency of the procedure, reducing
the number of multiplications required by a factor of two.
For subsampling we use the 6 × 6 separable Gaussian kernel
[1 5 10 10 5 1]/32.

By repeating the subsampling and decimation process, the
next levels σ = [0, . . . , 8] of the pyramid are obtained. The
resolution of level σ is 1/2σ times the original image resolution,
i.e., the eighth level has a resolution of 1/256th of the input
image’s I and (1/256)2 of the total number of pixels.

If r , g, and b are the red, green, and blue values of the color
image, then the intensity map is computed as

MI =
r + g + b

3
. (1)

This operation is repeated for each level of the input pyramid to
obtain an intensity pyramid with levels MI (σ ).

Each level of the image pyramid is furthermore decomposed
into maps for red–green (RG) and blue–yellow (BY)
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opponencies:

MRG =
r − g

max(r, g, b)
(2a)

MBY =
b −min(r, g)

max(r, g, b)
. (2b)

To avoid large fluctuations of the color opponency values at
low luminance,MRG andMBY are set to zero at locations with
max(r, g, b) < 1/10, assuming a dynamic range of [0, 1]. Note
that the definitions in Eq. (2) deviate from the model by Itti
et al. (1998) in the definition of yellow and in normalizing by
max(r, g, b) rather than the average (r + b+ g)/3. See Walther
(2006) for the rationale for this definition of color opponency.

Local orientation mapsMθ (σ ) are computed by convolving
the levels of the intensity pyramid with Gabor filters:

Mθ (σ ) = ‖MI (σ ) ∗ G0(θ)‖ + ‖MI (σ ) ∗ Gπ/2(θ)‖, (3)

where

Gψ (x, y, θ) = exp

(
−

x ′2 + γ 2 y′2

2δ2

)
cos

(
2π

x ′

λ
+ ψ

)
(4)

is a Gabor filter with aspect ratio γ , standard deviation δ,
wavelength λ, phase ψ , and coordinates (x ′, y′) transformed
with respect to orientation θ :

x ′ = x cos(θ)+ y sin(θ) (5a)

y′ = −x sin(θ)+ y cos(θ). (5b)

We use γ = 1, δ = 7/3 pixels, λ = 7 pixels, and ψ ∈ {0, π/2}.
Filters are truncated to 19× 19 pixels.

Center-surround receptive fields are simulated by across-
scale subtraction 	 between two maps at the center (c) and the
surround (s) levels in these pyramids, yielding “feature maps”:

Fl,c,s = N (|Ml(c)	Ml(s)|) ∀l ∈ L = L I ∪ LC ∪ L O (6)

with

L I = {I }, (7a)

LC = {RG,BY}, (7b)

L O = {0◦, 45◦, 90◦, 135◦}. (7c)

N (·) is an iterative, nonlinear normalization operator,
simulating local competition between neighboring salient
locations (Itti & Koch, 2001). Each iteration step consists of
self-excitation and neighbor-induced inhibition, implemented
by convolution with a “difference of Gaussians” filter, followed
by rectification. For the simulations in this paper, between one
and five iterations are used.

The feature maps are summed over the center-surround
combinations using across-scale addition ⊕, and the sums are
normalized again:

F̄l = N
(

4⊕
c=2

c+4⊕
s=c+3

Fl,c,s

)
∀l ∈ L . (8)

For the general features color and orientation, the contributions
of the sub-features are summed and normalized once more to
yield “conspicuity maps”. For intensity, the conspicuity map is
the same as F̄I obtained in Eq. (8):

CI = F̄I , (9a)

CC = N
(∑

l∈LC

F̄l

)
, (9b)

CO = N
(∑

l∈L O

F̄l

)
. (9c)

All conspicuity maps are combined into one saliency map:

S =
1
3

∑
k∈{I,C,O}

Ck . (10)

The locations in the saliency map compete for the highest
saliency value by means of a winner-take-all (WTA) network
of integrate-and-fire neurons. Details of the implementation of
the WTA network are explained in Section 3.1.

The winning location (xw, yw) of this process is attended to,
and the saliency map is inhibited. Continuing WTA competition
produces the second most salient location, which is attended
to subsequently and then inhibited, thus allowing the model to
simulate a scan path over the image in the order of decreasing
saliency of the attended locations.

In the following paragraphs and in Section 3 we demonstrate
a mechanism for extracting an image region around the focus of
attention (FOA) that corresponds to the approximate extent of
a proto-object at that location. Aside from its use to facilitate
further visual processing of the attended proto-object, this
mechanism enables object-based inhibition of return (IOR),
thereby eliminating the need for a fixed-radius disc as an IOR
template as used by Itti et al. (1998).

In order to estimate the proto-object region based on the
maps and salient locations computed so far, we introduce
feedback connections in the saliency computation hierarchy
(Fig. 1). Looking back at the conspicuity maps, we find the one
map that contributes the most to the activity at the most salient
location:

kw = argmax
k∈{I,C,O}

Ck(xw, yw). (11)

In Section 3.2 we demonstrate how the argmax function, which
is critical to this step, can be implemented in a neural network
of linear threshold units (LTUs). For practical applications a
functionally equivalent generic implementation of the argmax
function may be used for its higher computational efficiency.

Examining the feature maps that gave rise to the conspicuity
map Ckw , we find the one that contributes most to its activity at
the winning location:

(lw, cw, sw) = argmax
l∈Lkw ,c∈{2,3,4},s∈{c+3,c+4}

Fl,c,s(xw, yw), (12)

with Lkw as defined in Eq. (7).
In the “winning” feature map Flw,cw,sw , activation spreads

from the winning location (xw, yw) over the shape of the
proto-object at this location, which is defined by a contiguous
4-connected neighborhood of above-threshold activity. In
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Section 3.3 we present an LTU network capable of this
operation.

In image processing terms, the same operation can be
realized by thresholding Flw,cw,sw :

B(x, y) =

{
1 if Flw,cw,sw (x, y) ≥ 0.1 · Flw,cw,sw (xw, yw)
0 otherwise,

(13)

and labeling the resulting binary map B around (xw, yw):

F̂w = label(B, (xw, yw)). (14)

For the label function we use the classical algorithm
by Rosenfeld and Pfaltz (1966) as implemented in the Matlab
bwlabel function. After a first pass over the binary map for
assigning temporary labels, the algorithm resolves equivalence
classes and replaces the temporary labels with equivalence class
labels in a second pass.

The segmented feature map F̂w is used to deploy spatial
attention to subsequent processing stages such as object
detection. Furthermore, F̂w is used as a template to trigger
object-based inhibition of return (IOR) in the WTA network.
Spreading of inhibition over the surface of objects has been
reported by Jordan and Tipper (1999) and Tipper, Jordan, and
Weaver (1999).

We have implemented our model of salient proto-
object selection as part of the SaliencyToolbox for Matlab
(http://www.saliencytoolbox.net) and as part of the iLab
Neuromorphic Vision (iNVT) C++ toolkit (http://ilab.usc.edu/
toolkit/). In the Matlab toolbox we provide both versions
of the segmentation operation, the fast image processing
implementation, and the LTU network version. They are
functionally equivalent, but the LTU network simulation runs
much slower than the fast image processing version.

3. Biological plausibility of model operations

In the previous section we have outlined the general
model architecture. Many of the steps involved are obviously
biologically realistic, such as convolution with Gabor filters
corresponding to spatial filtering by neurons in the primary
visual cortex, or extracting RG and BY color opponencies
as done by retinal ganglion cells. Three operations that are
crucial to the model, however, require closer scrutiny as far
as their biological plausibility is concerned: the winner-take-all
network used for identifying the most salient image location,
the argmax function required for determining the feature map
with the highest saliency contribution, and finally spreading of
activation over the attended proto-object in that feature map.

3.1. Winner-take-all

Winner-take-all neural networks have been extensively
discussed in the literature as a way of making decisions. The
idea of using mutually inhibiting networks of model neurons
for this purpose goes back, at least, to Grossberg (1976a,
1976b). Feldman and Ballard (1983) introduced the notion of
a winner-take-all network built from such units. The first use of
a WTA network for selective visual attention goes back to Koch
and Ullman (1985). In his selective tuning model of visual
attention, Tsotsos (1990) uses WTA networks at multiple levels
of visual processing to overcome computational complexity
barriers for visual search (see also Tsotsos et al. (1995)).
Finally, WTA networks were embraced by the analog VLSI
community as a means of stimulus selection (see, e.g., Indiveri
(1997); Liu (2002)).

For our model, we use the leaky integrate-and-fire neuron
implementation of the WTA network as outlined in Itti et al.
(1998). The parameters of the model neurons are chosen such
that they are physiologically realistic, and such that the ensuing
time course of the competition for saliency results in shifts of
attention in approximately 30–70 ms simulated time (Saarinen
& Julesz, 1991). For further details see Itti and Koch (2000)
and Itti (2000).

We now move on to explaining biologically plausible
implementations of the argmax and spreading operations.

3.2. Argmax

In Eq. (11) the model requires the identification of the
conspicuity map with the highest contribution to the saliency
map activity at the winning location. The required operation
amounts to an argmax function.

Here we demonstrate a network of linear threshold units
(LTUs) for this operation for one particular image location.
A conspicuity map location is represented by a small local
network consisting of four units (Fig. 2): a feedforward unit
f , a feedback unit b, a competition unit c, and an inhibitory
interneuron r . Furthermore, corresponding locations across all
conspicuity maps share a pool of inhibitory interneurons A.

For k ∈ { I,C, O } let fk be the activations in the conspicuity
maps for intensity (I ), color (C), and orientations (O), and fSM
the activation of the saliency map at the same location. With
l ∈ Lk as defined in Eq. (7), let fl be the activation of the
feature maps contributing to conspicuity map fk . Furthermore,
let ck be the activation of a competition unit for conspicuity
map k, rk that of an inhibitory interneuron, bk the activation
of a feedback unit for conspicuity map k, and bSM for the
saliency map. Finally, let A be the activation of a pool of
inhibitory interneurons shared among all conspicuity maps at
the corresponding map locations. Then the dynamics of the
argmax network in Fig. 2 is

fk ← φ

(∑
l∈Lk

fl

)
(15a)

fSM ← φ

( ∑
k∈{ I,C,O }

fk

)
(15b)

bk ← φ (bSM − rk) (15c)

rk ← φ (1− ck) (15d)

ck ← φ (ck + fk − A) (15e)

A← φ

(
1
2

A +
1
2

∑
k∈{ I,C,O }

ck

)
. (15f)

As the activation function φ(·) we use the half-wave
rectifying function:

(http://www.saliencytoolbox.net)
(http://www.saliencytoolbox.net)
(http://www.saliencytoolbox.net)
(http://www.saliencytoolbox.net)
(http://ilab.usc.edu/toolkit/)
(http://ilab.usc.edu/toolkit/)
(http://ilab.usc.edu/toolkit/)
(http://ilab.usc.edu/toolkit/)
(http://ilab.usc.edu/toolkit/)
(http://ilab.usc.edu/toolkit/)


D. Walther, C. Koch / Neural Networks 19 (2006) 1395–1407 1399
φ(x) =

{
x if x > 0
0 otherwise.

(16)

Let us go through these connections one by one and compare
with Fig. 2. In Eq. (15a), feedforward (blue) units fC , f I ,
and fO compute conspicuity maps for color, intensity, and
orientation by pooling activity from the respective sets of
feature maps as described in Eqs. (8) and (9), omitting the
normalization operator N here for clarity. In Eq. (15b), the
saliency map activation fSM is computed in a similar fashion
(see also Eq. (10)), and fSM participates in the spatial WTA
competition for the most salient location. The feedback (red)
unit bSM receives a signal from the WTA only when this
location is attended to, and it relays the signal to the b units in
the conspicuity maps (Eq. (15c)). Competition units c together
with a pool of inhibitory interneurons A (black) form an across-
feature WTA network with input from the f units of the
respective conspicuity maps (Eqs. (15e) and (15f)). Only the
most active c unit will remain active due to WTA dynamics,
allowing it to unblock the respective b unit via an inhibitory
interneuron r (Eqs. (15c) and (15d)).

As a result, the activity pattern of the b units represents
the outcome of the argmax function in Eq. (11). This signal is
relayed further to the constituent feature maps, where a similar
network selects the feature map with the largest contribution to
the saliency of this location (Eq. (12)).

3.3. Spreading of activation over proto-objects

Once the feature map with the highest contribution at the
attended location is found, the approximate extent of the proto-
object at that location must be determined. The proto-object is
defined as a contiguous region of high activity in that feature
map.

Spreading of attention over objects was first reported by
Egly et al. (1994). They showed that invalidly cueing a position
for subsequent target detection is still effective when the cue
and the target location are located on the same object, but
not when a different object is cued, although the distance
between (invalid) cue and target locations was the same in both
cases. In these experiments, the objects were defined by an
outline based on luminance contrast. The same effect has been
replicated for objects defined by color (Mitchell, Stoner, Fallah,
& Reynolds, 2003; Reynolds, Alborzian, & Stoner, 2003) and
illusory contours (Moore, Yantis, & Vaughan, 1998).

Fig. 3 shows a network for spreading the activity over a
proto-object. At each image location (i, j), the map activity is
given by fi, j and the select signal from the argmax function
by bi, j . The pooling unit Pi, j receives inhibitive input from
all neighboring spreading units S. The spreading unit Si, j
combines excitatory and inhibitory influences into the output
activity, which is propagated to the neighboring P units. ui, j
and vi, j are local interneurons. The network dynamics is
described by:

ui, j ← φ
(
0.1− fi, j

)
(17a)

vi, j ← φ′
(
1− Pi, j

)
(17b)
Pi, j ← φ
(
1− Si−1, j − Si+1, j − Si, j−1 − Si, j+1 − bi, j

)
(17c)

Si, j ← φ
(
ui, j − vi, j

)
. (17d)

With the exception of Eq. (17b), the activation function φ is the
same as in Eq. (16). The nonlinearity for v (Eq. (17b)) is the
Heaviside function φ′(x) = {0, x ≤ 0; 1, x > 0}.

The spreading unit Si, j receives excitatory input from
interneuron vi, j and inhibitory input from interneuron ui, j
(Eq. (17d)). The excitatory interneuron vi, j gets inhibited by
the pooling unit Pi, j (Eq. (17b)), unless Pi, j itself receives
inhibitory input (Eq. (17c)). Inhibitory input for Pi, j arrives
either from the spreading units of the neighboring pixels, or
from the select signal bi, j (red in Fig. 3), which travels the
hierarchy of maps from the saliency map down to the winning
feature map at the attended location (see Section 3.2). As a
result, activity of S units starts at the selected location and
propagates to its neighbors and to their neighbors and so on,
contingent on the respective u units being blocked (Eq. (17a))
by sufficiently high map activation fi, j (blue).

The propagation of activity will stop at the border of the
proto-object, where map activity falls below the threshold (0.1)
required to block the inhibitory u units. The pattern of activity
of all S units (green) represents the shape of the resulting proto-
object, which is used for modulating object recognition and for
object-based IOR.

4. Application to biologically plausible object recognition

4.1. Introduction

In the previous sections we have described our model for
bottom-up attention to salient proto-objects. In the introduction
we claimed that such a system would enable learning and
recognition of one object at a time in a scene with multiple
objects. In this section we set out to prove that this can indeed
be achieved when we couple the system with a biologically
plausible model of object recognition in cortex.

We adopt the hierarchical model of object recognition
by Riesenhuber and Poggio (1999b). While this model
works well for individual paper-clip objects, its performance
deteriorates quickly when it is presented with scenes that
contain several such objects because of erroneous binding of
features (Riesenhuber & Poggio, 1999a). To solve this feature
binding problem, we supplement the model with a mechanism
of modulating the activity of the S2 layer, which has roughly
the same receptive field properties as area V4, or the S1 layer,
whose properties are similar to simple cells in areas V1 and
V2, with an attentional modulation function obtained from
our model for saliency-based region selection described in
Section 2 (Fig. 4).

Note that only the shape selectivity of neurons in V1/V2
and V4, is captured by the model units. Other aspects such
as motion sensitivity of area V1 or color sensitivity of V4
neurons are not considered here. Moreover, only a simple
approximation of the shape selectivity of V4 cells is captured.
The model has seen further improvements for learning the S2
receptive field from natural scene statistics (Serre, Wolf, &
Poggio, 2005), and for extending to a third set of S and C layers,
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Fig. 2. A network of linear threshold units (LTUs) for computing the argmax function in Eq. (11) for one image location. See main text for a detailed description of
the network.
Fig. 3. An LTU network implementation of the segmentation operation in Eqs. (13) and (14).
enabling the model to detect real objects (Serre, Wolf, Bileschi,
Riesenhuber, & Poggio, in press). However, for the purpose
of demonstrating the effect of attentional selection of proto-
objects on recognition performance, we chose the simplest form
of the model with hard-wired S2 features.

4.2. Recognition model

The hierarchical model of object recognition in cortex by
Riesenhuber and Poggio (1999b) starts with S1 simple cells,
which extract local orientation information from the input
image by convolution with Gabor filters, for the four cardinal
orientations at 12 different scales. S1 activity is pooled over
local spatial patches and four scale bands using a maximum
operation to arrive at C1 complex cells. While still being
orientation selective, C1 cells are more invariant to space and
scale than S1 cells.

In the next stage, activities from C1 cells with similar
positions but different orientation selectivities are combined in
a weighted sum to arrive at S2 composite feature cells that are
tuned to a dictionary of more complex features. The dictionary
we use in this section consists of all possible combinations
of the four cardinal orientations in a 2 × 2 grid of neurons,
i.e., (2 × 2)4 = 256 different S2 features. This choice of
features limits weights to being binary, and, for a particular
location in the C1 activity maps, the weight for one and only
one of the orientations is set to 1. The S2 layer retains some
spatial resolution, which makes it a suitable target for spatial
attentional modulation detailed in the next subsection.
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Fig. 4. Sketch of the combined model of bottom-up attention (left) and object recognition (right) with attentional modulation at the S2 or S1 layer as described in
Eq. (19). (Adapted from Riesenhuber and Poggio (2003).)
In a final non-linear pooling step over all positions and
scale bands, activities of S2 cells are combined into C2
units using the same maximum operation as used from the
S1 to the C1 layer. While C2 cells retain their selectivity
for the complex features, this final step makes them entirely
invariant to location and scale of the preferred stimulus. The
activity patterns of the 256 C2 cells feed into view-tuned units
(VTUs) with connection weights learned from exposure to
training examples. VTUs are tightly tuned to object identity,
rotation in depth, illumination, and other object-dependent
transformations, but show invariance to translation and scaling
of their preferred object view.

In their selectivity to shape, S1 and C1 layers are
approximately equivalent to simple and complex cells in areas
V1 and V2, S2 to area V4, and C2 and the VTUs to areas
in posterior infero-temporal cortex (PIT) with a spectrum of
tuning properties ranging from complex features to full object
views.

It should be noted that this is a model of fast feedforward
processing in object detection. The time course of object
detection is not modeled here, which means in particular that
such effects as masking or priming are not explained by the
model. In this section we introduce feedback connections for
deploying spatial attention, thereby introducing some temporal
dynamics due to the succession of fixations.

4.3. Attentional modulation

Attentional modulation of area V4 has been reported
in monkey electrophysiology (Chelazzi, Miller, Duncan, &
Desimone, 2001; Connor, Preddie, Gallant, & van Essen, 1997;
Luck, Chelazzi, Hillyard, & Desimone, 1997; McAdams &
Maunsell, 2000; Moran & Desimone, 1985; Motter, 1994;
Reynolds, Pasternak, & Desimone, 2000) as well as human
psychophysics (Braun, 1994; Intriligator & Cavanagh, 2001).
Other reports find attentional modulation in area V1 using fMRI
in humans (Gandhi, Heeger, & Boynton, 1999; Kastner, De
Weerd, Desimone, & Ungerleider, 1998) and electrophysiology
in macaques (McAdams & Reid, 2005). There are even reports
of the modulation of fMRI activity in LGN due to selective
attention (O’Connor, Fukui, Pinsk, & Kastner, 2002). See
Fig. 7 for an overview of attentional modulation of V4 units
in electrophysiology work in macaques.

Here we explore attentional modulation of layers S2 and
S1, which correspond approximately to areas V4 and V1, by
gain modulation with variable modulation strength (Walther,
Itti, Riesenhuber, Poggio, & Koch, 2002). We use the bottom-up
salient region selection model introduced in Section 2 to attend
to proto-object regions one at a time in order of decreasing
saliency. We obtain a modulation mask FM by rescaling the
winning segmented feature map F̂w from Section 3.3 (or
Eq. (14)) to the resolution of the S2 or S1 layer, respectively,
smoothing it, and normalizing it such that:

FM (x, y)

=

1 (x, y) is inside the object region;
0 (x, y) is far away from the object region;
between 0 and 1 around the border of the object region.

(18)

If S(x, y) is the neural activity at position (x, y), then the
modulated activity S′(x, y) is computed according to

S′(x, y) = [1− µ(1− FM (x, y))] · S(x, y), (19)

with µ being a parameter that determines the modulation
strength (0 ≤ µ ≤ 1).

This mechanism leads to inhibition of units away from the
attended region by an amount that depends on µ. For µ = 1,
S2 activity far away from the attended region will be suppressed
entirely; for µ = 0, Eq. (19) reduces to S′ = S, canceling any
attention effects.
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Fig. 5. Mean ROC area for the detection of two paper-clip stimuli. Without attentional modulation (µ = 0), detection performance is around 0.77 for all stimulus
separation values. With increasing modulation of S2 activity, individual paper clips can be better distinguished if they are spatially well separated. Performance
saturates around µ = 0.2, and a further increase of attentional modulation does not yield any performance gain. Error bars are standard error of the mean. On the
right, example displays are shown for each of the separation distances.
Fig. 6. Performance for detection of two faces in the display as a function of attentional modulation of S2 activity. As in Fig. 5, performance increases with
increasing modulation strength if the faces are clearly separated spatially. In this case, mean ROC area saturates at about µ = 0.4. Error bars are the standard error
of the mean. Example displays are shown on the right.
4.4. Experimental setup

Closely following the methods in Riesenhuber and Poggio
(1999b), we trained VTUs for the same 21 paper-clip views
that they used. The bent paper-clip objects were first used in
an electrophysiology study by Logothetis, Pauls, Bülthoff, and
Poggio (1994). Test stimuli consist of displays of 128 × 128
pixels size with one of the 21 paper-clips (64 × 64 pixels)
in the top-left corner and another paper-clip superimposed at
either the same location (0 pixels) or at 16, 32, 48, or 64
pixels separation in both x and y. All combinations of the
21 paper-clips were used, resulting in 441 test displays for each
level of object separation. See Fig. 5 for example stimuli.

Rosen (2003) showed that, to some extent, the simple
recognition model described above is able to detect and identify
faces. To test attentional modulation of object recognition
beyond paper clips, we also tested stimuli consisting of
synthetic faces rendered from 3D models, which were obtained
by scanning the faces of human subjects (Vetter & Blanz, 1999).
Again, we trained VTUs on 21 unique face stimuli and created
441 test stimuli of size 256×256 pixels with one face (128×128
pixels) in the top-left corner and a second one at x and y
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distances of 0, 32, 64, 96, and 128 pixels separation. Example
stimuli are shown in Fig. 6.

Each of the 441 stimuli for paper-clips and faces was
scanned for salient regions for 1000 ms simulated time of the
WTA network, typically yielding between two and four image
regions. The stimulus was presented to the VTUs modulated
by each of the corresponding modulation masks F (i)M , and the
maximum response of each VTU over all attended locations
was recorded. VTUs corresponding to paper-clips or faces
that are part of the test stimulus were designated “positive”
VTUs, and the others “negative”. Based on the responses of
positive and negative VTUs an ROC curve was derived, and the
area under the curve was recorded as a performance measure.
This process was repeated for all 441 paper-clip and all 441
face stimuli for each of the separation values and for µ ∈
{0, 0.1, 0.2, . . . , 1}.

4.5. Results

In Fig. 5 we show the mean ROC area for the detection of
paper-clips in our displays composed of two paper-clip objects
at a separation distance between 0 pixels (overlapping) and
64 pixels (well separated) for varying attentional modulation
strength µ when modulating S2 activations. In the absence
of attention (µ = 0), the recognition system frequently
confuses features of the two stimuli, leading to mean ROC
areas between 0.76 and 0.79 (mean 0.77). Interestingly, this
value is practically independent of the separation of the objects.
Already at µ = 0.1, a clear performance increase is discernible
for displays with clearly separated objects (64 and 48 pixels
separation), which increases further at µ = 0.2 to 0.99 for
64 pixels separation and to 0.93 for 48 pixels separation.
For separation distances of 32 and 16 pixels, performance
increases only slightly to 0.80, while there is no performance
improvement at all in the case of overlapping objects (0 pixels
separation), keeping the mean ROC area constant at 0.76. Most
importantly, there is no further performance gain beyond µ =
0.2 for any of the stimulus layouts. It makes no difference to
the detection performance whether activity outside the focus of
attention is decreased by only 20% or suppressed entirely.

Detection performance for faces shows similar behavior
when plotted over µ (Fig. 6), with the exception of the case of
overlapping faces (0 pixels separation). Unlike with the mostly
transparent paper-clip stimuli, bringing faces to an overlap
largely destroys the identifying features of both faces, as can
be seen in the bottom example display on the right hand side
of Fig. 6. At µ = 0, mean ROC area for these kinds of
displays is at 0.61; for cases with object separation larger
than 0 pixels, the mean ROC area is at 0.81, independent of
separation distance. For the well separated cases (64 or more
pixels separation), performance increases continuously with
increasing modulation strength until saturating at µ = 0.4
with mean ROC areas of 0.95 (64 pixels), 0.96 (96 pixels),
and 0.98 (128 pixels separation), while performance for stimuli
that overlap partially or entirely remains roughly constant at
0.80 (32 pixels) and 0.58 (0 pixels), respectively. Increasing µ
beyond 0.4 does not change detection performance any further.
The general shape of the curves in Fig. 6 is similar to
those in Fig. 5, with a few exceptions. First and foremost,
saturation is reached at a higher modulation strength µ for
the more complex face stimuli than for the fairly simple bent
paper-clips. Secondly, detection performance for completely
overlapping faces is low for all separation distances, while
detection performance for completely overlapping paper-clips
for all values of µ is on the same level as for well separated
paper-clips at µ = 0. As can be seen in Fig. 5, paper-
clip objects hardly occlude each other when they overlap.
Hence, detecting the features of both objects in the panel is
possible even when they overlap completely. If the opaque
face stimuli overlap entirely, on the other hand, important
features of both faces are destroyed (see Fig. 6) and detection
performances drops from about 0.8 for clearly separated faces
at µ = 0 to about 0.6. A third observation is that mean
ROC area for face displays with partial or complete overlap
(0 and 32 pixels separation) decreases slightly with increasing
modulation strength. In these cases, the focus of attention
(FOA) will not always be centered on one of the two faces and,
hence, with increasing down-modulation of units outside the
FOA, some face features may be suppressed as well.

The results for modulating activity of units at the V1-
equivalent S1 layer are almost identical with the results for
modulating at the S2 layer for both paper-clips (Fig. 5) and
faces (Fig. 6).

4.6. Discussion

In our computer simulations, modulating neural activity
by as little as 20%–40% is sufficient to effectively deploy
selective attention for detecting one object at a time in a
multiple object display, and even 10% modulation is effective
to some extent. This main result is compatible with a number of
reports of attentional modulation of neurons in area V4: Spitzer,
Desimone, and Moran (1988), 18%; Connor et al. (1997), 39%;
Luck et al. (1997), 30%–42%; Reynolds et al. (2000), 51%;
Chelazzi et al. (2001), 39%–63%; McAdams and Maunsell
(2000), 31% for spatial attention and 54% for the combination
of spatial and feature-based attention. See Fig. 7 for a graphical
overview.

While most of these studies used oriented bars (Connor
et al., 1997; Luck et al., 1997; Spitzer et al., 1988) or Gabor
patches (McAdams & Maunsell, 2000; Reynolds et al., 2000)
as stimuli, Chelazzi et al. (2001) use cartoon drawings of real-
world objects for their experiments. With these more complex
stimuli, Chelazzi et al. (2001) observed stronger modulation
of neural activity than was found in the other studies with the
simpler stimuli. We observe a similar trend in our simulations,
where performance for detecting fairly simple bent paper-clips
saturates at a modulation strength of 20%, while detection of
the more complex face stimuli only reaches its saturation value
at 40% modulation strength. Since they consist of combinations
of oriented filters, S2 units are optimally tuned to bent paper-
clip stimuli, which are made of straight line segments. Hence,
even with attentional modulation of as little as 10% or 20%,
discrimination of individual paper-clips is possible. These
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Fig. 7. Modulation of neurons in macaque area V4 due to selective attention in a number of electrophysiology studies (blue). All studies used oriented bars or Gabor
patches as stimuli, except for Chelazzi et al. (2001), who used cartoon images of objects. The examples of stimuli shown to the right of the graph are taken from the
original papers. The modulation strength necessary to reach saturation of the detection performance in two-object displays in our model is marked in red on the top
of the graph. The first number reported by McAdams and Maunsell (2000) is for spatial attention only, the second one (*) is for combined spatial and feature-based
attention. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
features are not optimal for the face stimuli, however. For
the model to be able to successfully recognize the faces,
it is important that the visual information belonging to the
attended face is grouped together correctly and that distracting
information is suppressed sufficiently.

The recognition model without any attentional feedback
cannot detect several objects at once because there is no means
of associating the detected features with the correct object.
Deploying spatial attention solves this binding problem by
spatially grouping features into proto-objects based on their
most salient feature.

With their “shifter circuit” model, Olshausen, Anderson,
and Van Essen (1993) successfully demonstrated deployment
of spatial attention using gain modulation at various levels
of the visual processing hierarchy. In combination with an
associative memory, their model is capable of object detection
invariant to translation and scale. This model, however, has only
a rudimentary concept of saliency, relying solely on luminance
contrast, and the extent of the attended “blobs” is fixed rather
than derived from image properties as done in our model.

Most reports of modulation of area V1 or LGN are fMRI
studies (e.g., Gandhi et al. (1999); Kastner et al. (1998);
O’Connor et al. (2002)) and do not allow a direct estimation
of the level of modulation of neural activity. In a recent
electrophysiology study, however, McAdams and Reid (2005)
found neurons in macaque V1 whose spiking activity was
modulated by up to 27% when the cell’s receptive field was
attended to.

While our simulation results for modulating the S1 layer
agree with this number, we are cautious to draw any strong
conclusions. The response of S2 model units is a linear sum
of C1 activities, which in turn are max-pooled S1 activities.
Therefore, the fact that the results for attentional modulation of
activity of S1 units are very similar to the results for modulating
S2 activity is not surprising.

To summarize, in our computer simulations of attentional
modulation of V4-like layer S2, we found that modulation
Fig. 8. Illustration of the reduction in complexity of object learning due to
salient region selection. (A) Example training image with all keypoints marked
in yellow; (B–D) the three most salient proto-object regions marked by contrast
modulation, and the keypoints for only the attended regions marked in yellow.
There is a clear reduction in complexity when matching the set of keypoints
in a test image with sets for the individual proto-objects in (B), (C), and (D),
compared to attempting to match with the entire set of keypoints in (A). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

by 20%–40% suffices for successful sequential detection of
artificial objects in multi-object displays. This range for
modulation strength agrees well with the values found in several
electrophysiological studies of area V4 in macaque monkeys.

5. Application to computer vision

In the previous section we have shown how attending
to salient proto-objects aids recognition of multiple objects
in a biologically plausible way. We have shown there that
modulation of neural activity due to attention by as little as
20% can be sufficient to successfully bias recognition toward
the attended object.
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Fig. 9. Example for learning two objects (c) and (e) from the training image
(a) and establishing matches (d) and (f) for the objects in the test image (b),
in a different visual context, with different object orientations and occlusions.
(Adapted from Rutishauser et al. (2004), supplementary material.)

In contrast, in machine vision it is desirable to omit
processing of image parts outside the attended region in
order to save computational resources. We have demonstrated
the feasibility of this process in previously published work
(Rutishauser, Walther, Koch, & Perona, 2004; Walther,
Rutishauser, Koch, & Perona, 2005) by restricting the selection
of scale invariant features (SIFT) in the object recognition
model by Lowe (2004) to salient proto-object regions. Fig. 8
shows an example of an image with all SIFT features (A),
and with the features restricted to the three most salient proto-
objects (B–D). There is a clear reduction in complexity for
any algorithm that is trying to match constellations of such
keypoints.

In addition to improvements in complexity, selecting salient
regions for preferred processing improves robustness to clutter.
Most importantly, it becomes possible to learn several objects
from an individual image. When asking an object recognition
algorithm without any attentional region selection to learn
all the objects that are present in the image in Fig. 9(a),
for instance, the algorithm would have no notion of which
feature points belong to which object. By selecting salient
proto-objects, keypoints can be grouped into separate object
models, and individual objects can be recognized in a test image
(Fig. 9(b)), as shown with the successfully matched picture
book ((c) and (d)) and toy truck ((e) and (f)).

To summarize, using selective visual attention for object
recognition in the domain of computer vision has at least
three major advantages: (i) improved efficiency by scanning
the image starting with the regions most likely to contain
objects rather than scanning the image from top-left to bottom-
right; (ii) strongly improved robustness to visual clutter in large
scenes with many distractors; (iii) enabling the learning of
multiple object models from just one training image. For more
details see Rutishauser et al. (2004) and Walther et al. (2005).
6. Conclusion

In this paper we have introduced a model for bottom-up
attention to salient proto-objects. We have given a detailed
description of biologically plausible implementations of the
key processing steps in networks of linear threshold units.
Furthermore, we have demonstrated how this model for
attending to proto-objects can be used for serializing visual
processing by the biologically plausible model of object
recognition by Riesenhuber and Poggio (1999b).

Attended regions may not necessarily have a one-to-one
correspondence to objects. Groups of similar objects, e.g., a
bowl of fruits, may be segmented as one region, as may object
parts that are dissimilar from the rest of the object, e.g., a skin-
colored hand appearing to terminate at a dark shirt sleeve. These
regions are termed “proto-objects” because they can lead to the
recognition of the actual objects in further iterative interactions
between the attention and recognition systems. See the work
by Rybak, Gusakova, Golovan, Podladchikova, and Shevtsova
(1998), for instance, for a model that uses the vector of saccades
to code for the spatial relations between object parts.

The additional computational cost for region selection is
minimal because the feature and conspicuity maps have already
been computed during the processing for saliency. Note that
although ultimately only the winning feature map is used to
segment the attended image region, the interaction of WTA and
IOR operating on the saliency map provides the mechanism for
sequentially attending several salient locations.

There is no guarantee that the region selection algorithm will
find objects. It is purely bottom-up, stimulus driven and has no
prior notion of what constitutes an object. Also note that we are
not attempting an exhaustive segmentation of the image, such as
done by Shi and Malik (2000) or Martin, Fowlkes, and Malik
(2004). Our algorithm provides us with a first rough guess of
the extent of a salient region.

Being able to attend to salient proto-objects should only
be the first step, the tie-breaker in an iterative back and
forth between object recognition and selective visual attention.
Once a proto-object region is selected, the object recognition
system will be able to form hypotheses about the identity
of the attended object. This will then in turn instruct the
attention system to focus on features or regions that would
provide information for the verification or falsification of those
hypotheses.

There is much further room for modeling the close
interactions between visual attention and object recognition in
cortex. In the simplest case this would mean to share resources
such as orientation filtering. In our combined attention and
recognition model as illustrated in Fig. 4, for instance, the
output of V1-like orientation filters should be shared by the
two sub-systems. But interactions could reach much further
and incorporate the learning of optimal search strategies for
particular objects or object categories based on particular
features (Navalpakkam & Itti, 2005) or spatial priors (Torralba,
2003).

We believe that our suggested model for attention to proto-
objects bridges several concepts in visual cognition such as
coherence theory, object-based attention, and spreading of
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attention and inhibition over object surfaces. The model is
meant to provide a first step to solving the chicken-and-egg
problem of directing selective attention to object regions before
objects are recognized.
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