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SUMMARY

Object category learning is a fundamental abil-
ity, requiring the combination of ‘‘bottom-up’’
stimulus-driven with ‘‘top-down’’ task-specific
information. It therefore may be a fruitful domain
for study of the general neural mechanisms
underlying cortical plasticity. A simple model
predicts that category learning involves the for-
mation of a task-independent shape-selective
representation that provides input to circuits
learning the categorization task, with the com-
putationally appealing prediction of facilitated
learning of additional, novel tasks over the
same stimuli. Using fMRI rapid-adaptation tech-
niques, we find that categorization training (on
morphed ‘‘cars’’) induced a significant release
from adaptation for small shape changes in
lateral occipital cortex irrespective of category
membership, compatible with the sharpening
of a representation coding for physical appear-
ance. In contrast, an area in lateral prefrontal
cortex, selectively activated during categoriza-
tion, showed sensitivity posttraining to explicit
changes in category membership. Further sup-
porting the model, categorization training also
improved discrimination performance on the
trained stimuli.

INTRODUCTION

Object category learning is a fundamental cognitive ability

essential for survival, as exemplified by the obvious impor-

tance of efficiently distinguishing friend from foe or edible

from poisonous objects. Category learning is also a conve-

nient and rich domain in which to study the general neural

mechanisms underlying cortical plasticity, as it requires

combining ‘‘bottom-up’’ stimulus-driven information with

‘‘top-down’’ task-specific information. Recent monkey

studies (Freedman et al., 2003; Op de Beeck et al.,

2001; Thomas et al., 2001) have provided support for

a two-stage model of perceptual category learning (Ashby
and Spiering, 2004; Nosofsky, 1986; Riesenhuber and

Poggio, 2000; Sigala, 2004; Thomas et al., 2001), involving

a perceptual learning stage in extrastriate visual cortex in

which neurons come to acquire sharper tuning with

a concomitant higher degree of selectivity for the training

stimuli. These stimulus-selective neurons provide input to

task modules located in higher cortical areas, such as

prefrontal cortex (Freedman et al., 2003), that can then

learn to identify, discriminate, or categorize the stimuli. A

computationally appealing property of this hierarchical

model is that the high-level perceptual representation in

visual cortex can be used in support of other tasks involv-

ing the same stimuli (Riesenhuber and Poggio, 2002),

permitting transfer of learning to novel tasks. For instance,

a population of neurons tuned to views of different cats

and dogs (Freedman et al., 2003) could provide input

to a classifier discriminating cats from dogs, as well as

also allowing either the identification of a specific dog

(‘‘my dog Rosie’’) or its categorization at a different level

(‘‘black Labrador retriever’’).

While not possessing the temporal and spatial resolution

of single-unit recording studies, functional neuroimaging

studies of category learning offer distinct advantages,

including the ability to directly study complex task training

effects in humans in a before/after comparison, sampling

the entire brain, whereas physiology studies are usually

limited to recording from just one or two brain regions

and have to rely on indirect comparisons to estimate learn-

ing effects, perhaps by comparing neuronal selectivities

for trained and untrained stimulus sets in the same animal

(Freedman et al., 2003).

Neuroimaging studies of learning commonly compare

blood oxygenation level dependent (BOLD)-contrast

responses to objects before and after training. However,

given that total neuronal activity in a voxel containing

hundreds of thousands of neurons depends on the num-

ber of active neurons as well as their selectivity, learn-

ing-induced sharpening of neural responses—which by

itself would lead to a lower population response as each

neuron responds to fewer stimuli (Freedman et al., 2006;

Rainer and Miller, 2000)—could lead to either decreases

or increases in neuronal activity, depending on how train-

ing affects the number of selective neurons. This makes

it difficult to interpret BOLD-contrast amplitude changes

as a measure of tuning selectivity. Indeed, previous
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functional magnetic resonance imaging (fMRI) studies

have found that perceptual and category learning can in-

duce BOLD-contrast signal response increases (Gauthier

et al., 1999; Op de Beeck et al., 2006; Pollmann and

Maertens, 2005), decreases (Reber et al., 1998), or both

(Aizenstein et al., 2000; Kourtzi et al., 2005; Little and

Thulborn, 2005).

To more directly probe the changes in neuronal tuning

resulting from category acquisition, we trained a group

of human participants to categorize stimuli (‘‘cars’’) gener-

ated by a morphing system that was capable of finely and

parametrically manipulating stimulus shape (Shelton,

2000), a technique employed in our earlier monkey studies

of category learning (Freedman et al., 2003). This ap-

proach allowed us to precisely define the categories and

dissociate category selectivity, which requires neurons

to respond similarly to dissimilar stimuli from the same

category as well as respond differently to similar stimuli

belonging to different categories (Freedman et al., 2003),

from mere tuning to physical shape differences, where

neuronal responses are a function of physical shape

dissimilarity, without the sharp transition at the category

boundary that is a hallmark of perceptual categorization.

Importantly, unlike earlier studies, we recorded brain

activation before and after training using fMRI rapid adap-

tation (fMRI-RA) techniques, which can probe neuronal

selectivity more directly than can conventional methods

relying on average BOLD-contrast stimulus responses

(Gilaie-Dotan and Malach, 2007; Grill-Spector et al.,

2006; Jiang et al., 2006; Kourtzi and Kanwisher, 2001).

We provide direct evidence that training on a perceptual

categorization task leads to the sharpening of stimulus

representation coding in lateral occipital cortex (LO),

a part of the lateral occipital complex (LOC) postulated

to play a key role in human object recognition as the hu-

man homolog of monkey area IT (Grill-Spector, 2003;

Grill-Spector et al., 2001; Kourtzi and Kanwisher, 2001).

While this LO representation showed no explicit category

selectivity, seeming to be selective for physical stimulus

shape only, an area in the right lateral prefrontal cortex

(rLPFC) exhibited category-selective responses. When

participants were judging the category membership of

cars, this activity was modulated by explicit changes of

category membership, but not by shape differences

alone. This category selectivity was not detectable when

participants were doing a position displacement task

with the same stimuli, suggesting that these category cir-

cuits were only active when categorization was an explicit

component of the task. Furthermore, we found that cate-

gorization training also improved subject performance on

a discrimination task involving the car stimuli, without

additional training. These observations provide strong

support for the aforementioned model of perceptual cate-

gorization, which posits that category learning involves

two components: the learning of a shape-sensitive but

task-independent representation that provides input to

circuits responsible for categorization. Finally, the results

show that fMRI-RA techniques can be used to investigate
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learning effects at a more direct level than conventional

approaches based on comparing average BOLD-contrast

response amplitude in response to individual conditions,

providing a powerful new tool to study the mechanisms

of human cortical plasticity.

RESULTS

Behavior

Participants were trained to categorize a continuous set of

stimuli that spanned two categories, each based on two

different car prototypes (Figure 1). The morphed images

were linear combinations of all possible arrangements

between prototypes. By blending differing prototype

amounts from the two categories, we could continuously

vary the object shape and precisely define the category

boundary. After an average of 5.25 (±0.48) hr of training,

participants were able to judge the membership of the

morphed cars reliably (see Experimental Procedures and

Figure 2).

fMRI Experiments 1 and 2 (Displacement

Detection Task)

The first prediction of our two-stage model of category

learning is that categorization training leads to sharper

neuronal shape selectivity to trained car images in extras-

triate visual cortex. To explore changes in neuronal shape

selectivity using fMRI, we adopted an event-related fMRI-

RA paradigm (Jiang et al., 2006; Kourtzi and Kanwisher,

2001) in which a pair of car images of varying shape sim-

ilarity was presented in each trial. The fMRI-RA approach

Figure 1. Visual Stimuli

(A) Participants learned to categorize randomly generated morphs

from the vast number of possible blends of four prototypes. The place-

ment of the prototypes in this diagram does not reflect their similarity.

Black lines show cross-category morph lines, gray lines show within-

category morph lines.

(B) An example morph line between the car 2 and car 4 prototypes.
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is motivated by findings from IT monkey electrophysiology

experiments that showed that when pairs of stimuli were

presented sequentially, a smaller neural response was

observed following presentation of the second stimulus

(Lueschow et al., 1994; Miller et al., 1993). It has been sug-

gested that the degree of adaptation depends on stimulus

similarity, with repetitions of the same stimulus causing

the greatest suppression. In the fMRI version of this

experiment, the BOLD-contrast response to a pair of stim-

uli presented in rapid succession was measured for pairs

differing in specific perceptual aspects (e.g., viewpoint or

shape), and the combined response level was assumed to

predict stimulus representational dissimilarity at the neural

level (Grill-Spector et al., 2006; Murray and Wojciulik,

2004). Indeed, we (Jiang et al., 2006) and others (Fang

et al., 2006; Gilaie-Dotan and Malach, 2007; Murray and

Wojciulik, 2004) have recently provided evidence that

parametric variations in shape, orientation, or viewpoint—

stimulus parameters putatively associated with neuronal

tuning properties in specific brain areas—are reflected in

systematic modulations of the BOLD-contrast response,

suggesting that fMRI adaptation could be used as an indi-

rect measure of neural population tuning (Grill-Spector

et al., 2006). Following this hypothesis, we reasoned that

if categorization training leads to sharpened neuronal se-

lectivity to car images, then the overlap of neuronal activa-

tions caused by two sequentially presented car images

differing by a fixed amount of shape change would

decrease following training, resulting in an increase of

BOLD-contrast response in the car-selective regions.

Figure 2. Behavioral Categorization Data

The average performance (in percent correct on the 2AFC categoriza-

tion task) along the four cross-category morph lines (dashed), along

with the grand average over all morph lines (solid line). The x axis

shows percent morph. To better capture the steep transition around

the category boundary that was blurred by averaging across partici-

pants and morph lines, we also fitted sigmoid functions to individual

subject performances and then averaged across the fitted sigmoid

parameters, see Figure S2.
Previous studies (Grill-Spector et al., 2001; Kourtzi and

Kanwisher, 2001; Kourtzi et al., 2003; Murray and Wojciu-

lik, 2004) have suggested that LOC plays a central role in

human object recognition and we therefore hypothesized

that training-induced learning effects should occur in this

area. LOC consists of two subregions: lateral occipital

(LO) and posterior fusiform (pFs). In this study, we focused

on the LO region, as the pFs region could not be reliably

identified by our localizer paradigm in about half of the

participants. To probe training effects on LO neurons,

we scanned participants before and after training using

an event-related RA paradigm with a displacement detec-

tion task for which categorization training was irrelevant,

thus avoiding potentially confounding influences due to

the change of task difficulty as a matter of training (Gerlach

et al., 1999) and other potential confounds caused by

top-down effects of the task itself (Freedman et al.,

2003; Grady et al., 1996; Sunaert et al., 2000).

Stimulus pairs of controlled physical dissimilarity were

created with the morphing system. In particular, we cre-

ated pairs of identical images (condition M0) and pairs of

images differing by 33.33% shape change, with both

cars in a pair either belonging to the same category,

M3within, or to different categories, M3between (Figure 3A).

This made it possible to attribute possible signal differ-

ences between M3within and M3between to an explicit re-

presentation of the learned categories. The regions of

interest (ROI) were identified independently for each

subject using localizer scans (see Experimental Proce-

dures). We then extracted the BOLD-contrast time series

from these independently identified ROI. Since the fMRI

response at the right LO (rLO) peaked at the time window

of 4–6 s after the onset of each trial, statistical analyses

(repeated-measures ANOVA followed by planned t tests)

were carried out on the peak BOLD-contrast values. Be-

fore categorization training (experiment 1), there were no

significant differences across the three conditions (M0,

M3within, and M3between), p > 0.3 (Figure 3B, left). Additional

paired t tests between M0 and the mean of M3within and

M3between also showed no difference (p > 0.5). This indif-

ferent response suggests that the neuronal responses to

car images in rLO in the experiment showed little sensitiv-

ity to cars differing in shape by 33.33%. By contrast, after

categorization training (experiment 2), a significant differ-

ence was observed across the three conditions using

the same paradigm and stimuli, F(2, 32) = 5.219, p =

0.014 (Figure 3B, right). Post hoc t tests revealed signifi-

cant differences between M0 and M3within (p < 0.05) and

between M0 and M3between (p < 0.05), but not between

M3within and M3between (p > 0.4). Additionally, for the data

from the 15 participants whose data were included in

both data sets (pre- and posttraining), a repeated-mea-

sures ANOVA revealed a significant interaction between

training and morph conditions, F(2,28) = 4.518, p < 0.05,

but no significant training effect (p > 0.5) and no significant

difference among the three morph conditions (p > 0.1) (see

Figure S5 in the Supplemental Data available online). A

control study showed that these effects could not be
Neuron 53, 891–903, March 15, 2007 ª2007 Elsevier Inc. 893
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accounted for by test/retest effects but rather appeared to

be due to the intervening category training (see Supple-

mental Data). Taken together, these data indicate that,

after training, neurons in the rLO ROI showed a greater

response difference to the same stimulus shape differ-

ence when compared to the period before training,

suggesting that categorization training sharpened the

tuning of LO neurons to the car stimuli. Furthermore, the

nondifferential response at LO between the M3within and

M3between conditions suggested that LO neuron tuning

was largely determined by stimulus shape and not

category membership.

One interesting prediction of the two-stage model of

category learning is that the high-level shape-based

representation learned as a result of categorization train-

ing can also be recruited for different tasks on the same

stimuli, e.g., to support improved discrimination of these

stimuli relative to untrained participants. Indeed, we found

that categorization training also improved participants’

performance on a car discrimination task (Figure 4). Cru-

cially, this improvement was not limited to sections of

the stimulus space relevant for categorization (i.e., the

boundary region between the two categories), but was

also found away from the boundary and, most importantly,

Figure 3. fMRI-RA Experiments 1 (Pretraining) and 2 (Post-

training), in which Participants Performed a Displacement

Judgment Task
Three conditions, M0, M3within, and M3between, were tested. Using one

morph line as an example, (A) shows how stimulus pairs were con-

structed. (B) shows the mean fMRI response in the rLO pre- (left)

and posttraining (right). (C) shows the mean fMRI responses in the

rFFA pre- (left) and posttraining (right). A significant difference of

peak values among the three conditions was only observed in the

rLO after training. Error bars show within-subject SEM.
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for within-category morph lines, as would be predicted for

a ‘‘bottom-up’’ shape-based neural representation of car

shape. A control study showed that this improvement in

behavioral discrimination performance could not be ac-

counted for by a test/retest effect on the discrimination

task (see Supplemental Data).

In contrast, it has been suggested that the FFA medi-

ates the subordinate-level discrimination of objects of ex-

pertise (Gauthier et al., 1999). We therefore tested whether

categorization training also led to increased sensitivity to

shape changes in the FFA. Interestingly, in contrast to

LO, a repeated-measures ANOVA of the peak values in

the right FFA (rFFA) revealed no difference among the

three conditions before (experiment 1, p > 0.3) or after

training (experiment 2, p > 0.4, Figure 3C). This finding

suggests that the selectivity of FFA neurons was not

affected by category training and that the improvement

in discrimination ability for the trained objects was more

likely to be mediated by the increased car-shape sensitiv-

ity of LO neurons, as predicted by recent modeling studies

(Jiang et al., 2006).

The data from left LO and FFA did not show significant

selectivity to the 33.33% shape change of car images ei-

ther before or after training (Figure S7). We also did not

find any differential activation among the three conditions

in early visual cortex (see Experimental Procedures), either

before (p > 0.4) or after training (p > 0.2) (Figure S8), sug-

gesting that the observed learning effects were unlikely to

be nonspecific or global phenomena.

Figure 4. Psychophysical Performance on the Car Discrimi-

nation Task

Participants (n = 13, see Experimental Procedures) were tested on

a 2AFC discrimination task using pairs of car stimuli chosen from all

six morph lines, including two within-category morph lines and four

cross-category morph lines (see Figure 1). Testing was done both be-

fore (‘‘pretraining’’) and after (‘‘posttraining’’) categorization training.

Match and nonmatch stimuli in each trial could either differ by 20%

(M2) or 40% shape change (M4). An ANOVA with training (pre- versus

posttraining), morph lines (within- versus cross-category morph lines),

and morph step difference between match and nonmatch choice stim-

uli (M2 versus M4) as repeated measures revealed significant effects of

category training, F(1,12) = 7.358, p = 0.019, and morph step difference,

F(1,12) = 172.129, p < 0.001, but not for morph line, F(1,12) = 2.633,

p = 0.131. Importantly, there were no significant interactions, in partic-

ular not for training effect versus morph line, demonstrating that cate-

gory learning improved discrimination of stimuli in general and not just

for the category-relevant morph lines. Error bars show SEM.
.
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Figure 5. fMRI-RA Experiment 3, in

which Participants Needed to Perform

a Same/Different Categorization Task

on the Pair of Stimuli in Each Trial

Four conditions (M0, M3within, M3between, and

M6) were tested. The choice of stimuli for

each condition is shown in (A). A significant

difference of peak values was found in rLO

(B), but not in rFFA (C), nor in the right ‘‘core

FFA’’ (D), though a marginal effect was found

in the right ‘‘surround FFA’’ (E) (see text). The

legends for (B)–(E) are the same and shown in

(E). Error bars show within-subject SEM.
For both experiments 1 and 2, we examined possible

changes in other brain regions by conducting a voxel-

wise whole-brain analysis (see Experimental Procedures)

using contrasts of M3between > M3within and M0 to detect

category-selective brain regions and M3between and

M3within > M0 to detect any shape-selective brain regions.

These contrasts did not reveal any brain regions of at

least 20 contiguous voxels at a threshold of p < 0.001

(uncorrected).

fMRI Experiment 3 (Categorization Task)

To probe which brain regions exhibited category-related

activations, and thus might include category-selective

neurons, we scanned our participants again posttraining

using the same fMRI-RA paradigm, this time while they

were performing a categorization task requiring them to

judge whether the two cars shown in each trial belonged

to the same or different categories. In addition to three

conditions tested in experiments 1 and 2, a fourth condi-

tion (M6) was added, with the two cars in each M6 trial be-

longing to different categories, with 66.67% shape change

between them (Figure 5A). Thus, the pairs of cars of M0

and M3within belonged to the same category, while the

pairs of cars of M3between and M6 belonged to different

categories. We predicted that brain regions containing
category-selective neurons should show stronger activa-

tions to the M3between and M6 trials than to the M3within

and M0 trials, as the stimuli in each pair in the former

two conditions should activate different neuronal popula-

tions while they would activate the same group of neurons

in the latter two conditions.

As in experiments 1 and 2, statistical analyses were first

carried out on the peak of the fMRI responses at the inde-

pendently defined ROI. As the peak of fMRI response in

the rLO regions lasted more than one TR (third and fourth

TR after the onset of each trial), statistical analysis was

carried out on the mean of third and fourth TR (Figure 5B).

Repeated-measures ANOVA revealed significant differ-

ences among the four conditions (M0, M3within, M3between,

and M6), F(3, 45) = 8.515, p = 0.001. Post hoc paired t tests

revealed a significant difference between M0 and M3within

(p = 0.01), between M0 and M3between (p < 0.0005), be-

tween M0 and M6 (p < 0.00005), between M3between and

M6 (p < 0.05), but not between M3within and M6 (p >

0.15) or between M3within and M3between (p > 0.9). The

effects in rLO not only confirmed the findings of experi-

ment 2, in which a car with 33.33% shape change already

appeared to activate a substantially different populations

of rLO neurons, but also suggested that there was still

substantial overlap between the population of rLO
Neuron 53, 891–903, March 15, 2007 ª2007 Elsevier Inc. 895
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neurons responding to a particular car and those respond-

ing to a car with a 33.33% relative shape change (Jiang

et al., 2006), as indicated by the significant difference be-

tween M3between and M6. Thus, there was no evidence for

category selectivity in rLO even while participants were

performing the categorization task.

In contrast to the car-shape selectivity in rLO, no signif-

icant difference was found in early visual cortex (Fig-

ure S10), nor at the right FFA, F(3, 45) = 1.709, p = 0.20

(Figure 5C). However, since the voxel-wise analysis re-

vealed a cluster of voxels in the fusiform gyrus showing

a significantly stronger response on M6 trials than on M0

trials (Figure S11), we conducted additional paired t tests

and found a significant difference between M0 and M6

(p = 0.01), but not for any other comparisons. This differ-

ence between M0 and M6 could either be due to the

involvement of the face-selective FFA when viewing

trained objects (Gauthier et al., 1999), or it could be due

to the overlap between the face-selective FFA and nearby

object-selective pFs regions (Grill-Spector et al., 2004).

Since we could not reliably identify the pFs region in this

study, as mentioned earlier, to test these two hypotheses

directly, we redefined two new ROI, a ‘‘core’‘‘ face ROI

and a ‘‘surround’’ face ROI in the fusiform gyrus for each

individual subject (see Experimental Procedures). The

voxels in the former responded more strongly to faces

than those of the latter (Figure S12). We then extracted

the BOLD-contrast response in the two newly defined

ROIs from the event-related scans (Figures 5D and 5E).

An ANOVA with two ROIs and four conditions as repeated

measures revealed that peak BOLD responses to car im-

ages in the ‘‘core’’ face ROI were significantly higher than

those in the ‘‘surround’’ face ROI, F(1,15) = 7.326, p < 0.05,

likely because the surround face ROI included regions

anterior to the core face ROI which are not part of pFs.

More importantly, there was a significant interaction be-

tween the ROIs and the four conditions, F(3, 45) = 3.194,

p < 0.05, and a marginal effect among the four similarity

conditions, F(3, 45) = 2.293, p = 0.12. The significant inter-

action indicated that the difference among the four condi-

tions was stronger in the surround face than in the core

face ROI. We then conducted an additional ANOVA with

four conditions as repeated measures on the two sets of

data separately, and a significant difference was found

in the surround face ROI, F(3, 45) = 3.274, p < 0.05, but

not in the core face ROI, F(3, 45) = 1.510, p > 0.2. The

data thus demonstrated that the differences among the

four conditions were stronger in the surround face ROI

than those in the core face ROI, suggesting that the differ-

ence in the FFA ROI was less likely caused by the differen-

tial response of face-selective neurons in the FFA, but

rather more likely due to an overlapping with nearby pFs

regions, which have been shown to exhibit strong repeti-

tion-suppression for nonface objects (Grill-Spector et al.,

1999). The data from left LO and FFA are shown in

Figure S9.

We then conducted a whole-brain analysis (see Exper-

imental Procedures) to examine the brain regions that
896 Neuron 53, 891–903, March 15, 2007 ª2007 Elsevier Inc.
were involved in the categorization task. The brain regions

significantly activated in the categorization task versus

baseline included the visual cortex, motor cortex, frontal

cortex, parietal cortex, insular cortex, and the thalamus

(Table S1 in the Supplemental Data). To probe the brain re-

gions that were sensitive to category differences, we first

compared the activation of M6 versus M0 since partici-

pants could very reliably judge the category memberships

of the pair of cars in the M0 and M6 conditions. As listed in

Table 1, many brain regions, including prefrontal, parietal,

and inferior temporal cortices showed stronger activa-

tions to M6 than to M0, further supporting the involvement

of these brain areas in the representation of learned

stimulus categories (see also Moore et al., 2006). To fur-

ther examine the differential activations to trials in which

the two cars belonged to the same (M3within and M0) ver-

sus different categories (M6 and M3between), a comparison

of M6 and M3between versus M3within and M0 was con-

ducted, and similar brain regions were found (Table 1).

This selectivity was not due to reaction time differences

in the different conditions (Tables S2 and S3).

While both the comparisons of M6 versus M0, and M6

and M3between versus M3within and M0 revealed that the

PFC, parietal, and inferior temporal regions showed stron-

ger activation when the two cars belonged to different cat-

egories than when they belonged to the same category,

the inclusion of the M0 and M6 conditions to investigate

category tuning (i.e., unconfounded by tuning to mere

differences in physical shape) suffers from a confound

due to the different amounts of shape change in the M0

and M6 conditions. By contrast, the comparison of

M3between versus M3within represents the most direct com-

parison for category-related activity, as the stimulus pairs

in both conditions differed by the same relative amount

of shape change, but either crossed or did not cross the

category boundary, respectively. However, these condi-

tions required participants to determine the category

memberships of stimuli close to the category boundary,

making these conditions particularly difficult and suscep-

tible to small variations in participants’ individual category

boundaries for the different morph lines (see Figure 2 and

Figure S2), in particular for the M3between condition, which

required comparing the category memberships of two

stimuli close to the category boundary. Indeed, the com-

parison of M3between versus M3within across all four morph

lines was not sensitive enough to identify category-selec-

tive brain areas. For a more sensitive analysis, we remod-

eled the fMRI response with a 4 3 4 setup (consisting of

the 4 above-mentioned conditions 3 4 morph lines). We

then identified, for each subject individually, the morph

line on which participants had the highest behavioral

performance inside the scanner (Figure S13) and probed

category-related brain regions with the contrast of

M3between versus M3within for this ‘‘best’’ morph line only,

predicting that high behavioral performance on these

conditions would result from neurons sharply tuned to

the different categories and thus produce a higher signal

difference between M3between and M3within. Interestingly,
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Table 1. Brain Regions Showing Stronger Activations
to Pairs of Cars Belonging to Different Categories
Than to Pairs Belonging to the Same Category

MNI Coordinates

Region mm3 Zmax X Y Z

M6 > M0

R Inf Temporal 1608 4.69 50 �48 �20

R Inf/Mid Frontal
Gyrus/Insula

8512 4.65 42 34 16

4.07 38 18 14

3.87 54 36 16

R Mid Cingulum 264 4.55 18 �24 36

L Inf/Sup Parietal 12688 4.49 �32 �46 38

4.46 �24 �52 38

4.42 �28 �52 46

R Sup Occipital/R

Inf/Sup Parietal

9400 4.31 44 �40 46

4.15 34 �44 36

4.08 30 �74 34

L Cerebum 504 4.14 �8 �22 �44

L/R Sup Motor Area 1240 4.03 6 12 52

L Precentral 560 3.99 �42 4 34

R Inf Temporal 400 3.79 44 �30 �22

L Inf Temporal 552 3.63 �46 �54 �22

3.42 �40 �58 �30

R Sup Frontal 256 3.57 28 8 68

R Mid Frontal 392 3.51 50 52 14

3.30 46 58 22

R Inf/Mid Frontal 504 3.48 36 6 34

R Inf Frontal 168 3.45 38 0 22

R Mid Frontal 168 3.44 42 4 58

R Brainstem 168 3.37 8 �24 �32

L/R Sup Motor Area 192 3.26 2 �2 62

L Inf Frontal Gyrus* 136 3.37 �48 20 16

R Inf/Mid Occipital* 136 3.40 40 �84 �2

R Inf Occipital/Temporal* 152 3.33 58 �64 �18

M6 & M3between > M3within & M0

R Inf/Mid Frontal Gyrus 1848 4.09 48 32 16

3.56 52 30 26

3.55 46 24 22

R Inf Temporal 312 3.75 48 �52 �20

L Inf Parietal 936 3.71 �40 �40 42

R Insula 280 3.40 30 26 8

R Mid Cingulum 264 3.34 6 24 38

L Inf Frontal Gyrus* 96 3.31 �52 20 24
the only region that showed stronger activation using this

contrast was in the rLPFC, at a location similar to that

found in the previous comparisons (see Table 2 and Fig-

ures 6A and 6B). The comparisons of M6 versus M0,

and of M6 and M3between versus M3within and M0 on the

‘‘best’’ morph line also found the same rLPFC region

(see Tables 1 and 2). Thus, the most striking and consis-

tent finding when comparing the category-selective acti-

vations was that the same rLPFC region was found to be

activated more strongly when the two cars belonged to

different categories than when the two cars belonged to

the same category under all comparisons. Note that this

differential activation could not be explained by task-

related motor responses, which were counterbalanced

across participants.

To test the predicted mechanistic relationship between

rLPFC activation and categorization performance, we

went back to the ROI defined by M6 > M0 on the ‘‘best’’

morph line (see Table 2 and Figure 6A) and examined

the correlation of the difference between the fMRI re-

sponse for the M3between and M3within conditions in this

ROI (as an index of how sharply neurons in this area differ-

entiated between the two categories; note that the ROI

definition, M6 versus M0, was independent of the condi-

tions involved in the correlation analysis, M3between versus

M3within) and the average of the behavioral categorization

accuracy on those trials within the scanner (as a measure

of behavioral performance), predicting a positive correla-

tion between the two variables. Of special concern for

this analysis is the fact that low performance on those

conditions could either be due to weak category tuning

of neurons (the effect of interest, with the predicted effect

of a positive correlation between fMRI activation and

behavior) or due to subject inattentiveness or failure to

perform the task in the scanner (in which case we would

not expect a similarly tight relationship between fMRI

and behavior). Indeed, calculating the correlation between

fMRI activation and behavior over all participants only

produced a marginal correlation (r = 0.206, p = 0.102,

Figure 6E). To focus on the participants who were most

likely to have consistently performed the task in the scan-

ner, we performed a second correlation analysis,

Table 1. Continued

MNI Coordinates

Region mm3 Zmax X Y Z

M0 > M6

L Angular 384 3.64 �52 �70 32

L/R Med Frontal 712 3.64 0 34 �8

M3within & M0 > M6 & M3between

L Sup Occipital 216 3.71 �18 104 18

Highlighted in bold is the right lateral prefrontal cortex region

consistently showing category-selective responses in all
contrasts (also see Table 2).

* Cluster size is smaller than 20 but larger than 10.
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excluding participants with an average performance on

the easy M0 and M6 conditions below 85% correct. As

predicted, the remaining 11 participants showed a high

degree of correlation between ‘‘same category’’ (M3within)

versus ‘‘different category’’ (M3between) activation differ-

ence in the category ROI and behavioral performance

(r = 0.409, p < 0.01, Figure 6F). Such a correlation strongly

supports a key role of right lateral PFC in object categori-

zation, in particular that rLPFC contains neurons sharply

tuned to different categories, with the degree of category

selectivity determining the behavioral performance. This

causal role of rLPFC in determining participants’ cate-

gorization decisions is also reflected by a significant

modulation of activation in this area with participants’

‘‘same/different category’’ responses in the M3 conditions

(Figure S14). Notably, this brain region (rLPFC) was not

active when participants performed a ‘‘same/different

position’’ task on the stimuli (see Supplemental Data),

suggesting that activation in this area was indeed specific

to the categorization component of the task in experiment

3 and did not reflect generic ‘‘same/different’’ processing.

Finally, based on previous studies (Vogels et al., 2002),

category-related activation in PFC would be expected to

be much weaker or even abolished for the same stimuli

if participants were doing a task for which the learned cat-

egories were irrelevant, e.g., the displacement detection

task of experiment 2. To test this hypothesis, we extracted

the signal change in experiment 2 at the categorization

ROI based on the M3between versus M3within contrast on

the ‘‘best’’ morph line (see Table 2 and Figure 6B). For

the data collapsed across morph lines, no difference

Table 2. Analysis of Category Selectivity for the ‘‘Best’’
Morph Line

MNI Coordinates

Region mm3 Zmax X Y Z

M6 > M0

R Mid Occipital 440 3.84 30 �74 36

R Mid Frontal 416 3.68 42 52 16

L Inf Parietal 264 3.65 �50 �34 44

R Inf Frontal Gyrus 512 3.45 46 24 20

M6 & M3between > M3within & M0

R Inf Frontal Gyrus 1088 4.18 44 28 12

R Mid Occipital 232 3.52 34 �68 34

M3between > M3within

R Inf Frontal Gyrus 280 3.87 48 26 16

The table shows brain regions with stronger activation to pairs
of cars belonging to different categories than to pairs belong-

ing to the same category, even when the intrapair shape

change was the same (M3between versus M3within trials), for

the morph line on which participants had the best perfor-
mance (see text). Highlighted in bold is the right lateral pre-

frontal cortex region consistently showing category-selective

responses in all contrasts (also see Table 1).
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was found among the three conditions (M0, M3within, and

M3between) in experiment 2. For a more sensitive analysis,

as in experiment 3, we performed an ANOVA on the trials

with stimuli from the same morph line on which each indi-

vidual subject had the best performance in experiment 3

(Figure 6C). No significant difference (p > 0.5) was found

among the three conditions (M0, M3within, and M3between)

in experiment 2. Additional paired t tests also found no dif-

ference between M0 and M3between, between M3within and

M3between, and between M3between and the mean of M0

and M3within. Similar results were obtained when the ROI

was defined by the comparison of M6 versus M0, or M6

and M3between versus M3within and M0 (see Figure S15).

In summary, strong category-selective activation in rLPFC

was found only when participants were explicitly doing

a categorization judgment task, suggesting that the cate-

gory-selective circuits learned as a result of training were

only active when the subject was performing the corre-

sponding categorization task.

DISCUSSION

Previous monkey electrophysiology studies have sug-

gested that perceptual learning in object recognition tasks

could sharpen the tuning of neurons in inferotemporal

cortex (Freedman et al., 2006), and recent theoretical

work has suggested that similar mechanisms might play

a role in human object discrimination (Jiang et al., 2006).

In our study, we used an fMRI rapid adaptation paradigm

designed to probe neuronal tuning more directly than pre-

vious studies of human perceptual learning that focused

on the average BOLD-contrast response to the training

stimuli. Testing the same participants before and after

training, we found that, while pretraining, there was no in-

dication of selectivity of neurons in LO for the target stimuli

(as response levels in the adaptation experiment did not

differ between the M0 and M3 conditions); training on

a perceptual categorization task involving fine discrimina-

tions among the target objects led to a release from adap-

tation in fMRI for small shape changes (M3 versus M0)

posttraining, compatible with the notion that LO neurons

acquired increased selectivity for the training stimuli

through training.

Our failure to find evidence for the sharpening of neuro-

nal tuning in the FFA region (see also Yue et al., 2006)

despite the significant improvement of participants’ dis-

crimination abilities for the training class in general (and

not just at the category boundary) is in line with the two-

stage model of category learning that predicts that cate-

gory training leads to the learning of a shape-specific

representation dedicated to the object class of interest

(i.e., disjoint from the face-tuned neurons in the FFA; Jiang

et al., 2006) that can provide input to circuits learning dif-

ferent tasks, such as categorization or discrimination, and

thus permit transfer of learning from one task to another

(Jiang et al., 2006; Riesenhuber and Poggio, 2002). The

data are more difficult to reconcile with proposals (Tarr

and Gauthier, 2000) that have postulated that the FFA



Neuron

Shape and Category Plasticity of Category Learning
Figure 6. Activation in the rLPFC ROI

(A) The rLPFC ROI defined by the comparison of M3between versus M3within of the morph line on which participants had the best behavioral perfor-

mance (p < 0.001, uncorrected, size: 280 mm3, shown as sagittal, coronal, and axial sections on an average anatomical image generated from

the individual T1-weighted images of the 16 participants in experiment 3, same for [D]), and mean signal change for trials along this morph line at

this ROI for the conditions of M0, M3within, M3between, and M6 in experiment 3 (B), and for the conditions of M0, M3within, and M3between in experiment 2

(C). ANOVA with three conditions (M0, M3within, and M3between) as repeated measures found significant differences for the data set of experiment 3 (B),

p < 0.00001, but not for the data set of experiment 2 (C), p > 0.5. Similar activation patterns were also found when the rLPFC ROI was defined by the

comparison of M6 versus M0, and M6 and M3between versus M3within and M0 of same morph line for each individual subject (Figure S14). (D) The rLPFC

ROI defined by the comparison of M6 versus M0 of the morph line on which participants had the best performance (p < 0.001, uncorrected, size:

512 mm3). We then calculated the BOLD-contrast response difference between the M3within and M3between conditions for each morph line and subject

(y axis) and plotted this index against the mean behavioral accuracy on these conditions inside the scanner (x axis). (E) shows the data for all

participants (n = 16) and the regression line (r = 0.206, p = 0.102). (F) shows the data for the subgroup of participants (n = 11) with above-threshold

behavioral performance on the M0 and M6 conditions (see text) along with the regression line (r = 0.409, p < 0.01). Error bars show within-subject SEM.
serves to learn and mediate the discrimination of objects

of expertise in general (i.e., not just faces). In particular,

unlike the results for LO, we did not find any differential

activation (between the M0 and M3 conditions) in the

FFA as a result of training when participants were doing

the position displacement task, despite an improvement

in participants’ abilities to discriminate the stimuli and de-

spite similar amounts of training as in earlier studies

(Gauthier et al., 1999) that have reported training effects

in the FFA. Differential activation was found for the M0

and M6 conditions in experiment 3, and group analysis

also showed a region in the fusiform area with significantly

higher response in the M6 versus the M0 condition.

However, it appeared that the selectivity observed in the

fusiform region was more likely due to a spatial overlap

between the object-selective pFs region and the face-

selective FFA (Grill-Spector and Malach, 2004, see also

Rhodes et al., 2004), rather than due to a car selectivity

of the face-selective neurons per se, as (1) the ROI-based

analysis in the FFA showed a smaller difference than the

whole-brain based analysis, and (2) the ‘‘core FFA’’ that
included highly face-selective voxels showed smaller

differential activity for the different conditions than the

nearby regions that included less face-selective voxels.

(see Figure S12 for additional analyses and support).

The prefrontal cortex is generally assumed to play a key

role in categorization. Our previous monkey studies

(Freedman et al., 2003), using a very similar categorization

task, have shown that, after categorization training, some

neurons in PFC come to be category selective, respond-

ing similarly to exemplars from one category and showing

lower responses to exemplars from the other category.

Using an fMRI-RA paradigm, we here provide evidence

that category training similarly can lead to the learning of

a population of category-selective neurons in human lat-

eral PFC (mainly in the right inferior frontal gyrus), whose

category selectivity can be dissociated from mere shape

selectivity. Furthermore, we found that the same region

failed to show significant category-selective activation

when participants were doing a task unrelated to catego-

rization, similar to earlier studies (Vogels et al., 2002),

in line with a role of PFC as the center of cognitive
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control (Miller and Cohen, 2001) that contains different

task-specific circuits whose activations depend on the

subject’s goals.

Our data therefore support a model of perceptual cate-

gorization in which a neural representation selective for

the shapes of the target objects located in LOC (or IT, in

monkeys) provides input to category-selective circuits in

prefrontal cortex. Importantly, the model posits that the

learning of the shape-selective representation can pro-

ceed in an unsupervised fashion, driven by bottom-up

stimulus information (i.e., shape) (Riesenhuber and

Poggio, 2000). Such a learning scheme is both computa-

tionally simple and powerful (Serre et al., 2007). Further

supporting this model, we have recently shown (Freedman

et al., 2006) that even passive viewing of training stimuli

can induce sharpening of IT responses to these stimuli.

In contrast, a previous monkey physiology study (Sigala

and Logothetis, 2002) has reported increased selectivity

for category-relevant over category-irrelevant features in

IT following category training. While our fMRI experiment

did not include within-category morph line conditions

that could be compared against the responses for the

cross-category morph lines, our behavioral data that found

no difference in discrimination performance on within- and

cross-category morph lines argue against an underlying

shape representation differentially sensitive for category-

relevant and -irrelevant features in our case, in line with

other monkey physiology studies in IT (Op de Beeck

et al., 2001). It will be interesting to investigate this question

in further studies. An intriguing possibility is that top-down

feedback from prefrontal cortex may induce category-

specific modulations of IT neuron activity under certain

task conditions (Freedman et al., 2003, see also Miyashita

et al., 1998).

While we did not find strong category selectivity in the

basal ganglia, a number of studies have suggested that

the basal ganglia are also involved in human category

learning (Ashby and Spiering, 2004). This difference might

just be trivially due to the possibility that category-related

signals in the basal ganglia were not strong enough to be

significant in our study. However, given that we only

imaged participants after they had fully learned the task,

an alternative explanation could be that the basal ganglia

show stronger activity early in category learning that is

reduced as participants become proficient at the task,

as suggested by a recent fMRI study (Little et al., 2006).

Finally, the differences might be due to the fact that the

learning of different types of categorization tasks depends

on multiple neural systems (Ashby and Spiering, 2004),

with the basal ganglia playing a stronger role in rule-based

and information integration-based categorization, rather

than the perceptual categorization studied here.

The right LPFC region showed the strongest sensitivity

to change of category membership in this study. Several

other regions, such as parietal cortex, occipital temporal

regions, and other parts of frontal cortex were also

strongly activated during the categorization task and

showed stronger activations in the M6 than in the M0
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conditions. Interestingly, however, the activity in these

regions did not reach significance for the stricter M3between

versus M3within comparison that dissociated shape from

category tuning. Given that other recent studies have

suggested that these regions might be also involved in

category learning (Freedman and Assad, 2006) and exper-

tise effects (Moore et al., 2006), the future investigation of

the differential roles of these areas in category learning is

of particular interest to understanding how bottom-up and

top-down information interact in the brain to permit the

learning of novel tasks.

EXPERIMENTAL PROCEDURES

Participants

Twenty-two (13 female, aged 19–27) normal right-handed members of

the Georgetown University community participated in this study.

Experimental procedures were approved by Georgetown University’s

Institutional Review Board, and written informed consent was obtained

from all participants prior to the experiment. Two participants partici-

pated in fMRI experiment 1 only since they failed to reach criterion in

the category learning task, thus their data were discarded. All other

20 participants participated in fMRI experiments 1 and 2, and 17 of

them participated in fMRI experiment 3. Because of excessive head

motion, the data from three participants (experiment 1), two partici-

pants (experiment 2), and one subject (experiment 3) were excluded

from further analysis.

Visual Stimuli

A large continuous set of images was generated from four car proto-

types (Figure 1A) using a 3D shape morphing algorithm (Shelton,

2000) that we have used previously to study categorization learning

in monkeys (Freedman et al., 2003). The algorithm finds corresponding

points between one of the prototypes and the others and then

computes their differences as vectors. Morphs were created by linear

combinations of these vectors added to that prototype. For more

information see http://www.cs.ucr.edu/�cshelton/corr/. By morphing

different amounts of the prototypes we could generate thousands of

unique images, continuously vary shape, and precisely define a cate-

gory boundary (Figure 1B). The category of a stimulus was defined by

whichever category contributed more (>50%) to a given morph. Thus,

stimuli that were close to, but on opposite sides of, the boundary could

be similar, whereas stimuli that belonged to the same category could

be dissimilar. This careful control of physical similarity within and

across categories allowed us to disentangle the neural signals explic-

itly representing category membership from those related to physical

stimulus shape. The four prototype stimuli were chosen from an initial

set of 15 based on pilot experiments that showed that these four

prototypes were of comparable perceptual dissimilarity. The stimuli

differed along multiple feature dimensions and were smoothly

morphed, i.e., without the sudden appearance or disappearance of

any feature. They were grayscale images, 200 3 200 pixels in size

with identical shading.

Categorization Training and Testing

Using a two-alternative forced-choice (2AFC) paradigm (Figure S1),

the participants, who had no prior knowledge about the definitions of

the two categories, were trained to categorize images chosen from

the car morph space. Each trial started with a 300 ms fixation period,

which was followed by three sequentially presented car images, each

presented for 400 ms and separated by a 300 ms static random mask.

The participants’ task was to judge whether the second or the third car

belonged to the same category as the first car by pressing one of two

buttons. Auditory feedback was given to subjects on incorrect trials,

and the next trial would start 800 ms after participants’ responses or

http://www.cs.ucr.edu/~cshelton/corr/
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2300 ms after the offset of the third car if participants failed to make

a response. Following a similar training procedure as in our previous

monkey studies (Freedman et al., 2003), participants were first trained

to categorize the prototype cars (containing 0% morphs from proto-

types belonging to the other category). We then gradually increased

the difficulty of the categorization task by introducing morphs with in-

creasingly greater contributions from the other category until partici-

pants could reliably (performance > 80%) identify the categorical

membership of randomly chosen cars that consisted of up to 40% of

prototypes from the other category. Participants were trained at the

pace of 1 hr per weekday in a continuous manner with a maximum

of 2 weeks. On average, participants completed the most difficult level

after 5.25 (±0.48) hr of training.

Stimuli were presented to participants on an LCD monitor on a dark

background, at a resolution of 1024 3 768 with 60 Hz refresh rate, at

a distance of 60 cm. A customized version of Psychtoolbox (Pelli,

1997) running under MATLAB (The Mathworks, MA) was used to

present the stimuli and to record the responses.

After participants reached the highest level of task difficulty, their

categorization performance along the four morph lines was measured

at a morph step discretization of 20 steps (in increments of 5% morph

difference) between the two prototypes using the same 2AFC para-

digm as in the training period but without feedback. Note that different

cars were used during training (where images were randomly chosen

from the morph space) and testing (where images were constrained

to lie on the relevant morph lines).

Discrimination Testing

To study whether categorization training also led to improvements of

participants’ ability to discriminate car images in general, 13 out of

20 participants were tested on a shape discrimination task involving

pairs of cars chosen along the six morph lines using the same 2AFC

paradigm as described above, both before and after categorization

training. To ensure subject performance was above chance even be-

fore any training, match/nonmatch shape differences of 20% (M2)

and 40% (M4) were tested in different trials. Stimuli were chosen

from all six morph lines (including four cross-category and two

within-category morph lines, see Figure 1) discretized in steps of 20%

shape change, as in the example morph line of Figure 1B. This resulted

in ten unique trials for each morph line (six pairs with 20% difference

and four pairs with 40% difference). Each trial was repeated 12 times,

for a total of 120 trials per morph line and a grand total of 720 trials

tested pre- as well as posttraining.

Functional Localizer Scans

Using a block design, the EPI images from two functional localizer

scans were collected to define the car-selective regions in the lateral

occipital cortex (LO) and the face-selective regions in the fusiform gy-

rus—one at the beginning of each session and one at the end. During

each localizer run, following an initial 10 s fixation period, 50 grayscale

images of cars, scrambled cars, and faces were presented to partici-

pants in blocks of 30 s (each image was displayed for 500 ms and

followed by a 100 ms blank screen) and were separated by a 20 s

fixation block. Each block was repeated twice in each run that lasted

for 310 s. In the first run of the localizer scan, participants were asked

to passively view the images while keeping their fixation at the center of

the screen. In the second run of the localizer scan, the first five partic-

ipants just passively watched the stimuli as they did in the first run,

while all the other participants needed to detect two or three animal

images that were randomly put into the stream of cars, scrambled

cars, and face images by pressing a button with their right hand to en-

sure participants were paying attention to the stimuli. Face and animal

images were purchased from http://www.hemera.com and postpro-

cessed using programs written in MATLAB. Car images were picked

from the morph space of four prototype cars and were different from

the images used in main experiments. Scrambled car images were

generated by scrambling the car images with a grid of 5 3 5 pixel
elements. The final size of all images was scaled to 200 3 200 pixels.

The stimuli in all scans were presented on a black background using

E-Prime (http://www.pstnet.com/products/e-prime/), back-projected

on a translucent screen located at the rear of the scanner, and viewed

by participants through a mirror mounted on the head coil.

Event-Related Adaptation Experiments 1 and 2

(Displacement Detection Task)

To probe the effects of categorization training on the tuning of LOC

neurons and other brain regions, participants were scanned twice

with an fMRI-rapid adaptation (fMRI-RA) paradigm, once prior to train-

ing and again after training. To ensure participants’ attention to the

stimuli while minimizing task effects that could cause a confounding

modulation of fMRI responses (by differentially affecting the experi-

mental conditions of interest), a displacement detection task that

was independent of stimulus category membership was adopted:

during each trial (except the null trials), two cars were displayed

sequentially (300 ms each with a 400 ms blank screen in-between;

Kourtzi and Kanwisher, 2001) at or close to the center of the screen,

followed by a 3000 ms blank screen. The second car was presented

with a small horizontal displacement relative to the position of the first

car, and participants were asked to judge the direction of displace-

ment by pressing a button with their left or right hand, depending on

the change. For both experiments 1 and 2, MRI images from six scans

were collected. Each run lasted 284 s and had two 10 s fixation

periods, one at the beginning and one at the end. Between the two

fixation periods, a total of 66 trials were presented to participants at

a rate of one every 4 s. For each run, the data from the first two trials

were discarded, and analyses were performed on the data of the other

64 trials—16 each of the four different conditions defined by the

change of shape and category between the two cars: M0, same cate-

gory and same shape; M3within, same category and 33.33% shape

change; M3between, different category and 33.33% shape change;

and null trials (Figure 3A). Trial order was randomized and counterbal-

anced using M sequences (Buracas and Boynton, 2002), and number

of presentations was equalized for all stimuli in each experiment.

Event-Related Adaptation Experiment 3 (Categorization Task)

To assess the neural mechanisms underlying categorization, partici-

pants also participated in one more fMRI-RA experiment following

experiment 2, in which two cars were displayed sequentially (300 ms

each with a 400 ms blank screen in-between) at the center of the

screen, followed by a 3000 ms blank screen during each trial. In these

scans, participants needed to judge whether the two cars belonged to

the same or different categories by pressing one of the two buttons

held in their left and right hand. No feedback was provided to partici-

pants. The relationship between the yes/no answers and left/right

hand responses was counterbalanced across participants. MRI im-

ages from four scans were collected. Each scan lasted 628 s and

had two 10 s fixation periods, one at the beginning and the other at

the end. Between the two fixation periods, a total of 127 trials were

presented to participants at a rate of one every 4 s. For each run, the

data from the first two trials were discarded, and analyses were

performed on the data of the other 125 trials—25 each of the five

different conditions defined by the change of shape and category

between the two cars: M0, same category and same shape; M3within,

same category and 33.33% shape change; M3between, different cate-

gory and 33.33% shape change; M6, different category and 67%

shape change; and null trials (Figure 5A). Trial order was randomized

and counterbalanced using M sequences (Buracas and Boynton,

2002).

fMRI Acquisition

All fMRI data were acquired at Georgetown University’s Center for

Functional and Molecular Imaging using an echo-planar imaging (EPI)

sequence on a 3.0 Tesla Siemens Trio scanner with a single-channel

head coil (flip angle = 90�, TR = 2 s, TE = 30 ms, FOV = 205, 64 3 64
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matrix). For both functional localizer scans and ER runs, 44 interleaved

axial slices (thickness = 3.2 mm, no gap; in-plane resolution = 3.2 3

3.2 mm2) were acquired. At the end, three-dimensional T1-weighted

MPRAGE images (resolution 1 3 1 3 1 mm3) were acquired for each

subject.

fMRI Data Analysis

All preprocessing and most statistical analyses were done using the

software package SPM2 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm2/) and its toolboxes. Basically, after discarding the images ac-

quired during the first 10 s of each run, the images were temporally

corrected to the middle slice, then were spatially realigned, unwarped,

resliced to 2 3 2 3 2 mm3, and normalized to a standard MNI reference

brain in Talairach space. At the end, two sets of images were created:

one set of images was used for the whole-brain analysis and was

smoothed with an isotropic 8 mm Gaussian kernel, the other set of

images was used for the ROI-based analyses and was not smoothed.

The car-selective regions in the LO and face-selective regions in the

fusiform area were identified for each individual subject independently

with the data from the localizer scans (Grill-Spector et al., 1999; Kourtzi

and Kanwisher, 2001). We first modeled the hemodynamic activity for

each condition (car, scrambled car, and face) in the localizer scans

with the standard canonical hemodynamic response function, then

identified the car-selective LO ROI with a contrast of car versus scram-

bled cars masked by the contrast of car versus baseline (p < 0.00001,

uncorrected), and the face-selective FFA ROI with the contrast of face

versus car and scrambled car masked by the contrast of face versus

baseline (p < 0.00001, uncorrected) (see Figure S3 for the results

from a representative subject). In total, the right LO and FFA as well

as the left LO were reliably identified in all participants and in all

experiments. The left FFA was reliably identified in 15 participants in

experiment 1, 16 in experiment 2, and 14 in experiment 3. To obtain

comparably sized LO and FFA ROIs across participants, we defined

the LO and FFA ROIs by choosing an approximately equal number

of contiguous voxels with a minimum of 20 for the car ROI and 80 for

the face ROI (Jiang et al., 2006; Murray and Wojciulik, 2004). For details

on the ROI selection, see caption of Figure S3. For experiment 3, to

probe the relationship between face responsiveness and car-shape

selectivity, we defined two additional ROIs in the fusiform face area:

(1) a ‘‘core’’ face ROI (a more strictly defined FFA ROI with stricter

threshold, which was about half the size of the above-mentioned,

more loosely defined FFA ROI for each individual subject) and (2)

a ‘‘surround’’ face ROI (an ROI that should respond more weakly to

faces by excluding the smaller ‘‘core’’ face FFA ROI from the initial

and bigger FFA ROI). The sizes of the two newly defined ROIs were

about same within each individual subject (p > 0.4, paired t test). For

comparison purposes (see text), we further extracted the activation

in early visual cortex, which was defined by the contrast of scrambled

car versus baseline with a strict threshold (at least p < 10�6, and

p < 10�15 for most participants).

For the data analysis of experiments 1, 2, and 3, we first conducted

ROI-based analyses using the above-mentioned independently de-

fined ROIs. We extracted the hemodynamic response for each subject

in the ROIs using a finite impulse response (FIR) model with the

MarsBar toolbox (M. Brett et al., 2002, abstract presented at 8th Inter-

national Conference on Functional Mapping of the Human Brain) and

in-house software written in Matlab and then conducted statistical

analyses (repeated-measures ANOVA with Greenhouse-Geisser

correction, followed by planned t tests, a = 0.05, two-tailed) on the

peak values, which were either the values of the third scan or the

mean of the third and fourth scans, depending on whether the peak

lasted for more than one TR.

For the whole-brain analyses on data from experiments 1, 2, and 3,

we modeled fMRI responses with a design matrix comprising the onset

of predefined non-null trial types (M0, M3within, and M3between for

experiments 1 and 2; M0, M3within, M3between, and M6 for experiment

3) and movement parameters as regressors using a standard canoni-
902 Neuron 53, 891–903, March 15, 2007 ª2007 Elsevier Inc.
cal hemodynamic response function (HRF). The parameter estimates

of the HRF for each regressor were calculated for each voxel, and

then the contrasts at the single-subject level were computed and

entered into a second-level model in SPM2 (participants as random

effects) with additional smoothing (4 mm).

For all whole-brain analyses, a threshold of p < 0.001 (uncorrected)

with at least 20 contiguous voxels was used unless otherwise men-

tioned.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/6/891/DC1/.
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