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Models of attention are typically based on difference maps in low-level features but neglect higher order stimulus structure.
To what extent does higher order statistics affect human attention in natural stimuli? We recorded eye movements while
observers viewed unmodified andmodified images of natural scenes. Modifications included contrast modulations (resulting
in changes to first- and second-order statistics), as well as the addition of noise to the Fourier phase (resulting in changes to
higher order statistics). We have the following findings: (1) Subjects’ interpretation of a stimulus as a ‘‘natural’’ depiction of an
outdoor scene depends on higher order statistics in a highly nonlinear, categorical fashion. (2) Confirming previous findings,
contrast is elevated at fixated locations for a variety of stimulus categories. In addition, we find that the size of this elevation
depends on higher order statistics and reduces with increasing phase noise. (3) Global modulations of contrast bias eye
position toward high contrasts, consistent with a linear effect of contrast on fixation probability. This bias is independent of
phase noise. (4) Small patches of locally decreased contrast repel eye position less than large patches of the same
aggregate area, irrespective of phase noise. Our findings provide evidence that deviations from surrounding statistics, rather
than contrast per se, underlie the well-established relation of contrast to fixation.
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Introduction

When viewing complex stimuli, human observers
sequentially shift their attention (James, 1890). In natural
vision, shifts in eye position correlate tightly with such
attentional shifts (Rizzolatti, Riggio, Dascola, & Umilta,
1987). Various factors guide this ‘‘overt’’ attention, such as
the features of the stimulus, the observer’s experience, and
the task (Buswell, 1935; Yarbus, 1967). Most models of
human attention focus on the former ‘‘bottom–up’’ signals,
resting upon the concept of a ‘‘saliency map’’ (Koch &
Ullman, 1985). According to this scheme, stimuli are
processed in multiple independent feature channels, local
differences (‘‘contrasts’’) in these channels are summed,
and the activity in the resulting saliency map reflects the

probability of a location to be attended. Various imple-
mentations of the saliency-map scheme predict human
fixation behavior in natural scenes better than chance (Itti
& Koch, 2000; Parkhurst, Law, & Niebur, 2002; Peters,
Iyer, Itti, & Koch, 2005; Tatler, Baddeley, & Gilchrist,
2005). One of the model’s featuresVluminance contrastV
is elevated at fixation, as compared with random locations
(Krieger, Rentschler, Hauske, Schill, & Zetzsche, 2000;
Reinagel & Zador, 1999). This effect, however, is contin-
gent on correcting for a general fixation bias toward the
image center (Mannan, Ruddock, & Wooding, 1996, 1997)
or on restricting analysis to certain spatial frequencies
(Einhäuser & König, 2003; Tatler et al., 2005). In addition,
this correlation does not imply a causal contribution of lumi-
nance contrast to fixation but rather reflects the correlation
of both with a higher order stimulus property (Einhäuser &
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König, 2003). This raises the question to what extent the
effect of a low-level feature, such as luminance contrast, on
attention depends on higher order stimulus statistics.

Several studies directly measure the effect of higher
order statistics on human attention. By analyzing bispec-
tral densities, Krieger et al. (2000) find higher order
‘‘structural differences’’ between fixated and nonfixated
regions. These authors propose two-dimensional image
properties, like curves, edges, spots, and so forth, to
underlie the selection of fixation points. Privitera, Fujita,
Chernyak, and Stark (2005) not only identify several
generic geometric kernels that are good predictors of
fixated regions but also stress that their results are only
valid for ‘‘generic’’ imagesVin their case, landscapes,
interiors, and object collectionsVand in the absence of a
specific task. In earlier work (Privitera & Stark, 2000), the
same authors had compared 10 different algorithms for
predicting fixation locations in a variety of images. The
performance of any algorithm depends largely on the im-
age category: For example, while contrast is a good pre-
dictor in ‘‘terrain’’ scenes, symmetry is more important in
artistic paintings. Consequently, results on attention in
‘‘natural’’ scenes have to be probed for such category
dependence.

The averaged amplitude spectra of natural scenes tend to
follow a 1/f law (Betsch, Einhäuser, Körding, & König,
2004; Field, 1987; Ruderman & Bialek, 1994; Torralba &
Oliva, 2003; van der Schaaf & van Hateren, 1996). Most
information on the content of a specific natural scene,
however, seems to be contained in its phase spectrum:
When mixing the amplitude spectrum of one image with
the phase spectrum of another, the image contributing the
phase dominates the perception of the mixture (Oppenheim
& Lim, 1981). Adding noise to the phase of a stimulus
modulates responses in the visual cortex of macaque
monkeys (Rainer, Augath, Trinath, & Logothetis, 2001,
but see Dakin, Hess, Ledgeway, & Achtman, 2002) and
also impairs their performance in a memory task (Rainer,
Lee, & Logothetis, 2004). High levels of phase noise also
impair human performance in a rapid categorization task,
but some category information is retained in the amplitude
spectrum (Wichmann, Braun, & Gegenfurtner, 2006). In
the context of overt attention, monkeys are less likely
to fixate areas of the stimulus that are locally deprived of
phase information, which can be compensated for by a
local increase in luminance contrast (Kayser, Nielsen, &
Logothetis, 2006). Because monkey and human fixations
are affected differently by subtle local changes of lumi-
nance contrast (Einhäuser, Kruse, Hoffmann, & König,
2006), it is unclear whether this result transfers to human
observers.

We investigate how higher order stimulus statistics
interact with a first-order feature in guiding human overt
attention. To do so, we test the following questions:

1. Are higher order stimulus statistics needed for the
subjective perception of an outdoor scene as natural?

2. Does the elevation of luminance contrast at fixations
depend on higher order statistics or stimulus category?

3. Do large-scale variations of luminance contrast bias
attention irrespective of higher order statistics?

4. Do local variations of luminance contrast have similar
effects as global changes?

We address these questions by measuring eye movements
of human observers while they view statistically modified
images of outdoor scenes, man-made objects, human faces,
and fractals.

Methods

Stimuli

We performed four separate experiments using grayscale
images. All experiments used outdoor images based on the
Zurich Natural Image Database (Einhäuser et al., 2006;
http://www.klab.caltech.edu/~wet/ZurichNatDB.tar.gz),
which contain none or very few man-made objects. In
Experiment 1, three additional categories were used:
‘‘man-made objects’’ from the McGill calibrated color
image database (Olmos A. and Kingdom F. A. A.),
‘‘fractals’’ from the chaotic n-space network database
(http://www.cnspace.net/html/fractals_gallery.html), and
frontal views of 16 different faces taken with a Sony
DSC-V1 cybershot camera (Sony, Tokyo, Japan) under
controlled lighting conditions (Figure 1a). In Experiments 1
and 4, stimuli were used at a resolution of 1,024 �
768 pixels and 8-bit grayscale; in Experiments 2 and 3,
images were centrally cropped to 768 � 768 pixels.

Phase noise

To manipulate the higher order statistics of a stimulus, we
modified its phase spectrum. The amplitude spectrum was
unchanged. We transformed the original images to Fourier
space, added noise to the phases, and transformed the
combination of amplitude and phase back into image space.
The additive noise was drawn from a normal distribution of
standard deviationA (Experiments 2 and 3) or a symmetric
uniform distribution of width ) (Experiments 1 and 4)
and zero mean. To minimize the effects on overall contrast
in the stimuli, in Experiments 1 and 4, we drew the noise
for only half of the Fourier coefficients at random and
chose the other half as the respective complement to
preserve the symmetry in coefficients. Figure 1b displays
examples of such stimuli for two different levels of phase
noise.

Contrast gradients

To investigate the effect of global changes in luminance
contrast independently from other features in the image, we
increased or decreased luminance contrast gradually in the
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horizontal direction (Figure 1c). The luminance of the
modified stimulus I(x, y) was computed from the original
I0(x, y) for left-to-right gradients,

I x; yð Þ ¼ !
x j 1ð Þ
ðL j 1Þ

� �
I0ðx; yÞj I0h ið Þ þ I0 x; yð Þ; ð1Þ

and for right-to-left gradients,

I x; yð Þ ¼ !
L j xð Þ
ðL j 1Þ

� �
I0ðx; yÞj I0h ið Þ þ I0 x; yð Þ; ð2Þ

where 1 e x e L and 1 e y e L are given in pixels and L is
the width of the image (L = 768 in Experiments 2 and 3
and L = 1,024 in Experiments 1 and 4). bI0À denotes the
mean over all pixels, and ! determines the slope of the
gradient. To measure the effect of strong gradients as well
as the effect of gradients approximating the size of
variations naturally occurring in natural scenes, we used
values of ! of j1.0 and j0.2 (reduction in contrast as
compared with the original; Figure 1c, top), 0 (no gra-
dient), and +0.2 and +1.0 (increase in contrast; Figure 1c,
bottom).

Local contrast modifications

In Experiment 4, we usedVbesides the gradient modi-
fied stimuliVimages with local contrast modifications
(Einhäuser & König, 2003) on one side. These modifica-
tions were constructed by using a set of Gaussian masks,
Gi, each centered at a location (xi, yi):

Gi x; yð Þ ¼ exp j
ðx j xiÞ2 þ ðy j yiÞ2
� �

12

0
@

1
A: ð3Þ

Taking the maximum over Gi resulted in the overall
mask:

Gðx; yÞ ¼ max
iZf1;I;Pg

Giðx; yÞ½ �: ð4Þ

In analogy to Equations 1 and 2, each image point of the
original pixel intensity I0(x, y) was then modified to

Iðx; yÞ ¼ I0ðx; yÞ þ !Gðx; yÞ I0ðx; yÞj I0h ið Þ: ð5Þ

In addition to the modification strength, !, we get two
more parameters: the number of modifications, P, and
their size, 1. In each locally modified image, we used one
of three different sizes: 1 = 320 (large), 1 = 160 (medium),
and 1 = 80 (small). To approximately match the integrated
modification, we chose the number of modified regions
(P) to be 1, 5, and 25, respectively. Modifications were
restricted to one side of the image (modified side). To
avoid excessive overlap with image edges or midline, we
restricted the potential range of modification centers. For
modifications on the left, we used modifications centers
220 G xi G 292 (large modifications), 100 G xi G 412
(medium), and 80 G xi G 432 (small); analogously, for
modifications to the right, we used 732 G xi G 804, 612 G
xi G 924, and 592 G xi G 944, respectively. Within these

Figure 1. Stimuli. (a) Examples of the four image categories used.
All images were grayscale. (b) Phase noise. Upper left stimulus of
Panel a at two different levels of phase noise; radius of aperture
spans 10-. (c) Contrast gradients. Stimuli with contrast gradients
to the right. (d) Contrast along the horizontal midline for left-to-
right gradients (left: outdoor image of Panel a; right: average over
all outdoor images).
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ranges, the centers of the local modifications were ran-
domly chosen so that no two modifications would be less
than a distance 1 apart.

Definition of luminance contrast

In line with earlier studies (Reinagel & Zador, 1999) and
as a canonic generalization of the two-point contrast, we
defined luminance contrast at each point of a stimulus as
the standard deviation of luminance in a patch divided by
the mean luminance of the stimulus. In the present
context, it is important to note that the global gradients
as described above do manipulate luminance contrast
according to this definition. Figure 1d depicts the lumi-
nance contrast measured along a horizontal scan line in
an image modified with the different gradient strengths, !.
It can be seen that local luminance contrast is dominated
by the gradient, on average. Hence, the definition of
luminance contrast used in the analysis of local features
and the gradients is compatible. We based all analysis on a
patch size of 80 � 80 pixels (2.1- � 2.1-), but results were
qualitatively similar for a wide range of patch sizes.

Contrast at fixation/choice of baseline

We aim to test whether or not contrast is elevated at
fixated locations, as compared with feature values measured
at randomly sampled locations (‘‘baseline locations’’).
There are different possible means of choosing the baseline
locations. First, one can sample the image uniformly, that is,
measure the feature value at or around each pixel. We will
refer to this sampling as ‘‘uniform baseline.’’ Comparing
fixated locations to the uniform baseline, however, may be
subject to a confound: Assume that the feature under inves-
tigation is likely to be elevated at a certain region (say, the
center). Assume further that fixations are generally biased
toward this region. Then, even if the feature has no effect
on fixation, comparison between fixated locations and uni-
form baseline locations would show elevation of the fea-
ture at fixated locations. Hence, we also compute a second
baseline, which we sample at all locations fixated by the
subject when viewing all other stimuli of the same cate-
gory and gradient level. Because these locations account
for effects of general biases in fixated locations, we will re-
fer to this sampling as ‘‘unbiased baseline’’ (for a thorough
discussion of central biases and the appropriate choice of
baseline, see also Mannan et al, 1996; Tatler et al., 2005).
Here, we report results relative to the unbiased baseline
throughout. Results were not qualitatively different for the
uniform baseline.

Experimental design

Experiment 1 (stimulus categories)

In this experiment, we tested four different image
categories (outdoor scenes, man-made objects, fractals,
and faces). Each subject was shown two different, randomly

chosen images of each category, at 12 different phase-noise
levels, yielding a total of 2 � 4 � 12 = 96 trials per subject.
Subjects were instructed to ‘‘study the images carefully.’’
Each trial lasted 6 s and was preceded by a central fixation
cue on medium-luminance background. After 50 trials, the
calibration of the eye-tracking system was validated and the
system was recalibrated if needed. All but one subject
performed one session (96 trials). For the lone subject who
performed two sessions, only the first session was used for
analysis. Including the second session, however, did not
qualitatively affect the results.

Experiment 2 (contrast gradients)

In this experiment, 10 outdoor scene images were pre-
sented at 10 different levels of additive phase noise, yielding
100 different stimuli. These stimuli were used without gra-
dient (! = 0) and with four different gradient levels (! = j1.0,
! = j0.2, ! = +0.2, and ! = +1.0) in two directions (from
left to right and from right to left). The resulting 900 dif-
ferent stimuli were distributed over nine blocks of 100 trials.
Stimuli were balanced such that each of the 100 combina-
tions of picture and phase-noise level appeared exactly with
one type of gradient in each block.

Each trial started with a black central fixation cue on a
medium-luminance (55 cd/m2) background that was displayed
for 0.5 s. Subsequently, the stimulus was presented for 2.5 s.
After the offset of the stimulus, subjects had to indicate by
pressing one of two mouse buttons ‘‘whether or not this im-
age appears natural, i.e. resembles the image of a real-world
scene’’ (direct quotation from the written instructions given
to the subject before the experiment). Following the sub-
ject’s response, the next trial started immediately.

Before each block, the calibration of the eye-tracking
device was validated and a new calibration was performed if
necessary. Between blocks, subjects were allowed to take
breaks. Subjects performed three to five blocks in each re-
cording session and needed two or three sessions to com-
plete all of the nine blocks.

Experiment 3 (two-alternative forced-choice
experiment)

This experiment used the same images and noise levels as
Experiment 2. Ten different versions with different random
patterns of phase noise were generated for each of these
100 conditions. The resulting 1,000 stimuli formed the target
set for the two-alternative forced-choice (2-AFC) experiment.

In each trial, 2 stimuli were presented in succession: 1 of
the 1,000 target stimuli and 1 distracter that shared the same
amplitude spectrum but had random phase drawn from a
uniform distribution between j: and :. Each of the two
stimuli was presented for 0.5 s and preceded by 0.5 s of
medium-luminance blank screen. Subjects were asked to
indicate, ‘‘which of the two stimuli looked more natural, i.e.
more closely resembled the image of a real-world scene.’’

The order of trials was random throughout the experi-
ment. The 1,000 trials were subdivided into 40 blocks of
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25 trials. After each block, there was a break of at least
about 50 s, which subjects could extend as needed.

Experiment 4 (modification size)

In this experiment, we tested whether the effect of con-
trast gradients was comparable to the effect of local con-
trast modifications. We used 10 outdoor images (distinct
from those used in Experiments 2 and 3) at the same modi-
fication levels used in Experiment 2 (! = T1.0 and ! = T0.2).
Besides the gradients, we used three different modification
sizes (large: 1 = 320, medium: 1 = 160, and small: 1 = 80).
Because we were primarily interested in the effect of mod-
ification size, we used only the two extreme phase-noise
levels: no noise and random phase. Instructions were iden-
tical to Experiment 2. Using 10 images at two noise levels,
two directions, four modification strengths, and four mod-
ification sizes (gradients and three different 1), in addition
to 10 images without contrast modification at two noise lev-
els, yielded 660 trials. These were randomly ordered and
subdivided into 11 blocks of 60 trials, after each of which
subjects could take a break when needed.

Presentation

Stimuli in all experiments were computed and displayed
using Matlab (MathWorks, Natick, MA) and its psycho-
physics toolbox extension (Brainard, 1997; Pelli, 1997)
running on a Windows PC.

1. In Experiment 1, stimuli were presented on a 21-in.
CRT monitor (Samsung Electronics Co. Ltd., Korea)
located 80 cm from the subject.

2. In Experiments 2 and 3, stimuli were presented on a
19-in. CRT monitor (Sony, Tokyo, Japan), which was
located 85 cm in front of the subject. Maximum lumi-
nance (‘‘white’’) of the presentation screen was 110 cd/m2,
whereas ambient light levels were below 0.01 cd/m2.
The fringes of the stimuli were masked by a circular
aperture with radius of 10- visual angle (L/2 = 384 pixels)
to reduce any effects of screen boundaries. The back-
ground outside the aperture had medium luminance
(55 cd/m2). The gamma of the screen was corrected to en-
sure a linear mapping from pixel values to displayed
luminance.

3. In Experiment 4, we used a different monitor (Dell
Inc., Round Rock, TX), whose maximum luminance
was 29 cd/m2 with otherwise identical settings to
Experiments 2 and 3.

In all experiments, subjects’ heads were stabilized at constant
distance from the screen using a chin rest and a forehead rest.

Data acquisition

Throughout Experiments 1, 2, and 4, we recorded
observers’ eye positions using a noninvasive infrared eye

tracker. Experiment 1 used an Eyelink 2 system (SR Research
Ltd., Osgoode, ON, Canada); Experiment 2 used an ISCAN
ETL-400 (ISCAN, Burlington, MA, USA), and Experiment 4
used an Eyelink-1000 system. For the two Eyelink systems,
we used the manufacturer’s software for calibration and
validation and for determining periods of fixation. For the
ISCAN system, the mapping to screen coordinates was
computed using a grid of 25 predefined fixation locations
as the bilinear transformation that minimizes the mapping
error for these data points. We determined fixations for the
ISCAN by using the algorithm developed by Peters et al.
(2005; Peters, personal communication). We verified that
both algorithms that determine fixations yield comparable
results on identical data sets.

Subjects

Fourteen volunteers (20 to 28 years old) from the Uni-
versity of Osnabrück participated in Experiment 1. The
same five volunteers from the Caltech Community (19 to
28 years old) participated in Experiments 2 and 3. Five addi-
tional volunteers from the Caltech Community (20 to 33 years
old) participated in Experiment 4. All subjects had normal
or corrected-to-normal vision, were naive as to the purpose
of the experiment, and were paid or given course credit for
participation. All experiments conformed to the Declara-
tion of Helsinki and to the National and Institutional regu-
lations for experiments with human subjects.

Results

Behavioral data: Are higher order statistics
needed for perceiving scenes as natural?

First, we analyze to what extent the subjective perception
of a stimulus as natural depends on phase noise (behavioral
reports of Experiments 2, 3, and 4). In Experiment 2,
subjects performed a yes/no paradigm. Images that did not
undergo changes in their phase spectra (A = 0) were judged
as natural in almost all cases (99.4%, Figure 2a). This
value decreased with increasing phase noise in a highly
nonlinear fashion, which suggests a categorical rather than
a continuous transition. It reached 9.0% for the maximum
noise level (A = :). This general behavior does not depend
on the gradient strength ( p = .18, two-factor ANOVA on
the factors of noise level and gradient strength). Some
subjects, however, still reach relatively high values for A =
: (maximum: 26%), which suggests that individuals might
employ different criteria. During Experiment 4, when there
were only two noise levels (no noise and random phase), ob-
servers showed the same pattern of responses: They judged
the no-noise stimuli almost always natural (98.4% T 1.4%
natural [M T SD]) and the random-phase stimuli ‘‘non-
natural’’ (2.9% T 2.4% natural). To obtain a criterion-free

–

–

–
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measurement, we used a 2-AFC paradigm in Experiment 3.
The subjects of Experiment 2 had to report which of the fol-
lowing images they found more natural: one with varying A
or one with random phase (A Y V). For A = 0, subjects
almost always (98.2%) correctly judge the image with less
phase noise as ‘‘more natural.’’ This performance decreases
again in a sigmoidal fashion, becoming indistinguishable
from chance level for A Q 0.6: (t test: p = .41 for A = 0.6:
and p = .22 for A = :, Figure 2b). These data demonstrate
that the subjective perception of an outdoor scene as natural
is contingent on higher order stimulus statistics and that the
transition between the two categories is sharp.

Does the relation between contrast and
fixation depend on higher order statistics?

As first analysis of eye-movement data, we tested to what
extent the relation of luminance contrast to fixation depends
on higher order statistics (Experiment 1). We tested 12
levels of phase noise and four different stimulus catego-
ries: outdoor scenes, fractals, man-made objects, and
faces. For stimuli without noise, the mean luminance
contrast was elevated at fixated locations relative to
baseline in all categories (outdoor scenes: 0.9% T 0.6%;
fractals: 7.2% T 2.6%; man-made objects: 6.8% T 5.0%;
faces: 2.9% T 1.5%, relative elevation over unbiased
baseline, expressed as M T SEM across subjects, Figure 3).
For all categories, the mean elevation across noise levels
is significantly larger than 0 (p = .001, p = 2 � 10j4, p = .01,
p = .005, t tests for the individual categories pooled over
noise levels). However, the elevation decreases with increas-
ing phase noise, and its size is significantly anticorrelated to
), the amount of noise (r = j.95, p = 3 � 10j6; r = j.63,
p = .03; r = j.89, p = 1 � 10j4; r = j.83, p = 9 � 10j4

for the four categories). The results of Experiment 1 con-
firm the elevation of luminance contrast at fixated loca-
tions for a variety of complex stimuli. They furthermore
demonstrate a dependence of this correlative effect on higher
order statistics. This is first evidence that a higher order

property related to contrast might contribute to the eleva-
tion of contrast at fixated locations.

Do contrast gradients bias fixation?

Next, we measured the extent to which large-scale con-
trast gradients bias observers’ eye position (Experiment 2).
For each 2.5-s trial, we measured the median horizontal
eye position over the whole trial, irrespective of the type
of eye movement (fixation, saccade, etc.). For images with-
out any gradient (! = 0), the mean eye position is 0.02- T
0.8- (M T SD over subjects) right of the center, which is
not a significant bias ( p = .96, t test). Large positive gra-
dients (! = +1) introduce a strong bias toward the side
of higher contrast, which is significant for left-to-right
gradients (0.86- T 0.42- to the right, p = .01, Figure 4a)
and shows the same tendency for right-to-left gradients
(0.96- T 1.07- to the left, p = .11). The tendency is pre-
served for small gradients ! = +0.2, which bias the eye
position 0.25- T 0.54- and 0.24- T 0.94- in the direction of
the gradient, although the effect is not significant for this
gradient strength ( p = .36 and p = .60, respectively). For
negative gradients, we observe a similar effect: The bias
always goes in the direction of the higher contrast,
yielding significant biases of 1.64- T 1.12- ( p = .03) and
0.99- T 0.77- ( p = .04) for ! = j1.0 as well as similar
nonsignificant tendencies for ! = j0.2 (0.35- T 0.73- and
0.21- T 0.91-, p = .35 and p = .64, respectively, Figure 4a).
Although the bias is not significant for shallow gradients,
the gradient biases observers’ eye position toward higher
contrasts in all cases. To quantify this effect further, we
measure the difference between the biases in eye position
for opposing gradients for each subject and for each gra-
dient strength ! (Figure 4b). Over subjects, this difference
is significantly different from 0 for all but one ! ( p = .01,
p = .01, p = .12, and p = .008 [t tests] for ! = j1.0, ! = j0.2,

Figure 2. Behavioral data. (a) Percentage of ‘‘yes’’ responses on
whether or not an image is natural in Experiment 2 versus phase-
noise level. (b) Percentage correct (image with less phase noise
is judged more natural) in Experiment 3 versus phase-noise level.
In both panels, error bars denote the standard error of the mean
over the n = 5 subjects.

Figure 3. Elevation of contrast at fixations. Luminance contrast
at fixations relative to unbiased baseline (see Methods section).
(a) Outdoor scenes, (b) fractals, (c) man-made objects, (d) faces.
All data are expressed as mean and standard error of the mean
over subjects and best linear regression.
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! = +0.2, and ! = +1.0, respectively) and is highly signif-
icantly correlated to ! (r = .99, p = .007).

In the Appendix, we analytically derive that a linear re-
lation of fixation probability to contrast is consistent with
this linear correlation. In summary, the contrast gradient
effectively biases eye position toward regions of higher con-
trasts, consistent with a linear relation of fixation proba-
bility and luminance contrast.

Does the fixation bias induced by contrast
gradients depend on higher order statistics?

Next, we investigate the extent to which the biases in-
duced by first-order features depend on higher order sta-

tistics. Grouping the eye-tracking data by the response of the
subject reveals no difference between natural (Figure 4b,
green) and nonnatural images (Figure 4b, red): Neither is
there any difference for any ! (p = .81, p = .22, p = .86,
and p = .66) nor is the correlation between eye-position
difference and ! affected (natural: r = .98, p = .02; non-
natural: r = .995, p = .005). In addition to the binary group-
ing in natural and nonnatural images, we also analyze how
the effect of contrast gradients depends on the phase-noise
level. We do not find any significant correlation between
the effect of the contrast gradient on eye position and
phase noise for any ! (! = j1.0: r = .23, p = .53; ! =
j0.2: r = .03, p = .94; ! = +0.2: r = j.10, p = .78; ! =
+1.0: r = .39, p = .26; Figure 4c). The same pattern of
results is found when performing the analysis for periods
of fixations only (data not shown). In conclusion, the effect
of the contrast gradient on eye position is significant and
linear in the gradient strength !. In addition, it is indepen-
dent of whether or not the stimulus is judged as natural.

Do local contrast modifications have the
same effect as large-scale gradients?

Although we find that contrast reductions repel eye
position in this study, earlier studies (Einhäuser & König,
2003; Einhäuser et al., 2006) had demonstrated that strong
local reductions of contrast have an attractive effect.
Although these findings themselves stand undisputed, their
interpretation has spurred controversy (Kayser et al., 2006;
Parkhurst & Niebur, 2004). Consequently, we tested
whether the size of the modifications reconciles these
findings (Experiment 4). Consistent with the data of
Experiment 2, contrast gradients biased observers to the
side of high contrast. This bias had a trend to linear
correlation with ! (r = .94, p = .07) and was independent
of phase noise for all ! (t tests: p = .99, p = .99, p = .12,
and p = .72 for ! = j1, ! = –0.2, ! = 0.2, and ! = 1,
respectively). As with the gradients, there is no significant
difference between no-noise and random-phase stimuli at
any modification level or modification size ( p 9 .19 for all
t tests for ! and 1). For all three sizes, the bias depends on
modification level (large: p = .002, medium: p = .001,
small: p = .004, ANOVA). However, a significant linear
correlation with modification level is observed only for
the largest modification size (r = .98, p = .02, Figure 5a)
but not for medium (r = .92, p = .08, Figure 5b) or small
(r = .80, p = .20, Figure 5c) modification. Furthermore, for
the small and medium modifications, the dependence on
! is not monotonic, with strong negative modifications
(! = j1.0) being less repulsive than moderate ones (! =
j0.2). Finally, small, strongly negative modifications
areVif anythingVattractive (M T SD: 0.01- T 0.59- to-
ward modified side). These results are in line with earlier
data on local modifications and make it conceivable that
strong modifications assume an object-like quality that at-
tracts attention, counteracting the otherwise repulsive ef-
fect of low contrast.

Figure 4. Effect of contrast gradients. (a) Horizontal eye position in
trials with gradients from left to right (gray) and gradients from
right to left (black) for different gradient strengths !. 0- denotes
center of screen. (b) Difference between horizontal eye position in
trials with left-to-right gradients and right-to-left gradients for all
stimuli (black), stimuli that subjects judged to be natural (green),
and stimuli that they judged nonnatural (red). Lines denote corre-
sponding optimal linear fit. (c) Difference between horizontal eye
positions between left-to-right and right-to-left gradient trials ver-
sus phase-noise level. Different colors denote different gradient
strengths. All panels show mean and standard error of the mean
over subjects.
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Discussion

In this study, we investigate how higher order stimulus
statistic modulates the effect of contrast on fixation. We
demonstrate that

1. The perception of an outdoor scene as natural is
contingent on higher order stimulus statistics.

2. For a variety of categories, luminance contrast is
elevated at fixated locations. This elevation is anti-
correlated to phase noise and, thus, depends on higher
order statistics.

3. Global modifications of luminance contrast (gra-
dients) attract attention if contrast is increased and
repel attention if contrast is decreased. This effect is
independent of higher order statistics.

4. The repulsive effect of decreased contrast vanishes or
reverses for local modifications.

In summary, luminance contrast biases attention as
predicted by bottom–up models. However, to explain the
local effects of contrast in natural scenes in full, one needs to
consider correlations to higher order statistics.

The predominant sensory-driven (bottom–up) model of
human attention, the saliency map (Itti, Koch, & Niebur,
1998; Koch & Ullman, 1985), is based on difference maps
(contrasts) in first-order features, such as luminance. Such
saliency maps predict human fixation locations signifi-
cantly above chance (Itti & Koch, 2000; Parkhurst et al.,
2002; Peters et al., 2005; Tatler et al., 2005). However,
their predictions are still far from the theoretical optimum
for bottom–up modelsVthe mutual prediction of scan paths
between different observers (Oliva, Torralba, Castelhano,
& Henderson, 2003; Peters et al., 2005; Privitera et al.,
2005). In line with the present results, this suggests that in-
corporating relations to higher order statistics may improve
such bottom–up models.

Two approaches exist to incorporate higher order
statistics into bottom–up models. First, one may select a

different set of features than the classical saliency map,
which explicitly or implicitly include higher order effects:
Among the popular choices, there are edge density (Mannan
et al., 1996); localized edges, corners, and points (Krieger
et al., 2000); ‘‘texture contrast’’ (Parkhurst & Niebur,
2004, see below); and localized generic geometrical
kernels (Privitera et al., 2005). Alternatively, one may
learn the relevant features from scene statistics. Such a
learning approach comes at the advantage that it can be
specific to an image category (Torralba, 2003; Torralba &
Oliva, 2003), which modulates at least effects of some
low-level features (Parkhurst et al., 2002) and simple
geometric properties like symmetry (Privitera & Stark,
2000). Learning approaches can furthermore readily be
extended to incorporate task-specific priors, that is, top–
down knowledge (Navalpakkam & Itti, 2005; Oliva et al.,
2003; Torralba, 2003). Irrespective of the preferred
modeling approach, our present findings highlight the
importance of higher order structure for the effect of a
low-level featureVluminance contrast.

Several studies have investigated the relation of lumi-
nance contrast to human attention in natural stimuli. Most of
these studies find that luminance contrast is elevated at
fixated locations (Einhäuser & König, 2003; Krieger et al.,
2000; Mannan et al., 1997; Reinagel & Zador, 1999;
Tatler et al., 2005). The range of effects we observe here is
consistent with these results, when taking into account
systematic biases of observers and images, as done in this
study (see Mannan et al., 1996; Tatler et al., 2005, for a
thorough discussion of this issue). Consequently, we
confirm earlier studies in describing a small, though
significant, elevation of luminance contrast at fixated
locations.

In an earlier study (Einhäuser & König, 2003), we had
demonstrated that local reductions of luminance contrast
attract attention. Consequently, the elevation of luminance
contrast at fixations is not a consequence of contrast itself.
Instead, the elevation of contrast at fixation is the
consequence of their mutual correlation to a higher order
property. This interpretation is in line with the present
data, in which contrast elevation anticorrelates with noise
level; that is, it is at least partly dependent on higher order
statistics.

Using a modified saliency-map model, Parkhurst and
Niebur (2004) argued that a measure of contrast variation,
which they dubbed texture contrast, is elevated when
contrast is locally decreased. Assuming texture contrast to
be 10-fold more attractive than luminance contrast, their
model indeed reproduced some aspects of the Einhäuser
and König (2003) data. The fact that contrast gradients
and large modifications bias attention to high contrasts,
where small negative modifications have no such repul-
sive effect (Experiment 4), provides an alternative explan-
ation: Strong local negative modifications deviate from the
local surrounding. Thereby, they stick out as an odd item,
much like isolated features in pop-out (Treisman &
Gelade, 1980). In the temporal domain, such local

Figure 5. Eye-position biases induced by local modifications of
different size. Difference between horizontal eye position in trials
with modifications on the right and on the left; black: all stimuli;
green: no noise; red: random phase. (a) Large modification (1 =
320); (b) medium modification (1 = 160); (c) small modification
(1 = 80).
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deviations from global context or expectation, recently
formalized as Bayesian ‘‘surprise’’ (Itti & Baldi, 2005),
also attract attention. Hence, it is well conceivable that
strong negative modifications form a deviation from
context and, therefore, attract attention, counteracting the
repulsive effect of reduced contrast. This view and the
texture-contrast interpretation of Parkhurst and Niebur
are not mutually exclusive. On the contrary, texture con-
trast forms one possible formalization of this concept,
which also highlights the relative importance of higher
order stimulus statistics for the local guidance of overt
attention.

Appendix

Linear model for contrast biases

Here, we demonstrate how the assumption that contrast
has a linear effect on fixation probability results in the bias
induced by gradients to be linear in gradient strength !. The
conditional probability to fixate a contrast c is given as

pðfixkcontrast ¼ cÞ ¼ .cþ n; ðA1Þ

where n is a normalization constant and . parameterizes
the effect of contrast on fixation. For simplicity, we
consider here only left-to-right gradients. Assuming that
the gradient of strength ! dominates the average contrast
position x (Figure 1d), the contrast c(x) is given as

c xð Þ ¼ c0 !
x

L
þ 1

� �
; ðA2Þ

where L is the length of the image and c0 is the
unmodified contrast (Figure 1d). The probability to fixate
a certain contrast is

pðfix; cÞ ¼ pðcÞpðfixkcÞ: ðA3Þ

Under Equation A2, the prior for a contrast to be in
the image is uniform in [c0, (! + 1)c0] for positive ! (or in
[(! + 1)c0, c0] for negative !) and 0 outside:

p cð Þ ¼

1

j!jc0

c0 G c G !þ 1ð Þc0

1

j!jc0

c0 9 c 9 !þ 1ð Þc0

0 otherwise

:

8>>>>>><
>>>>>>:

ðA4Þ

Assuming all fixations are on the image, we have

p fix; cð Þ ¼ 1

j!jc0

.cþ nð Þ; ðA5Þ

with p being a probability we get for the constant n, for
positive !

1 ¼
Z!þ1ð Þc0

c0

pðfix; cÞdc

¼ 1

!c0

 �
.

2
c2

� !þ1ð Þc0

c0

þ nc½ � !þ1ð Þc0

c0

!

¼
 
.c0

!

2
þ 1

� �
þ n

!

¼ 1j .c0

!

2
þ 1

� �
: ðA6Þ

By interchanging the lower and upper integration limits
and replacing ! by j! in the normalization, we obtain the
same result for negative !. Hence, we expect the fixated
contrast (again, the notation assumes positive !, but ex-
changing the integration limits and replacing ª!ª = j!
in the normalization yields the same result for negative !)
to be

ch i ¼
Z!þ1ð Þc0

c0

cpðfix; cÞdc

¼ .

!c0

Z!þ1ð Þc0

c0

c2dcþ 1

!c0

Z!þ1ð Þc0

c0

cdcj
.

!

�
!

2
þ 1

� Z!þ1ð Þc0

c0

cdc

¼ .c2
0 !2

12
þ c0

�
1 þ !

2

�
: ðA7Þ

Plugging this result into Equation A2, we obtain the mean
eye position to be expected for gradient ! as

ch i ¼ cðx!Þ

¼ c0 !
x!
L
þ 1

� �

Á x! ¼ L

!

ch i
c0

j1

� �

¼ L

!

.c2
0 !2

12c0

þ c0

c0

1 þ !

2

� �
j1

� �

¼ L.c0!

12
þ L

2
: ðA8Þ

Á n

Journal of Vision (2006) 6, 1148–1158 Einhäuser et al. 1156



Analogous to the above calculation, for right-to-left gra-
dients, one obtains

Á x! ¼
L

2
j

L.c0!

12
: ðA80Þ

This implies that a gradient extending over the whole
image biases fixation by a fraction

.c0!

12
ðA9Þ

of the image width L, relative to the image center (L/2) in
the direction of the gradient. This analytical result has two
important consequences: If one assumes a linear model for
the effect of contrast (or any feature) on fixation proba-
bility and the gradient is sufficiently strong (compared with
the naturally occurring variation of the feature), one pre-
dicts that

1. The induced position bias is linear in the gradient
strength,

2. A gradient in one direction of strength ! has an equiv-
alent effect to the opposing gradient of strength j!.

Both predictions are consistent with our observations for
gradients.
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