
January 14, 2003

Notices of the AMS, May 2003

The Mathematics of Learning: Dealing with Data

Tomaso Poggio† and Steve Smale‡

CBCL, McGovern Institute, Artificial Intelligence Lab, BCS, MIT†

Toyota Technological Institute at Chicago and Professor in the Graduate School,
University of California, Berkeley‡

Abstract

Learning is key to developing systems tailored to a broad range of data analysis and
information extraction tasks. We outline the mathematical foundations of learning
theory and describe a key algorithm of it.

1 Introduction

The problem of understanding intelligence is said to be the greatest problem in
science today and “the” problem for this century - as deciphering the genetic
code was for the second half of the last one. Arguably, the problem of learning
represents a gateway to understanding intelligence in brains and machines, to
discovering how the human brain works and to making intelligent machines
that learn from experience and improve their competences as children do. In
engineering, learning techniques would make it possible to develop software
that can be quickly customized to deal with the increasing amount of informa-
tion and the flood of data around us.

Examples abound. During the last decades, experiments in particle physics
have produced a very large amount of data. Genome sequencing is doing
the same in biology. The Internet is a vast repository of disparate information
which changes rapidly and grows at an exponential rate: it is now significantly
more than 100 Terabytes, while the Library of Congress is about 20 Terabytes.

We believe that a set of techniques, based on a new area of science and engi-
neering becoming known as “supervised learning” – will become a key tech-
nology to extract information from the ocean of bits around us and make sense
of it.

Supervised learning, or learning-from-examples, refers to systems that are trained,
instead of programmed, with a set of examples, that is a set of input-output
pairs. Systems that could learn from example to perform a specific task would

1



have many applications. A bank may use a program to screen loan applica-
tions and approve the “good” ones. Such a system would be trained with a set
of data from previous loan applications and the experience with their defaults.
In this example, a loan application is a point in a multidimensional space of
variables characterizing its properties; its associated output is a binary “good”
or “bad” label.

In another example, a car manufacturer may want to have in its models, a sys-
tem to detect pedestrians that may be about to cross the road to alert the driver
of a possible danger while driving in downtown traffic. Such a system could
be trained with positive and negative examples: images of pedestrians and im-
ages without people. In fact, software trained in this way with thousands of
images has been recently tested in an experimental car of Daimler. It runs on
a PC in the trunk and looks at the road in front of the car through a digital
camera [1].

Algorithms have been developed that can produce a diagnosis of the type of
cancer from a set of measurements of the expression level of many thousands
human genes in a biopsy of the tumor measured with a cDNA microarray con-
taining probes for a number of genes. Again, the software learns the classifica-
tion rule from a set of examples, that is from examples of expression patterns
in a number of patients with known diagnoses. The challenge, in this case, is
the high dimensionality of the input space – in the order of 20, 000 genes – and
the small number of examples available for training – around 50. In the future,
similar learning techniques may be capable of some learning of a language and,
in particular, to translate information from one language to another.

What we assume in the above examples is a machine that is trained, instead
of programmed, to perform a task, given data of the form (xi, yi)m

i=1. Training
means synthesizing a function that best represents the relation between the
inputs xi and the corresponding outputs yi. The central question of learning
theory is how well this function generalizes, that is how well it estimates the
outputs for previously unseen inputs.

As we will see later more formally, learning techniques are similar to fitting
a multivariate function to a certain number of measurement data. The key
point, as we just mentioned, is that the fitting should be predictive, in the same
way that fitting experimental data (see figure 1) from an experiment in physics
can in principle uncover the underlying physical law, which is then used in a
predictive way. In this sense, learning is also a principled method for distilling
predictive and therefore scientific “theories” from the data.

We begin by presenting a simple “regularization” algorithm which is impor-
tant in learning theory and its applications. We then outline briefly some of
its applications and its performance. Next we provide a compact derivation
of it. We then provide general theoretical foundations of learning theory. In
particular, we outline the key ideas of decomposing the generalization error of
a solution of the learning problem into a sample and an approximation error

2



x

f(x)

Figure 1: How can we learn a function which is capable of generalization – among the many
functions which fit the examples equally well (here m = 7)?

component. Thus both probability theory and approximation theory play key
roles in learning theory. We apply the two theoretical bounds to the algorithm
and describe for it the tradeoff – which is key in learning theory and its ap-
plications – between number of examples and complexity of the hypothesis space.
We conclude with several remarks, both with an eye to history and to open
problems for the future.

2 A key algorithm

2.1 The algorithm

How can we fit the “training” set of data Sm = (xi, yi)m
i=1 with a function

f : X → Y – with X a closed subset of IRn and Y ⊂ IR – that generalizes, eg
is predictive? Here is an algorithm which does just that and which is almost
magical for its simplicity and effectiveness:

1. Start with data (xi, yi)m
i=1

2. Choose a symmetric, positive definite function Kx(x′) = K(x, x′), contin-
uous on X×X . A kernel K(t, s) is positive definite if

∑n
i,j=1 cicjK(ti, tj) ≥

0 for any n ∈ IN and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ IR. An exam-
ple of such a Mercer kernel is the Gaussian

3



K(x, x′) = e−
‖x−x′‖2

2σ2 . (1)

restricted to X × X .

3. Set f : X → Y to

f(x) =
m∑

i=1

ciKxi(x). (2)

where c = (c1, ..., cm) and

(mγI + K)c = y (3)

where I is the identity matrix, K is the square positive definite matrix
with elements Ki,j = K(xi, xj) and y is the vector with coordinates yi.
The parameter γ is a positive, real number.

The linear system of equations 3 in m variables is well-posed since K is positive
and (mγI+K) is strictly positive. The condition number is good if mγ is large.
This type of equations has been studied since Gauss and the algorithms for
solving it efficiently represent one the most developed areas in numerical and
computational analysis.

What does Equation 2 say? In the case of Gaussian kernel, the equation ap-
proximates the unknown function by a weighted superposition of Gaussian
“blobs” , each centered at the location xi of one of the m examples. The weight
ci of each Gaussian is such to minimize a regularized empirical error, that is
the error on the training set. The σ of the Gaussian (together with γ, see later)
controls the degree of smoothing, of noise tolerance and of generalization. No-
tice that for Gaussians with σ → 0 the representation of Equation 2 effectively
becomes a “look-up” table that cannot generalize (it provides the correct y = yi

only when x = xi and otherwise outputs 0).

2.2 Performance and examples

The algorithm performs well in a number of applications involving regres-
sion as well as binary classification. In the latter case the yi of the training
set (xi, yi)m

i=1 take the values {−1, +1}; the predicted label is then {−1, +1},
depending on the sign of the function f of Equation 2.

Regression applications are the oldest. Typically they involved fitting data in
a small number of dimensions [1]. More recently, they also included typical
learning applications, sometimes with a very high dimensionality. One exam-
ple is the use of an algorithm in computer graphics for synthesizing new im-
ages [1]. The inverse problem of estimating facial expression and object pose

4



from an image is another successful application [1]. Still another case is the con-
trol of mechanical arms. There are also applications in finance, as, for instance,
the estimation of the price of derivative securities, such as stock options. In this
case, the algorithm replaces the classical Black-Scholes equation (derived from
first principles) by learning the map from an input space (volatility, underlying
stock price, time to expiration of the option etc.) to the output space (the price
of the option) from historical data [1].

Binary classification applications abound. The algorithm was used to perform
binary classification on a number of toy problems [1]. It was also used to per-
form visual object recognition in a view-independent way and in particular
face recognition and sex categorization from face images [1]. Other applica-
tions span bioinformatics for classification of human cancer from microarray
data, text summarization, sound classification1.

Surprisingly, it has been realized quite recently that the same linear algorithm
not only works well but is fully comparable in binary classification problems
to the most popular classifiers of today (that turn out to be of the same family,
see later).

2.3 Derivation

The algorithm described can be derived from Tikhonov regularization. To find
the minimizer of the the error we may try to solve the problem – called Empir-
ical Risk Minimization (ERM) – of finding the function in H which minimizes

1
m

m∑
i=1

(f(xi) − yi)2

which is in general ill-posed, depending on the choice of the hypothesis space
H. Following Tikhonov (see for instance [6]) we minimize, instead, over the
hypothesis space HK , for a fixed positive parameter γ, the regularized func-
tional

1
m

m∑
i=1

(yi − f(xi))2 + γ‖f‖2
K, (4)

where ‖f‖2
K is the norm in HK – the Reproducing Kernel Hilbert Space (RKHS),

defined by the kernel K . The last term in Equation 4 – called regularizer – forces,
as we will see, smoothness and uniqueness of the solution.

1The very closely related Support Vector Machine (SVM) classifier was used for the same family
of applications, and in particular for bioinformatics and for face recognition and car and pedestrian
detection [1].

5



Let us first define the norm ‖f‖2
K . Consider the space of the linear span of Kxj

.
We use xj to emphasize that the elements of X used in this construction do
not have anything to do in general with the training set (xi)m

i=1. Define an inner
product in this space by setting 〈Kx, Kxj

〉 = K(x, xj) and extend linearly to∑r
j=1 ajKxj . The completion of the space in the associated norm is the RKHS,

that is a Hilbert space HK with the norm ‖f‖2
K (see [3]). Note that 〈f, Kx〉 =

f(x) for f ∈ HK (just let f = Kxj
and extend linearly).

To minimize the functional in Equation 4 we take the functional derivative
with respect to f , apply it to an element f of the RKHS and set it equal to 0. We
obtain

1
m

m∑
i=1

(yi − f(xi))f(xi) − γ〈f, f〉 = 0. (5)

Equation 5 must be valid for any f . In particular, setting f = Kx gives

f(x) =
m∑

i=1

ciKxi(x) (6)

where

ci =
yi − f(xi)

mγ
(7)

since 〈f, Kx〉 = f(x). Equation 3 then follows, by substituting Equation 6 into
Equation 7.

Notice also that essentially the same derivation for a generic loss function
V (y, f(x)), instead of (f(x) − y)2, yields the same Equation 6, but Equation
3 is now different and, in general, nonlinear, depending on the form of V . In
particular, the popular Support Vector Machine (SVM) regression and SVM
classification algorithms correspond to special choices of non-quadratic V , one
to provide a ’robust” measure of error and the other to approximate the ideal
loss function corresponding to binary (miss)classification. In both cases, the
solution is still of the same form of Equation 6 for any choice of the kernel K .
The coefficients ci are not given anymore by Equations 7 but must be found
solving a quadratic programming problem.

3 Theory

We give some further justification of the algorithm by sketching very briefly its
foundations in some basic ideas of learning theory.

6



Here the data (xi, yi)m
i=1 is supposed random, so that there is an unknown prob-

ability measure ρ on the product space X × Y from which the data is drawn.

This measure ρ defines a function

fρ : X → Y (8)

satisfying fρ(x) =
∫

ydρx, where ρx is the conditional measure on x × Y .

From this construction fρ can be said to be the true input-output function re-
flecting the environment which produces the data. Thus a measurement of the
error of f is

∫
X

(f − fρ)2dρX (9)

where ρX is the measure on X induced by ρ (sometimes called the marginal
measure).

The goal of learning theory might be said to “find” f minimizing this error.
Now to search for such an f , it is important to have a space H – the hypothesis
space – in which to work (“learning does not take place in a vacuum”). Thus
consider a convex space of continuous functions f : X → Y , (remember Y ⊂
IR) which as a subset of C(X) is compact, and where C(X) is the Banach space
of continuous functions with ||f || = maxX |f(x)|.
A basic example is

H = IK(BR) (10)

where IK : HK → C(X) is the inclusion and BR is the ball of radius R in HK .

Starting from the data (xi, yi)m
i=1 = z one may minimize 1

m

∑m
i=1(f(xi) − yi)2

over f ∈ H to obtain a unique hypothesis fz : X → Y . This fz is called the
empirical optimum and we may focus on the problem of estimating

∫
X

(fz − fρ)2dρX (11)

It is useful towards this end to break the problem into steps by defining a “true
optimum” fH relative to H, by taking the minimum over H of

∫
X

(f − fρ)2.
Thus we may exhibit

∫
X

(fz − fρ)2 = S(z,H) +
∫

X

(fH − fρ)2 = S(z,H) + A(H) (12)

where

7



S(z,H) =
∫

X

(fz − fρ)2 −
∫

X

(fH − fρ)2 (13)

The first term, (S) on the right in Equation 12 must be estimated in probability
over z and the estimate is called the sample errror (sometime also the estima-
tion error). It is naturally studied in the theory of probability and of empirical
processes. The second term (A) is dealt with via approximation theory (see
for a review [5] and also [1]) and is called the approximation error. The decom-
position of Equation 12 is related to the well known bias (A) and variance (S)
decomposition in statistics.

3.1 Sample Error

First consider an estimate for the sample error, which will have the form:

S(z,H) ≤ ε (14)

with high confidence, this confidence depending on ε and on the sample size
m.

Let us be more precise. Recall that the covering number or Cov#(H, η) is the
number of balls in H of radius η needed to cover H.

Theorem 3.1 Suppose |f(x) − y| ≤ M for all f ∈ H for almost all (x, y) ∈ X × Y .
Then

Probz∈(X×Y )m{S(z,H) ≤ ε} ≤ 1 − δ

where δ = Cov#(H, ε
24M )e−

mε
288M2 .

The result is Theorem C∗ of [3], but earlier versions (usually without a topol-
ogy on H) have been proved by others, especially Vapnik, who formulated the
notion of VC dimension to measure the complexity of the hypothesis space for
the case of {0, 1} functions.

In a typical situation of Theorem 3.1 the hypothesis space H is taken to be as in
Equation 10, where BR is the ball of radius R in a Reproducing Kernel Hilbert
Space (RKHS) with a smooth K (or in a Sobolev space). In this context, R plays
an analogous role to VC dimension[12]. Estimates for the covering numbers in
these cases were provided by Cucker, Smale and Zhou.

The proof of Theorem 3.1 starts from Hoeffding inequality (which can be re-
garded as an exponential version of Chebyshev’s inequality of probability the-
ory). One applies this estimate to the function X × Y → IR which takes (x, y)
to (f(x) − y)2. Then extending the estimate to the set of f ∈ H introduces
the covering number into the picture. With a little more work, theorem 3.1 is
obtained.

8



3.2 Approximation Error

The approximation error
∫

X(fH − fρ)2 may be studied as follows.

Suppose B : L2 → L2 is a compact, strictly positive (selfadjoint) operator. Then
let E be the Hilbert space

{g ∈ L2, ‖B−sg‖ < ∞}
with inner product 〈g, h〉E = 〈B−sg, B−sh〉L2 . Suppose moreover that E → L2

factors as E → C(X) → L2 with the inclusion JE : E ↪→ C(X) well defined
and compact.

Let H be JE(BR) when BR is the ball of radius R in E. A theorem on the
approximation error is

Theorem 3.2 Let 0 < r < s and H be as above. Then

‖fρ − fH‖2 ≤ (
1
R

)
2r

s−r ‖B−rfρ‖ 2s
s−r

We now use ‖ · ‖ for the norm in the space of square integrable functions on X ,
with measure ρX . For our main example of RKHS, take B = L

1/2
K , where K is

a Mercer kernel and

LKf(x) =
∫

X

f(x′)K(x, x′) (15)

and we have taken the square root of the operator LK . In this case E is HK as
above.

Details and proofs may be found in [3] and in [11].

3.3 Sample and approximation error for the regularization al-
gorithm

The previous discussion depends upon a compact hypothesis space H from
which the experimental optimum fz and the true optimum fH are taken. In
the key algorithm of section 2 , the optimization is done over all f ∈ HK with
a regularized error function. The error analysis of sections 3.1 and 3.2 must
therefore be extended.

Thus let fγ,z be the empirical optimum for the regularized problem as exhib-
ited in Equation 4

9



1
m

m∑
i=1

(yi − f(xi))2 + γ‖f‖2
K. (16)

Then

∫
(fγ,z − fρ)2 ≤ S(γ) + A(γ) (17)

where A(γ) (the approximation error in this context) is

A(γ) = γ1/2‖L− 1
4

K fρ‖2 (18)

and the sample error is

S(γ) =
32M2(γ + C)2

γ2
v∗(m, δ) (19)

where v∗(m, δ) is the unique solution of

m

4
v3 − ln(

4m

δ
)v − c1 = 0. (20)

Here C, c1 > 0 depend only on X and K . For the proof one reduces to the
case of compact H and applies theorems 3.1 and 3.2. Thus finding the optimal
solution is equivalent to finding the best tradeoff between A and S for a given
m. In our case, this bias-variance problem is to minimize S(γ) + A(γ) over
γ > 0. There is a unique solution – a best γ – for the choice in Equation 4. For
this result and its consequences see [4].

4 Remarks

The tradeoff between sample complexity and hypothesis space complexity

For a given, fixed hypothesis space H only the sample error component of the
error of fz can be be controlled (in Equation 12 only S(z,H) depends on the
data). In this view, convergence of S to zero as the number of data increases
(theorem 3.1) is then the central problem in learning. Vapnik called consistency
of ERM (eg convergence of the empirical error to the true error) the key prob-
lem in learning theory and in fact much modern work has focused on refining
the necessary and sufficient conditions for consistency of ERM (the uniform
Glivenko-Cantelli property of H, finite Vγ dimension for γ > 0 etc., see [6]).
More generally, however, there is a tradeoff between minimizing the sample

10



error and minimizing the approximation error – what we referred to as the
bias-variance problem. Increasing the number of data points m decreases the
sample error. The effect of increasing the complexity of the hypothesis space
is trickier. Usually the approximation error decreases but the sample error in-
creases. This means that there is an optimal complexity of the hypothesis space
for a given number of training data. In the case of the regularization algorithm
described in this paper this tradeoff corresponds to an optimum value for γ as
studied by [4, 8]. In empirical work, the optimum value is often found through
crossvalidation techniques [14].

This tradeoff between approximation error and sample error is probably the
most critical issue in determining good performance on a given problem. The
class of regularization algorithms, such as Equation 4, shows clearly that it is
also a tradeoff – quoting Girosi – between the curse of dimensionality (not enough
examples) and the blessing of smoothness (which decreases the effective “dimen-
sionality” eg the complexity of the hypothesis space) through the parameter
γ.

The regularization algorithm and Support Vector Machines

There is nothing to stop us from using the algorithm we described in this pa-
per – that is square loss regularization – for binary classification. Whereas SVM
classification arose from using – with binary y – the loss function

V (f(x, y)) = (1 − yf(x))+,

we can perform least-squares regularized classification via the loss function

V (f(x, y)) = (f(x) − y)2.

This classification scheme was used at least as early as 1989 (for reviews see
[9] and then rediscovered again by many others (see [1]), including Mangasar-
ian (who refers to square loss regularization as “proximal vector machines”)
and Suykens (who uses the name “least square SVMs”). Rifkin ( [10]) has con-
firmed the interesting empirical results by Mangasarian and Suykens: “classi-
cal” square loss regularization works well also for binary classification (exam-
ples are in tables 1 and 2).

In references to supervised learning the Support Vector Machine method is
often described (see for instance a recent issue of the Notices of the AMS) ac-
cording to the “traditional” approach, introduced by Vapnik and followed by
almost everybody else. In this approach, one starts with the concepts of sepa-
rating hyperplanes and margin. Given the data, one searches for the linear hy-
perplane that separates the positive and the negative examples, assumed to be
linearly separable, with the largest margin (the margin is defined as the dis-
tance from the hyperplane to the nearest example). Most articles and books
follow this approach, go from the separable to the non-separable case and use
a so-called “kernel trick” (!) to extend it to the nonlinear case. SVM for clas-
sification was introduced by Vapnik in the linear, separable case in terms of

11



800 250 100 30
SVM RLSC SVM RLSC SVM RLSC SVM RLSC
0.131 0.129 0.167 0.165 0.214 0.211 0.311 0.309

Table 1: A comparison of SVM and RLSC (Regularized Least Squares Classifica-
tion) accuracy on a multiclass classification task (the 20newsgroups dataset with
20 classes and high dimensionality, around 50, 000), performed using the standard
“one vs. all” scheme based on the use of binary classifiers. The top row indicates the
number of documents/class used for training. Entries in the table are the fraction of
misclassified documents. From [10].

52 20 10 3
SVM RLSC SVM RLSC SVM RLSC SVM RLSC
0.072 0.066 0.176 0.169 0.341 0.335 0.650 0.648

Table 2: A comparison of SVM and RLSC accuracy on another multiclass classi-
fication task (the sector105 dataset, consisting of 105 classes with dimensionality
about 50, 000). The top row indicates the number of documents/class used for training.
Entries in the table are the fraction of misclassified documents. From [10].

maximizing the margin. In the non-separable case, the margin motivation loses
most of its meaning. A more general and simpler framework for deriving SVM
algorithms for classification and regression is to regard them as special cases
of regularization and follow the treatment of section 2. In the case of linear
functions f(x) = w · x and separable data, maximizing the margin is exactly
equivalent to maximizing 1

||w|| , which is in turn equivalent to minimizing ||w||2,
which corresponds to minimizing the RKHS norm.

The regularization algorithm and learning theory

The Mercer theorem was introduced in learning theory by Vapnik; RKHS were
explicitly introduced in learning theory by Girosi and later by Vapnik [1, 12].
Poggio and Girosi [9, 1] had introduced Tikhonov regularization in learning
theory. Earlier, Gaussian Radial Basis Functions were proposed as an alterna-
tive to neural networks by Broomhead and Loewe. Of course, RKHS had been
pioneered by Parzen and Wahba ([1]; for a review see [14]) for applications
closely related to learning, including data smoothing (for image processing and
computer vision, see [1]).

A Bayesian interpretation

The learning algorithm Equation 4 has an interesting Bayesian interpretation
[14]: the data term – that is the first term with the quadratic loss function –
is a model of (Gaussian, additive) noise and the RKHS norm (the stabilizer)
corresponds to a prior probability on the hypothesis space H.

Let us define P [f |Sm] as the conditional probability of the function f given the
training examples Sm = (xi, yi)m

i=1, P [Sm|f ] as the conditional probability of

12



Sm given f , i.e. a model of the noise, and P [f ] as the a priori probability of the
random field f . Then Bayes theorem provides the posterior distribution as

P [f |Sm] =
P [Sm|f ] P [f ]

P (Sm)
.

If the noise is normally distributed with variance σ, then the probability P [Sm|f ]
is

P [Sm|f ] =
1

ZL
e
− 1

2σ2
∑ m

i=1(yi−f(x
i
))2

where ZL is a normalization constant.

If P [f ] = 1
Zr

e−‖f‖2
K where Zr is another normalization constant, then

P [f |Sm] =
1

ZDZLZr
e−( 1

2σ2
∑m

i=1(yi−f(xi))
2+‖f‖2

K).

One of the several possible estimates of f from P [f |Sm] is the so called Maxi-
mum A Posteriori (MAP) estimate, that is

maxP [f |Sm] = min
m∑

i=1

(yi − f(xi))2 + 2σ2‖f‖2
K .

which is the same as the regularization functional, if λ = 2σ2/m (for details
and extensions to models of non Gaussian noise and different loss functions
see [6]).

Necessary and sufficient conditions for learnability

Compactness of the hypothesis spaceH is sufficient for consistency of ERM, that
is for bounds of the type of Theorem 3.1 on the sample error. The necessary and
sufficient condition is that H is a uniform Glivenko-Cantelli class of functions, in
which case no specific topology is assumed for H2. There are several equivalent
conditions on H such as finiteness of the Vγ dimension for all positive γ (which
reduces to finiteness of the VC dimension for {0, 1} functions) 3.

2Definition: Let F be a class of functions f . F is a uniform Glivenko-Cantelli class if for every ε > 0

lim
m→∞ sup

ρ
IP{ sup

f∈F
|Eρmf − Eρf | > ε} = 0. (21)

where ρn is the empirical measure supported on a set x1, ..., xn.
3In [2] – following [13] – a necessary and sufficient condition is proved for uniform convergence

of |Iemp[f ] − Iexp[f ]|, in terms of the finiteness for all γ > 0 of a combinatorial quantity called
Vγ dimension of F (which is the set V (x), f(x), f ∈ H), under some assumptions on V . The
result is based on a necessary and sufficient (distribution independent) condition proved by [13]
which uses the metric entropy of F defined as Hm(ε,F) = supxm∈Xm logN (ε,F , xm), where
N (ε,F , xm) is the ε-covering of F wrt l∞xm

( l∞xm
is the l∞ distance on the points xm):

Theorem (Dudley, see [1]). F is a uniform Glivenko-Cantelli class iff limm→∞ Hm(ε,F)
m

= 0 for all
ε > 0.

13



We saw earlier that the regularization algorithm Equation 4 ensures (through
the resulting compactness of the “effective” hypothesis space) well-posedness
of the problem. It also yields convergence of the empirical error to the true
error (eg bounds such as Theorem 3.1). An open question is whether there is
a connection between well-posedness and consistency. For well-posedness the
critical condition is usually stability of the solution. In the learning problem,
this condition refers to stability of the solution of ERM with respect to small
changes of the training set Sm. In a similar way, the condition number charac-
terizes the stability of the solution of Equation 3. Is it possible that some specific
form of stability may be necessary and sufficient for consistency of ERM? Such
a result would be surprising because, a priori, there is no reason why there should
be a connection between well-posedness and consistency: they are both impor-
tant requirements for ERM but they seem quite different and independent of
each other.

Learning theory, sample complexity and brains

The theory of supervised learning outlined in this paper and in the references
has achieved a remarkable degree of completeness and of practical success in
many applications. Within it, many interesting problems remain open and are
a fertile ground for interesting and useful mathematics. One may also take a
broader view and ask: what next?

One could argue that the most important aspect of intelligence and of the amaz-
ing performance of real brains is the ability to learn. How then do the learning
machines we have described in the theory compare with brains? There are of
course many aspects of biological learning that are not captured by the theory
and several difficulties in making any comparison. One of the most obvious
differences, however, is the ability of people and animals to learn from very
few examples. The algorithms we have described can learn an object recogni-
tion task from a few thousand labeled images. This is a small number com-
pared with the apparent dimensionality of the problem (thousands of pixels)
but a child, or even a monkey, can learn the same task from just a few exam-
ples. Of course, evolution has probably done a part of the learning but so have
we, when we choose for any given task an appropriate input representation for
our learning machine. From this point of view, as Donald Geman has argued,
the interesting limit is not ”m goes to infinity,” but rather ”m goes to zero”.
Thus an important area for future theoretical and experimental work is learn-
ing from partially labeled examples (and the related area of active learning). In
the first case there are only a small number 	 of labeled pairs (xi, yi)�

i=1 – for
instance with yi binary – and many unlabeled data (xi)m

�+1, m >> 	. Though
interesting work has begun in this direction, a satisfactory theory that provides
conditions under which unlabeled data can be used is still lacking.

A comparison with real brains offers another, and probably related, challenge
to learning theory. The “learning algorithms” we have described in this pa-

14



per correspond to one-layer architectures. Are hierarchical architectures with
more layers justifiable in terms of learning theory? It seems that the learning
theory of the type we have outlined does not offer any general argument in
favor of hierarchical learning machines for regression or classification. This is
somewhat of a puzzle since the organization of cortex – for instance visual cor-
tex – is strongly hierarchical. At the same time, hierarchical learning systems
show superior performance in several engineering applications. For instance, a
face categorization system in which a single SVM classifier combines the real-
valued output of a few classifiers, each trained to a different component of
faces – such as eye and nose –, outperforms a single classifier trained on full
images of faces ([1]). The theoretical issues surrounding hierarchical systems
of this type are wide open, and likely to be of paramount importance for the
next major development of efficient classifiers in several application domains.

Why hierarchies? There may be reasons of efficiency – computational speed and
use of computational resources. For instance, the lowest levels of the hierarchy
may represent a dictionary of features that can be shared across multiple classi-
fication tasks (see [7]). Hierarchical system usually decompose a task in a series
of simple computations at each level – often an advantage for fast implementa-
tions. There may also be the more fundamental issue of sample complexity. We
mentioned that an obvious difference between our best classifiers and human
learning is the number of examples required in tasks such as object detection.
The theory described in this paper shows that the difficulty of a learning task
depends on the size of the required hypothesis space. This complexity deter-
mines in turn how many training examples are needed to achieve a given level
of generalization error. Thus the complexity of the hypothesis space sets the
speed limit and the sample complexity for learning. If a task – like a visual
recognition task – can be decomposed into low-complexity learning tasks, for
each layer of a hierarchical learning machine, then each layer may require only
a small number of training examples. Of course, not all classification tasks
have a hierarchical representation. Roughly speaking, the issue is under which
conditions a function of many variables can be approximated by a function of
a small number of functions of subsets of the original variables. Neuroscience
suggests that what humans can learn can be represented by hierarchies that are
locally simple. Thus our ability of learning from just a few examples, and its
limitations, may be related to the hierarchical architecture of cortex. This is just
one of several possible connections, still to be characterized, between learning
theory and the ultimate problem in natural science – the organization and the
principles of higher brain functions.

Acknowledgments Thanks to Felipe Cucker, Federico Girosi, Don Glaser, Sayan
Mukherjee, Martino Poggio and Ryan Rifkin.

15



References

[1] For a list of references, including spe-
cific applications mentioned in the article, see
www.ai.mit.edu/projects/cbcl/projects/noticesams/poggiosmale.htm.

[2] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive
dimensions, uniform convergence, and learnability. J. of the ACM,
44(4):615–631, 1997.

[3] F. Cucker and S. Smale. On the mathematical foundations of learning.
Bulletin of AMS, 39:1–49, 2001.

[4] F. Cucker and S. Smale. Best choices for regularization parameters in
learning theory: on the bias-variance problem. Foundations of Computa-
tional Mathematics, 2(4):413–428, 2002.

[5] R.A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[6] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and sup-
port vector machines. Advances in Computational Mathematics, 13:1–50,
2000.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer Verlag, Basel, 2001.

[8] P. Niyogi and F. Girosi. On the relationship between generalization error,
hypothesis complexity, and sample complexity for radial basis functions.
Neural Computation, 8:819–842, 1996.

[9] T. Poggio and F. Girosi. Networks for approximation and learning. Pro-
ceedings of the IEEE, 78(9), September 1990.

[10] R. M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Ap-
proaches to Machine Learning. PhD thesis, Massachusetts Institute of Tech-
nology, 2002.

[11] S. Smale and D. Zhou. Estimating the approximation error in learning
theory. Analysis and Applications, 1:1–25, 2003.

[12] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[13] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of
relative frequences of events to their probabilities. Th. Prob. and its Appli-
cations, 17(2):264–280, 1971.

[14] G. Wahba. Splines Models for Observational Data. Series in Applied Mathe-
matics, Vol. 59, SIAM, Philadelphia, 1990.

16


